text
stringlengths
938
1.05M
//----------------------------------------------------------------------------- //-- (c) Copyright 2010 Xilinx, Inc. All rights reserved. //-- //-- This file contains confidential and proprietary information //-- of Xilinx, Inc. and is protected under U.S. and //-- international copyright and other intellectual property //-- laws. //-- //-- DISCLAIMER //-- This disclaimer is not a license and does not grant any //-- rights to the materials distributed herewith. Except as //-- otherwise provided in a valid license issued to you by //-- Xilinx, and to the maximum extent permitted by applicable //-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND //-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES //-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING //-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- //-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and //-- (2) Xilinx shall not be liable (whether in contract or tort, //-- including negligence, or under any other theory of //-- liability) for any loss or damage of any kind or nature //-- related to, arising under or in connection with these //-- materials, including for any direct, or any indirect, //-- special, incidental, or consequential loss or damage //-- (including loss of data, profits, goodwill, or any type of //-- loss or damage suffered as a result of any action brought //-- by a third party) even if such damage or loss was //-- reasonably foreseeable or Xilinx had been advised of the //-- possibility of the same. //-- //-- CRITICAL APPLICATIONS //-- Xilinx products are not designed or intended to be fail- //-- safe, or for use in any application requiring fail-safe //-- performance, such as life-support or safety devices or //-- systems, Class III medical devices, nuclear facilities, //-- applications related to the deployment of airbags, or any //-- other applications that could lead to death, personal //-- injury, or severe property or environmental damage //-- (individually and collectively, "Critical //-- Applications"). Customer assumes the sole risk and //-- liability of any use of Xilinx products in Critical //-- Applications, subject only to applicable laws and //-- regulations governing limitations on product liability. //-- //-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS //-- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: ACP Transaction Checker // // Check for optimized ACP transactions and flag if they are broken. // // // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // atc // aw_atc // w_atc // b_atc // //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none module processing_system7_v5_5_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_AXI_ARUSER_WIDTH = 1, // Width of ARUSER signals. // Range: >= 1. parameter integer C_AXI_WUSER_WIDTH = 1, // Width of WUSER signals. // Range: >= 1. parameter integer C_AXI_RUSER_WIDTH = 1, // Width of RUSER signals. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1 // Width of BUSER signals. // Range: >= 1. ) ( // Global Signals input wire ACLK, input wire ARESETN, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR, input wire [4-1:0] S_AXI_ARLEN, input wire [3-1:0] S_AXI_ARSIZE, input wire [2-1:0] S_AXI_ARBURST, input wire [2-1:0] S_AXI_ARLOCK, input wire [4-1:0] S_AXI_ARCACHE, input wire [3-1:0] S_AXI_ARPROT, input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR, output wire [4-1:0] M_AXI_ARLEN, output wire [3-1:0] M_AXI_ARSIZE, output wire [2-1:0] M_AXI_ARBURST, output wire [2-1:0] M_AXI_ARLOCK, output wire [4-1:0] M_AXI_ARCACHE, output wire [3-1:0] M_AXI_ARPROT, output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER, output wire M_AXI_ARVALID, input wire M_AXI_ARREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY, output wire ERROR_TRIGGER, output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// localparam C_FIFO_DEPTH_LOG = 4; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Internal reset. reg ARESET; // AW->W command queue signals. wire cmd_w_valid; wire cmd_w_check; wire [C_AXI_ID_WIDTH-1:0] cmd_w_id; wire cmd_w_ready; // W->B command queue signals. wire cmd_b_push; wire cmd_b_error; wire [C_AXI_ID_WIDTH-1:0] cmd_b_id; wire cmd_b_full; wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr; wire cmd_b_ready; ///////////////////////////////////////////////////////////////////////////// // Handle Internal Reset ///////////////////////////////////////////////////////////////////////////// always @ (posedge ACLK) begin ARESET <= !ARESETN; end ///////////////////////////////////////////////////////////////////////////// // Handle Write Channels (AW/W/B) ///////////////////////////////////////////////////////////////////////////// // Write Address Channel. processing_system7_v5_5_aw_atc # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG) ) write_addr_inst ( // Global Signals .ARESET (ARESET), .ACLK (ACLK), // Command Interface (Out) .cmd_w_valid (cmd_w_valid), .cmd_w_check (cmd_w_check), .cmd_w_id (cmd_w_id), .cmd_w_ready (cmd_w_ready), .cmd_b_addr (cmd_b_addr), .cmd_b_ready (cmd_b_ready), // Slave Interface Write Address Ports .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWADDR (S_AXI_AWADDR), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWLOCK (S_AXI_AWLOCK), .S_AXI_AWCACHE (S_AXI_AWCACHE), .S_AXI_AWPROT (S_AXI_AWPROT), .S_AXI_AWUSER (S_AXI_AWUSER), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), // Master Interface Write Address Port .M_AXI_AWID (M_AXI_AWID), .M_AXI_AWADDR (M_AXI_AWADDR), .M_AXI_AWLEN (M_AXI_AWLEN), .M_AXI_AWSIZE (M_AXI_AWSIZE), .M_AXI_AWBURST (M_AXI_AWBURST), .M_AXI_AWLOCK (M_AXI_AWLOCK), .M_AXI_AWCACHE (M_AXI_AWCACHE), .M_AXI_AWPROT (M_AXI_AWPROT), .M_AXI_AWUSER (M_AXI_AWUSER), .M_AXI_AWVALID (M_AXI_AWVALID), .M_AXI_AWREADY (M_AXI_AWREADY) ); // Write Data channel. processing_system7_v5_5_w_atc # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH) ) write_data_inst ( // Global Signals .ARESET (ARESET), .ACLK (ACLK), // Command Interface (In) .cmd_w_valid (cmd_w_valid), .cmd_w_check (cmd_w_check), .cmd_w_id (cmd_w_id), .cmd_w_ready (cmd_w_ready), // Command Interface (Out) .cmd_b_push (cmd_b_push), .cmd_b_error (cmd_b_error), .cmd_b_id (cmd_b_id), .cmd_b_full (cmd_b_full), // Slave Interface Write Data Ports .S_AXI_WID (S_AXI_WID), .S_AXI_WDATA (S_AXI_WDATA), .S_AXI_WSTRB (S_AXI_WSTRB), .S_AXI_WLAST (S_AXI_WLAST), .S_AXI_WUSER (S_AXI_WUSER), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), // Master Interface Write Data Ports .M_AXI_WID (M_AXI_WID), .M_AXI_WDATA (M_AXI_WDATA), .M_AXI_WSTRB (M_AXI_WSTRB), .M_AXI_WLAST (M_AXI_WLAST), .M_AXI_WUSER (M_AXI_WUSER), .M_AXI_WVALID (M_AXI_WVALID), .M_AXI_WREADY (M_AXI_WREADY) ); // Write Response channel. processing_system7_v5_5_b_atc # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH), .C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG) ) write_response_inst ( // Global Signals .ARESET (ARESET), .ACLK (ACLK), // Command Interface (In) .cmd_b_push (cmd_b_push), .cmd_b_error (cmd_b_error), .cmd_b_id (cmd_b_id), .cmd_b_full (cmd_b_full), .cmd_b_addr (cmd_b_addr), .cmd_b_ready (cmd_b_ready), // Slave Interface Write Response Ports .S_AXI_BID (S_AXI_BID), .S_AXI_BRESP (S_AXI_BRESP), .S_AXI_BUSER (S_AXI_BUSER), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), // Master Interface Write Response Ports .M_AXI_BID (M_AXI_BID), .M_AXI_BRESP (M_AXI_BRESP), .M_AXI_BUSER (M_AXI_BUSER), .M_AXI_BVALID (M_AXI_BVALID), .M_AXI_BREADY (M_AXI_BREADY), // Trigger detection .ERROR_TRIGGER (ERROR_TRIGGER), .ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID) ); ///////////////////////////////////////////////////////////////////////////// // Handle Read Channels (AR/R) ///////////////////////////////////////////////////////////////////////////// // Read Address Port assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARUSER = S_AXI_ARUSER; assign M_AXI_ARVALID = S_AXI_ARVALID; assign S_AXI_ARREADY = M_AXI_ARREADY; // Read Data Port assign S_AXI_RID = M_AXI_RID; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; endmodule `default_nettype wire
//----------------------------------------------------------------------------- //-- (c) Copyright 2010 Xilinx, Inc. All rights reserved. //-- //-- This file contains confidential and proprietary information //-- of Xilinx, Inc. and is protected under U.S. and //-- international copyright and other intellectual property //-- laws. //-- //-- DISCLAIMER //-- This disclaimer is not a license and does not grant any //-- rights to the materials distributed herewith. Except as //-- otherwise provided in a valid license issued to you by //-- Xilinx, and to the maximum extent permitted by applicable //-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND //-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES //-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING //-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- //-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and //-- (2) Xilinx shall not be liable (whether in contract or tort, //-- including negligence, or under any other theory of //-- liability) for any loss or damage of any kind or nature //-- related to, arising under or in connection with these //-- materials, including for any direct, or any indirect, //-- special, incidental, or consequential loss or damage //-- (including loss of data, profits, goodwill, or any type of //-- loss or damage suffered as a result of any action brought //-- by a third party) even if such damage or loss was //-- reasonably foreseeable or Xilinx had been advised of the //-- possibility of the same. //-- //-- CRITICAL APPLICATIONS //-- Xilinx products are not designed or intended to be fail- //-- safe, or for use in any application requiring fail-safe //-- performance, such as life-support or safety devices or //-- systems, Class III medical devices, nuclear facilities, //-- applications related to the deployment of airbags, or any //-- other applications that could lead to death, personal //-- injury, or severe property or environmental damage //-- (individually and collectively, "Critical //-- Applications"). Customer assumes the sole risk and //-- liability of any use of Xilinx products in Critical //-- Applications, subject only to applicable laws and //-- regulations governing limitations on product liability. //-- //-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS //-- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: ACP Transaction Checker // // Check for optimized ACP transactions and flag if they are broken. // // // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // atc // aw_atc // w_atc // b_atc // //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none module processing_system7_v5_5_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_AXI_ARUSER_WIDTH = 1, // Width of ARUSER signals. // Range: >= 1. parameter integer C_AXI_WUSER_WIDTH = 1, // Width of WUSER signals. // Range: >= 1. parameter integer C_AXI_RUSER_WIDTH = 1, // Width of RUSER signals. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1 // Width of BUSER signals. // Range: >= 1. ) ( // Global Signals input wire ACLK, input wire ARESETN, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR, input wire [4-1:0] S_AXI_ARLEN, input wire [3-1:0] S_AXI_ARSIZE, input wire [2-1:0] S_AXI_ARBURST, input wire [2-1:0] S_AXI_ARLOCK, input wire [4-1:0] S_AXI_ARCACHE, input wire [3-1:0] S_AXI_ARPROT, input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR, output wire [4-1:0] M_AXI_ARLEN, output wire [3-1:0] M_AXI_ARSIZE, output wire [2-1:0] M_AXI_ARBURST, output wire [2-1:0] M_AXI_ARLOCK, output wire [4-1:0] M_AXI_ARCACHE, output wire [3-1:0] M_AXI_ARPROT, output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER, output wire M_AXI_ARVALID, input wire M_AXI_ARREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY, output wire ERROR_TRIGGER, output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// localparam C_FIFO_DEPTH_LOG = 4; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Internal reset. reg ARESET; // AW->W command queue signals. wire cmd_w_valid; wire cmd_w_check; wire [C_AXI_ID_WIDTH-1:0] cmd_w_id; wire cmd_w_ready; // W->B command queue signals. wire cmd_b_push; wire cmd_b_error; wire [C_AXI_ID_WIDTH-1:0] cmd_b_id; wire cmd_b_full; wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr; wire cmd_b_ready; ///////////////////////////////////////////////////////////////////////////// // Handle Internal Reset ///////////////////////////////////////////////////////////////////////////// always @ (posedge ACLK) begin ARESET <= !ARESETN; end ///////////////////////////////////////////////////////////////////////////// // Handle Write Channels (AW/W/B) ///////////////////////////////////////////////////////////////////////////// // Write Address Channel. processing_system7_v5_5_aw_atc # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG) ) write_addr_inst ( // Global Signals .ARESET (ARESET), .ACLK (ACLK), // Command Interface (Out) .cmd_w_valid (cmd_w_valid), .cmd_w_check (cmd_w_check), .cmd_w_id (cmd_w_id), .cmd_w_ready (cmd_w_ready), .cmd_b_addr (cmd_b_addr), .cmd_b_ready (cmd_b_ready), // Slave Interface Write Address Ports .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWADDR (S_AXI_AWADDR), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWLOCK (S_AXI_AWLOCK), .S_AXI_AWCACHE (S_AXI_AWCACHE), .S_AXI_AWPROT (S_AXI_AWPROT), .S_AXI_AWUSER (S_AXI_AWUSER), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), // Master Interface Write Address Port .M_AXI_AWID (M_AXI_AWID), .M_AXI_AWADDR (M_AXI_AWADDR), .M_AXI_AWLEN (M_AXI_AWLEN), .M_AXI_AWSIZE (M_AXI_AWSIZE), .M_AXI_AWBURST (M_AXI_AWBURST), .M_AXI_AWLOCK (M_AXI_AWLOCK), .M_AXI_AWCACHE (M_AXI_AWCACHE), .M_AXI_AWPROT (M_AXI_AWPROT), .M_AXI_AWUSER (M_AXI_AWUSER), .M_AXI_AWVALID (M_AXI_AWVALID), .M_AXI_AWREADY (M_AXI_AWREADY) ); // Write Data channel. processing_system7_v5_5_w_atc # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH) ) write_data_inst ( // Global Signals .ARESET (ARESET), .ACLK (ACLK), // Command Interface (In) .cmd_w_valid (cmd_w_valid), .cmd_w_check (cmd_w_check), .cmd_w_id (cmd_w_id), .cmd_w_ready (cmd_w_ready), // Command Interface (Out) .cmd_b_push (cmd_b_push), .cmd_b_error (cmd_b_error), .cmd_b_id (cmd_b_id), .cmd_b_full (cmd_b_full), // Slave Interface Write Data Ports .S_AXI_WID (S_AXI_WID), .S_AXI_WDATA (S_AXI_WDATA), .S_AXI_WSTRB (S_AXI_WSTRB), .S_AXI_WLAST (S_AXI_WLAST), .S_AXI_WUSER (S_AXI_WUSER), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), // Master Interface Write Data Ports .M_AXI_WID (M_AXI_WID), .M_AXI_WDATA (M_AXI_WDATA), .M_AXI_WSTRB (M_AXI_WSTRB), .M_AXI_WLAST (M_AXI_WLAST), .M_AXI_WUSER (M_AXI_WUSER), .M_AXI_WVALID (M_AXI_WVALID), .M_AXI_WREADY (M_AXI_WREADY) ); // Write Response channel. processing_system7_v5_5_b_atc # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH), .C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG) ) write_response_inst ( // Global Signals .ARESET (ARESET), .ACLK (ACLK), // Command Interface (In) .cmd_b_push (cmd_b_push), .cmd_b_error (cmd_b_error), .cmd_b_id (cmd_b_id), .cmd_b_full (cmd_b_full), .cmd_b_addr (cmd_b_addr), .cmd_b_ready (cmd_b_ready), // Slave Interface Write Response Ports .S_AXI_BID (S_AXI_BID), .S_AXI_BRESP (S_AXI_BRESP), .S_AXI_BUSER (S_AXI_BUSER), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), // Master Interface Write Response Ports .M_AXI_BID (M_AXI_BID), .M_AXI_BRESP (M_AXI_BRESP), .M_AXI_BUSER (M_AXI_BUSER), .M_AXI_BVALID (M_AXI_BVALID), .M_AXI_BREADY (M_AXI_BREADY), // Trigger detection .ERROR_TRIGGER (ERROR_TRIGGER), .ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID) ); ///////////////////////////////////////////////////////////////////////////// // Handle Read Channels (AR/R) ///////////////////////////////////////////////////////////////////////////// // Read Address Port assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARUSER = S_AXI_ARUSER; assign M_AXI_ARVALID = S_AXI_ARVALID; assign S_AXI_ARREADY = M_AXI_ARREADY; // Read Data Port assign S_AXI_RID = M_AXI_RID; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; endmodule `default_nettype wire
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
/* * * Copyright (c) 2011 [email protected] * * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ `timescale 1ns/1ps module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/10/2016 04:46:19 PM // Design Name: // Module Name: exp_operation // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Exp_Operation #(parameter EW = 8) //Exponent Width ( input wire clk, //system clock input wire rst, //reset of the module input wire load_a_i, input wire load_b_i, input wire [EW-1:0] Data_A_i, input wire [EW-1:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW-1:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); //wire [EW-1:0] Data_B; wire [EW:0] Data_S; /////////////////////////////////////////7 //genvar j; //for (j=0; j<EW; j=j+1)begin // assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i; //end ///////////////////////////////////////// add_sub_carry_out #(.W(EW)) exp_add_subt( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S (Data_S) ); //assign Overflow_flag_o = 1'b0; //assign Underflow_flag_o = 1'b0; Comparators #(.W_Exp(EW+1)) array_comparators( .exp(Data_S), .overflow(Overflow_flag), .underflow(Underflow_flag) ); RegisterAdd #(.W(EW)) exp_result( .clk (clk), .rst (rst), .load (load_a_i), .D (Data_S[EW-1:0]), .Q (Data_Result_o) ); RegisterAdd #(.W(1)) Overflow ( .clk(clk), .rst(rst), .load(load_a_i), .D(Overflow_flag), .Q(Overflow_flag_o) ); RegisterAdd #(.W(1)) Underflow ( .clk(clk), .rst(rst), .load(load_b_i), .D(Underflow_flag), .Q(Underflow_flag_o) ); endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/10/2016 04:46:19 PM // Design Name: // Module Name: exp_operation // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Exp_Operation #(parameter EW = 8) //Exponent Width ( input wire clk, //system clock input wire rst, //reset of the module input wire load_a_i, input wire load_b_i, input wire [EW-1:0] Data_A_i, input wire [EW-1:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW-1:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); //wire [EW-1:0] Data_B; wire [EW:0] Data_S; /////////////////////////////////////////7 //genvar j; //for (j=0; j<EW; j=j+1)begin // assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i; //end ///////////////////////////////////////// add_sub_carry_out #(.W(EW)) exp_add_subt( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S (Data_S) ); //assign Overflow_flag_o = 1'b0; //assign Underflow_flag_o = 1'b0; Comparators #(.W_Exp(EW+1)) array_comparators( .exp(Data_S), .overflow(Overflow_flag), .underflow(Underflow_flag) ); RegisterAdd #(.W(EW)) exp_result( .clk (clk), .rst (rst), .load (load_a_i), .D (Data_S[EW-1:0]), .Q (Data_Result_o) ); RegisterAdd #(.W(1)) Overflow ( .clk(clk), .rst(rst), .load(load_a_i), .D(Overflow_flag), .Q(Overflow_flag_o) ); RegisterAdd #(.W(1)) Underflow ( .clk(clk), .rst(rst), .load(load_b_i), .D(Underflow_flag), .Q(Underflow_flag_o) ); endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/10/2016 04:46:19 PM // Design Name: // Module Name: exp_operation // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Exp_Operation #(parameter EW = 8) //Exponent Width ( input wire clk, //system clock input wire rst, //reset of the module input wire load_a_i, input wire load_b_i, input wire [EW-1:0] Data_A_i, input wire [EW-1:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW-1:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); //wire [EW-1:0] Data_B; wire [EW:0] Data_S; /////////////////////////////////////////7 //genvar j; //for (j=0; j<EW; j=j+1)begin // assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i; //end ///////////////////////////////////////// add_sub_carry_out #(.W(EW)) exp_add_subt( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S (Data_S) ); //assign Overflow_flag_o = 1'b0; //assign Underflow_flag_o = 1'b0; Comparators #(.W_Exp(EW+1)) array_comparators( .exp(Data_S), .overflow(Overflow_flag), .underflow(Underflow_flag) ); RegisterAdd #(.W(EW)) exp_result( .clk (clk), .rst (rst), .load (load_a_i), .D (Data_S[EW-1:0]), .Q (Data_Result_o) ); RegisterAdd #(.W(1)) Overflow ( .clk(clk), .rst(rst), .load(load_a_i), .D(Overflow_flag), .Q(Overflow_flag_o) ); RegisterAdd #(.W(1)) Underflow ( .clk(clk), .rst(rst), .load(load_b_i), .D(Underflow_flag), .Q(Underflow_flag_o) ); endmodule
/* * VGA top level file * Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
/* * VGA top level file * Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
/* * VGA top level file * Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
/* * VGA top level file * Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
/* * VGA top level file * Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
/* * VGA top level file * Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
/* * VGA top level file * Copyright (C) 2010 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
// This is a component of pluto_servo, a PWM servo driver and quadrature // counter for emc2 // Copyright 2006 Jeff Epler <[email protected]> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
// This is a component of pluto_servo, a PWM servo driver and quadrature // counter for emc2 // Copyright 2006 Jeff Epler <[email protected]> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
// This is a component of pluto_servo, a PWM servo driver and quadrature // counter for emc2 // Copyright 2006 Jeff Epler <[email protected]> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
// This is a component of pluto_servo, a PWM servo driver and quadrature // counter for emc2 // Copyright 2006 Jeff Epler <[email protected]> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // DDC block module ddc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_cordic_out, q_cordic_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_in), .yi(q_in), .zi(phase[31:32-zw]), .xo(i_cordic_out), .yo(q_cordic_out), .zo() ); cic_decim_2stage #(.bw(bw),.N(4)) decim_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(i_cordic_out),.signal_out(i_out)); cic_decim_2stage #(.bw(bw),.N(4)) decim_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(q_cordic_out),.signal_out(q_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // DDC block module ddc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_cordic_out, q_cordic_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_in), .yi(q_in), .zi(phase[31:32-zw]), .xo(i_cordic_out), .yo(q_cordic_out), .zo() ); cic_decim_2stage #(.bw(bw),.N(4)) decim_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(i_cordic_out),.signal_out(i_out)); cic_decim_2stage #(.bw(bw),.N(4)) decim_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(q_cordic_out),.signal_out(q_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
`timescale 1ns / 1ps // Copyright (C) 2008 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
`timescale 1ns / 1ps // Copyright (C) 2008 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
`timescale 1ns / 1ps // Copyright (C) 2008 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
`timescale 1ns / 1ps // Copyright (C) 2008 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
`timescale 1ns / 1ps // Copyright (C) 2008 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/11/2016 02:09:05 PM // Design Name: // Module Name: Rotate_Mux_Array // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Rotate_Mux_Array #(parameter SWR=26) ( input wire [SWR-1:0] Data_i, input wire select_i, output wire [SWR-1:0] Data_o ); genvar j;//Create a variable for the loop FOR generate for (j=0; j <= SWR-1; j=j+1) begin // generate enough Multiplexers modules for each bit case (j) SWR-1-j:begin assign Data_o[j]=Data_i[SWR-1-j]; end default:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (Data_i[SWR-1-j]), .S (Data_o[j]) ); end endcase end endgenerate endmodule
// This is a component of pluto_servo, a PWM servo driver and quadrature // counter for emc2 // Copyright 2006 Jeff Epler <[email protected]> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1507 USA module quad(clk, A, B, Z, zr, out); parameter W=14; input clk, A, B, Z, zr; reg [(W-1):0] c, i; reg zl; output [2*W:0] out = { zl, i, c }; // reg [(W-1):0] c, i; reg zl; reg [2:0] Ad, Bd; reg [2:0] Zc; always @(posedge clk) Ad <= {Ad[1:0], A}; always @(posedge clk) Bd <= {Bd[1:0], B}; wire good_one = &Zc; wire good_zero = ~|Zc; reg last_good; wire index_pulse = good_one && ! last_good; wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2]; wire count_direction = Ad[1] ^ Bd[2]; always @(posedge clk) begin if(Z && !good_one) Zc <= Zc + 2'b1; else if(!good_zero) Zc <= Zc - 2'b1; if(good_one) last_good <= 1; else if(good_zero) last_good <= 0; if(count_enable) begin if(count_direction) c <= c + 1'd1; else c <= c - 1'd1; end if(index_pulse) begin i <= c; zl <= 1; end else if(zr) begin zl <= 0; end end endmodule
// This is a component of pluto_servo, a PWM servo driver and quadrature // counter for emc2 // Copyright 2006 Jeff Epler <[email protected]> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1507 USA module quad(clk, A, B, Z, zr, out); parameter W=14; input clk, A, B, Z, zr; reg [(W-1):0] c, i; reg zl; output [2*W:0] out = { zl, i, c }; // reg [(W-1):0] c, i; reg zl; reg [2:0] Ad, Bd; reg [2:0] Zc; always @(posedge clk) Ad <= {Ad[1:0], A}; always @(posedge clk) Bd <= {Bd[1:0], B}; wire good_one = &Zc; wire good_zero = ~|Zc; reg last_good; wire index_pulse = good_one && ! last_good; wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2]; wire count_direction = Ad[1] ^ Bd[2]; always @(posedge clk) begin if(Z && !good_one) Zc <= Zc + 2'b1; else if(!good_zero) Zc <= Zc - 2'b1; if(good_one) last_good <= 1; else if(good_zero) last_good <= 0; if(count_enable) begin if(count_direction) c <= c + 1'd1; else c <= c - 1'd1; end if(index_pulse) begin i <= c; zl <= 1; end else if(zr) begin zl <= 0; end end endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // Sign extension "macro" // bits_out should be greater than bits_in module sign_extend (in,out); parameter bits_in=0; // FIXME Quartus insists on a default parameter bits_out=0; input [bits_in-1:0] in; output [bits_out-1:0] out; assign out = {{(bits_out-bits_in){in[bits_in-1]}},in}; endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // Sign extension "macro" // bits_out should be greater than bits_in module sign_extend (in,out); parameter bits_in=0; // FIXME Quartus insists on a default parameter bits_out=0; input [bits_in-1:0] in; output [bits_out-1:0] out; assign out = {{(bits_out-bits_in){in[bits_in-1]}},in}; endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // Sign extension "macro" // bits_out should be greater than bits_in module sign_extend (in,out); parameter bits_in=0; // FIXME Quartus insists on a default parameter bits_out=0; input [bits_in-1:0] in; output [bits_out-1:0] out; assign out = {{(bits_out-bits_in){in[bits_in-1]}},in}; endmodule
`include "lo_simulate.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_lo_simulate; reg pck0; reg [7:0] adc_d; wire pwr_lo; wire adc_clk; wire ck_1356meg; wire ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; reg cross_lo; wire cross_hi; wire dbg; lo_simulate #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg) ); integer i, counter=0; // main clock always #5 pck0 = !pck0; //cross_lo is not really synced to pck0 but it's roughly pck0/192 (24Mhz/192=125Khz) task crank_dut; begin @(posedge pck0) ; counter = counter + 1; if (counter == 192) begin counter = 0; ssp_dout = $random; cross_lo = 1; end else begin cross_lo = 0; end end endtask initial begin pck0 = 0; for (i = 0 ; i < 4096 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
`include "lo_simulate.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_lo_simulate; reg pck0; reg [7:0] adc_d; wire pwr_lo; wire adc_clk; wire ck_1356meg; wire ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; reg cross_lo; wire cross_hi; wire dbg; lo_simulate #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg) ); integer i, counter=0; // main clock always #5 pck0 = !pck0; //cross_lo is not really synced to pck0 but it's roughly pck0/192 (24Mhz/192=125Khz) task crank_dut; begin @(posedge pck0) ; counter = counter + 1; if (counter == 192) begin counter = 0; ssp_dout = $random; cross_lo = 1; end else begin cross_lo = 0; end end endtask initial begin pck0 = 0; for (i = 0 ; i < 4096 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
`include "hi_read_tx.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter shallow_modulation - modulation type pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_hi_read_tx; reg pck0; reg [7:0] adc_d; reg shallow_modulation; wire pwr_lo; wire adc_clk; reg ck_1356meg; reg ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; wire cross_lo; wire cross_hi; wire dbg; hi_read_tx #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg), .shallow_modulation(shallow_modulation) ); integer idx, i; // main clock always #5 begin ck_1356megb = !ck_1356megb; ck_1356meg = ck_1356megb; end //crank DUT task crank_dut; begin @(posedge ssp_clk) ; ssp_dout = $random; end endtask initial begin // init inputs ck_1356megb = 0; adc_d = 0; ssp_dout=0; // shallow modulation off shallow_modulation=0; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end // shallow modulation on shallow_modulation=1; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
`include "hi_read_tx.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter shallow_modulation - modulation type pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_hi_read_tx; reg pck0; reg [7:0] adc_d; reg shallow_modulation; wire pwr_lo; wire adc_clk; reg ck_1356meg; reg ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; wire cross_lo; wire cross_hi; wire dbg; hi_read_tx #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg), .shallow_modulation(shallow_modulation) ); integer idx, i; // main clock always #5 begin ck_1356megb = !ck_1356megb; ck_1356meg = ck_1356megb; end //crank DUT task crank_dut; begin @(posedge ssp_clk) ; ssp_dout = $random; end endtask initial begin // init inputs ck_1356megb = 0; adc_d = 0; ssp_dout=0; // shallow modulation off shallow_modulation=0; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end // shallow modulation on shallow_modulation=1; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
`include "hi_read_tx.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter shallow_modulation - modulation type pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_hi_read_tx; reg pck0; reg [7:0] adc_d; reg shallow_modulation; wire pwr_lo; wire adc_clk; reg ck_1356meg; reg ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; wire cross_lo; wire cross_hi; wire dbg; hi_read_tx #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg), .shallow_modulation(shallow_modulation) ); integer idx, i; // main clock always #5 begin ck_1356megb = !ck_1356megb; ck_1356meg = ck_1356megb; end //crank DUT task crank_dut; begin @(posedge ssp_clk) ; ssp_dout = $random; end endtask initial begin // init inputs ck_1356megb = 0; adc_d = 0; ssp_dout=0; // shallow modulation off shallow_modulation=0; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end // shallow modulation on shallow_modulation=1; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/17/2016 05:20:59 PM // Design Name: // Module Name: Priority_Codec_64 // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Priority_Codec_64( input wire [54:0] Data_Dec_i, output reg [5:0] Data_Bin_o ); always @(Data_Dec_i) begin Data_Bin_o=6'b000000; if(~Data_Dec_i[54]) begin Data_Bin_o = 6'b000000;//0 end else if(~Data_Dec_i[53]) begin Data_Bin_o = 6'b000001;//1 end else if(~Data_Dec_i[52]) begin Data_Bin_o = 6'b000010;//2 end else if(~Data_Dec_i[51]) begin Data_Bin_o = 6'b000011;//3 end else if(~Data_Dec_i[50]) begin Data_Bin_o = 6'b000100;//4 end else if(~Data_Dec_i[49]) begin Data_Bin_o = 6'b000101;//5 end else if(~Data_Dec_i[48]) begin Data_Bin_o = 6'b000110;//6 end else if(~Data_Dec_i[47]) begin Data_Bin_o = 6'b000111;//7 end else if(~Data_Dec_i[46]) begin Data_Bin_o = 6'b001000;//8 end else if(~Data_Dec_i[45]) begin Data_Bin_o = 6'b001001;//9 end else if(~Data_Dec_i[44]) begin Data_Bin_o = 6'b001010;//10 end else if(~Data_Dec_i[43]) begin Data_Bin_o = 6'b001011;//11 end else if(~Data_Dec_i[42]) begin Data_Bin_o = 6'b001100;//12 end else if(~Data_Dec_i[41]) begin Data_Bin_o = 6'b001101;//13 end else if(~Data_Dec_i[40]) begin Data_Bin_o = 6'b001110;//14 end else if(~Data_Dec_i[39]) begin Data_Bin_o = 6'b001111;//15 end else if(~Data_Dec_i[38]) begin Data_Bin_o = 6'b010000;//16 end else if(~Data_Dec_i[37]) begin Data_Bin_o = 6'b010001;//17 end else if(~Data_Dec_i[36]) begin Data_Bin_o = 6'b010010;//18 end else if(~Data_Dec_i[35]) begin Data_Bin_o = 6'b010011;//19 end else if(~Data_Dec_i[34]) begin Data_Bin_o = 6'b010100;//20 end else if(~Data_Dec_i[33]) begin Data_Bin_o = 6'b010101;//21 end else if(~Data_Dec_i[32]) begin Data_Bin_o = 6'b010110;//22 end else if(~Data_Dec_i[31]) begin Data_Bin_o = 6'b010111;//23 end else if(~Data_Dec_i[30]) begin Data_Bin_o = 6'b011000;//24 end else if(~Data_Dec_i[29]) begin Data_Bin_o = 6'b010101;//25 end else if(~Data_Dec_i[28]) begin Data_Bin_o = 6'b010110;//26 end else if(~Data_Dec_i[27]) begin Data_Bin_o = 6'b010111;//27 end else if(~Data_Dec_i[26]) begin Data_Bin_o = 6'b011000;//28 end else if(~Data_Dec_i[25]) begin Data_Bin_o = 6'b011001;//29 end else if(~Data_Dec_i[24]) begin Data_Bin_o = 6'b011010;//30 end else if(~Data_Dec_i[23]) begin Data_Bin_o = 6'b011011;//31 end else if(~Data_Dec_i[22]) begin Data_Bin_o = 6'b011100;//32 end else if(~Data_Dec_i[21]) begin Data_Bin_o = 6'b011101;//33 end else if(~Data_Dec_i[20]) begin Data_Bin_o = 6'b011110;//34 end else if(~Data_Dec_i[19]) begin Data_Bin_o = 6'b011111;//35 end else if(~Data_Dec_i[18]) begin Data_Bin_o = 6'b100000;//36 end else if(~Data_Dec_i[17]) begin Data_Bin_o = 6'b100001;//37 end else if(~Data_Dec_i[16]) begin Data_Bin_o = 6'b100010;//38 end else if(~Data_Dec_i[15]) begin Data_Bin_o = 6'b100011;//39 end else if(~Data_Dec_i[14]) begin Data_Bin_o = 6'b100100;//40 end else if(~Data_Dec_i[13]) begin Data_Bin_o = 6'b100101;//41 end else if(~Data_Dec_i[12]) begin Data_Bin_o = 6'b100110;//42 end else if(~Data_Dec_i[11]) begin Data_Bin_o = 6'b100111;//43 end else if(~Data_Dec_i[10]) begin Data_Bin_o = 6'b101000;//44 end else if(~Data_Dec_i[9]) begin Data_Bin_o = 6'b101001;//45 end else if(~Data_Dec_i[8]) begin Data_Bin_o = 6'b101010;//46 end else if(~Data_Dec_i[7]) begin Data_Bin_o = 6'b101011;//47 end else if(~Data_Dec_i[6]) begin Data_Bin_o = 6'b101100;//48 end else if(~Data_Dec_i[5]) begin Data_Bin_o = 6'b101101;//49 end else if(~Data_Dec_i[4]) begin Data_Bin_o = 6'b101110;//50 end else if(~Data_Dec_i[3]) begin Data_Bin_o = 6'b101111;//51 end else if(~Data_Dec_i[2]) begin Data_Bin_o = 6'b110000;//52 end else if(~Data_Dec_i[1]) begin Data_Bin_o = 6'b110001;//53 end else if(~Data_Dec_i[0]) begin Data_Bin_o = 6'b110010;//54 end else begin Data_Bin_o = 6'b000000;//zero value end end endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/17/2016 05:20:59 PM // Design Name: // Module Name: Priority_Codec_64 // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Priority_Codec_64( input wire [54:0] Data_Dec_i, output reg [5:0] Data_Bin_o ); always @(Data_Dec_i) begin Data_Bin_o=6'b000000; if(~Data_Dec_i[54]) begin Data_Bin_o = 6'b000000;//0 end else if(~Data_Dec_i[53]) begin Data_Bin_o = 6'b000001;//1 end else if(~Data_Dec_i[52]) begin Data_Bin_o = 6'b000010;//2 end else if(~Data_Dec_i[51]) begin Data_Bin_o = 6'b000011;//3 end else if(~Data_Dec_i[50]) begin Data_Bin_o = 6'b000100;//4 end else if(~Data_Dec_i[49]) begin Data_Bin_o = 6'b000101;//5 end else if(~Data_Dec_i[48]) begin Data_Bin_o = 6'b000110;//6 end else if(~Data_Dec_i[47]) begin Data_Bin_o = 6'b000111;//7 end else if(~Data_Dec_i[46]) begin Data_Bin_o = 6'b001000;//8 end else if(~Data_Dec_i[45]) begin Data_Bin_o = 6'b001001;//9 end else if(~Data_Dec_i[44]) begin Data_Bin_o = 6'b001010;//10 end else if(~Data_Dec_i[43]) begin Data_Bin_o = 6'b001011;//11 end else if(~Data_Dec_i[42]) begin Data_Bin_o = 6'b001100;//12 end else if(~Data_Dec_i[41]) begin Data_Bin_o = 6'b001101;//13 end else if(~Data_Dec_i[40]) begin Data_Bin_o = 6'b001110;//14 end else if(~Data_Dec_i[39]) begin Data_Bin_o = 6'b001111;//15 end else if(~Data_Dec_i[38]) begin Data_Bin_o = 6'b010000;//16 end else if(~Data_Dec_i[37]) begin Data_Bin_o = 6'b010001;//17 end else if(~Data_Dec_i[36]) begin Data_Bin_o = 6'b010010;//18 end else if(~Data_Dec_i[35]) begin Data_Bin_o = 6'b010011;//19 end else if(~Data_Dec_i[34]) begin Data_Bin_o = 6'b010100;//20 end else if(~Data_Dec_i[33]) begin Data_Bin_o = 6'b010101;//21 end else if(~Data_Dec_i[32]) begin Data_Bin_o = 6'b010110;//22 end else if(~Data_Dec_i[31]) begin Data_Bin_o = 6'b010111;//23 end else if(~Data_Dec_i[30]) begin Data_Bin_o = 6'b011000;//24 end else if(~Data_Dec_i[29]) begin Data_Bin_o = 6'b010101;//25 end else if(~Data_Dec_i[28]) begin Data_Bin_o = 6'b010110;//26 end else if(~Data_Dec_i[27]) begin Data_Bin_o = 6'b010111;//27 end else if(~Data_Dec_i[26]) begin Data_Bin_o = 6'b011000;//28 end else if(~Data_Dec_i[25]) begin Data_Bin_o = 6'b011001;//29 end else if(~Data_Dec_i[24]) begin Data_Bin_o = 6'b011010;//30 end else if(~Data_Dec_i[23]) begin Data_Bin_o = 6'b011011;//31 end else if(~Data_Dec_i[22]) begin Data_Bin_o = 6'b011100;//32 end else if(~Data_Dec_i[21]) begin Data_Bin_o = 6'b011101;//33 end else if(~Data_Dec_i[20]) begin Data_Bin_o = 6'b011110;//34 end else if(~Data_Dec_i[19]) begin Data_Bin_o = 6'b011111;//35 end else if(~Data_Dec_i[18]) begin Data_Bin_o = 6'b100000;//36 end else if(~Data_Dec_i[17]) begin Data_Bin_o = 6'b100001;//37 end else if(~Data_Dec_i[16]) begin Data_Bin_o = 6'b100010;//38 end else if(~Data_Dec_i[15]) begin Data_Bin_o = 6'b100011;//39 end else if(~Data_Dec_i[14]) begin Data_Bin_o = 6'b100100;//40 end else if(~Data_Dec_i[13]) begin Data_Bin_o = 6'b100101;//41 end else if(~Data_Dec_i[12]) begin Data_Bin_o = 6'b100110;//42 end else if(~Data_Dec_i[11]) begin Data_Bin_o = 6'b100111;//43 end else if(~Data_Dec_i[10]) begin Data_Bin_o = 6'b101000;//44 end else if(~Data_Dec_i[9]) begin Data_Bin_o = 6'b101001;//45 end else if(~Data_Dec_i[8]) begin Data_Bin_o = 6'b101010;//46 end else if(~Data_Dec_i[7]) begin Data_Bin_o = 6'b101011;//47 end else if(~Data_Dec_i[6]) begin Data_Bin_o = 6'b101100;//48 end else if(~Data_Dec_i[5]) begin Data_Bin_o = 6'b101101;//49 end else if(~Data_Dec_i[4]) begin Data_Bin_o = 6'b101110;//50 end else if(~Data_Dec_i[3]) begin Data_Bin_o = 6'b101111;//51 end else if(~Data_Dec_i[2]) begin Data_Bin_o = 6'b110000;//52 end else if(~Data_Dec_i[1]) begin Data_Bin_o = 6'b110001;//53 end else if(~Data_Dec_i[0]) begin Data_Bin_o = 6'b110010;//54 end else begin Data_Bin_o = 6'b000000;//zero value end end endmodule
/* -*- verilog -*- * * USRP - Universal Software Radio Peripheral * * Copyright (C) 2005 Matt Ettus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA */ /* * This implements a 31-tap halfband filter that decimates by two. * The coefficients are symmetric, and with the exception of the middle tap, * every other coefficient is zero. The middle section of taps looks like this: * * ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ... * | * middle tap -------+ * * See coeff_rom.v for the full set. The taps are scaled relative to 32768, * thus the middle tap equals 1.0. Not counting the middle tap, there are 8 * non-zero taps on each side, and they are symmetric. A naive implementation * requires a mulitply for each non-zero tap. Because of symmetry, we can * replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output * sample, we need to perform 8 multiplications. Since the middle tap is 1.0, * we just add the corresponding delay line value. * * About timing: We implement this with a single multiplier, so it takes * 8 cycles to compute a single output. However, since we're decimating by two * we can accept a new input value every 4 cycles. strobe_in is asserted when * there's a new input sample available. Depending on the overall decimation * rate, strobe_in may be asserted less frequently than once every 4 clocks. * On the output side, we assert strobe_out when output contains a new sample. * * Implementation: Every time strobe_in is asserted we store the new data into * the delay line. We split the delay line into two components, one for the * even samples, and one for the odd samples. ram16_odd is the delay line for * the odd samples. This ram is written on each odd assertion of strobe_in, and * is read on each clock when we're computing the dot product. ram16_even is * similar, although because it holds the even samples we must be able to read * two samples from different addresses at the same time, while writing the incoming * even samples. Thus it's "triple-ported". */ module halfband_decim (input clock, input reset, input enable, input strobe_in, output wire strobe_out, input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl); reg [3:0] rd_addr1; reg [3:0] rd_addr2; reg [3:0] phase; reg [3:0] base_addr; wire signed [15:0] mac_out,middle_data, sum, coeff; wire signed [30:0] product; wire signed [33:0] sum_even; wire clear; reg store_odd; always @(posedge clock) if(reset) store_odd <= #1 1'b0; else if(strobe_in) store_odd <= #1 ~store_odd; wire start = strobe_in & store_odd; always @(posedge clock) if(reset) base_addr <= #1 4'd0; else if(start) base_addr <= #1 base_addr + 4'd1; always @(posedge clock) if(reset) phase <= #1 4'd8; else if (start) phase <= #1 4'd0; else if(phase != 4'd8) phase <= #1 phase + 4'd1; reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD; always @(posedge clock) begin start_d1 <= #1 start; start_d2 <= #1 start_d1; start_d3 <= #1 start_d2; start_d4 <= #1 start_d3; start_d5 <= #1 start_d4; start_d6 <= #1 start_d5; start_d7 <= #1 start_d6; start_d8 <= #1 start_d7; start_d9 <= #1 start_d8; start_dA <= #1 start_d9; start_dB <= #1 start_dA; start_dC <= #1 start_dB; start_dD <= #1 start_dC; end // always @ (posedge clock) reg mult_en, mult_en_pre; always @(posedge clock) begin mult_en_pre <= #1 phase!=8; mult_en <= #1 mult_en_pre; end assign clear = start_d4; // was dC wire latch_result = start_d4; // was dC assign strobe_out = start_d5; // was dD wire acc_en; always @* case(phase[2:0]) 3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end 3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end 3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end 3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end 3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end 3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end 3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end 3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end endcase // case(phase) coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff)); ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd), .wr_addr(base_addr),.wr_data(data_in), .rd_addr1(rd_addr1),.rd_addr2(rd_addr2), .sum(sum)); ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items .wr_addr(base_addr),.wr_data(data_in), //.rd_addr(base_addr+4'd7),.rd_data(middle_data)); .rd_addr(base_addr+4'd6),.rd_data(middle_data)); mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en)); acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(), .clear(clear),.addend(product),.sum(sum_even)); wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!! always @(posedge clock) if(reset) data_out <= #1 16'd0; else if(latch_result) data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]); assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase}; endmodule // halfband_decim
/* -*- verilog -*- * * USRP - Universal Software Radio Peripheral * * Copyright (C) 2005 Matt Ettus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA */ /* * This implements a 31-tap halfband filter that decimates by two. * The coefficients are symmetric, and with the exception of the middle tap, * every other coefficient is zero. The middle section of taps looks like this: * * ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ... * | * middle tap -------+ * * See coeff_rom.v for the full set. The taps are scaled relative to 32768, * thus the middle tap equals 1.0. Not counting the middle tap, there are 8 * non-zero taps on each side, and they are symmetric. A naive implementation * requires a mulitply for each non-zero tap. Because of symmetry, we can * replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output * sample, we need to perform 8 multiplications. Since the middle tap is 1.0, * we just add the corresponding delay line value. * * About timing: We implement this with a single multiplier, so it takes * 8 cycles to compute a single output. However, since we're decimating by two * we can accept a new input value every 4 cycles. strobe_in is asserted when * there's a new input sample available. Depending on the overall decimation * rate, strobe_in may be asserted less frequently than once every 4 clocks. * On the output side, we assert strobe_out when output contains a new sample. * * Implementation: Every time strobe_in is asserted we store the new data into * the delay line. We split the delay line into two components, one for the * even samples, and one for the odd samples. ram16_odd is the delay line for * the odd samples. This ram is written on each odd assertion of strobe_in, and * is read on each clock when we're computing the dot product. ram16_even is * similar, although because it holds the even samples we must be able to read * two samples from different addresses at the same time, while writing the incoming * even samples. Thus it's "triple-ported". */ module halfband_decim (input clock, input reset, input enable, input strobe_in, output wire strobe_out, input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl); reg [3:0] rd_addr1; reg [3:0] rd_addr2; reg [3:0] phase; reg [3:0] base_addr; wire signed [15:0] mac_out,middle_data, sum, coeff; wire signed [30:0] product; wire signed [33:0] sum_even; wire clear; reg store_odd; always @(posedge clock) if(reset) store_odd <= #1 1'b0; else if(strobe_in) store_odd <= #1 ~store_odd; wire start = strobe_in & store_odd; always @(posedge clock) if(reset) base_addr <= #1 4'd0; else if(start) base_addr <= #1 base_addr + 4'd1; always @(posedge clock) if(reset) phase <= #1 4'd8; else if (start) phase <= #1 4'd0; else if(phase != 4'd8) phase <= #1 phase + 4'd1; reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD; always @(posedge clock) begin start_d1 <= #1 start; start_d2 <= #1 start_d1; start_d3 <= #1 start_d2; start_d4 <= #1 start_d3; start_d5 <= #1 start_d4; start_d6 <= #1 start_d5; start_d7 <= #1 start_d6; start_d8 <= #1 start_d7; start_d9 <= #1 start_d8; start_dA <= #1 start_d9; start_dB <= #1 start_dA; start_dC <= #1 start_dB; start_dD <= #1 start_dC; end // always @ (posedge clock) reg mult_en, mult_en_pre; always @(posedge clock) begin mult_en_pre <= #1 phase!=8; mult_en <= #1 mult_en_pre; end assign clear = start_d4; // was dC wire latch_result = start_d4; // was dC assign strobe_out = start_d5; // was dD wire acc_en; always @* case(phase[2:0]) 3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end 3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end 3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end 3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end 3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end 3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end 3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end 3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end endcase // case(phase) coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff)); ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd), .wr_addr(base_addr),.wr_data(data_in), .rd_addr1(rd_addr1),.rd_addr2(rd_addr2), .sum(sum)); ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items .wr_addr(base_addr),.wr_data(data_in), //.rd_addr(base_addr+4'd7),.rd_data(middle_data)); .rd_addr(base_addr+4'd6),.rd_data(middle_data)); mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en)); acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(), .clear(clear),.addend(product),.sum(sum_even)); wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!! always @(posedge clock) if(reset) data_out <= #1 16'd0; else if(latch_result) data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]); assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase}; endmodule // halfband_decim
/* -*- verilog -*- * * USRP - Universal Software Radio Peripheral * * Copyright (C) 2005 Matt Ettus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA */ /* * This implements a 31-tap halfband filter that decimates by two. * The coefficients are symmetric, and with the exception of the middle tap, * every other coefficient is zero. The middle section of taps looks like this: * * ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ... * | * middle tap -------+ * * See coeff_rom.v for the full set. The taps are scaled relative to 32768, * thus the middle tap equals 1.0. Not counting the middle tap, there are 8 * non-zero taps on each side, and they are symmetric. A naive implementation * requires a mulitply for each non-zero tap. Because of symmetry, we can * replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output * sample, we need to perform 8 multiplications. Since the middle tap is 1.0, * we just add the corresponding delay line value. * * About timing: We implement this with a single multiplier, so it takes * 8 cycles to compute a single output. However, since we're decimating by two * we can accept a new input value every 4 cycles. strobe_in is asserted when * there's a new input sample available. Depending on the overall decimation * rate, strobe_in may be asserted less frequently than once every 4 clocks. * On the output side, we assert strobe_out when output contains a new sample. * * Implementation: Every time strobe_in is asserted we store the new data into * the delay line. We split the delay line into two components, one for the * even samples, and one for the odd samples. ram16_odd is the delay line for * the odd samples. This ram is written on each odd assertion of strobe_in, and * is read on each clock when we're computing the dot product. ram16_even is * similar, although because it holds the even samples we must be able to read * two samples from different addresses at the same time, while writing the incoming * even samples. Thus it's "triple-ported". */ module halfband_decim (input clock, input reset, input enable, input strobe_in, output wire strobe_out, input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl); reg [3:0] rd_addr1; reg [3:0] rd_addr2; reg [3:0] phase; reg [3:0] base_addr; wire signed [15:0] mac_out,middle_data, sum, coeff; wire signed [30:0] product; wire signed [33:0] sum_even; wire clear; reg store_odd; always @(posedge clock) if(reset) store_odd <= #1 1'b0; else if(strobe_in) store_odd <= #1 ~store_odd; wire start = strobe_in & store_odd; always @(posedge clock) if(reset) base_addr <= #1 4'd0; else if(start) base_addr <= #1 base_addr + 4'd1; always @(posedge clock) if(reset) phase <= #1 4'd8; else if (start) phase <= #1 4'd0; else if(phase != 4'd8) phase <= #1 phase + 4'd1; reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD; always @(posedge clock) begin start_d1 <= #1 start; start_d2 <= #1 start_d1; start_d3 <= #1 start_d2; start_d4 <= #1 start_d3; start_d5 <= #1 start_d4; start_d6 <= #1 start_d5; start_d7 <= #1 start_d6; start_d8 <= #1 start_d7; start_d9 <= #1 start_d8; start_dA <= #1 start_d9; start_dB <= #1 start_dA; start_dC <= #1 start_dB; start_dD <= #1 start_dC; end // always @ (posedge clock) reg mult_en, mult_en_pre; always @(posedge clock) begin mult_en_pre <= #1 phase!=8; mult_en <= #1 mult_en_pre; end assign clear = start_d4; // was dC wire latch_result = start_d4; // was dC assign strobe_out = start_d5; // was dD wire acc_en; always @* case(phase[2:0]) 3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end 3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end 3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end 3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end 3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end 3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end 3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end 3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end endcase // case(phase) coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff)); ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd), .wr_addr(base_addr),.wr_data(data_in), .rd_addr1(rd_addr1),.rd_addr2(rd_addr2), .sum(sum)); ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items .wr_addr(base_addr),.wr_data(data_in), //.rd_addr(base_addr+4'd7),.rd_data(middle_data)); .rd_addr(base_addr+4'd6),.rd_data(middle_data)); mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en)); acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(), .clear(clear),.addend(product),.sum(sum_even)); wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!! always @(posedge clock) if(reset) data_out <= #1 16'd0; else if(latch_result) data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]); assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase}; endmodule // halfband_decim
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) (* \VV/ *************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) (** * Finite set library *) (** Set interfaces, inspired by the one of Ocaml. When compared with Ocaml, the main differences are: - the lack of [iter] function, useless since Coq is purely functional - the use of [option] types instead of [Not_found] exceptions - the use of [nat] instead of [int] for the [cardinal] function Several variants of the set interfaces are available: - [WSetsOn] : functorial signature for weak sets - [WSets] : self-contained version of [WSets] - [SetsOn] : functorial signature for ordered sets - [Sets] : self-contained version of [Sets] - [WRawSets] : a signature for weak sets that may be ill-formed - [RawSets] : same for ordered sets If unsure, [S = Sets] is probably what you're looking for: most other signatures are subsets of it, while [Sets] can be obtained from [RawSets] via the use of a subset type (see (W)Raw2Sets below). *) Require Export Bool SetoidList RelationClasses Morphisms RelationPairs Equalities Orders OrdersFacts. Set Implicit Arguments. Unset Strict Implicit. Module Type TypElt. Parameters t elt : Type. End TypElt. Module Type HasWOps (Import T:TypElt). Parameter empty : t. (** The empty set. *) Parameter is_empty : t -> bool. (** Test whether a set is empty or not. *) Parameter mem : elt -> t -> bool. (** [mem x s] tests whether [x] belongs to the set [s]. *) Parameter add : elt -> t -> t. (** [add x s] returns a set containing all elements of [s], plus [x]. If [x] was already in [s], [s] is returned unchanged. *) Parameter singleton : elt -> t. (** [singleton x] returns the one-element set containing only [x]. *) Parameter remove : elt -> t -> t. (** [remove x s] returns a set containing all elements of [s], except [x]. If [x] was not in [s], [s] is returned unchanged. *) Parameter union : t -> t -> t. (** Set union. *) Parameter inter : t -> t -> t. (** Set intersection. *) Parameter diff : t -> t -> t. (** Set difference. *) Parameter equal : t -> t -> bool. (** [equal s1 s2] tests whether the sets [s1] and [s2] are equal, that is, contain equal elements. *) Parameter subset : t -> t -> bool. (** [subset s1 s2] tests whether the set [s1] is a subset of the set [s2]. *) Parameter fold : forall A : Type, (elt -> A -> A) -> t -> A -> A. (** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)], where [x1 ... xN] are the elements of [s]. The order in which elements of [s] are presented to [f] is unspecified. *) Parameter for_all : (elt -> bool) -> t -> bool. (** [for_all p s] checks if all elements of the set satisfy the predicate [p]. *) Parameter exists_ : (elt -> bool) -> t -> bool. (** [exists p s] checks if at least one element of the set satisfies the predicate [p]. *) Parameter filter : (elt -> bool) -> t -> t. (** [filter p s] returns the set of all elements in [s] that satisfy predicate [p]. *) Parameter partition : (elt -> bool) -> t -> t * t. (** [partition p s] returns a pair of sets [(s1, s2)], where [s1] is the set of all the elements of [s] that satisfy the predicate [p], and [s2] is the set of all the elements of [s] that do not satisfy [p]. *) Parameter cardinal : t -> nat. (** Return the number of elements of a set. *) Parameter elements : t -> list elt. (** Return the list of all elements of the given set, in any order. *) Parameter choose : t -> option elt. (** Return one element of the given set, or [None] if the set is empty. Which element is chosen is unspecified. Equal sets could return different elements. *) End HasWOps. Module Type WOps (E : DecidableType). Definition elt := E.t. Parameter t : Type. (** the abstract type of sets *) Include HasWOps. End WOps. (** ** Functorial signature for weak sets Weak sets are sets without ordering on base elements, only a decidable equality. *) Module Type WSetsOn (E : DecidableType). (** First, we ask for all the functions *) Include WOps E. (** Logical predicates *) Parameter In : elt -> t -> Prop. Declare Instance In_compat : Proper (E.eq==>eq==>iff) In. Definition Equal s s' := forall a : elt, In a s <-> In a s'. Definition Subset s s' := forall a : elt, In a s -> In a s'. Definition Empty s := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x. Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x. Notation "s [=] t" := (Equal s t) (at level 70, no associativity). Notation "s [<=] t" := (Subset s t) (at level 70, no associativity). Definition eq : t -> t -> Prop := Equal. Include IsEq. (** [eq] is obviously an equivalence, for subtyping only *) Include HasEqDec. (** Specifications of set operators *) Section Spec. Variable s s': t. Variable x y : elt. Variable f : elt -> bool. Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing). Parameter mem_spec : mem x s = true <-> In x s. Parameter equal_spec : equal s s' = true <-> s[=]s'. Parameter subset_spec : subset s s' = true <-> s[<=]s'. Parameter empty_spec : Empty empty. Parameter is_empty_spec : is_empty s = true <-> Empty s. Parameter add_spec : In y (add x s) <-> E.eq y x \/ In y s. Parameter remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x. Parameter singleton_spec : In y (singleton x) <-> E.eq y x. Parameter union_spec : In x (union s s') <-> In x s \/ In x s'. Parameter inter_spec : In x (inter s s') <-> In x s /\ In x s'. Parameter diff_spec : In x (diff s s') <-> In x s /\ ~In x s'. Parameter fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (flip f) (elements s) i. Parameter cardinal_spec : cardinal s = length (elements s). Parameter filter_spec : compatb f -> (In x (filter f s) <-> In x s /\ f x = true). Parameter for_all_spec : compatb f -> (for_all f s = true <-> For_all (fun x => f x = true) s). Parameter exists_spec : compatb f -> (exists_ f s = true <-> Exists (fun x => f x = true) s). Parameter partition_spec1 : compatb f -> fst (partition f s) [=] filter f s. Parameter partition_spec2 : compatb f -> snd (partition f s) [=] filter (fun x => negb (f x)) s. Parameter elements_spec1 : InA E.eq x (elements s) <-> In x s. (** When compared with ordered sets, here comes the only property that is really weaker: *) Parameter elements_spec2w : NoDupA E.eq (elements s). Parameter choose_spec1 : choose s = Some x -> In x s. Parameter choose_spec2 : choose s = None -> Empty s. End Spec. End WSetsOn. (** ** Static signature for weak sets Similar to the functorial signature [WSetsOn], except that the module [E] of base elements is incorporated in the signature. *) Module Type WSets. Declare Module E : DecidableType. Include WSetsOn E. End WSets. (** ** Functorial signature for sets on ordered elements Based on [WSetsOn], plus ordering on sets and [min_elt] and [max_elt] and some stronger specifications for other functions. *) Module Type HasOrdOps (Import T:TypElt). Parameter compare : t -> t -> comparison. (** Total ordering between sets. Can be used as the ordering function for doing sets of sets. *) Parameter min_elt : t -> option elt. (** Return the smallest element of the given set (with respect to the [E.compare] ordering), or [None] if the set is empty. *) Parameter max_elt : t -> option elt. (** Same as [min_elt], but returns the largest element of the given set. *) End HasOrdOps. Module Type Ops (E : OrderedType) := WOps E <+ HasOrdOps. Module Type SetsOn (E : OrderedType). Include WSetsOn E <+ HasOrdOps <+ HasLt <+ IsStrOrder. Section Spec. Variable s s': t. Variable x y : elt. Parameter compare_spec : CompSpec eq lt s s' (compare s s'). (** Additional specification of [elements] *) Parameter elements_spec2 : sort E.lt (elements s). (** Remark: since [fold] is specified via [elements], this stronger specification of [elements] has an indirect impact on [fold], which can now be proved to receive elements in increasing order. *) Parameter min_elt_spec1 : min_elt s = Some x -> In x s. Parameter min_elt_spec2 : min_elt s = Some x -> In y s -> ~ E.lt y x. Parameter min_elt_spec3 : min_elt s = None -> Empty s. Parameter max_elt_spec1 : max_elt s = Some x -> In x s. Parameter max_elt_spec2 : max_elt s = Some x -> In y s -> ~ E.lt x y. Parameter max_elt_spec3 : max_elt s = None -> Empty s. (** Additional specification of [choose] *) Parameter choose_spec3 : choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y. End Spec. End SetsOn. (** ** Static signature for sets on ordered elements Similar to the functorial signature [SetsOn], except that the module [E] of base elements is incorporated in the signature. *) Module Type Sets. Declare Module E : OrderedType. Include SetsOn E. End Sets. Module Type S := Sets. (** ** Some subtyping tests << WSetsOn ---> WSets | | | | V V SetsOn ---> Sets Module S_WS (M : Sets) <: WSets := M. Module Sfun_WSfun (E:OrderedType)(M : SetsOn E) <: WSetsOn E := M. Module S_Sfun (M : Sets) <: SetsOn M.E := M. Module WS_WSfun (M : WSets) <: WSetsOn M.E := M. >> *) (** ** Signatures for set representations with ill-formed values. Motivation: For many implementation of finite sets (AVL trees, sorted lists, lists without duplicates), we use the same two-layer approach: - A first module deals with the datatype (eg. list or tree) without any restriction on the values we consider. In this module (named "Raw" in the past), some results are stated under the assumption that some invariant (e.g. sortedness) holds for the input sets. We also prove that this invariant is preserved by set operators. - A second module implements the exact Sets interface by using a subtype, for instance [{ l : list A | sorted l }]. This module is a mere wrapper around the first Raw module. With the interfaces below, we give some respectability to the "Raw" modules. This allows the interested users to directly access them via the interfaces. Even better, we can build once and for all a functor doing the transition between Raw and usual Sets. Description: The type [t] of sets may contain ill-formed values on which our set operators may give wrong answers. In particular, [mem] may not see a element in a ill-formed set (think for instance of a unsorted list being given to an optimized [mem] that stops its search as soon as a strictly larger element is encountered). Unlike optimized operators, the [In] predicate is supposed to always be correct, even on ill-formed sets. Same for [Equal] and other logical predicates. A predicate parameter [Ok] is used to discriminate between well-formed and ill-formed values. Some lemmas hold only on sets validating [Ok]. This predicate [Ok] is required to be preserved by set operators. Moreover, a boolean function [isok] should exist for identifying (at least some of) the well-formed sets. *) Module Type WRawSets (E : DecidableType). (** First, we ask for all the functions *) Include WOps E. (** Is a set well-formed or ill-formed ? *) Parameter IsOk : t -> Prop. Class Ok (s:t) : Prop := ok : IsOk s. (** In order to be able to validate (at least some) particular sets as well-formed, we ask for a boolean function for (semi-)deciding predicate [Ok]. If [Ok] isn't decidable, [isok] may be the always-false function. *) Parameter isok : t -> bool. Declare Instance isok_Ok s `(isok s = true) : Ok s | 10. (** Logical predicates *) Parameter In : elt -> t -> Prop. Declare Instance In_compat : Proper (E.eq==>eq==>iff) In. Definition Equal s s' := forall a : elt, In a s <-> In a s'. Definition Subset s s' := forall a : elt, In a s -> In a s'. Definition Empty s := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x. Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x. Notation "s [=] t" := (Equal s t) (at level 70, no associativity). Notation "s [<=] t" := (Subset s t) (at level 70, no associativity). Definition eq : t -> t -> Prop := Equal. Declare Instance eq_equiv : Equivalence eq. (** First, all operations are compatible with the well-formed predicate. *) Declare Instance empty_ok : Ok empty. Declare Instance add_ok s x `(Ok s) : Ok (add x s). Declare Instance remove_ok s x `(Ok s) : Ok (remove x s). Declare Instance singleton_ok x : Ok (singleton x). Declare Instance union_ok s s' `(Ok s, Ok s') : Ok (union s s'). Declare Instance inter_ok s s' `(Ok s, Ok s') : Ok (inter s s'). Declare Instance diff_ok s s' `(Ok s, Ok s') : Ok (diff s s'). Declare Instance filter_ok s f `(Ok s) : Ok (filter f s). Declare Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)). Declare Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)). (** Now, the specifications, with constraints on the input sets. *) Section Spec. Variable s s': t. Variable x y : elt. Variable f : elt -> bool. Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing). Parameter mem_spec : forall `{Ok s}, mem x s = true <-> In x s. Parameter equal_spec : forall `{Ok s, Ok s'}, equal s s' = true <-> s[=]s'. Parameter subset_spec : forall `{Ok s, Ok s'}, subset s s' = true <-> s[<=]s'. Parameter empty_spec : Empty empty. Parameter is_empty_spec : is_empty s = true <-> Empty s. Parameter add_spec : forall `{Ok s}, In y (add x s) <-> E.eq y x \/ In y s. Parameter remove_spec : forall `{Ok s}, In y (remove x s) <-> In y s /\ ~E.eq y x. Parameter singleton_spec : In y (singleton x) <-> E.eq y x. Parameter union_spec : forall `{Ok s, Ok s'}, In x (union s s') <-> In x s \/ In x s'. Parameter inter_spec : forall `{Ok s, Ok s'}, In x (inter s s') <-> In x s /\ In x s'. Parameter diff_spec : forall `{Ok s, Ok s'}, In x (diff s s') <-> In x s /\ ~In x s'. Parameter fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (flip f) (elements s) i. Parameter cardinal_spec : forall `{Ok s}, cardinal s = length (elements s). Parameter filter_spec : compatb f -> (In x (filter f s) <-> In x s /\ f x = true). Parameter for_all_spec : compatb f -> (for_all f s = true <-> For_all (fun x => f x = true) s). Parameter exists_spec : compatb f -> (exists_ f s = true <-> Exists (fun x => f x = true) s). Parameter partition_spec1 : compatb f -> fst (partition f s) [=] filter f s. Parameter partition_spec2 : compatb f -> snd (partition f s) [=] filter (fun x => negb (f x)) s. Parameter elements_spec1 : InA E.eq x (elements s) <-> In x s. Parameter elements_spec2w : forall `{Ok s}, NoDupA E.eq (elements s). Parameter choose_spec1 : choose s = Some x -> In x s. Parameter choose_spec2 : choose s = None -> Empty s. End Spec. End WRawSets. (** From weak raw sets to weak usual sets *) Module WRaw2SetsOn (E:DecidableType)(M:WRawSets E) <: WSetsOn E. (** We avoid creating induction principles for the Record *) Local Unset Elimination Schemes. Definition elt := E.t. Record t_ := Mkt {this :> M.t; is_ok : M.Ok this}. Definition t := t_. Arguments Mkt this {is_ok}. Hint Resolve is_ok : typeclass_instances. Definition In (x : elt)(s : t) := M.In x s.(this). Definition Equal (s s' : t) := forall a : elt, In a s <-> In a s'. Definition Subset (s s' : t) := forall a : elt, In a s -> In a s'. Definition Empty (s : t) := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop)(s : t) := forall x, In x s -> P x. Definition Exists (P : elt -> Prop)(s : t) := exists x, In x s /\ P x. Definition mem (x : elt)(s : t) := M.mem x s. Definition add (x : elt)(s : t) : t := Mkt (M.add x s). Definition remove (x : elt)(s : t) : t := Mkt (M.remove x s). Definition singleton (x : elt) : t := Mkt (M.singleton x). Definition union (s s' : t) : t := Mkt (M.union s s'). Definition inter (s s' : t) : t := Mkt (M.inter s s'). Definition diff (s s' : t) : t := Mkt (M.diff s s'). Definition equal (s s' : t) := M.equal s s'. Definition subset (s s' : t) := M.subset s s'. Definition empty : t := Mkt M.empty. Definition is_empty (s : t) := M.is_empty s. Definition elements (s : t) : list elt := M.elements s. Definition choose (s : t) : option elt := M.choose s. Definition fold (A : Type)(f : elt -> A -> A)(s : t) : A -> A := M.fold f s. Definition cardinal (s : t) := M.cardinal s. Definition filter (f : elt -> bool)(s : t) : t := Mkt (M.filter f s). Definition for_all (f : elt -> bool)(s : t) := M.for_all f s. Definition exists_ (f : elt -> bool)(s : t) := M.exists_ f s. Definition partition (f : elt -> bool)(s : t) : t * t := let p := M.partition f s in (Mkt (fst p), Mkt (snd p)). Instance In_compat : Proper (E.eq==>eq==>iff) In. Proof. repeat red. intros; apply M.In_compat; congruence. Qed. Definition eq : t -> t -> Prop := Equal. Instance eq_equiv : Equivalence eq. Proof. firstorder. Qed. Definition eq_dec : forall (s s':t), { eq s s' }+{ ~eq s s' }. Proof. intros (s,Hs) (s',Hs'). change ({M.Equal s s'}+{~M.Equal s s'}). destruct (M.equal s s') eqn:H; [left|right]; rewrite <- M.equal_spec; congruence. Defined. Section Spec. Variable s s' : t. Variable x y : elt. Variable f : elt -> bool. Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing). Lemma mem_spec : mem x s = true <-> In x s. Proof. exact (@M.mem_spec _ _ _). Qed. Lemma equal_spec : equal s s' = true <-> Equal s s'. Proof. exact (@M.equal_spec _ _ _ _). Qed. Lemma subset_spec : subset s s' = true <-> Subset s s'. Proof. exact (@M.subset_spec _ _ _ _). Qed. Lemma empty_spec : Empty empty. Proof. exact M.empty_spec. Qed. Lemma is_empty_spec : is_empty s = true <-> Empty s. Proof. exact (@M.is_empty_spec _). Qed. Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s. Proof. exact (@M.add_spec _ _ _ _). Qed. Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x. Proof. exact (@M.remove_spec _ _ _ _). Qed. Lemma singleton_spec : In y (singleton x) <-> E.eq y x. Proof. exact (@M.singleton_spec _ _). Qed. Lemma union_spec : In x (union s s') <-> In x s \/ In x s'. Proof. exact (@M.union_spec _ _ _ _ _). Qed. Lemma inter_spec : In x (inter s s') <-> In x s /\ In x s'. Proof. exact (@M.inter_spec _ _ _ _ _). Qed. Lemma diff_spec : In x (diff s s') <-> In x s /\ ~In x s'. Proof. exact (@M.diff_spec _ _ _ _ _). Qed. Lemma fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (fun a e => f e a) (elements s) i. Proof. exact (@M.fold_spec _). Qed. Lemma cardinal_spec : cardinal s = length (elements s). Proof. exact (@M.cardinal_spec s _). Qed. Lemma filter_spec : compatb f -> (In x (filter f s) <-> In x s /\ f x = true). Proof. exact (@M.filter_spec _ _ _). Qed. Lemma for_all_spec : compatb f -> (for_all f s = true <-> For_all (fun x => f x = true) s). Proof. exact (@M.for_all_spec _ _). Qed. Lemma exists_spec : compatb f -> (exists_ f s = true <-> Exists (fun x => f x = true) s). Proof. exact (@M.exists_spec _ _). Qed. Lemma partition_spec1 : compatb f -> Equal (fst (partition f s)) (filter f s). Proof. exact (@M.partition_spec1 _ _). Qed. Lemma partition_spec2 : compatb f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s). Proof. exact (@M.partition_spec2 _ _). Qed. Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s. Proof. exact (@M.elements_spec1 _ _). Qed. Lemma elements_spec2w : NoDupA E.eq (elements s). Proof. exact (@M.elements_spec2w _ _). Qed. Lemma choose_spec1 : choose s = Some x -> In x s. Proof. exact (@M.choose_spec1 _ _). Qed. Lemma choose_spec2 : choose s = None -> Empty s. Proof. exact (@M.choose_spec2 _). Qed. End Spec. End WRaw2SetsOn. Module WRaw2Sets (D:DecidableType)(M:WRawSets D) <: WSets with Module E := D. Module E := D. Include WRaw2SetsOn D M. End WRaw2Sets. (** Same approach for ordered sets *) Module Type RawSets (E : OrderedType). Include WRawSets E <+ HasOrdOps <+ HasLt <+ IsStrOrder. Section Spec. Variable s s': t. Variable x y : elt. (** Specification of [compare] *) Parameter compare_spec : forall `{Ok s, Ok s'}, CompSpec eq lt s s' (compare s s'). (** Additional specification of [elements] *) Parameter elements_spec2 : forall `{Ok s}, sort E.lt (elements s). (** Specification of [min_elt] *) Parameter min_elt_spec1 : min_elt s = Some x -> In x s. Parameter min_elt_spec2 : forall `{Ok s}, min_elt s = Some x -> In y s -> ~ E.lt y x. Parameter min_elt_spec3 : min_elt s = None -> Empty s. (** Specification of [max_elt] *) Parameter max_elt_spec1 : max_elt s = Some x -> In x s. Parameter max_elt_spec2 : forall `{Ok s}, max_elt s = Some x -> In y s -> ~ E.lt x y. Parameter max_elt_spec3 : max_elt s = None -> Empty s. (** Additional specification of [choose] *) Parameter choose_spec3 : forall `{Ok s, Ok s'}, choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y. End Spec. End RawSets. (** From Raw to usual sets *) Module Raw2SetsOn (O:OrderedType)(M:RawSets O) <: SetsOn O. Include WRaw2SetsOn O M. Definition compare (s s':t) := M.compare s s'. Definition min_elt (s:t) : option elt := M.min_elt s. Definition max_elt (s:t) : option elt := M.max_elt s. Definition lt (s s':t) := M.lt s s'. (** Specification of [lt] *) Instance lt_strorder : StrictOrder lt. Proof. constructor ; unfold lt; red. unfold complement. red. intros. apply (irreflexivity H). intros. transitivity y; auto. Qed. Instance lt_compat : Proper (eq==>eq==>iff) lt. Proof. repeat red. unfold eq, lt. intros (s1,p1) (s2,p2) E (s1',p1') (s2',p2') E'; simpl. change (M.eq s1 s2) in E. change (M.eq s1' s2') in E'. rewrite E,E'; intuition. Qed. Section Spec. Variable s s' s'' : t. Variable x y : elt. Lemma compare_spec : CompSpec eq lt s s' (compare s s'). Proof. unfold compare; destruct (@M.compare_spec s s' _ _); auto. Qed. (** Additional specification of [elements] *) Lemma elements_spec2 : sort O.lt (elements s). Proof. exact (@M.elements_spec2 _ _). Qed. (** Specification of [min_elt] *) Lemma min_elt_spec1 : min_elt s = Some x -> In x s. Proof. exact (@M.min_elt_spec1 _ _). Qed. Lemma min_elt_spec2 : min_elt s = Some x -> In y s -> ~ O.lt y x. Proof. exact (@M.min_elt_spec2 _ _ _ _). Qed. Lemma min_elt_spec3 : min_elt s = None -> Empty s. Proof. exact (@M.min_elt_spec3 _). Qed. (** Specification of [max_elt] *) Lemma max_elt_spec1 : max_elt s = Some x -> In x s. Proof. exact (@M.max_elt_spec1 _ _). Qed. Lemma max_elt_spec2 : max_elt s = Some x -> In y s -> ~ O.lt x y. Proof. exact (@M.max_elt_spec2 _ _ _ _). Qed. Lemma max_elt_spec3 : max_elt s = None -> Empty s. Proof. exact (@M.max_elt_spec3 _). Qed. (** Additional specification of [choose] *) Lemma choose_spec3 : choose s = Some x -> choose s' = Some y -> Equal s s' -> O.eq x y. Proof. exact (@M.choose_spec3 _ _ _ _ _ _). Qed. End Spec. End Raw2SetsOn. Module Raw2Sets (O:OrderedType)(M:RawSets O) <: Sets with Module E := O. Module E := O. Include Raw2SetsOn O M. End Raw2Sets. (** It is in fact possible to provide an ordering on sets with very little information on them (more or less only the [In] predicate). This generic build of ordering is in fact not used for the moment, we rather use a simplier version dedicated to sets-as-sorted-lists, see [MakeListOrdering]. *) Module Type IN (O:OrderedType). Parameter Inline t : Type. Parameter Inline In : O.t -> t -> Prop. Declare Instance In_compat : Proper (O.eq==>eq==>iff) In. Definition Equal s s' := forall x, In x s <-> In x s'. Definition Empty s := forall x, ~In x s. End IN. Module MakeSetOrdering (O:OrderedType)(Import M:IN O). Module Import MO := OrderedTypeFacts O. Definition eq : t -> t -> Prop := Equal. Instance eq_equiv : Equivalence eq. Proof. firstorder. Qed. Instance : Proper (O.eq==>eq==>iff) In. Proof. intros x x' Ex s s' Es. rewrite Ex. apply Es. Qed. Definition Below x s := forall y, In y s -> O.lt y x. Definition Above x s := forall y, In y s -> O.lt x y. Definition EquivBefore x s s' := forall y, O.lt y x -> (In y s <-> In y s'). Definition EmptyBetween x y s := forall z, In z s -> O.lt z y -> O.lt z x. Definition lt s s' := exists x, EquivBefore x s s' /\ ((In x s' /\ Below x s) \/ (In x s /\ exists y, In y s' /\ O.lt x y /\ EmptyBetween x y s')). Instance : Proper (O.eq==>eq==>eq==>iff) EquivBefore. Proof. unfold EquivBefore. intros x x' E s1 s1' E1 s2 s2' E2. setoid_rewrite E; setoid_rewrite E1; setoid_rewrite E2; intuition. Qed. Instance : Proper (O.eq==>eq==>iff) Below. Proof. unfold Below. intros x x' Ex s s' Es. setoid_rewrite Ex; setoid_rewrite Es; intuition. Qed. Instance : Proper (O.eq==>eq==>iff) Above. Proof. unfold Above. intros x x' Ex s s' Es. setoid_rewrite Ex; setoid_rewrite Es; intuition. Qed. Instance : Proper (O.eq==>O.eq==>eq==>iff) EmptyBetween. Proof. unfold EmptyBetween. intros x x' Ex y y' Ey s s' Es. setoid_rewrite Ex; setoid_rewrite Ey; setoid_rewrite Es; intuition. Qed. Instance lt_compat : Proper (eq==>eq==>iff) lt. Proof. unfold lt. intros s1 s1' E1 s2 s2' E2. setoid_rewrite E1; setoid_rewrite E2; intuition. Qed. Instance lt_strorder : StrictOrder lt. Proof. split. (* irreflexive *) intros s (x & _ & [(IN,Em)|(IN & y & IN' & LT & Be)]). specialize (Em x IN); order. specialize (Be x IN LT); order. (* transitive *) intros s1 s2 s3 (x & EQ & [(IN,Pre)|(IN,Lex)]) (x' & EQ' & [(IN',Pre')|(IN',Lex')]). (* 1) Pre / Pre --> Pre *) assert (O.lt x x') by (specialize (Pre' x IN); auto). exists x; split. intros y Hy; rewrite <- (EQ' y); auto; order. left; split; auto. rewrite <- (EQ' x); auto. (* 2) Pre / Lex *) elim_compare x x'. (* 2a) x=x' --> Pre *) destruct Lex' as (y & INy & LT & Be). exists y; split. intros z Hz. split; intros INz. specialize (Pre z INz). rewrite <- (EQ' z), <- (EQ z); auto; order. specialize (Be z INz Hz). rewrite (EQ z), (EQ' z); auto; order. left; split; auto. intros z Hz. transitivity x; auto; order. (* 2b) x<x' --> Pre *) exists x; split. intros z Hz. rewrite <- (EQ' z) by order; auto. left; split; auto. rewrite <- (EQ' x); auto. (* 2c) x>x' --> Lex *) exists x'; split. intros z Hz. rewrite (EQ z) by order; auto. right; split; auto. rewrite (EQ x'); auto. (* 3) Lex / Pre --> Lex *) destruct Lex as (y & INy & LT & Be). specialize (Pre' y INy). exists x; split. intros z Hz. rewrite <- (EQ' z) by order; auto. right; split; auto. exists y; repeat split; auto. rewrite <- (EQ' y); auto. intros z Hz LTz; apply Be; auto. rewrite (EQ' z); auto; order. (* 4) Lex / Lex *) elim_compare x x'. (* 4a) x=x' --> impossible *) destruct Lex as (y & INy & LT & Be). setoid_replace x with x' in LT; auto. specialize (Be x' IN' LT); order. (* 4b) x<x' --> Lex *) exists x; split. intros z Hz. rewrite <- (EQ' z) by order; auto. right; split; auto. destruct Lex as (y & INy & LT & Be). elim_compare y x'. (* 4ba *) destruct Lex' as (y' & Iny' & LT' & Be'). exists y'; repeat split; auto. order. intros z Hz LTz. specialize (Be' z Hz LTz). rewrite <- (EQ' z) in Hz by order. apply Be; auto. order. (* 4bb *) exists y; repeat split; auto. rewrite <- (EQ' y); auto. intros z Hz LTz. apply Be; auto. rewrite (EQ' z); auto; order. (* 4bc*) assert (O.lt x' x) by auto. order. (* 4c) x>x' --> Lex *) exists x'; split. intros z Hz. rewrite (EQ z) by order; auto. right; split; auto. rewrite (EQ x'); auto. Qed. Lemma lt_empty_r : forall s s', Empty s' -> ~ lt s s'. Proof. intros s s' Hs' (x & _ & [(IN,_)|(_ & y & IN & _)]). elim (Hs' x IN). elim (Hs' y IN). Qed. Definition Add x s s' := forall y, In y s' <-> O.eq x y \/ In y s. Lemma lt_empty_l : forall x s1 s2 s2', Empty s1 -> Above x s2 -> Add x s2 s2' -> lt s1 s2'. Proof. intros x s1 s2 s2' Em Ab Ad. exists x; split. intros y Hy; split; intros IN. elim (Em y IN). rewrite (Ad y) in IN; destruct IN as [EQ|IN]. order. specialize (Ab y IN). order. left; split. rewrite (Ad x). now left. intros y Hy. elim (Em y Hy). Qed. Lemma lt_add_lt : forall x1 x2 s1 s1' s2 s2', Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' -> O.lt x1 x2 -> lt s1' s2'. Proof. intros x1 x2 s1 s1' s2 s2' Ab1 Ab2 Ad1 Ad2 LT. exists x1; split; [ | right; split]; auto. intros y Hy. rewrite (Ad1 y), (Ad2 y). split; intros [U|U]; try order. specialize (Ab1 y U). order. specialize (Ab2 y U). order. rewrite (Ad1 x1); auto with *. exists x2; repeat split; auto. rewrite (Ad2 x2); now left. intros y. rewrite (Ad2 y). intros [U|U]. order. specialize (Ab2 y U). order. Qed. Lemma lt_add_eq : forall x1 x2 s1 s1' s2 s2', Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' -> O.eq x1 x2 -> lt s1 s2 -> lt s1' s2'. Proof. intros x1 x2 s1 s1' s2 s2' Ab1 Ab2 Ad1 Ad2 Hx (x & EQ & Disj). assert (O.lt x1 x). destruct Disj as [(IN,_)|(IN,_)]; auto. rewrite Hx; auto. exists x; split. intros z Hz. rewrite (Ad1 z), (Ad2 z). split; intros [U|U]; try (left; order); right. rewrite <- (EQ z); auto. rewrite (EQ z); auto. destruct Disj as [(IN,Em)|(IN & y & INy & LTy & Be)]. left; split; auto. rewrite (Ad2 x); auto. intros z. rewrite (Ad1 z); intros [U|U]; try specialize (Ab1 z U); auto; order. right; split; auto. rewrite (Ad1 x); auto. exists y; repeat split; auto. rewrite (Ad2 y); auto. intros z. rewrite (Ad2 z). intros [U|U]; try specialize (Ab2 z U); auto; order. Qed. End MakeSetOrdering. Module MakeListOrdering (O:OrderedType). Module MO:=OrderedTypeFacts O. Local Notation t := (list O.t). Local Notation In := (InA O.eq). Definition eq s s' := forall x, In x s <-> In x s'. Instance eq_equiv : Equivalence eq := _. Inductive lt_list : t -> t -> Prop := | lt_nil : forall x s, lt_list nil (x :: s) | lt_cons_lt : forall x y s s', O.lt x y -> lt_list (x :: s) (y :: s') | lt_cons_eq : forall x y s s', O.eq x y -> lt_list s s' -> lt_list (x :: s) (y :: s'). Hint Constructors lt_list. Definition lt := lt_list. Hint Unfold lt. Instance lt_strorder : StrictOrder lt. Proof. split. (* irreflexive *) assert (forall s s', s=s' -> ~lt s s'). red; induction 2. discriminate. inversion H; subst. apply (StrictOrder_Irreflexive y); auto. inversion H; subst; auto. intros s Hs; exact (H s s (eq_refl s) Hs). (* transitive *) intros s s' s'' H; generalize s''; clear s''; elim H. intros x l s'' H'; inversion_clear H'; auto. intros x x' l l' E s'' H'; inversion_clear H'; auto. constructor 2. transitivity x'; auto. constructor 2. rewrite <- H0; auto. intros. inversion_clear H3. constructor 2. rewrite H0; auto. constructor 3; auto. transitivity y; auto. unfold lt in *; auto. Qed. Instance lt_compat' : Proper (eqlistA O.eq==>eqlistA O.eq==>iff) lt. Proof. apply proper_sym_impl_iff_2; auto with *. intros s1 s1' E1 s2 s2' E2 H. revert s1' E1 s2' E2. induction H; intros; inversion_clear E1; inversion_clear E2. constructor 1. constructor 2. MO.order. constructor 3. MO.order. unfold lt in *; auto. Qed. Lemma eq_cons : forall l1 l2 x y, O.eq x y -> eq l1 l2 -> eq (x :: l1) (y :: l2). Proof. unfold eq; intros l1 l2 x y Exy E12 z. split; inversion_clear 1. left; MO.order. right; rewrite <- E12; auto. left; MO.order. right; rewrite E12; auto. Qed. Hint Resolve eq_cons. Lemma cons_CompSpec : forall c x1 x2 l1 l2, O.eq x1 x2 -> CompSpec eq lt l1 l2 c -> CompSpec eq lt (x1::l1) (x2::l2) c. Proof. destruct c; simpl; inversion_clear 2; auto with relations. Qed. Hint Resolve cons_CompSpec. End MakeListOrdering.
// -- (c) Copyright 2010 - 2012 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // AXI data fifo module: // 5-channel memory-mapped AXI4 interfaces. // SRL or BRAM based FIFO on AXI W and/or R channels. // FIFO to accommodate various data flow rates through the AXI interconnect // // Verilog-standard: Verilog 2001 //----------------------------------------------------------------------------- // // Structure: // axi_data_fifo // fifo_generator // //----------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_axi_data_fifo # ( parameter C_FAMILY = "virtex7", parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_WRITE_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_WRITE_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_WRITE_FIFO_DELAY = 0, // 0 = No, 1 = Yes // Indicates whether AWVALID and WVALID assertion is delayed until: // a. the corresponding WLAST is stored in the FIFO, or // b. no WLAST is stored and the FIFO is full. // 0 means AW channel is pass-through and // WVALID is asserted whenever FIFO is not empty. parameter integer C_AXI_READ_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_READ_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_READ_FIFO_DELAY = 0) // 0 = No, 1 = Yes // Indicates whether ARVALID assertion is delayed until the // the remaining vacancy of the FIFO is at least the burst length // as indicated by ARLEN. // 0 means AR channel is pass-through. // System Signals (input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready); localparam integer P_WIDTH_RACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_ARUSER_WIDTH; localparam integer P_WIDTH_WACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_AWUSER_WIDTH; localparam integer P_WIDTH_RDCH = 1 + 2 + C_AXI_DATA_WIDTH + C_AXI_ID_WIDTH + C_AXI_RUSER_WIDTH; localparam integer P_WIDTH_WDCH = 1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+((C_AXI_PROTOCOL==1)?C_AXI_ID_WIDTH:0)+C_AXI_WUSER_WIDTH; localparam integer P_WIDTH_WRCH = 2 + C_AXI_ID_WIDTH + C_AXI_BUSER_WIDTH; localparam P_PRIM_FIFO_TYPE = "512x72" ; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; localparam integer P_WRITE_FIFO_DEPTH_LOG = (C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1; localparam integer P_READ_FIFO_DEPTH_LOG = (C_AXI_READ_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1; // Ceiling of log2(x) function integer f_ceil_log2 ( input integer x ); integer acc; begin acc=0; while ((2**acc) < x) acc = acc + 1; f_ceil_log2 = acc; end endfunction generate if (((C_AXI_WRITE_FIFO_DEPTH == 0) && (C_AXI_READ_FIFO_DEPTH == 0)) || (C_AXI_PROTOCOL == P_AXILITE)) begin : gen_bypass assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = s_axi_awregion; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_axi_awvalid; assign s_axi_awready = m_axi_awready; assign m_axi_wid = s_axi_wid; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_axi_wvalid; assign s_axi_wready = m_axi_wready; assign s_axi_bid = m_axi_bid; assign s_axi_bresp = m_axi_bresp; assign s_axi_buser = m_axi_buser; assign s_axi_bvalid = m_axi_bvalid; assign m_axi_bready = s_axi_bready; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = s_axi_arregion; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_axi_arvalid; assign s_axi_arready = m_axi_arready; assign s_axi_rid = m_axi_rid; assign s_axi_rdata = m_axi_rdata; assign s_axi_rresp = m_axi_rresp; assign s_axi_rlast = m_axi_rlast; assign s_axi_ruser = m_axi_ruser; assign s_axi_rvalid = m_axi_rvalid; assign m_axi_rready = s_axi_rready; end else begin : gen_fifo wire [4-1:0] s_axi_awregion_i; wire [4-1:0] s_axi_arregion_i; wire [4-1:0] m_axi_awregion_i; wire [4-1:0] m_axi_arregion_i; wire [C_AXI_ID_WIDTH-1:0] s_axi_wid_i; wire [C_AXI_ID_WIDTH-1:0] m_axi_wid_i; assign s_axi_awregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_awregion; assign s_axi_arregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_arregion; assign m_axi_awregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_awregion_i; assign m_axi_arregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_arregion_i; assign s_axi_wid_i = (C_AXI_PROTOCOL == P_AXI3) ? s_axi_wid : {C_AXI_ID_WIDTH{1'b0}}; assign m_axi_wid = (C_AXI_PROTOCOL == P_AXI3) ? m_axi_wid_i : {C_AXI_ID_WIDTH{1'b0}}; fifo_generator_v12_0 #( .C_INTERFACE_TYPE(2), .C_AXI_TYPE((C_AXI_PROTOCOL == P_AXI4) ? 1 : 3), .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH), .C_AXI_ID_WIDTH(C_AXI_ID_WIDTH), .C_HAS_AXI_ID(1), .C_AXI_LEN_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 8 : 4), .C_AXI_LOCK_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 1 : 2), .C_HAS_AXI_ARUSER(1), .C_HAS_AXI_AWUSER(1), .C_HAS_AXI_BUSER(1), .C_HAS_AXI_RUSER(1), .C_HAS_AXI_WUSER(1), .C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH), .C_AXI_ARUSER_WIDTH(C_AXI_ARUSER_WIDTH), .C_AXI_AWUSER_WIDTH(C_AXI_AWUSER_WIDTH), .C_AXI_BUSER_WIDTH(C_AXI_BUSER_WIDTH), .C_AXI_RUSER_WIDTH(C_AXI_RUSER_WIDTH), .C_AXI_WUSER_WIDTH(C_AXI_WUSER_WIDTH), .C_DIN_WIDTH_RACH(P_WIDTH_RACH), .C_DIN_WIDTH_RDCH(P_WIDTH_RDCH), .C_DIN_WIDTH_WACH(P_WIDTH_WACH), .C_DIN_WIDTH_WDCH(P_WIDTH_WDCH), .C_DIN_WIDTH_WRCH(P_WIDTH_WDCH), .C_RACH_TYPE(((C_AXI_READ_FIFO_DEPTH != 0) && C_AXI_READ_FIFO_DELAY) ? 0 : 2), .C_WACH_TYPE(((C_AXI_WRITE_FIFO_DEPTH != 0) && C_AXI_WRITE_FIFO_DELAY) ? 0 : 2), .C_WDCH_TYPE((C_AXI_WRITE_FIFO_DEPTH != 0) ? 0 : 2), .C_RDCH_TYPE((C_AXI_READ_FIFO_DEPTH != 0) ? 0 : 2), .C_WRCH_TYPE(2), .C_COMMON_CLOCK(1), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(C_AXI_READ_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(C_AXI_WRITE_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(10), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH(18), .C_DIN_WIDTH_AXIS(1), .C_DOUT_RST_VAL("0"), .C_DOUT_WIDTH(18), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FAMILY(C_FAMILY), .C_FULL_FLAGS_RST_VAL(1), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXI_RD_CHANNEL(1), .C_HAS_AXI_WR_CHANNEL(1), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(2), .C_IMPLEMENTATION_TYPE_RDCH((C_AXI_READ_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WACH(2), .C_IMPLEMENTATION_TYPE_WDCH((C_AXI_WRITE_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WRCH(2), .C_INIT_WR_PNTR_VAL(0), .C_MEMORY_TYPE(1), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(1), .C_PRELOAD_REGS(0), .C_PRIM_FIFO_TYPE(P_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL(2), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(14), .C_PROG_EMPTY_THRESH_NEGATE_VAL(3), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(5), .C_PROG_EMPTY_TYPE_RACH(5), .C_PROG_EMPTY_TYPE_RDCH(5), .C_PROG_EMPTY_TYPE_WACH(5), .C_PROG_EMPTY_TYPE_WDCH(5), .C_PROG_EMPTY_TYPE_WRCH(5), .C_PROG_FULL_THRESH_ASSERT_VAL(1022), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(15), .C_PROG_FULL_THRESH_NEGATE_VAL(1021), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(5), .C_PROG_FULL_TYPE_RACH(5), .C_PROG_FULL_TYPE_RDCH(5), .C_PROG_FULL_TYPE_WACH(5), .C_PROG_FULL_TYPE_WDCH(5), .C_PROG_FULL_TYPE_WRCH(5), .C_RD_DATA_COUNT_WIDTH(10), .C_RD_DEPTH(1024), .C_RD_FREQ(1), .C_RD_PNTR_WIDTH(10), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(1), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(0), .C_VALID_LOW(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(10), .C_WR_DEPTH(1024), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(32), .C_WR_DEPTH_RDCH(C_AXI_READ_FIFO_DEPTH), .C_WR_DEPTH_WACH(32), .C_WR_DEPTH_WDCH(C_AXI_WRITE_FIFO_DEPTH), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH(10), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(5), .C_WR_PNTR_WIDTH_RDCH((C_AXI_READ_FIFO_DEPTH> 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WACH(5), .C_WR_PNTR_WIDTH_WDCH((C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .s_aclk(aclk), .s_aresetn(aresetn), .s_axi_awid(s_axi_awid), .s_axi_awaddr(s_axi_awaddr), .s_axi_awlen(s_axi_awlen), .s_axi_awsize(s_axi_awsize), .s_axi_awburst(s_axi_awburst), .s_axi_awlock(s_axi_awlock), .s_axi_awcache(s_axi_awcache), .s_axi_awprot(s_axi_awprot), .s_axi_awqos(s_axi_awqos), .s_axi_awregion(s_axi_awregion_i), .s_axi_awuser(s_axi_awuser), .s_axi_awvalid(s_axi_awvalid), .s_axi_awready(s_axi_awready), .s_axi_wid(s_axi_wid_i), .s_axi_wdata(s_axi_wdata), .s_axi_wstrb(s_axi_wstrb), .s_axi_wlast(s_axi_wlast), .s_axi_wvalid(s_axi_wvalid), .s_axi_wready(s_axi_wready), .s_axi_bid(s_axi_bid), .s_axi_bresp(s_axi_bresp), .s_axi_bvalid(s_axi_bvalid), .s_axi_bready(s_axi_bready), .m_axi_awid(m_axi_awid), .m_axi_awaddr(m_axi_awaddr), .m_axi_awlen(m_axi_awlen), .m_axi_awsize(m_axi_awsize), .m_axi_awburst(m_axi_awburst), .m_axi_awlock(m_axi_awlock), .m_axi_awcache(m_axi_awcache), .m_axi_awprot(m_axi_awprot), .m_axi_awqos(m_axi_awqos), .m_axi_awregion(m_axi_awregion_i), .m_axi_awuser(m_axi_awuser), .m_axi_awvalid(m_axi_awvalid), .m_axi_awready(m_axi_awready), .m_axi_wid(m_axi_wid_i), .m_axi_wdata(m_axi_wdata), .m_axi_wstrb(m_axi_wstrb), .m_axi_wlast(m_axi_wlast), .m_axi_wvalid(m_axi_wvalid), .m_axi_wready(m_axi_wready), .m_axi_bid(m_axi_bid), .m_axi_bresp(m_axi_bresp), .m_axi_bvalid(m_axi_bvalid), .m_axi_bready(m_axi_bready), .s_axi_arid(s_axi_arid), .s_axi_araddr(s_axi_araddr), .s_axi_arlen(s_axi_arlen), .s_axi_arsize(s_axi_arsize), .s_axi_arburst(s_axi_arburst), .s_axi_arlock(s_axi_arlock), .s_axi_arcache(s_axi_arcache), .s_axi_arprot(s_axi_arprot), .s_axi_arqos(s_axi_arqos), .s_axi_arregion(s_axi_arregion_i), .s_axi_arvalid(s_axi_arvalid), .s_axi_arready(s_axi_arready), .s_axi_rid(s_axi_rid), .s_axi_rdata(s_axi_rdata), .s_axi_rresp(s_axi_rresp), .s_axi_rlast(s_axi_rlast), .s_axi_rvalid(s_axi_rvalid), .s_axi_rready(s_axi_rready), .m_axi_arid(m_axi_arid), .m_axi_araddr(m_axi_araddr), .m_axi_arlen(m_axi_arlen), .m_axi_arsize(m_axi_arsize), .m_axi_arburst(m_axi_arburst), .m_axi_arlock(m_axi_arlock), .m_axi_arcache(m_axi_arcache), .m_axi_arprot(m_axi_arprot), .m_axi_arqos(m_axi_arqos), .m_axi_arregion(m_axi_arregion_i), .m_axi_arvalid(m_axi_arvalid), .m_axi_arready(m_axi_arready), .m_axi_rid(m_axi_rid), .m_axi_rdata(m_axi_rdata), .m_axi_rresp(m_axi_rresp), .m_axi_rlast(m_axi_rlast), .m_axi_rvalid(m_axi_rvalid), .m_axi_rready(m_axi_rready), .m_aclk(aclk), .m_aclk_en(1'b1), .s_aclk_en(1'b1), .s_axi_wuser(s_axi_wuser), .s_axi_buser(s_axi_buser), .m_axi_wuser(m_axi_wuser), .m_axi_buser(m_axi_buser), .s_axi_aruser(s_axi_aruser), .s_axi_ruser(s_axi_ruser), .m_axi_aruser(m_axi_aruser), .m_axi_ruser(m_axi_ruser), .almost_empty(), .almost_full(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(5'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(5'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(5'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(5'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_prog_full(), .axi_r_prog_full_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_prog_full(), .axi_w_prog_full_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .clk(1'b0), .data_count(), .dbiterr(), .din(18'b0), .dout(), .empty(), .full(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(10'b0), .prog_empty_thresh_assert(10'b0), .prog_empty_thresh_negate(10'b0), .prog_full(), .prog_full_thresh(10'b0), .prog_full_thresh_assert(10'b0), .prog_full_thresh_negate(10'b0), .rd_clk(1'b0), .rd_data_count(), .rd_en(1'b0), .rd_rst(1'b0), .rst(1'b0), .sbiterr(), .srst(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .underflow(), .valid(), .wr_ack(), .wr_clk(1'b0), .wr_data_count(), .wr_en(1'b0), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2012 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // AXI data fifo module: // 5-channel memory-mapped AXI4 interfaces. // SRL or BRAM based FIFO on AXI W and/or R channels. // FIFO to accommodate various data flow rates through the AXI interconnect // // Verilog-standard: Verilog 2001 //----------------------------------------------------------------------------- // // Structure: // axi_data_fifo // fifo_generator // //----------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_axi_data_fifo # ( parameter C_FAMILY = "virtex7", parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_WRITE_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_WRITE_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_WRITE_FIFO_DELAY = 0, // 0 = No, 1 = Yes // Indicates whether AWVALID and WVALID assertion is delayed until: // a. the corresponding WLAST is stored in the FIFO, or // b. no WLAST is stored and the FIFO is full. // 0 means AW channel is pass-through and // WVALID is asserted whenever FIFO is not empty. parameter integer C_AXI_READ_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_READ_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_READ_FIFO_DELAY = 0) // 0 = No, 1 = Yes // Indicates whether ARVALID assertion is delayed until the // the remaining vacancy of the FIFO is at least the burst length // as indicated by ARLEN. // 0 means AR channel is pass-through. // System Signals (input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready); localparam integer P_WIDTH_RACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_ARUSER_WIDTH; localparam integer P_WIDTH_WACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_AWUSER_WIDTH; localparam integer P_WIDTH_RDCH = 1 + 2 + C_AXI_DATA_WIDTH + C_AXI_ID_WIDTH + C_AXI_RUSER_WIDTH; localparam integer P_WIDTH_WDCH = 1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+((C_AXI_PROTOCOL==1)?C_AXI_ID_WIDTH:0)+C_AXI_WUSER_WIDTH; localparam integer P_WIDTH_WRCH = 2 + C_AXI_ID_WIDTH + C_AXI_BUSER_WIDTH; localparam P_PRIM_FIFO_TYPE = "512x72" ; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; localparam integer P_WRITE_FIFO_DEPTH_LOG = (C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1; localparam integer P_READ_FIFO_DEPTH_LOG = (C_AXI_READ_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1; // Ceiling of log2(x) function integer f_ceil_log2 ( input integer x ); integer acc; begin acc=0; while ((2**acc) < x) acc = acc + 1; f_ceil_log2 = acc; end endfunction generate if (((C_AXI_WRITE_FIFO_DEPTH == 0) && (C_AXI_READ_FIFO_DEPTH == 0)) || (C_AXI_PROTOCOL == P_AXILITE)) begin : gen_bypass assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = s_axi_awregion; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_axi_awvalid; assign s_axi_awready = m_axi_awready; assign m_axi_wid = s_axi_wid; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_axi_wvalid; assign s_axi_wready = m_axi_wready; assign s_axi_bid = m_axi_bid; assign s_axi_bresp = m_axi_bresp; assign s_axi_buser = m_axi_buser; assign s_axi_bvalid = m_axi_bvalid; assign m_axi_bready = s_axi_bready; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = s_axi_arregion; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_axi_arvalid; assign s_axi_arready = m_axi_arready; assign s_axi_rid = m_axi_rid; assign s_axi_rdata = m_axi_rdata; assign s_axi_rresp = m_axi_rresp; assign s_axi_rlast = m_axi_rlast; assign s_axi_ruser = m_axi_ruser; assign s_axi_rvalid = m_axi_rvalid; assign m_axi_rready = s_axi_rready; end else begin : gen_fifo wire [4-1:0] s_axi_awregion_i; wire [4-1:0] s_axi_arregion_i; wire [4-1:0] m_axi_awregion_i; wire [4-1:0] m_axi_arregion_i; wire [C_AXI_ID_WIDTH-1:0] s_axi_wid_i; wire [C_AXI_ID_WIDTH-1:0] m_axi_wid_i; assign s_axi_awregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_awregion; assign s_axi_arregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_arregion; assign m_axi_awregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_awregion_i; assign m_axi_arregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_arregion_i; assign s_axi_wid_i = (C_AXI_PROTOCOL == P_AXI3) ? s_axi_wid : {C_AXI_ID_WIDTH{1'b0}}; assign m_axi_wid = (C_AXI_PROTOCOL == P_AXI3) ? m_axi_wid_i : {C_AXI_ID_WIDTH{1'b0}}; fifo_generator_v12_0 #( .C_INTERFACE_TYPE(2), .C_AXI_TYPE((C_AXI_PROTOCOL == P_AXI4) ? 1 : 3), .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH), .C_AXI_ID_WIDTH(C_AXI_ID_WIDTH), .C_HAS_AXI_ID(1), .C_AXI_LEN_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 8 : 4), .C_AXI_LOCK_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 1 : 2), .C_HAS_AXI_ARUSER(1), .C_HAS_AXI_AWUSER(1), .C_HAS_AXI_BUSER(1), .C_HAS_AXI_RUSER(1), .C_HAS_AXI_WUSER(1), .C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH), .C_AXI_ARUSER_WIDTH(C_AXI_ARUSER_WIDTH), .C_AXI_AWUSER_WIDTH(C_AXI_AWUSER_WIDTH), .C_AXI_BUSER_WIDTH(C_AXI_BUSER_WIDTH), .C_AXI_RUSER_WIDTH(C_AXI_RUSER_WIDTH), .C_AXI_WUSER_WIDTH(C_AXI_WUSER_WIDTH), .C_DIN_WIDTH_RACH(P_WIDTH_RACH), .C_DIN_WIDTH_RDCH(P_WIDTH_RDCH), .C_DIN_WIDTH_WACH(P_WIDTH_WACH), .C_DIN_WIDTH_WDCH(P_WIDTH_WDCH), .C_DIN_WIDTH_WRCH(P_WIDTH_WDCH), .C_RACH_TYPE(((C_AXI_READ_FIFO_DEPTH != 0) && C_AXI_READ_FIFO_DELAY) ? 0 : 2), .C_WACH_TYPE(((C_AXI_WRITE_FIFO_DEPTH != 0) && C_AXI_WRITE_FIFO_DELAY) ? 0 : 2), .C_WDCH_TYPE((C_AXI_WRITE_FIFO_DEPTH != 0) ? 0 : 2), .C_RDCH_TYPE((C_AXI_READ_FIFO_DEPTH != 0) ? 0 : 2), .C_WRCH_TYPE(2), .C_COMMON_CLOCK(1), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(C_AXI_READ_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(C_AXI_WRITE_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(10), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH(18), .C_DIN_WIDTH_AXIS(1), .C_DOUT_RST_VAL("0"), .C_DOUT_WIDTH(18), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FAMILY(C_FAMILY), .C_FULL_FLAGS_RST_VAL(1), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXI_RD_CHANNEL(1), .C_HAS_AXI_WR_CHANNEL(1), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(2), .C_IMPLEMENTATION_TYPE_RDCH((C_AXI_READ_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WACH(2), .C_IMPLEMENTATION_TYPE_WDCH((C_AXI_WRITE_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WRCH(2), .C_INIT_WR_PNTR_VAL(0), .C_MEMORY_TYPE(1), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(1), .C_PRELOAD_REGS(0), .C_PRIM_FIFO_TYPE(P_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL(2), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(14), .C_PROG_EMPTY_THRESH_NEGATE_VAL(3), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(5), .C_PROG_EMPTY_TYPE_RACH(5), .C_PROG_EMPTY_TYPE_RDCH(5), .C_PROG_EMPTY_TYPE_WACH(5), .C_PROG_EMPTY_TYPE_WDCH(5), .C_PROG_EMPTY_TYPE_WRCH(5), .C_PROG_FULL_THRESH_ASSERT_VAL(1022), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(15), .C_PROG_FULL_THRESH_NEGATE_VAL(1021), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(5), .C_PROG_FULL_TYPE_RACH(5), .C_PROG_FULL_TYPE_RDCH(5), .C_PROG_FULL_TYPE_WACH(5), .C_PROG_FULL_TYPE_WDCH(5), .C_PROG_FULL_TYPE_WRCH(5), .C_RD_DATA_COUNT_WIDTH(10), .C_RD_DEPTH(1024), .C_RD_FREQ(1), .C_RD_PNTR_WIDTH(10), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(1), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(0), .C_VALID_LOW(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(10), .C_WR_DEPTH(1024), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(32), .C_WR_DEPTH_RDCH(C_AXI_READ_FIFO_DEPTH), .C_WR_DEPTH_WACH(32), .C_WR_DEPTH_WDCH(C_AXI_WRITE_FIFO_DEPTH), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH(10), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(5), .C_WR_PNTR_WIDTH_RDCH((C_AXI_READ_FIFO_DEPTH> 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WACH(5), .C_WR_PNTR_WIDTH_WDCH((C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .s_aclk(aclk), .s_aresetn(aresetn), .s_axi_awid(s_axi_awid), .s_axi_awaddr(s_axi_awaddr), .s_axi_awlen(s_axi_awlen), .s_axi_awsize(s_axi_awsize), .s_axi_awburst(s_axi_awburst), .s_axi_awlock(s_axi_awlock), .s_axi_awcache(s_axi_awcache), .s_axi_awprot(s_axi_awprot), .s_axi_awqos(s_axi_awqos), .s_axi_awregion(s_axi_awregion_i), .s_axi_awuser(s_axi_awuser), .s_axi_awvalid(s_axi_awvalid), .s_axi_awready(s_axi_awready), .s_axi_wid(s_axi_wid_i), .s_axi_wdata(s_axi_wdata), .s_axi_wstrb(s_axi_wstrb), .s_axi_wlast(s_axi_wlast), .s_axi_wvalid(s_axi_wvalid), .s_axi_wready(s_axi_wready), .s_axi_bid(s_axi_bid), .s_axi_bresp(s_axi_bresp), .s_axi_bvalid(s_axi_bvalid), .s_axi_bready(s_axi_bready), .m_axi_awid(m_axi_awid), .m_axi_awaddr(m_axi_awaddr), .m_axi_awlen(m_axi_awlen), .m_axi_awsize(m_axi_awsize), .m_axi_awburst(m_axi_awburst), .m_axi_awlock(m_axi_awlock), .m_axi_awcache(m_axi_awcache), .m_axi_awprot(m_axi_awprot), .m_axi_awqos(m_axi_awqos), .m_axi_awregion(m_axi_awregion_i), .m_axi_awuser(m_axi_awuser), .m_axi_awvalid(m_axi_awvalid), .m_axi_awready(m_axi_awready), .m_axi_wid(m_axi_wid_i), .m_axi_wdata(m_axi_wdata), .m_axi_wstrb(m_axi_wstrb), .m_axi_wlast(m_axi_wlast), .m_axi_wvalid(m_axi_wvalid), .m_axi_wready(m_axi_wready), .m_axi_bid(m_axi_bid), .m_axi_bresp(m_axi_bresp), .m_axi_bvalid(m_axi_bvalid), .m_axi_bready(m_axi_bready), .s_axi_arid(s_axi_arid), .s_axi_araddr(s_axi_araddr), .s_axi_arlen(s_axi_arlen), .s_axi_arsize(s_axi_arsize), .s_axi_arburst(s_axi_arburst), .s_axi_arlock(s_axi_arlock), .s_axi_arcache(s_axi_arcache), .s_axi_arprot(s_axi_arprot), .s_axi_arqos(s_axi_arqos), .s_axi_arregion(s_axi_arregion_i), .s_axi_arvalid(s_axi_arvalid), .s_axi_arready(s_axi_arready), .s_axi_rid(s_axi_rid), .s_axi_rdata(s_axi_rdata), .s_axi_rresp(s_axi_rresp), .s_axi_rlast(s_axi_rlast), .s_axi_rvalid(s_axi_rvalid), .s_axi_rready(s_axi_rready), .m_axi_arid(m_axi_arid), .m_axi_araddr(m_axi_araddr), .m_axi_arlen(m_axi_arlen), .m_axi_arsize(m_axi_arsize), .m_axi_arburst(m_axi_arburst), .m_axi_arlock(m_axi_arlock), .m_axi_arcache(m_axi_arcache), .m_axi_arprot(m_axi_arprot), .m_axi_arqos(m_axi_arqos), .m_axi_arregion(m_axi_arregion_i), .m_axi_arvalid(m_axi_arvalid), .m_axi_arready(m_axi_arready), .m_axi_rid(m_axi_rid), .m_axi_rdata(m_axi_rdata), .m_axi_rresp(m_axi_rresp), .m_axi_rlast(m_axi_rlast), .m_axi_rvalid(m_axi_rvalid), .m_axi_rready(m_axi_rready), .m_aclk(aclk), .m_aclk_en(1'b1), .s_aclk_en(1'b1), .s_axi_wuser(s_axi_wuser), .s_axi_buser(s_axi_buser), .m_axi_wuser(m_axi_wuser), .m_axi_buser(m_axi_buser), .s_axi_aruser(s_axi_aruser), .s_axi_ruser(s_axi_ruser), .m_axi_aruser(m_axi_aruser), .m_axi_ruser(m_axi_ruser), .almost_empty(), .almost_full(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(5'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(5'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(5'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(5'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_prog_full(), .axi_r_prog_full_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_prog_full(), .axi_w_prog_full_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .clk(1'b0), .data_count(), .dbiterr(), .din(18'b0), .dout(), .empty(), .full(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(10'b0), .prog_empty_thresh_assert(10'b0), .prog_empty_thresh_negate(10'b0), .prog_full(), .prog_full_thresh(10'b0), .prog_full_thresh_assert(10'b0), .prog_full_thresh_negate(10'b0), .rd_clk(1'b0), .rd_data_count(), .rd_en(1'b0), .rd_rst(1'b0), .rst(1'b0), .sbiterr(), .srst(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .underflow(), .valid(), .wr_ack(), .wr_clk(1'b0), .wr_data_count(), .wr_en(1'b0), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2012 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // AXI data fifo module: // 5-channel memory-mapped AXI4 interfaces. // SRL or BRAM based FIFO on AXI W and/or R channels. // FIFO to accommodate various data flow rates through the AXI interconnect // // Verilog-standard: Verilog 2001 //----------------------------------------------------------------------------- // // Structure: // axi_data_fifo // fifo_generator // //----------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_axi_data_fifo # ( parameter C_FAMILY = "virtex7", parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_WRITE_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_WRITE_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_WRITE_FIFO_DELAY = 0, // 0 = No, 1 = Yes // Indicates whether AWVALID and WVALID assertion is delayed until: // a. the corresponding WLAST is stored in the FIFO, or // b. no WLAST is stored and the FIFO is full. // 0 means AW channel is pass-through and // WVALID is asserted whenever FIFO is not empty. parameter integer C_AXI_READ_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_READ_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_READ_FIFO_DELAY = 0) // 0 = No, 1 = Yes // Indicates whether ARVALID assertion is delayed until the // the remaining vacancy of the FIFO is at least the burst length // as indicated by ARLEN. // 0 means AR channel is pass-through. // System Signals (input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready); localparam integer P_WIDTH_RACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_ARUSER_WIDTH; localparam integer P_WIDTH_WACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_AWUSER_WIDTH; localparam integer P_WIDTH_RDCH = 1 + 2 + C_AXI_DATA_WIDTH + C_AXI_ID_WIDTH + C_AXI_RUSER_WIDTH; localparam integer P_WIDTH_WDCH = 1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+((C_AXI_PROTOCOL==1)?C_AXI_ID_WIDTH:0)+C_AXI_WUSER_WIDTH; localparam integer P_WIDTH_WRCH = 2 + C_AXI_ID_WIDTH + C_AXI_BUSER_WIDTH; localparam P_PRIM_FIFO_TYPE = "512x72" ; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; localparam integer P_WRITE_FIFO_DEPTH_LOG = (C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1; localparam integer P_READ_FIFO_DEPTH_LOG = (C_AXI_READ_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1; // Ceiling of log2(x) function integer f_ceil_log2 ( input integer x ); integer acc; begin acc=0; while ((2**acc) < x) acc = acc + 1; f_ceil_log2 = acc; end endfunction generate if (((C_AXI_WRITE_FIFO_DEPTH == 0) && (C_AXI_READ_FIFO_DEPTH == 0)) || (C_AXI_PROTOCOL == P_AXILITE)) begin : gen_bypass assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = s_axi_awregion; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_axi_awvalid; assign s_axi_awready = m_axi_awready; assign m_axi_wid = s_axi_wid; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_axi_wvalid; assign s_axi_wready = m_axi_wready; assign s_axi_bid = m_axi_bid; assign s_axi_bresp = m_axi_bresp; assign s_axi_buser = m_axi_buser; assign s_axi_bvalid = m_axi_bvalid; assign m_axi_bready = s_axi_bready; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = s_axi_arregion; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_axi_arvalid; assign s_axi_arready = m_axi_arready; assign s_axi_rid = m_axi_rid; assign s_axi_rdata = m_axi_rdata; assign s_axi_rresp = m_axi_rresp; assign s_axi_rlast = m_axi_rlast; assign s_axi_ruser = m_axi_ruser; assign s_axi_rvalid = m_axi_rvalid; assign m_axi_rready = s_axi_rready; end else begin : gen_fifo wire [4-1:0] s_axi_awregion_i; wire [4-1:0] s_axi_arregion_i; wire [4-1:0] m_axi_awregion_i; wire [4-1:0] m_axi_arregion_i; wire [C_AXI_ID_WIDTH-1:0] s_axi_wid_i; wire [C_AXI_ID_WIDTH-1:0] m_axi_wid_i; assign s_axi_awregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_awregion; assign s_axi_arregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_arregion; assign m_axi_awregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_awregion_i; assign m_axi_arregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_arregion_i; assign s_axi_wid_i = (C_AXI_PROTOCOL == P_AXI3) ? s_axi_wid : {C_AXI_ID_WIDTH{1'b0}}; assign m_axi_wid = (C_AXI_PROTOCOL == P_AXI3) ? m_axi_wid_i : {C_AXI_ID_WIDTH{1'b0}}; fifo_generator_v12_0 #( .C_INTERFACE_TYPE(2), .C_AXI_TYPE((C_AXI_PROTOCOL == P_AXI4) ? 1 : 3), .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH), .C_AXI_ID_WIDTH(C_AXI_ID_WIDTH), .C_HAS_AXI_ID(1), .C_AXI_LEN_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 8 : 4), .C_AXI_LOCK_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 1 : 2), .C_HAS_AXI_ARUSER(1), .C_HAS_AXI_AWUSER(1), .C_HAS_AXI_BUSER(1), .C_HAS_AXI_RUSER(1), .C_HAS_AXI_WUSER(1), .C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH), .C_AXI_ARUSER_WIDTH(C_AXI_ARUSER_WIDTH), .C_AXI_AWUSER_WIDTH(C_AXI_AWUSER_WIDTH), .C_AXI_BUSER_WIDTH(C_AXI_BUSER_WIDTH), .C_AXI_RUSER_WIDTH(C_AXI_RUSER_WIDTH), .C_AXI_WUSER_WIDTH(C_AXI_WUSER_WIDTH), .C_DIN_WIDTH_RACH(P_WIDTH_RACH), .C_DIN_WIDTH_RDCH(P_WIDTH_RDCH), .C_DIN_WIDTH_WACH(P_WIDTH_WACH), .C_DIN_WIDTH_WDCH(P_WIDTH_WDCH), .C_DIN_WIDTH_WRCH(P_WIDTH_WDCH), .C_RACH_TYPE(((C_AXI_READ_FIFO_DEPTH != 0) && C_AXI_READ_FIFO_DELAY) ? 0 : 2), .C_WACH_TYPE(((C_AXI_WRITE_FIFO_DEPTH != 0) && C_AXI_WRITE_FIFO_DELAY) ? 0 : 2), .C_WDCH_TYPE((C_AXI_WRITE_FIFO_DEPTH != 0) ? 0 : 2), .C_RDCH_TYPE((C_AXI_READ_FIFO_DEPTH != 0) ? 0 : 2), .C_WRCH_TYPE(2), .C_COMMON_CLOCK(1), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(C_AXI_READ_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(C_AXI_WRITE_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(10), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH(18), .C_DIN_WIDTH_AXIS(1), .C_DOUT_RST_VAL("0"), .C_DOUT_WIDTH(18), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FAMILY(C_FAMILY), .C_FULL_FLAGS_RST_VAL(1), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXI_RD_CHANNEL(1), .C_HAS_AXI_WR_CHANNEL(1), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(2), .C_IMPLEMENTATION_TYPE_RDCH((C_AXI_READ_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WACH(2), .C_IMPLEMENTATION_TYPE_WDCH((C_AXI_WRITE_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WRCH(2), .C_INIT_WR_PNTR_VAL(0), .C_MEMORY_TYPE(1), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(1), .C_PRELOAD_REGS(0), .C_PRIM_FIFO_TYPE(P_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL(2), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(14), .C_PROG_EMPTY_THRESH_NEGATE_VAL(3), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(5), .C_PROG_EMPTY_TYPE_RACH(5), .C_PROG_EMPTY_TYPE_RDCH(5), .C_PROG_EMPTY_TYPE_WACH(5), .C_PROG_EMPTY_TYPE_WDCH(5), .C_PROG_EMPTY_TYPE_WRCH(5), .C_PROG_FULL_THRESH_ASSERT_VAL(1022), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(15), .C_PROG_FULL_THRESH_NEGATE_VAL(1021), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(5), .C_PROG_FULL_TYPE_RACH(5), .C_PROG_FULL_TYPE_RDCH(5), .C_PROG_FULL_TYPE_WACH(5), .C_PROG_FULL_TYPE_WDCH(5), .C_PROG_FULL_TYPE_WRCH(5), .C_RD_DATA_COUNT_WIDTH(10), .C_RD_DEPTH(1024), .C_RD_FREQ(1), .C_RD_PNTR_WIDTH(10), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(1), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(0), .C_VALID_LOW(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(10), .C_WR_DEPTH(1024), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(32), .C_WR_DEPTH_RDCH(C_AXI_READ_FIFO_DEPTH), .C_WR_DEPTH_WACH(32), .C_WR_DEPTH_WDCH(C_AXI_WRITE_FIFO_DEPTH), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH(10), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(5), .C_WR_PNTR_WIDTH_RDCH((C_AXI_READ_FIFO_DEPTH> 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WACH(5), .C_WR_PNTR_WIDTH_WDCH((C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .s_aclk(aclk), .s_aresetn(aresetn), .s_axi_awid(s_axi_awid), .s_axi_awaddr(s_axi_awaddr), .s_axi_awlen(s_axi_awlen), .s_axi_awsize(s_axi_awsize), .s_axi_awburst(s_axi_awburst), .s_axi_awlock(s_axi_awlock), .s_axi_awcache(s_axi_awcache), .s_axi_awprot(s_axi_awprot), .s_axi_awqos(s_axi_awqos), .s_axi_awregion(s_axi_awregion_i), .s_axi_awuser(s_axi_awuser), .s_axi_awvalid(s_axi_awvalid), .s_axi_awready(s_axi_awready), .s_axi_wid(s_axi_wid_i), .s_axi_wdata(s_axi_wdata), .s_axi_wstrb(s_axi_wstrb), .s_axi_wlast(s_axi_wlast), .s_axi_wvalid(s_axi_wvalid), .s_axi_wready(s_axi_wready), .s_axi_bid(s_axi_bid), .s_axi_bresp(s_axi_bresp), .s_axi_bvalid(s_axi_bvalid), .s_axi_bready(s_axi_bready), .m_axi_awid(m_axi_awid), .m_axi_awaddr(m_axi_awaddr), .m_axi_awlen(m_axi_awlen), .m_axi_awsize(m_axi_awsize), .m_axi_awburst(m_axi_awburst), .m_axi_awlock(m_axi_awlock), .m_axi_awcache(m_axi_awcache), .m_axi_awprot(m_axi_awprot), .m_axi_awqos(m_axi_awqos), .m_axi_awregion(m_axi_awregion_i), .m_axi_awuser(m_axi_awuser), .m_axi_awvalid(m_axi_awvalid), .m_axi_awready(m_axi_awready), .m_axi_wid(m_axi_wid_i), .m_axi_wdata(m_axi_wdata), .m_axi_wstrb(m_axi_wstrb), .m_axi_wlast(m_axi_wlast), .m_axi_wvalid(m_axi_wvalid), .m_axi_wready(m_axi_wready), .m_axi_bid(m_axi_bid), .m_axi_bresp(m_axi_bresp), .m_axi_bvalid(m_axi_bvalid), .m_axi_bready(m_axi_bready), .s_axi_arid(s_axi_arid), .s_axi_araddr(s_axi_araddr), .s_axi_arlen(s_axi_arlen), .s_axi_arsize(s_axi_arsize), .s_axi_arburst(s_axi_arburst), .s_axi_arlock(s_axi_arlock), .s_axi_arcache(s_axi_arcache), .s_axi_arprot(s_axi_arprot), .s_axi_arqos(s_axi_arqos), .s_axi_arregion(s_axi_arregion_i), .s_axi_arvalid(s_axi_arvalid), .s_axi_arready(s_axi_arready), .s_axi_rid(s_axi_rid), .s_axi_rdata(s_axi_rdata), .s_axi_rresp(s_axi_rresp), .s_axi_rlast(s_axi_rlast), .s_axi_rvalid(s_axi_rvalid), .s_axi_rready(s_axi_rready), .m_axi_arid(m_axi_arid), .m_axi_araddr(m_axi_araddr), .m_axi_arlen(m_axi_arlen), .m_axi_arsize(m_axi_arsize), .m_axi_arburst(m_axi_arburst), .m_axi_arlock(m_axi_arlock), .m_axi_arcache(m_axi_arcache), .m_axi_arprot(m_axi_arprot), .m_axi_arqos(m_axi_arqos), .m_axi_arregion(m_axi_arregion_i), .m_axi_arvalid(m_axi_arvalid), .m_axi_arready(m_axi_arready), .m_axi_rid(m_axi_rid), .m_axi_rdata(m_axi_rdata), .m_axi_rresp(m_axi_rresp), .m_axi_rlast(m_axi_rlast), .m_axi_rvalid(m_axi_rvalid), .m_axi_rready(m_axi_rready), .m_aclk(aclk), .m_aclk_en(1'b1), .s_aclk_en(1'b1), .s_axi_wuser(s_axi_wuser), .s_axi_buser(s_axi_buser), .m_axi_wuser(m_axi_wuser), .m_axi_buser(m_axi_buser), .s_axi_aruser(s_axi_aruser), .s_axi_ruser(s_axi_ruser), .m_axi_aruser(m_axi_aruser), .m_axi_ruser(m_axi_ruser), .almost_empty(), .almost_full(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(5'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(5'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(5'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(5'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_prog_full(), .axi_r_prog_full_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_prog_full(), .axi_w_prog_full_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .clk(1'b0), .data_count(), .dbiterr(), .din(18'b0), .dout(), .empty(), .full(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(10'b0), .prog_empty_thresh_assert(10'b0), .prog_empty_thresh_negate(10'b0), .prog_full(), .prog_full_thresh(10'b0), .prog_full_thresh_assert(10'b0), .prog_full_thresh_negate(10'b0), .rd_clk(1'b0), .rd_data_count(), .rd_en(1'b0), .rd_rst(1'b0), .rst(1'b0), .sbiterr(), .srst(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .underflow(), .valid(), .wr_ack(), .wr_clk(1'b0), .wr_data_count(), .wr_en(1'b0), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); end endgenerate endmodule
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
Require Import TestSuite.admit. (** [not tac] is equivalent to [fail tac "succeeds"] if [tac] succeeds, and is equivalent to [idtac] if [tac] fails *) Tactic Notation "not" tactic3(tac) := (tryif tac then fail 0 tac "succeeds" else idtac); (* error if the tactic solved all goals *) []. (** Test if a tactic succeeds, but always roll-back the results *) Tactic Notation "test" tactic3(tac) := tryif not tac then fail 0 tac "fails" else idtac. Goal Set. Proof. not fail. not not idtac. not fail 0. (** Would be nice if we could get [not fail 1] to pass, maybe *) not not admit. not not test admit. not progress test admit. (* test grouping *) not (not idtac; fail). assert True. all:not fail. 2:not fail. all:admit. Defined. Goal Set. Proof. test idtac. test try fail. test admit. test match goal with |- Set => idtac end. test (idtac; match goal with |- Set => idtac end). (* test grouping *) first [ (test idtac; fail); fail 1 | idtac ]. try test fail. try test test fail. test test idtac. test test admit. Fail test fail. test (idtac; []). test (assert True; [|]). (* would be nice, perhaps, if we could catch [fail 1] and not just [fail 0] this *) try ((test fail); fail 1). assert True. all:test idtac. all:test admit. 2:test admit. all:admit. Defined.
Require Import TestSuite.admit. (** [not tac] is equivalent to [fail tac "succeeds"] if [tac] succeeds, and is equivalent to [idtac] if [tac] fails *) Tactic Notation "not" tactic3(tac) := (tryif tac then fail 0 tac "succeeds" else idtac); (* error if the tactic solved all goals *) []. (** Test if a tactic succeeds, but always roll-back the results *) Tactic Notation "test" tactic3(tac) := tryif not tac then fail 0 tac "fails" else idtac. Goal Set. Proof. not fail. not not idtac. not fail 0. (** Would be nice if we could get [not fail 1] to pass, maybe *) not not admit. not not test admit. not progress test admit. (* test grouping *) not (not idtac; fail). assert True. all:not fail. 2:not fail. all:admit. Defined. Goal Set. Proof. test idtac. test try fail. test admit. test match goal with |- Set => idtac end. test (idtac; match goal with |- Set => idtac end). (* test grouping *) first [ (test idtac; fail); fail 1 | idtac ]. try test fail. try test test fail. test test idtac. test test admit. Fail test fail. test (idtac; []). test (assert True; [|]). (* would be nice, perhaps, if we could catch [fail 1] and not just [fail 0] this *) try ((test fail); fail 1). assert True. all:test idtac. all:test admit. 2:test admit. all:admit. Defined.