text
stringlengths 7
318k
| id
stringlengths 14
166
| metadata
dict | __index_level_0__
int64 0
439
|
---|---|---|---|
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FSMT
## Overview
FSMT (FairSeq MachineTranslation) models were introduced in [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616) by Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, Sergey Edunov.
The abstract of the paper is the following:
*This paper describes Facebook FAIR's submission to the WMT19 shared news translation task. We participate in two
language pairs and four language directions, English <-> German and English <-> Russian. Following our submission from
last year, our baseline systems are large BPE-based transformer models trained with the Fairseq sequence modeling
toolkit which rely on sampled back-translations. This year we experiment with different bitext data filtering schemes,
as well as with adding filtered back-translated data. We also ensemble and fine-tune our models on domain-specific
data, then decode using noisy channel model reranking. Our submissions are ranked first in all four directions of the
human evaluation campaign. On En->De, our system significantly outperforms other systems as well as human translations.
This system improves upon our WMT'18 submission by 4.5 BLEU points.*
This model was contributed by [stas](https://huggingface.co/stas). The original code can be found
[here](https://github.com/pytorch/fairseq/tree/master/examples/wmt19).
## Implementation Notes
- FSMT uses source and target vocabulary pairs that aren't combined into one. It doesn't share embeddings tokens
either. Its tokenizer is very similar to [`XLMTokenizer`] and the main model is derived from
[`BartModel`].
## FSMTConfig
[[autodoc]] FSMTConfig
## FSMTTokenizer
[[autodoc]] FSMTTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## FSMTModel
[[autodoc]] FSMTModel
- forward
## FSMTForConditionalGeneration
[[autodoc]] FSMTForConditionalGeneration
- forward
| transformers/docs/source/en/model_doc/fsmt.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/fsmt.md",
"repo_id": "transformers",
"token_count": 739
} | 226 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Hubert
## Overview
Hubert was proposed in [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan
Salakhutdinov, Abdelrahman Mohamed.
The abstract from the paper is the following:
*Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are
multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training
phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we
propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an
offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our
approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined
acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised
clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means
teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the
state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h,
10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER
reduction on the more challenging dev-other and test-other evaluation subsets.*
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
# Usage tips
- Hubert is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- Hubert model was fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded
using [`Wav2Vec2CTCTokenizer`].
## Resources
- [Audio classification task guide](../tasks/audio_classification)
- [Automatic speech recognition task guide](../tasks/asr)
## HubertConfig
[[autodoc]] HubertConfig
<frameworkcontent>
<pt>
## HubertModel
[[autodoc]] HubertModel
- forward
## HubertForCTC
[[autodoc]] HubertForCTC
- forward
## HubertForSequenceClassification
[[autodoc]] HubertForSequenceClassification
- forward
</pt>
<tf>
## TFHubertModel
[[autodoc]] TFHubertModel
- call
## TFHubertForCTC
[[autodoc]] TFHubertForCTC
- call
</tf>
</frameworkcontent>
| transformers/docs/source/en/model_doc/hubert.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/hubert.md",
"repo_id": "transformers",
"token_count": 930
} | 227 |
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MegatronBERT
## Overview
The MegatronBERT model was proposed in [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper and Bryan Catanzaro.
The abstract from the paper is the following:
*Recent work in language modeling demonstrates that training large transformer models advances the state of the art in
Natural Language Processing applications. However, very large models can be quite difficult to train due to memory
constraints. In this work, we present our techniques for training very large transformer models and implement a simple,
efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our
approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model
parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We
illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain
15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline
that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance
the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9
billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in
BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we
achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA
accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy
of 89.4%).*
This model was contributed by [jdemouth](https://huggingface.co/jdemouth). The original code can be found [here](https://github.com/NVIDIA/Megatron-LM).
That repository contains a multi-GPU and multi-node implementation of the Megatron Language models. In particular,
it contains a hybrid model parallel approach using "tensor parallel" and "pipeline parallel" techniques.
## Usage tips
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) checkpoints
for use to evaluate or finetuning downstream tasks.
To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).
Alternatively, you can directly download the checkpoints using:
BERT-345M-uncased:
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip
-O megatron_bert_345m_v0_1_uncased.zip
```
BERT-345M-cased:
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O
megatron_bert_345m_v0_1_cased.zip
```
Once you have obtained the checkpoints from NVIDIA GPU Cloud (NGC), you have to convert them to a format that will
easily be loaded by Hugging Face Transformers and our port of the BERT code.
The following commands allow you to do the conversion. We assume that the folder `models/megatron_bert` contains
`megatron_bert_345m_v0_1_{cased, uncased}.zip` and that the commands are run from inside that folder:
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
```
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip
```
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## MegatronBertConfig
[[autodoc]] MegatronBertConfig
## MegatronBertModel
[[autodoc]] MegatronBertModel
- forward
## MegatronBertForMaskedLM
[[autodoc]] MegatronBertForMaskedLM
- forward
## MegatronBertForCausalLM
[[autodoc]] MegatronBertForCausalLM
- forward
## MegatronBertForNextSentencePrediction
[[autodoc]] MegatronBertForNextSentencePrediction
- forward
## MegatronBertForPreTraining
[[autodoc]] MegatronBertForPreTraining
- forward
## MegatronBertForSequenceClassification
[[autodoc]] MegatronBertForSequenceClassification
- forward
## MegatronBertForMultipleChoice
[[autodoc]] MegatronBertForMultipleChoice
- forward
## MegatronBertForTokenClassification
[[autodoc]] MegatronBertForTokenClassification
- forward
## MegatronBertForQuestionAnswering
[[autodoc]] MegatronBertForQuestionAnswering
- forward
| transformers/docs/source/en/model_doc/megatron-bert.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/megatron-bert.md",
"repo_id": "transformers",
"token_count": 1735
} | 228 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MusicGen
## Overview
The MusicGen model was proposed in the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284)
by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
MusicGen is a single stage auto-regressive Transformer model capable of generating high-quality music samples conditioned
on text descriptions or audio prompts. The text descriptions are passed through a frozen text encoder model to obtain a
sequence of hidden-state representations. MusicGen is then trained to predict discrete audio tokens, or *audio codes*,
conditioned on these hidden-states. These audio tokens are then decoded using an audio compression model, such as EnCodec,
to recover the audio waveform.
Through an efficient token interleaving pattern, MusicGen does not require a self-supervised semantic representation of
the text/audio prompts, thus eliminating the need to cascade multiple models to predict a set of codebooks (e.g.
hierarchically or upsampling). Instead, it is able to generate all the codebooks in a single forward pass.
The abstract from the paper is the following:
*We tackle the task of conditional music generation. We introduce MusicGen, a single Language Model (LM) that operates
over several streams of compressed discrete music representation, i.e., tokens. Unlike prior work, MusicGen is comprised
of a single-stage transformer LM together with efficient token interleaving patterns, which eliminates the need for
cascading several models, e.g., hierarchically or upsampling. Following this approach, we demonstrate how MusicGen
can generate high-quality samples, while being conditioned on textual description or melodic features, allowing better
controls over the generated output. We conduct extensive empirical evaluation, considering both automatic and human
studies, showing the proposed approach is superior to the evaluated baselines on a standard text-to-music benchmark.
Through ablation studies, we shed light over the importance of each of the components comprising MusicGen.*
This model was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original code can be found
[here](https://github.com/facebookresearch/audiocraft). The pre-trained checkpoints can be found on the
[Hugging Face Hub](https://huggingface.co/models?sort=downloads&search=facebook%2Fmusicgen-).
## Usage tips
- After downloading the original checkpoints from [here](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md#importing--exporting-models) , you can convert them using the **conversion script** available at
`src/transformers/models/musicgen/convert_musicgen_transformers.py` with the following command:
```bash
python src/transformers/models/musicgen/convert_musicgen_transformers.py \
--checkpoint small --pytorch_dump_folder /output/path --safe_serialization
```
## Generation
MusicGen is compatible with two generation modes: greedy and sampling. In practice, sampling leads to significantly
better results than greedy, thus we encourage sampling mode to be used where possible. Sampling is enabled by default,
and can be explicitly specified by setting `do_sample=True` in the call to [`MusicgenForConditionalGeneration.generate`],
or by overriding the model's generation config (see below).
Generation is limited by the sinusoidal positional embeddings to 30 second inputs. Meaning, MusicGen cannot generate more
than 30 seconds of audio (1503 tokens), and input audio passed by Audio-Prompted Generation contributes to this limit so,
given an input of 20 seconds of audio, MusicGen cannot generate more than 10 seconds of additional audio.
Transformers supports both mono (1-channel) and stereo (2-channel) variants of MusicGen. The mono channel versions
generate a single set of codebooks. The stereo versions generate 2 sets of codebooks, 1 for each channel (left/right),
and each set of codebooks is decoded independently through the audio compression model. The audio streams for each
channel are combined to give the final stereo output.
### Unconditional Generation
The inputs for unconditional (or 'null') generation can be obtained through the method
[`MusicgenForConditionalGeneration.get_unconditional_inputs`]:
```python
>>> from transformers import MusicgenForConditionalGeneration
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
>>> audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
```
The audio outputs are a three-dimensional Torch tensor of shape `(batch_size, num_channels, sequence_length)`. To listen
to the generated audio samples, you can either play them in an ipynb notebook:
```python
from IPython.display import Audio
sampling_rate = model.config.audio_encoder.sampling_rate
Audio(audio_values[0].numpy(), rate=sampling_rate)
```
Or save them as a `.wav` file using a third-party library, e.g. `scipy`:
```python
>>> import scipy
>>> sampling_rate = model.config.audio_encoder.sampling_rate
>>> scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy())
```
### Text-Conditional Generation
The model can generate an audio sample conditioned on a text prompt through use of the [`MusicgenProcessor`] to pre-process
the inputs:
```python
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
```
The `guidance_scale` is used in classifier free guidance (CFG), setting the weighting between the conditional logits
(which are predicted from the text prompts) and the unconditional logits (which are predicted from an unconditional or
'null' prompt). Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer audio quality. CFG is enabled by setting `guidance_scale > 1`. For best results,
use `guidance_scale=3` (default).
### Audio-Prompted Generation
The same [`MusicgenProcessor`] can be used to pre-process an audio prompt that is used for audio continuation. In the
following example, we load an audio file using the 🤗 Datasets library, which can be pip installed through the command
below:
```
pip install --upgrade pip
pip install datasets[audio]
```
```python
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> dataset = load_dataset("sanchit-gandhi/gtzan", split="train", streaming=True)
>>> sample = next(iter(dataset))["audio"]
>>> # take the first half of the audio sample
>>> sample["array"] = sample["array"][: len(sample["array"]) // 2]
>>> inputs = processor(
... audio=sample["array"],
... sampling_rate=sample["sampling_rate"],
... text=["80s blues track with groovy saxophone"],
... padding=True,
... return_tensors="pt",
... )
>>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
```
For batched audio-prompted generation, the generated `audio_values` can be post-processed to remove padding by using the
[`MusicgenProcessor`] class:
```python
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> dataset = load_dataset("sanchit-gandhi/gtzan", split="train", streaming=True)
>>> sample = next(iter(dataset))["audio"]
>>> # take the first quarter of the audio sample
>>> sample_1 = sample["array"][: len(sample["array"]) // 4]
>>> # take the first half of the audio sample
>>> sample_2 = sample["array"][: len(sample["array"]) // 2]
>>> inputs = processor(
... audio=[sample_1, sample_2],
... sampling_rate=sample["sampling_rate"],
... text=["80s blues track with groovy saxophone", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
>>> # post-process to remove padding from the batched audio
>>> audio_values = processor.batch_decode(audio_values, padding_mask=inputs.padding_mask)
```
### Generation Configuration
The default parameters that control the generation process, such as sampling, guidance scale and number of generated
tokens, can be found in the model's generation config, and updated as desired:
```python
>>> from transformers import MusicgenForConditionalGeneration
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> # inspect the default generation config
>>> model.generation_config
>>> # increase the guidance scale to 4.0
>>> model.generation_config.guidance_scale = 4.0
>>> # decrease the max length to 256 tokens
>>> model.generation_config.max_length = 256
```
Note that any arguments passed to the generate method will **supersede** those in the generation config, so setting
`do_sample=False` in the call to generate will supersede the setting of `model.generation_config.do_sample` in the
generation config.
## Model Structure
The MusicGen model can be de-composed into three distinct stages:
1. Text encoder: maps the text inputs to a sequence of hidden-state representations. The pre-trained MusicGen models use a frozen text encoder from either T5 or Flan-T5
2. MusicGen decoder: a language model (LM) that auto-regressively generates audio tokens (or codes) conditional on the encoder hidden-state representations
3. Audio encoder/decoder: used to encode an audio prompt to use as prompt tokens, and recover the audio waveform from the audio tokens predicted by the decoder
Thus, the MusicGen model can either be used as a standalone decoder model, corresponding to the class [`MusicgenForCausalLM`],
or as a composite model that includes the text encoder and audio encoder/decoder, corresponding to the class
[`MusicgenForConditionalGeneration`]. If only the decoder needs to be loaded from the pre-trained checkpoint, it can be loaded by first
specifying the correct config, or be accessed through the `.decoder` attribute of the composite model:
```python
>>> from transformers import AutoConfig, MusicgenForCausalLM, MusicgenForConditionalGeneration
>>> # Option 1: get decoder config and pass to `.from_pretrained`
>>> decoder_config = AutoConfig.from_pretrained("facebook/musicgen-small").decoder
>>> decoder = MusicgenForCausalLM.from_pretrained("facebook/musicgen-small", **decoder_config)
>>> # Option 2: load the entire composite model, but only return the decoder
>>> decoder = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small").decoder
```
Since the text encoder and audio encoder/decoder models are frozen during training, the MusicGen decoder [`MusicgenForCausalLM`]
can be trained standalone on a dataset of encoder hidden-states and audio codes. For inference, the trained decoder can
be combined with the frozen text encoder and audio encoder/decoders to recover the composite [`MusicgenForConditionalGeneration`]
model.
Tips:
* MusicGen is trained on the 32kHz checkpoint of Encodec. You should ensure you use a compatible version of the Encodec model.
* Sampling mode tends to deliver better results than greedy - you can toggle sampling with the variable `do_sample` in the call to [`MusicgenForConditionalGeneration.generate`]
## MusicgenDecoderConfig
[[autodoc]] MusicgenDecoderConfig
## MusicgenConfig
[[autodoc]] MusicgenConfig
## MusicgenProcessor
[[autodoc]] MusicgenProcessor
## MusicgenModel
[[autodoc]] MusicgenModel
- forward
## MusicgenForCausalLM
[[autodoc]] MusicgenForCausalLM
- forward
## MusicgenForConditionalGeneration
[[autodoc]] MusicgenForConditionalGeneration
- forward
| transformers/docs/source/en/model_doc/musicgen.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/musicgen.md",
"repo_id": "transformers",
"token_count": 3591
} | 229 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Pegasus
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=pegasus">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-pegasus-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/pegasus_paraphrase">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
The Pegasus model was proposed in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019.
According to the abstract,
- Pegasus' pretraining task is intentionally similar to summarization: important sentences are removed/masked from an
input document and are generated together as one output sequence from the remaining sentences, similar to an
extractive summary.
- Pegasus achieves SOTA summarization performance on all 12 downstream tasks, as measured by ROUGE and human eval.
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The Authors' code can be found [here](https://github.com/google-research/pegasus).
## Usage tips
- Sequence-to-sequence model with the same encoder-decoder model architecture as BART. Pegasus is pre-trained jointly on two self-supervised objective functions: Masked Language Modeling (MLM) and a novel summarization specific pretraining objective, called Gap Sentence Generation (GSG).
* MLM: encoder input tokens are randomly replaced by a mask tokens and have to be predicted by the encoder (like in BERT)
* GSG: whole encoder input sentences are replaced by a second mask token and fed to the decoder, but which has a causal mask to hide the future words like a regular auto-regressive transformer decoder.
- FP16 is not supported (help/ideas on this appreciated!).
- The adafactor optimizer is recommended for pegasus fine-tuning.
## Checkpoints
All the [checkpoints](https://huggingface.co/models?search=pegasus) are fine-tuned for summarization, besides
*pegasus-large*, whence the other checkpoints are fine-tuned:
- Each checkpoint is 2.2 GB on disk and 568M parameters.
- FP16 is not supported (help/ideas on this appreciated!).
- Summarizing xsum in fp32 takes about 400ms/sample, with default parameters on a v100 GPU.
- Full replication results and correctly pre-processed data can be found in this [Issue](https://github.com/huggingface/transformers/issues/6844#issue-689259666).
- [Distilled checkpoints](https://huggingface.co/models?search=distill-pegasus) are described in this [paper](https://arxiv.org/abs/2010.13002).
## Implementation Notes
- All models are transformer encoder-decoders with 16 layers in each component.
- The implementation is completely inherited from [`BartForConditionalGeneration`]
- Some key configuration differences:
- static, sinusoidal position embeddings
- the model starts generating with pad_token_id (which has 0 token_embedding) as the prefix.
- more beams are used (`num_beams=8`)
- All pretrained pegasus checkpoints are the same besides three attributes: `tokenizer.model_max_length` (maximum
input size), `max_length` (the maximum number of tokens to generate) and `length_penalty`.
- The code to convert checkpoints trained in the author's [repo](https://github.com/google-research/pegasus) can be
found in `convert_pegasus_tf_to_pytorch.py`.
## Usage Example
```python
>>> from transformers import PegasusForConditionalGeneration, PegasusTokenizer
>>> import torch
>>> src_text = [
... """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
... ]
... model_name = "google/pegasus-xsum"
... device = "cuda" if torch.cuda.is_available() else "cpu"
... tokenizer = PegasusTokenizer.from_pretrained(model_name)
... model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
... batch = tokenizer(src_text, truncation=True, padding="longest", return_tensors="pt").to(device)
... translated = model.generate(**batch)
... tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
... assert (
... tgt_text[0]
... == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
... )
```
## Resources
- [Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/seq2seq-distillation/finetune_pegasus_xsum.sh) to fine-tune pegasus
on the XSUM dataset. Data download instructions at [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md).
- [Causal language modeling task guide](../tasks/language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## PegasusConfig
[[autodoc]] PegasusConfig
## PegasusTokenizer
warning: `add_tokens` does not work at the moment.
[[autodoc]] PegasusTokenizer
## PegasusTokenizerFast
[[autodoc]] PegasusTokenizerFast
<frameworkcontent>
<pt>
## PegasusModel
[[autodoc]] PegasusModel
- forward
## PegasusForConditionalGeneration
[[autodoc]] PegasusForConditionalGeneration
- forward
## PegasusForCausalLM
[[autodoc]] PegasusForCausalLM
- forward
</pt>
<tf>
## TFPegasusModel
[[autodoc]] TFPegasusModel
- call
## TFPegasusForConditionalGeneration
[[autodoc]] TFPegasusForConditionalGeneration
- call
</tf>
<jax>
## FlaxPegasusModel
[[autodoc]] FlaxPegasusModel
- __call__
- encode
- decode
## FlaxPegasusForConditionalGeneration
[[autodoc]] FlaxPegasusForConditionalGeneration
- __call__
- encode
- decode
</jax>
</frameworkcontent>
| transformers/docs/source/en/model_doc/pegasus.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/pegasus.md",
"repo_id": "transformers",
"token_count": 1966
} | 230 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Reformer
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=reformer">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-reformer-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/reformer-crime-and-punishment">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
The Reformer model was proposed in the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451.pdf) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
The abstract from the paper is the following:
*Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can
be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of
Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its
complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual
layers instead of the standard residuals, which allows storing activations only once in the training process instead of
N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models
while being much more memory-efficient and much faster on long sequences.*
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be
found [here](https://github.com/google/trax/tree/master/trax/models/reformer).
## Usage tips
- Reformer does **not** work with *torch.nn.DataParallel* due to a bug in PyTorch, see [issue #36035](https://github.com/pytorch/pytorch/issues/36035).
- Use Axial position encoding (see below for more details). It’s a mechanism to avoid having a huge positional encoding matrix (when the sequence length is very big) by factorizing it into smaller matrices.
- Replace traditional attention by LSH (local-sensitive hashing) attention (see below for more details). It’s a technique to avoid computing the full product query-key in the attention layers.
- Avoid storing the intermediate results of each layer by using reversible transformer layers to obtain them during the backward pass (subtracting the residuals from the input of the next layer gives them back) or recomputing them for results inside a given layer (less efficient than storing them but saves memory).
- Compute the feedforward operations by chunks and not on the whole batch.
### Axial Positional Encodings
Axial Positional Encodings were first implemented in Google's [trax library](https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29)
and developed by the authors of this model's paper. In models that are treating very long input sequences, the
conventional position id encodings store an embeddings vector of size \\(d\\) being the `config.hidden_size` for
every position \\(i, \ldots, n_s\\), with \\(n_s\\) being `config.max_embedding_size`. This means that having
a sequence length of \\(n_s = 2^{19} \approx 0.5M\\) and a `config.hidden_size` of \\(d = 2^{10} \approx 1000\\)
would result in a position encoding matrix:
$$X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right]$$
which alone has over 500M parameters to store. Axial positional encodings factorize \\(X_{i,j}\\) into two matrices:
$$X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right]$$
and
$$X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right]$$
with:
$$d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .$$
Therefore the following holds:
$$X_{i,j} = \begin{cases}
X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\
X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor
\end{cases}$$
Intuitively, this means that a position embedding vector \\(x_j \in \mathbb{R}^{d}\\) is now the composition of two
factorized embedding vectors: \\(x^1_{k, l} + x^2_{l, k}\\), where as the `config.max_embedding_size` dimension
\\(j\\) is factorized into \\(k \text{ and } l\\). This design ensures that each position embedding vector
\\(x_j\\) is unique.
Using the above example again, axial position encoding with \\(d^1 = 2^9, d^2 = 2^9, n_s^1 = 2^9, n_s^2 = 2^{10}\\)
can drastically reduced the number of parameters from 500 000 000 to \\(2^{18} + 2^{19} \approx 780 000\\) parameters, this means 85% less memory usage.
In practice, the parameter `config.axial_pos_embds_dim` is set to a tuple \\((d^1, d^2)\\) which sum has to be
equal to `config.hidden_size` and `config.axial_pos_shape` is set to a tuple \\((n_s^1, n_s^2)\\) which
product has to be equal to `config.max_embedding_size`, which during training has to be equal to the *sequence
length* of the `input_ids`.
### LSH Self Attention
In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key
query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in
[Practical and Optimal LSH for Angular Distance](https://arxiv.org/abs/1509.02897) to assign each of the tied key
query embedding vectors to one of `config.num_buckets` possible buckets. The premise is that the more "similar"
key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to
the same bucket.
The accuracy of the LSH mechanism can be improved by increasing `config.num_hashes` or directly the argument
`num_hashes` of the forward function so that the output of the LSH self attention better approximates the output
of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks
each of length `config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors
(which are tied to themselves) and to the key embedding vectors of `config.lsh_num_chunks_before` previous
neighboring chunks and `config.lsh_num_chunks_after` following neighboring chunks.
For more information, see the [original Paper](https://arxiv.org/abs/2001.04451) or this great [blog post](https://www.pragmatic.ml/reformer-deep-dive/).
Note that `config.num_buckets` can also be factorized into a list \\((n_{\text{buckets}}^1,
n_{\text{buckets}}^2)\\). This way instead of assigning the query key embedding vectors to one of \\((1,\ldots,
n_{\text{buckets}})\\) they are assigned to one of \\((1-1,\ldots, n_{\text{buckets}}^1-1, \ldots,
1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)\\). This is crucial for very long sequences to
save memory.
When training a model from scratch, it is recommended to leave `config.num_buckets=None`, so that depending on the
sequence length a good value for `num_buckets` is calculated on the fly. This value will then automatically be
saved in the config and should be reused for inference.
Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from
\\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory
and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length.
### Local Self Attention
Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is
chunked so that in each chunk of length `config.local_chunk_length` the query embedding vectors only attends to
the key embedding vectors in its chunk and to the key embedding vectors of `config.local_num_chunks_before`
previous neighboring chunks and `config.local_num_chunks_after` following neighboring chunks.
Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from
\\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory
and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length.
### Training
During training, we must ensure that the sequence length is set to a value that can be divided by the least common
multiple of `config.lsh_chunk_length` and `config.local_chunk_length` and that the parameters of the Axial
Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can
easily be trained on sequences as long as 64000 tokens.
For training, the [`ReformerModelWithLMHead`] should be used as follows:
```python
input_ids = tokenizer.encode("This is a sentence from the training data", return_tensors="pt")
loss = model(input_ids, labels=input_ids)[0]
```
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
## ReformerConfig
[[autodoc]] ReformerConfig
## ReformerTokenizer
[[autodoc]] ReformerTokenizer
- save_vocabulary
## ReformerTokenizerFast
[[autodoc]] ReformerTokenizerFast
## ReformerModel
[[autodoc]] ReformerModel
- forward
## ReformerModelWithLMHead
[[autodoc]] ReformerModelWithLMHead
- forward
## ReformerForMaskedLM
[[autodoc]] ReformerForMaskedLM
- forward
## ReformerForSequenceClassification
[[autodoc]] ReformerForSequenceClassification
- forward
## ReformerForQuestionAnswering
[[autodoc]] ReformerForQuestionAnswering
- forward
| transformers/docs/source/en/model_doc/reformer.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/reformer.md",
"repo_id": "transformers",
"token_count": 3186
} | 231 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# SigLIP
## Overview
The SigLIP model was proposed in [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer. SigLIP proposes to replace the loss function used in [CLIP](clip) by a simple pairwise sigmoid loss. This results in better performance in terms of zero-shot classification accuracy on ImageNet.
The abstract from the paper is the following:
*We propose a simple pairwise Sigmoid loss for Language-Image Pre-training (SigLIP). Unlike standard contrastive learning with softmax normalization, the sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. The sigmoid loss simultaneously allows further scaling up the batch size, while also performing better at smaller batch sizes. Combined with Locked-image Tuning, with only four TPUv4 chips, we train a SigLiT model that achieves 84.5% ImageNet zero-shot accuracy in two days. The disentanglement of the batch size from the loss further allows us to study the impact of examples vs pairs and negative to positive ratio. Finally, we push the batch size to the extreme, up to one million, and find that the benefits of growing batch size quickly diminish, with a more reasonable batch size of 32k being sufficient.*
## Usage tips
- Usage of SigLIP is similar to [CLIP](clip). The main difference is the training loss, which does not require a global view of all the pairwise similarities of images and texts within a batch. One needs to apply the sigmoid activation function to the logits, rather than the softmax.
- Training is not yet supported. If you want to fine-tune SigLIP or train from scratch, refer to the loss function from [OpenCLIP](https://github.com/mlfoundations/open_clip/blob/73ad04ae7fb93ede1c02dc9040a828634cb1edf1/src/open_clip/loss.py#L307), which leverages various `torch.distributed` utilities.
- When using the standalone [`SiglipTokenizer`] or [`SiglipProcessor`], make sure to pass `padding="max_length"` as that's how the model was trained.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/siglip_table.jpeg"
alt="drawing" width="600"/>
<small> SigLIP evaluation results compared to CLIP. Taken from the <a href="https://arxiv.org/abs/2303.15343">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/google-research/big_vision/tree/main).
## Usage example
There are 2 main ways to use SigLIP: either using the pipeline API, which abstracts away all the complexity for you, or by using the `SiglipModel` class yourself.
### Pipeline API
The pipeline allows to use the model in a few lines of code:
```python
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> # load pipe
>>> image_classifier = pipeline(task="zero-shot-image-classification", model="google/siglip-base-patch16-224")
>>> # load image
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # inference
>>> outputs = image_classifier(image, candidate_labels=["2 cats", "a plane", "a remote"])
>>> outputs = [{"score": round(output["score"], 4), "label": output["label"] } for output in outputs]
>>> print(outputs)
[{'score': 0.1979, 'label': '2 cats'}, {'score': 0.0, 'label': 'a remote'}, {'score': 0.0, 'label': 'a plane'}]
```
### Using the model yourself
If you want to do the pre- and postprocessing yourself, here's how to do that:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
>>> # important: we pass `padding=max_length` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
31.9% that image 0 is 'a photo of 2 cats'
```
## SiglipConfig
[[autodoc]] SiglipConfig
- from_text_vision_configs
## SiglipTextConfig
[[autodoc]] SiglipTextConfig
## SiglipVisionConfig
[[autodoc]] SiglipVisionConfig
## SiglipTokenizer
[[autodoc]] SiglipTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## SiglipImageProcessor
[[autodoc]] SiglipImageProcessor
- preprocess
## SiglipProcessor
[[autodoc]] SiglipProcessor
## SiglipModel
[[autodoc]] SiglipModel
- forward
- get_text_features
- get_image_features
## SiglipTextModel
[[autodoc]] SiglipTextModel
- forward
## SiglipVisionModel
[[autodoc]] SiglipVisionModel
- forward
| transformers/docs/source/en/model_doc/siglip.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/siglip.md",
"repo_id": "transformers",
"token_count": 1816
} | 232 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TAPEX
<Tip warning={true}>
This model is in maintenance mode only, we don't accept any new PRs changing its code.
If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0.
You can do so by running the following command: `pip install -U transformers==4.30.0`.
</Tip>
## Overview
The TAPEX model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu,
Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. TAPEX pre-trains a BART model to solve synthetic SQL queries, after
which it can be fine-tuned to answer natural language questions related to tabular data, as well as performing table fact checking.
TAPEX has been fine-tuned on several datasets:
- [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253) (Sequential Question Answering by Microsoft)
- [WTQ](https://github.com/ppasupat/WikiTableQuestions) (Wiki Table Questions by Stanford University)
- [WikiSQL](https://github.com/salesforce/WikiSQL) (by Salesforce)
- [TabFact](https://tabfact.github.io/) (by USCB NLP Lab).
The abstract from the paper is the following:
*Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is
still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we
propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically
synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL
executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that
TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes improvements
on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy
to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs
and to achieve new state-of-the-art results on various downstream tasks.*
## Usage tips
- TAPEX is a generative (seq2seq) model. One can directly plug in the weights of TAPEX into a BART model.
- TAPEX has checkpoints on the hub that are either pre-trained only, or fine-tuned on WTQ, SQA, WikiSQL and TabFact.
- Sentences + tables are presented to the model as `sentence + " " + linearized table`. The linearized table has the following format:
`col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...`.
- TAPEX has its own tokenizer, that allows to prepare all data for the model easily. One can pass Pandas DataFrames and strings to the tokenizer,
and it will automatically create the `input_ids` and `attention_mask` (as shown in the usage examples below).
### Usage: inference
Below, we illustrate how to use TAPEX for table question answering. As one can see, one can directly plug in the weights of TAPEX into a BART model.
We use the [Auto API](auto), which will automatically instantiate the appropriate tokenizer ([`TapexTokenizer`]) and model ([`BartForConditionalGeneration`]) for us,
based on the configuration file of the checkpoint on the hub.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import pandas as pd
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/tapex-large-finetuned-wtq")
>>> # prepare table + question
>>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
>>> table = pd.DataFrame.from_dict(data)
>>> question = "how many movies does Leonardo Di Caprio have?"
>>> encoding = tokenizer(table, question, return_tensors="pt")
>>> # let the model generate an answer autoregressively
>>> outputs = model.generate(**encoding)
>>> # decode back to text
>>> predicted_answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
>>> print(predicted_answer)
53
```
Note that [`TapexTokenizer`] also supports batched inference. Hence, one can provide a batch of different tables/questions, or a batch of a single table
and multiple questions, or a batch of a single query and multiple tables. Let's illustrate this:
```python
>>> # prepare table + question
>>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
>>> table = pd.DataFrame.from_dict(data)
>>> questions = [
... "how many movies does Leonardo Di Caprio have?",
... "which actor has 69 movies?",
... "what's the first name of the actor who has 87 movies?",
... ]
>>> encoding = tokenizer(table, questions, padding=True, return_tensors="pt")
>>> # let the model generate an answer autoregressively
>>> outputs = model.generate(**encoding)
>>> # decode back to text
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
[' 53', ' george clooney', ' brad pitt']
```
In case one wants to do table verification (i.e. the task of determining whether a given sentence is supported or refuted by the contents
of a table), one can instantiate a [`BartForSequenceClassification`] model. TAPEX has checkpoints on the hub fine-tuned on TabFact, an important
benchmark for table fact checking (it achieves 84% accuracy). The code example below again leverages the [Auto API](auto).
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact")
>>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact")
>>> # prepare table + sentence
>>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
>>> table = pd.DataFrame.from_dict(data)
>>> sentence = "George Clooney has 30 movies"
>>> encoding = tokenizer(table, sentence, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**encoding)
>>> # print prediction
>>> predicted_class_idx = outputs.logits[0].argmax(dim=0).item()
>>> print(model.config.id2label[predicted_class_idx])
Refused
```
<Tip>
TAPEX architecture is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on
configuration classes and their parameters. TAPEX-specific tokenizer is documented below.
</Tip>
## TapexTokenizer
[[autodoc]] TapexTokenizer
- __call__
- save_vocabulary | transformers/docs/source/en/model_doc/tapex.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/tapex.md",
"repo_id": "transformers",
"token_count": 2167
} | 233 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ViLT
## Overview
The ViLT model was proposed in [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334)
by Wonjae Kim, Bokyung Son, Ildoo Kim. ViLT incorporates text embeddings into a Vision Transformer (ViT), allowing it to have a minimal design
for Vision-and-Language Pre-training (VLP).
The abstract from the paper is the following:
*Vision-and-Language Pre-training (VLP) has improved performance on various joint vision-and-language downstream tasks.
Current approaches to VLP heavily rely on image feature extraction processes, most of which involve region supervision
(e.g., object detection) and the convolutional architecture (e.g., ResNet). Although disregarded in the literature, we
find it problematic in terms of both (1) efficiency/speed, that simply extracting input features requires much more
computation than the multimodal interaction steps; and (2) expressive power, as it is upper bounded to the expressive
power of the visual embedder and its predefined visual vocabulary. In this paper, we present a minimal VLP model,
Vision-and-Language Transformer (ViLT), monolithic in the sense that the processing of visual inputs is drastically
simplified to just the same convolution-free manner that we process textual inputs. We show that ViLT is up to tens of
times faster than previous VLP models, yet with competitive or better downstream task performance.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vilt_architecture.jpg"
alt="drawing" width="600"/>
<small> ViLT architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>. </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/dandelin/ViLT).
## Usage tips
- The quickest way to get started with ViLT is by checking the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ViLT)
(which showcase both inference and fine-tuning on custom data).
- ViLT is a model that takes both `pixel_values` and `input_ids` as input. One can use [`ViltProcessor`] to prepare data for the model.
This processor wraps a image processor (for the image modality) and a tokenizer (for the language modality) into one.
- ViLT is trained with images of various sizes: the authors resize the shorter edge of input images to 384 and limit the longer edge to
under 640 while preserving the aspect ratio. To make batching of images possible, the authors use a `pixel_mask` that indicates
which pixel values are real and which are padding. [`ViltProcessor`] automatically creates this for you.
- The design of ViLT is very similar to that of a standard Vision Transformer (ViT). The only difference is that the model includes
additional embedding layers for the language modality.
- The PyTorch version of this model is only available in torch 1.10 and higher.
## ViltConfig
[[autodoc]] ViltConfig
## ViltFeatureExtractor
[[autodoc]] ViltFeatureExtractor
- __call__
## ViltImageProcessor
[[autodoc]] ViltImageProcessor
- preprocess
## ViltProcessor
[[autodoc]] ViltProcessor
- __call__
## ViltModel
[[autodoc]] ViltModel
- forward
## ViltForMaskedLM
[[autodoc]] ViltForMaskedLM
- forward
## ViltForQuestionAnswering
[[autodoc]] ViltForQuestionAnswering
- forward
## ViltForImagesAndTextClassification
[[autodoc]] ViltForImagesAndTextClassification
- forward
## ViltForImageAndTextRetrieval
[[autodoc]] ViltForImageAndTextRetrieval
- forward
## ViltForTokenClassification
[[autodoc]] ViltForTokenClassification
- forward
| transformers/docs/source/en/model_doc/vilt.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/vilt.md",
"repo_id": "transformers",
"token_count": 1225
} | 234 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wav2Vec2Phoneme
## Overview
The Wav2Vec2Phoneme model was proposed in [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition (Xu et al.,
2021](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
The abstract from the paper is the following:
*Recent progress in self-training, self-supervised pretraining and unsupervised learning enabled well performing speech
recognition systems without any labeled data. However, in many cases there is labeled data available for related
languages which is not utilized by these methods. This paper extends previous work on zero-shot cross-lingual transfer
learning by fine-tuning a multilingually pretrained wav2vec 2.0 model to transcribe unseen languages. This is done by
mapping phonemes of the training languages to the target language using articulatory features. Experiments show that
this simple method significantly outperforms prior work which introduced task-specific architectures and used only part
of a monolingually pretrained model.*
Relevant checkpoints can be found under https://huggingface.co/models?other=phoneme-recognition.
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten)
The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/fairseq/models/wav2vec).
## Usage tips
- Wav2Vec2Phoneme uses the exact same architecture as Wav2Vec2
- Wav2Vec2Phoneme is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- Wav2Vec2Phoneme model was trained using connectionist temporal classification (CTC) so the model output has to be
decoded using [`Wav2Vec2PhonemeCTCTokenizer`].
- Wav2Vec2Phoneme can be fine-tuned on multiple language at once and decode unseen languages in a single forward pass
to a sequence of phonemes
- By default, the model outputs a sequence of phonemes. In order to transform the phonemes to a sequence of words one
should make use of a dictionary and language model.
<Tip>
Wav2Vec2Phoneme's architecture is based on the Wav2Vec2 model, for API reference, check out [`Wav2Vec2`](wav2vec2)'s documentation page
except for the tokenizer.
</Tip>
## Wav2Vec2PhonemeCTCTokenizer
[[autodoc]] Wav2Vec2PhonemeCTCTokenizer
- __call__
- batch_decode
- decode
- phonemize
| transformers/docs/source/en/model_doc/wav2vec2_phoneme.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/wav2vec2_phoneme.md",
"repo_id": "transformers",
"token_count": 851
} | 235 |
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Model training anatomy
To understand performance optimization techniques that one can apply to improve efficiency of model training
speed and memory utilization, it's helpful to get familiar with how GPU is utilized during training, and how compute
intensity varies depending on an operation performed.
Let's start by exploring a motivating example of GPU utilization and the training run of a model. For the demonstration,
we'll need to install a few libraries:
```bash
pip install transformers datasets accelerate nvidia-ml-py3
```
The `nvidia-ml-py3` library allows us to monitor the memory usage of the models from within Python. You might be familiar
with the `nvidia-smi` command in the terminal - this library allows to access the same information in Python directly.
Then, we create some dummy data: random token IDs between 100 and 30000 and binary labels for a classifier.
In total, we get 512 sequences each with length 512 and store them in a [`~datasets.Dataset`] with PyTorch format.
```py
>>> import numpy as np
>>> from datasets import Dataset
>>> seq_len, dataset_size = 512, 512
>>> dummy_data = {
... "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),
... "labels": np.random.randint(0, 1, (dataset_size)),
... }
>>> ds = Dataset.from_dict(dummy_data)
>>> ds.set_format("pt")
```
To print summary statistics for the GPU utilization and the training run with the [`Trainer`] we define two helper functions:
```py
>>> from pynvml import *
>>> def print_gpu_utilization():
... nvmlInit()
... handle = nvmlDeviceGetHandleByIndex(0)
... info = nvmlDeviceGetMemoryInfo(handle)
... print(f"GPU memory occupied: {info.used//1024**2} MB.")
>>> def print_summary(result):
... print(f"Time: {result.metrics['train_runtime']:.2f}")
... print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
... print_gpu_utilization()
```
Let's verify that we start with a free GPU memory:
```py
>>> print_gpu_utilization()
GPU memory occupied: 0 MB.
```
That looks good: the GPU memory is not occupied as we would expect before we load any models. If that's not the case on
your machine make sure to stop all processes that are using GPU memory. However, not all free GPU memory can be used by
the user. When a model is loaded to the GPU the kernels are also loaded, which can take up 1-2GB of memory. To see how
much it is we load a tiny tensor into the GPU which triggers the kernels to be loaded as well.
```py
>>> import torch
>>> torch.ones((1, 1)).to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 1343 MB.
```
We see that the kernels alone take up 1.3GB of GPU memory. Now let's see how much space the model uses.
## Load Model
First, we load the `bert-large-uncased` model. We load the model weights directly to the GPU so that we can check
how much space just the weights use.
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-large-uncased").to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 2631 MB.
```
We can see that the model weights alone take up 1.3 GB of GPU memory. The exact number depends on the specific
GPU you are using. Note that on newer GPUs a model can sometimes take up more space since the weights are loaded in an
optimized fashion that speeds up the usage of the model. Now we can also quickly check if we get the same result
as with `nvidia-smi` CLI:
```bash
nvidia-smi
```
```bash
Tue Jan 11 08:58:05 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... On | 00000000:00:04.0 Off | 0 |
| N/A 37C P0 39W / 300W | 2631MiB / 16160MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 3721 C ...nvs/codeparrot/bin/python 2629MiB |
+-----------------------------------------------------------------------------+
```
We get the same number as before and you can also see that we are using a V100 GPU with 16GB of memory. So now we can
start training the model and see how the GPU memory consumption changes. First, we set up a few standard training
arguments:
```py
default_args = {
"output_dir": "tmp",
"evaluation_strategy": "steps",
"num_train_epochs": 1,
"log_level": "error",
"report_to": "none",
}
```
<Tip>
If you plan to run multiple experiments, in order to properly clear the memory between experiments, restart the Python
kernel between experiments.
</Tip>
## Memory utilization at vanilla training
Let's use the [`Trainer`] and train the model without using any GPU performance optimization techniques and a batch size of 4:
```py
>>> from transformers import TrainingArguments, Trainer, logging
>>> logging.set_verbosity_error()
>>> training_args = TrainingArguments(per_device_train_batch_size=4, **default_args)
>>> trainer = Trainer(model=model, args=training_args, train_dataset=ds)
>>> result = trainer.train()
>>> print_summary(result)
```
```
Time: 57.82
Samples/second: 8.86
GPU memory occupied: 14949 MB.
```
We see that already a relatively small batch size almost fills up our GPU's entire memory. However, a larger batch size
can often result in faster model convergence or better end performance. So ideally we want to tune the batch size to our
model's needs and not to the GPU limitations. What's interesting is that we use much more memory than the size of the model.
To understand a bit better why this is the case let's have a look at a model's operations and memory needs.
## Anatomy of Model's Operations
Transformers architecture includes 3 main groups of operations grouped below by compute-intensity.
1. **Tensor Contractions**
Linear layers and components of Multi-Head Attention all do batched **matrix-matrix multiplications**. These operations are the most compute-intensive part of training a transformer.
2. **Statistical Normalizations**
Softmax and layer normalization are less compute-intensive than tensor contractions, and involve one or more **reduction operations**, the result of which is then applied via a map.
3. **Element-wise Operators**
These are the remaining operators: **biases, dropout, activations, and residual connections**. These are the least compute-intensive operations.
This knowledge can be helpful to know when analyzing performance bottlenecks.
This summary is derived from [Data Movement Is All You Need: A Case Study on Optimizing Transformers 2020](https://arxiv.org/abs/2007.00072)
## Anatomy of Model's Memory
We've seen that training the model uses much more memory than just putting the model on the GPU. This is because there
are many components during training that use GPU memory. The components on GPU memory are the following:
1. model weights
2. optimizer states
3. gradients
4. forward activations saved for gradient computation
5. temporary buffers
6. functionality-specific memory
A typical model trained in mixed precision with AdamW requires 18 bytes per model parameter plus activation memory. For
inference there are no optimizer states and gradients, so we can subtract those. And thus we end up with 6 bytes per
model parameter for mixed precision inference, plus activation memory.
Let's look at the details.
**Model Weights:**
- 4 bytes * number of parameters for fp32 training
- 6 bytes * number of parameters for mixed precision training (maintains a model in fp32 and one in fp16 in memory)
**Optimizer States:**
- 8 bytes * number of parameters for normal AdamW (maintains 2 states)
- 2 bytes * number of parameters for 8-bit AdamW optimizers like [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
- 4 bytes * number of parameters for optimizers like SGD with momentum (maintains only 1 state)
**Gradients**
- 4 bytes * number of parameters for either fp32 or mixed precision training (gradients are always kept in fp32)
**Forward Activations**
- size depends on many factors, the key ones being sequence length, hidden size and batch size.
There are the input and output that are being passed and returned by the forward and the backward functions and the
forward activations saved for gradient computation.
**Temporary Memory**
Additionally, there are all kinds of temporary variables which get released once the calculation is done, but in the
moment these could require additional memory and could push to OOM. Therefore, when coding it's crucial to think
strategically about such temporary variables and sometimes to explicitly free those as soon as they are no longer needed.
**Functionality-specific memory**
Then, your software could have special memory needs. For example, when generating text using beam search, the software
needs to maintain multiple copies of inputs and outputs.
**`forward` vs `backward` Execution Speed**
For convolutions and linear layers there are 2x flops in the backward compared to the forward, which generally translates
into ~2x slower (sometimes more, because sizes in the backward tend to be more awkward). Activations are usually
bandwidth-limited, and it’s typical for an activation to have to read more data in the backward than in the forward
(e.g. activation forward reads once, writes once, activation backward reads twice, gradOutput and output of the forward,
and writes once, gradInput).
As you can see, there are potentially a few places where we could save GPU memory or speed up operations.
Now that you understand what affects GPU utilization and computation speed, refer to
the [Methods and tools for efficient training on a single GPU](perf_train_gpu_one) documentation page to learn about
performance optimization techniques.
| transformers/docs/source/en/model_memory_anatomy.md/0 | {
"file_path": "transformers/docs/source/en/model_memory_anatomy.md",
"repo_id": "transformers",
"token_count": 3290
} | 236 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Training on TPU with TensorFlow
<Tip>
If you don't need long explanations and just want TPU code samples to get started with, check out [our TPU example notebook!](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)
</Tip>
### What is a TPU?
A TPU is a **Tensor Processing Unit.** They are hardware designed by Google, which are used to greatly speed up the tensor computations within neural networks, much like GPUs. They can be used for both network training and inference. They are generally accessed through Google’s cloud services, but small TPUs can also be accessed directly for free through Google Colab and Kaggle Kernels.
Because [all TensorFlow models in 🤗 Transformers are Keras models](https://huggingface.co/blog/tensorflow-philosophy), most of the methods in this document are generally applicable to TPU training for any Keras model! However, there are a few points that are specific to the HuggingFace ecosystem (hug-o-system?) of Transformers and Datasets, and we’ll make sure to flag them up when we get to them.
### What kinds of TPU are available?
New users are often very confused by the range of TPUs, and the different ways to access them. The first key distinction to understand is the difference between **TPU Nodes** and **TPU VMs.**
When you use a **TPU Node**, you are effectively indirectly accessing a remote TPU. You will need a separate VM, which will initialize your network and data pipeline and then forward them to the remote node. When you use a TPU on Google Colab, you are accessing it in the **TPU Node** style.
Using TPU Nodes can have some quite unexpected behaviour for people who aren’t used to them! In particular, because the TPU is located on a physically different system to the machine you’re running your Python code on, your data cannot be local to your machine - any data pipeline that loads from your machine’s internal storage will totally fail! Instead, data must be stored in Google Cloud Storage where your data pipeline can still access it, even when the pipeline is running on the remote TPU node.
<Tip>
If you can fit all your data in memory as `np.ndarray` or `tf.Tensor`, then you can `fit()` on that data even when using Colab or a TPU Node, without needing to upload it to Google Cloud Storage.
</Tip>
<Tip>
**🤗Specific Hugging Face Tip🤗:** The methods `Dataset.to_tf_dataset()` and its higher-level wrapper `model.prepare_tf_dataset()` , which you will see throughout our TF code examples, will both fail on a TPU Node. The reason for this is that even though they create a `tf.data.Dataset` it is not a “pure” `tf.data` pipeline and uses `tf.numpy_function` or `Dataset.from_generator()` to stream data from the underlying HuggingFace `Dataset`. This HuggingFace `Dataset` is backed by data that is on a local disc and which the remote TPU Node will not be able to read.
</Tip>
The second way to access a TPU is via a **TPU VM.** When using a TPU VM, you connect directly to the machine that the TPU is attached to, much like training on a GPU VM. TPU VMs are generally easier to work with, particularly when it comes to your data pipeline. All of the above warnings do not apply to TPU VMs!
This is an opinionated document, so here’s our opinion: **Avoid using TPU Node if possible.** It is more confusing and more difficult to debug than TPU VMs. It is also likely to be unsupported in future - Google’s latest TPU, TPUv4, can only be accessed as a TPU VM, which suggests that TPU Nodes are increasingly going to become a “legacy” access method. However, we understand that the only free TPU access is on Colab and Kaggle Kernels, which uses TPU Node - so we’ll try to explain how to handle it if you have to! Check the [TPU example notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) for code samples that explain this in more detail.
### What sizes of TPU are available?
A single TPU (a v2-8/v3-8/v4-8) runs 8 replicas. TPUs exist in **pods** that can run hundreds or thousands of replicas simultaneously. When you use more than a single TPU but less than a whole pod (for example, a v3-32), your TPU fleet is referred to as a **pod slice.**
When you access a free TPU via Colab, you generally get a single v2-8 TPU.
### I keep hearing about this XLA thing. What’s XLA, and how does it relate to TPUs?
XLA is an optimizing compiler, used by both TensorFlow and JAX. In JAX it is the only compiler, whereas in TensorFlow it is optional (but mandatory on TPU!). The easiest way to enable it when training a Keras model is to pass the argument `jit_compile=True` to `model.compile()`. If you don’t get any errors and performance is good, that’s a great sign that you’re ready to move to TPU!
Debugging on TPU is generally a bit harder than on CPU/GPU, so we recommend getting your code running on CPU/GPU with XLA first before trying it on TPU. You don’t have to train for long, of course - just for a few steps to make sure that your model and data pipeline are working like you expect them to.
<Tip>
XLA compiled code is usually faster - so even if you’re not planning to run on TPU, adding `jit_compile=True` can improve your performance. Be sure to note the caveats below about XLA compatibility, though!
</Tip>
<Tip warning={true}>
**Tip born of painful experience:** Although using `jit_compile=True` is a good way to get a speed boost and test if your CPU/GPU code is XLA-compatible, it can actually cause a lot of problems if you leave it in when actually training on TPU. XLA compilation will happen implicitly on TPU, so remember to remove that line before actually running your code on a TPU!
</Tip>
### How do I make my model XLA compatible?
In many cases, your code is probably XLA-compatible already! However, there are a few things that work in normal TensorFlow that don’t work in XLA. We’ve distilled them into three core rules below:
<Tip>
**🤗Specific HuggingFace Tip🤗:** We’ve put a lot of effort into rewriting our TensorFlow models and loss functions to be XLA-compatible. Our models and loss functions generally obey rule #1 and #2 by default, so you can skip over them if you’re using `transformers` models. Don’t forget about these rules when writing your own models and loss functions, though!
</Tip>
#### XLA Rule #1: Your code cannot have “data-dependent conditionals”
What that means is that any `if` statement cannot depend on values inside a `tf.Tensor`. For example, this code block cannot be compiled with XLA!
```python
if tf.reduce_sum(tensor) > 10:
tensor = tensor / 2.0
```
This might seem very restrictive at first, but most neural net code doesn’t need to do this. You can often get around this restriction by using `tf.cond` (see the documentation [here](https://www.tensorflow.org/api_docs/python/tf/cond)) or by removing the conditional and finding a clever math trick with indicator variables instead, like so:
```python
sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32)
tensor = tensor / (1.0 + sum_over_10)
```
This code has exactly the same effect as the code above, but by avoiding a conditional, we ensure it will compile with XLA without problems!
#### XLA Rule #2: Your code cannot have “data-dependent shapes”
What this means is that the shape of all of the `tf.Tensor` objects in your code cannot depend on their values. For example, the function `tf.unique` cannot be compiled with XLA, because it returns a `tensor` containing one instance of each unique value in the input. The shape of this output will obviously be different depending on how repetitive the input `Tensor` was, and so XLA refuses to handle it!
In general, most neural network code obeys rule #2 by default. However, there are a few common cases where it becomes a problem. One very common one is when you use **label masking**, setting your labels to a negative value to indicate that those positions should be ignored when computing the loss. If you look at NumPy or PyTorch loss functions that support label masking, you will often see code like this that uses [boolean indexing](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing):
```python
label_mask = labels >= 0
masked_outputs = outputs[label_mask]
masked_labels = labels[label_mask]
loss = compute_loss(masked_outputs, masked_labels)
mean_loss = torch.mean(loss)
```
This code is totally fine in NumPy or PyTorch, but it breaks in XLA! Why? Because the shape of `masked_outputs` and `masked_labels` depends on how many positions are masked - that makes it a **data-dependent shape.** However, just like for rule #1, we can often rewrite this code to yield exactly the same output without any data-dependent shapes.
```python
label_mask = tf.cast(labels >= 0, tf.float32)
loss = compute_loss(outputs, labels)
loss = loss * label_mask # Set negative label positions to 0
mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask)
```
Here, we avoid data-dependent shapes by computing the loss for every position, but zeroing out the masked positions in both the numerator and denominator when we calculate the mean, which yields exactly the same result as the first block while maintaining XLA compatibility. Note that we use the same trick as in rule #1 - converting a `tf.bool` to `tf.float32` and using it as an indicator variable. This is a really useful trick, so remember it if you need to convert your own code to XLA!
#### XLA Rule #3: XLA will need to recompile your model for every different input shape it sees
This is the big one. What this means is that if your input shapes are very variable, XLA will have to recompile your model over and over, which will create huge performance problems. This commonly arises in NLP models, where input texts have variable lengths after tokenization. In other modalities, static shapes are more common and this rule is much less of a problem.
How can you get around rule #3? The key is **padding** - if you pad all your inputs to the same length, and then use an `attention_mask`, you can get the same results as you’d get from variable shapes, but without any XLA issues. However, excessive padding can cause severe slowdown too - if you pad all your samples to the maximum length in the whole dataset, you might end up with batches consisting endless padding tokens, which will waste a lot of compute and memory!
There isn’t a perfect solution to this problem. However, you can try some tricks. One very useful trick is to **pad batches of samples up to a multiple of a number like 32 or 64 tokens.** This often only increases the number of tokens by a small amount, but it hugely reduces the number of unique input shapes, because every input shape now has to be a multiple of 32 or 64. Fewer unique input shapes means fewer XLA compilations!
<Tip>
**🤗Specific HuggingFace Tip🤗:** Our tokenizers and data collators have methods that can help you here. You can use `padding="max_length"` or `padding="longest"` when calling tokenizers to get them to output padded data. Our tokenizers and data collators also have a `pad_to_multiple_of` argument that you can use to reduce the number of unique input shapes you see!
</Tip>
### How do I actually train my model on TPU?
Once your training is XLA-compatible and (if you’re using TPU Node / Colab) your dataset has been prepared appropriately, running on TPU is surprisingly easy! All you really need to change in your code is to add a few lines to initialize your TPU, and to ensure that your model and dataset are created inside a `TPUStrategy` scope. Take a look at [our TPU example notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) to see this in action!
### Summary
There was a lot in here, so let’s summarize with a quick checklist you can follow when you want to get your model ready for TPU training:
- Make sure your code follows the three rules of XLA
- Compile your model with `jit_compile=True` on CPU/GPU and confirm that you can train it with XLA
- Either load your dataset into memory or use a TPU-compatible dataset loading approach (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))
- Migrate your code either to Colab (with accelerator set to “TPU”) or a TPU VM on Google Cloud
- Add TPU initializer code (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))
- Create your `TPUStrategy` and make sure dataset loading and model creation are inside the `strategy.scope()` (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))
- Don’t forget to take `jit_compile=True` out again when you move to TPU!
- 🙏🙏🙏🥺🥺🥺
- Call model.fit()
- You did it! | transformers/docs/source/en/perf_train_tpu_tf.md/0 | {
"file_path": "transformers/docs/source/en/perf_train_tpu_tf.md",
"repo_id": "transformers",
"token_count": 3706
} | 237 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Text to speech
[[open-in-colab]]
Text-to-speech (TTS) is the task of creating natural-sounding speech from text, where the speech can be generated in multiple
languages and for multiple speakers. Several text-to-speech models are currently available in 🤗 Transformers, such as
[Bark](../model_doc/bark), [MMS](../model_doc/mms), [VITS](../model_doc/vits) and [SpeechT5](../model_doc/speecht5).
You can easily generate audio using the `"text-to-audio"` pipeline (or its alias - `"text-to-speech"`). Some models, like Bark,
can also be conditioned to generate non-verbal communications such as laughing, sighing and crying, or even add music.
Here's an example of how you would use the `"text-to-speech"` pipeline with Bark:
```py
>>> from transformers import pipeline
>>> pipe = pipeline("text-to-speech", model="suno/bark-small")
>>> text = "[clears throat] This is a test ... and I just took a long pause."
>>> output = pipe(text)
```
Here's a code snippet you can use to listen to the resulting audio in a notebook:
```python
>>> from IPython.display import Audio
>>> Audio(output["audio"], rate=output["sampling_rate"])
```
For more examples on what Bark and other pretrained TTS models can do, refer to our
[Audio course](https://huggingface.co/learn/audio-course/chapter6/pre-trained_models).
If you are looking to fine-tune a TTS model, the only text-to-speech models currently available in 🤗 Transformers
are [SpeechT5](model_doc/speecht5) and [FastSpeech2Conformer](model_doc/fastspeech2_conformer), though more will be added in the future. SpeechT5 is pre-trained on a combination of speech-to-text and text-to-speech data, allowing it to learn a unified space of hidden representations shared by both text and speech. This means that the same pre-trained model can be fine-tuned for different tasks. Furthermore, SpeechT5 supports multiple speakers through x-vector speaker embeddings.
The remainder of this guide illustrates how to:
1. Fine-tune [SpeechT5](../model_doc/speecht5) that was originally trained on English speech on the Dutch (`nl`) language subset of the [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) dataset.
2. Use your refined model for inference in one of two ways: using a pipeline or directly.
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install datasets soundfile speechbrain accelerate
```
Install 🤗Transformers from source as not all the SpeechT5 features have been merged into an official release yet:
```bash
pip install git+https://github.com/huggingface/transformers.git
```
<Tip>
To follow this guide you will need a GPU. If you're working in a notebook, run the following line to check if a GPU is available:
```bash
!nvidia-smi
```
or alternatively for AMD GPUs:
```bash
!rocm-smi
```
</Tip>
We encourage you to log in to your Hugging Face account to upload and share your model with the community. When prompted, enter your token to log in:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load the dataset
[VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) is a large-scale multilingual speech corpus consisting of
data sourced from 2009-2020 European Parliament event recordings. It contains labelled audio-transcription data for 15
European languages. In this guide, we are using the Dutch language subset, feel free to pick another subset.
Note that VoxPopuli or any other automated speech recognition (ASR) dataset may not be the most suitable
option for training TTS models. The features that make it beneficial for ASR, such as excessive background noise, are
typically undesirable in TTS. However, finding top-quality, multilingual, and multi-speaker TTS datasets can be quite
challenging.
Let's load the data:
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("facebook/voxpopuli", "nl", split="train")
>>> len(dataset)
20968
```
20968 examples should be sufficient for fine-tuning. SpeechT5 expects audio data to have a sampling rate of 16 kHz, so
make sure the examples in the dataset meet this requirement:
```py
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
```
## Preprocess the data
Let's begin by defining the model checkpoint to use and loading the appropriate processor:
```py
>>> from transformers import SpeechT5Processor
>>> checkpoint = "microsoft/speecht5_tts"
>>> processor = SpeechT5Processor.from_pretrained(checkpoint)
```
### Text cleanup for SpeechT5 tokenization
Start by cleaning up the text data. You'll need the tokenizer part of the processor to process the text:
```py
>>> tokenizer = processor.tokenizer
```
The dataset examples contain `raw_text` and `normalized_text` features. When deciding which feature to use as the text input,
consider that the SpeechT5 tokenizer doesn't have any tokens for numbers. In `normalized_text` the numbers are written
out as text. Thus, it is a better fit, and we recommend using `normalized_text` as input text.
Because SpeechT5 was trained on the English language, it may not recognize certain characters in the Dutch dataset. If
left as is, these characters will be converted to `<unk>` tokens. However, in Dutch, certain characters like `à` are
used to stress syllables. In order to preserve the meaning of the text, we can replace this character with a regular `a`.
To identify unsupported tokens, extract all unique characters in the dataset using the `SpeechT5Tokenizer` which
works with characters as tokens. To do this, write the `extract_all_chars` mapping function that concatenates
the transcriptions from all examples into one string and converts it to a set of characters.
Make sure to set `batched=True` and `batch_size=-1` in `dataset.map()` so that all transcriptions are available at once for
the mapping function.
```py
>>> def extract_all_chars(batch):
... all_text = " ".join(batch["normalized_text"])
... vocab = list(set(all_text))
... return {"vocab": [vocab], "all_text": [all_text]}
>>> vocabs = dataset.map(
... extract_all_chars,
... batched=True,
... batch_size=-1,
... keep_in_memory=True,
... remove_columns=dataset.column_names,
... )
>>> dataset_vocab = set(vocabs["vocab"][0])
>>> tokenizer_vocab = {k for k, _ in tokenizer.get_vocab().items()}
```
Now you have two sets of characters: one with the vocabulary from the dataset and one with the vocabulary from the tokenizer.
To identify any unsupported characters in the dataset, you can take the difference between these two sets. The resulting
set will contain the characters that are in the dataset but not in the tokenizer.
```py
>>> dataset_vocab - tokenizer_vocab
{' ', 'à', 'ç', 'è', 'ë', 'í', 'ï', 'ö', 'ü'}
```
To handle the unsupported characters identified in the previous step, define a function that maps these characters to
valid tokens. Note that spaces are already replaced by `▁` in the tokenizer and don't need to be handled separately.
```py
>>> replacements = [
... ("à", "a"),
... ("ç", "c"),
... ("è", "e"),
... ("ë", "e"),
... ("í", "i"),
... ("ï", "i"),
... ("ö", "o"),
... ("ü", "u"),
... ]
>>> def cleanup_text(inputs):
... for src, dst in replacements:
... inputs["normalized_text"] = inputs["normalized_text"].replace(src, dst)
... return inputs
>>> dataset = dataset.map(cleanup_text)
```
Now that you have dealt with special characters in the text, it's time to shift focus to the audio data.
### Speakers
The VoxPopuli dataset includes speech from multiple speakers, but how many speakers are represented in the dataset? To
determine this, we can count the number of unique speakers and the number of examples each speaker contributes to the dataset.
With a total of 20,968 examples in the dataset, this information will give us a better understanding of the distribution of
speakers and examples in the data.
```py
>>> from collections import defaultdict
>>> speaker_counts = defaultdict(int)
>>> for speaker_id in dataset["speaker_id"]:
... speaker_counts[speaker_id] += 1
```
By plotting a histogram you can get a sense of how much data there is for each speaker.
```py
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> plt.hist(speaker_counts.values(), bins=20)
>>> plt.ylabel("Speakers")
>>> plt.xlabel("Examples")
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_speakers_histogram.png" alt="Speakers histogram"/>
</div>
The histogram reveals that approximately one-third of the speakers in the dataset have fewer than 100 examples, while
around ten speakers have more than 500 examples. To improve training efficiency and balance the dataset, we can limit
the data to speakers with between 100 and 400 examples.
```py
>>> def select_speaker(speaker_id):
... return 100 <= speaker_counts[speaker_id] <= 400
>>> dataset = dataset.filter(select_speaker, input_columns=["speaker_id"])
```
Let's check how many speakers remain:
```py
>>> len(set(dataset["speaker_id"]))
42
```
Let's see how many examples are left:
```py
>>> len(dataset)
9973
```
You are left with just under 10,000 examples from approximately 40 unique speakers, which should be sufficient.
Note that some speakers with few examples may actually have more audio available if the examples are long. However,
determining the total amount of audio for each speaker requires scanning through the entire dataset, which is a
time-consuming process that involves loading and decoding each audio file. As such, we have chosen to skip this step here.
### Speaker embeddings
To enable the TTS model to differentiate between multiple speakers, you'll need to create a speaker embedding for each example.
The speaker embedding is an additional input into the model that captures a particular speaker's voice characteristics.
To generate these speaker embeddings, use the pre-trained [spkrec-xvect-voxceleb](https://huggingface.co/speechbrain/spkrec-xvect-voxceleb)
model from SpeechBrain.
Create a function `create_speaker_embedding()` that takes an input audio waveform and outputs a 512-element vector
containing the corresponding speaker embedding.
```py
>>> import os
>>> import torch
>>> from speechbrain.pretrained import EncoderClassifier
>>> spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> speaker_model = EncoderClassifier.from_hparams(
... source=spk_model_name,
... run_opts={"device": device},
... savedir=os.path.join("/tmp", spk_model_name),
... )
>>> def create_speaker_embedding(waveform):
... with torch.no_grad():
... speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
... speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
... speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
... return speaker_embeddings
```
It's important to note that the `speechbrain/spkrec-xvect-voxceleb` model was trained on English speech from the VoxCeleb
dataset, whereas the training examples in this guide are in Dutch. While we believe that this model will still generate
reasonable speaker embeddings for our Dutch dataset, this assumption may not hold true in all cases.
For optimal results, we recommend training an X-vector model on the target speech first. This will ensure that the model
is better able to capture the unique voice characteristics present in the Dutch language.
### Processing the dataset
Finally, let's process the data into the format the model expects. Create a `prepare_dataset` function that takes in a
single example and uses the `SpeechT5Processor` object to tokenize the input text and load the target audio into a log-mel spectrogram.
It should also add the speaker embeddings as an additional input.
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example = processor(
... text=example["normalized_text"],
... audio_target=audio["array"],
... sampling_rate=audio["sampling_rate"],
... return_attention_mask=False,
... )
... # strip off the batch dimension
... example["labels"] = example["labels"][0]
... # use SpeechBrain to obtain x-vector
... example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
... return example
```
Verify the processing is correct by looking at a single example:
```py
>>> processed_example = prepare_dataset(dataset[0])
>>> list(processed_example.keys())
['input_ids', 'labels', 'stop_labels', 'speaker_embeddings']
```
Speaker embeddings should be a 512-element vector:
```py
>>> processed_example["speaker_embeddings"].shape
(512,)
```
The labels should be a log-mel spectrogram with 80 mel bins.
```py
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> plt.imshow(processed_example["labels"].T)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_logmelspectrogram_1.png" alt="Log-mel spectrogram with 80 mel bins"/>
</div>
Side note: If you find this spectrogram confusing, it may be due to your familiarity with the convention of placing low frequencies
at the bottom and high frequencies at the top of a plot. However, when plotting spectrograms as an image using the matplotlib library,
the y-axis is flipped and the spectrograms appear upside down.
Now apply the processing function to the entire dataset. This will take between 5 and 10 minutes.
```py
>>> dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names)
```
You'll see a warning saying that some examples in the dataset are longer than the maximum input length the model can handle (600 tokens).
Remove those examples from the dataset. Here we go even further and to allow for larger batch sizes we remove anything over 200 tokens.
```py
>>> def is_not_too_long(input_ids):
... input_length = len(input_ids)
... return input_length < 200
>>> dataset = dataset.filter(is_not_too_long, input_columns=["input_ids"])
>>> len(dataset)
8259
```
Next, create a basic train/test split:
```py
>>> dataset = dataset.train_test_split(test_size=0.1)
```
### Data collator
In order to combine multiple examples into a batch, you need to define a custom data collator. This collator will pad shorter sequences with padding
tokens, ensuring that all examples have the same length. For the spectrogram labels, the padded portions are replaced with the special value `-100`. This special value
instructs the model to ignore that part of the spectrogram when calculating the spectrogram loss.
```py
>>> from dataclasses import dataclass
>>> from typing import Any, Dict, List, Union
>>> @dataclass
... class TTSDataCollatorWithPadding:
... processor: Any
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
... label_features = [{"input_values": feature["labels"]} for feature in features]
... speaker_features = [feature["speaker_embeddings"] for feature in features]
... # collate the inputs and targets into a batch
... batch = processor.pad(input_ids=input_ids, labels=label_features, return_tensors="pt")
... # replace padding with -100 to ignore loss correctly
... batch["labels"] = batch["labels"].masked_fill(batch.decoder_attention_mask.unsqueeze(-1).ne(1), -100)
... # not used during fine-tuning
... del batch["decoder_attention_mask"]
... # round down target lengths to multiple of reduction factor
... if model.config.reduction_factor > 1:
... target_lengths = torch.tensor([len(feature["input_values"]) for feature in label_features])
... target_lengths = target_lengths.new(
... [length - length % model.config.reduction_factor for length in target_lengths]
... )
... max_length = max(target_lengths)
... batch["labels"] = batch["labels"][:, :max_length]
... # also add in the speaker embeddings
... batch["speaker_embeddings"] = torch.tensor(speaker_features)
... return batch
```
In SpeechT5, the input to the decoder part of the model is reduced by a factor 2. In other words, it throws away every
other timestep from the target sequence. The decoder then predicts a sequence that is twice as long. Since the original
target sequence length may be odd, the data collator makes sure to round the maximum length of the batch down to be a
multiple of 2.
```py
>>> data_collator = TTSDataCollatorWithPadding(processor=processor)
```
## Train the model
Load the pre-trained model from the same checkpoint as you used for loading the processor:
```py
>>> from transformers import SpeechT5ForTextToSpeech
>>> model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
```
The `use_cache=True` option is incompatible with gradient checkpointing. Disable it for training.
```py
>>> model.config.use_cache = False
```
Define the training arguments. Here we are not computing any evaluation metrics during the training process. Instead, we'll
only look at the loss:
```python
>>> from transformers import Seq2SeqTrainingArguments
>>> training_args = Seq2SeqTrainingArguments(
... output_dir="speecht5_finetuned_voxpopuli_nl", # change to a repo name of your choice
... per_device_train_batch_size=4,
... gradient_accumulation_steps=8,
... learning_rate=1e-5,
... warmup_steps=500,
... max_steps=4000,
... gradient_checkpointing=True,
... fp16=True,
... evaluation_strategy="steps",
... per_device_eval_batch_size=2,
... save_steps=1000,
... eval_steps=1000,
... logging_steps=25,
... report_to=["tensorboard"],
... load_best_model_at_end=True,
... greater_is_better=False,
... label_names=["labels"],
... push_to_hub=True,
... )
```
Instantiate the `Trainer` object and pass the model, dataset, and data collator to it.
```py
>>> from transformers import Seq2SeqTrainer
>>> trainer = Seq2SeqTrainer(
... args=training_args,
... model=model,
... train_dataset=dataset["train"],
... eval_dataset=dataset["test"],
... data_collator=data_collator,
... tokenizer=processor,
... )
```
And with that, you're ready to start training! Training will take several hours. Depending on your GPU,
it is possible that you will encounter a CUDA "out-of-memory" error when you start training. In this case, you can reduce
the `per_device_train_batch_size` incrementally by factors of 2 and increase `gradient_accumulation_steps` by 2x to compensate.
```py
>>> trainer.train()
```
To be able to use your checkpoint with a pipeline, make sure to save the processor with the checkpoint:
```py
>>> processor.save_pretrained("YOUR_ACCOUNT_NAME/speecht5_finetuned_voxpopuli_nl")
```
Push the final model to the 🤗 Hub:
```py
>>> trainer.push_to_hub()
```
## Inference
### Inference with a pipeline
Great, now that you've fine-tuned a model, you can use it for inference!
First, let's see how you can use it with a corresponding pipeline. Let's create a `"text-to-speech"` pipeline with your
checkpoint:
```py
>>> from transformers import pipeline
>>> pipe = pipeline("text-to-speech", model="YOUR_ACCOUNT_NAME/speecht5_finetuned_voxpopuli_nl")
```
Pick a piece of text in Dutch you'd like narrated, e.g.:
```py
>>> text = "hallo allemaal, ik praat nederlands. groetjes aan iedereen!"
```
To use SpeechT5 with the pipeline, you'll need a speaker embedding. Let's get it from an example in the test dataset:
```py
>>> example = dataset["test"][304]
>>> speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
```
Now you can pass the text and speaker embeddings to the pipeline, and it will take care of the rest:
```py
>>> forward_params = {"speaker_embeddings": speaker_embeddings}
>>> output = pipe(text, forward_params=forward_params)
>>> output
{'audio': array([-6.82714235e-05, -4.26525949e-04, 1.06134125e-04, ...,
-1.22392643e-03, -7.76011671e-04, 3.29112721e-04], dtype=float32),
'sampling_rate': 16000}
```
You can then listen to the result:
```py
>>> from IPython.display import Audio
>>> Audio(output['audio'], rate=output['sampling_rate'])
```
### Run inference manually
You can achieve the same inference results without using the pipeline, however, more steps will be required.
Load the model from the 🤗 Hub:
```py
>>> model = SpeechT5ForTextToSpeech.from_pretrained("YOUR_ACCOUNT/speecht5_finetuned_voxpopuli_nl")
```
Pick an example from the test dataset obtain a speaker embedding.
```py
>>> example = dataset["test"][304]
>>> speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
```
Define the input text and tokenize it.
```py
>>> text = "hallo allemaal, ik praat nederlands. groetjes aan iedereen!"
>>> inputs = processor(text=text, return_tensors="pt")
```
Create a spectrogram with your model:
```py
>>> spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
```
Visualize the spectrogram, if you'd like to:
```py
>>> plt.figure()
>>> plt.imshow(spectrogram.T)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_logmelspectrogram_2.png" alt="Generated log-mel spectrogram"/>
</div>
Finally, use the vocoder to turn the spectrogram into sound.
```py
>>> with torch.no_grad():
... speech = vocoder(spectrogram)
>>> from IPython.display import Audio
>>> Audio(speech.numpy(), rate=16000)
```
In our experience, obtaining satisfactory results from this model can be challenging. The quality of the speaker
embeddings appears to be a significant factor. Since SpeechT5 was pre-trained with English x-vectors, it performs best
when using English speaker embeddings. If the synthesized speech sounds poor, try using a different speaker embedding.
Increasing the training duration is also likely to enhance the quality of the results. Even so, the speech clearly is Dutch instead of English, and it does
capture the voice characteristics of the speaker (compare to the original audio in the example).
Another thing to experiment with is the model's configuration. For example, try using `config.reduction_factor = 1` to
see if this improves the results.
Finally, it is essential to consider ethical considerations. Although TTS technology has numerous useful applications, it
may also be used for malicious purposes, such as impersonating someone's voice without their knowledge or consent. Please
use TTS judiciously and responsibly.
| transformers/docs/source/en/tasks/text-to-speech.md/0 | {
"file_path": "transformers/docs/source/en/tasks/text-to-speech.md",
"repo_id": "transformers",
"token_count": 7353
} | 238 |
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Troubleshoot
Sometimes errors occur, but we are here to help! This guide covers some of the most common issues we've seen and how you can resolve them. However, this guide isn't meant to be a comprehensive collection of every 🤗 Transformers issue. For more help with troubleshooting your issue, try:
<Youtube id="S2EEG3JIt2A"/>
1. Asking for help on the [forums](https://discuss.huggingface.co/). There are specific categories you can post your question to, like [Beginners](https://discuss.huggingface.co/c/beginners/5) or [🤗 Transformers](https://discuss.huggingface.co/c/transformers/9). Make sure you write a good descriptive forum post with some reproducible code to maximize the likelihood that your problem is solved!
<Youtube id="_PAli-V4wj0"/>
2. Create an [Issue](https://github.com/huggingface/transformers/issues/new/choose) on the 🤗 Transformers repository if it is a bug related to the library. Try to include as much information describing the bug as possible to help us better figure out what's wrong and how we can fix it.
3. Check the [Migration](migration) guide if you use an older version of 🤗 Transformers since some important changes have been introduced between versions.
For more details about troubleshooting and getting help, take a look at [Chapter 8](https://huggingface.co/course/chapter8/1?fw=pt) of the Hugging Face course.
## Firewalled environments
Some GPU instances on cloud and intranet setups are firewalled to external connections, resulting in a connection error. When your script attempts to download model weights or datasets, the download will hang and then timeout with the following message:
```
ValueError: Connection error, and we cannot find the requested files in the cached path.
Please try again or make sure your Internet connection is on.
```
In this case, you should try to run 🤗 Transformers on [offline mode](installation#offline-mode) to avoid the connection error.
## CUDA out of memory
Training large models with millions of parameters can be challenging without the appropriate hardware. A common error you may encounter when the GPU runs out of memory is:
```
CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 11.17 GiB total capacity; 9.70 GiB already allocated; 179.81 MiB free; 9.85 GiB reserved in total by PyTorch)
```
Here are some potential solutions you can try to lessen memory use:
- Reduce the [`per_device_train_batch_size`](main_classes/trainer#transformers.TrainingArguments.per_device_train_batch_size) value in [`TrainingArguments`].
- Try using [`gradient_accumulation_steps`](main_classes/trainer#transformers.TrainingArguments.gradient_accumulation_steps) in [`TrainingArguments`] to effectively increase overall batch size.
<Tip>
Refer to the Performance [guide](performance) for more details about memory-saving techniques.
</Tip>
## Unable to load a saved TensorFlow model
TensorFlow's [model.save](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) method will save the entire model - architecture, weights, training configuration - in a single file. However, when you load the model file again, you may run into an error because 🤗 Transformers may not load all the TensorFlow-related objects in the model file. To avoid issues with saving and loading TensorFlow models, we recommend you:
- Save the model weights as a `h5` file extension with [`model.save_weights`](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) and then reload the model with [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> from transformers import TFPreTrainedModel
>>> from tensorflow import keras
>>> model.save_weights("some_folder/tf_model.h5")
>>> model = TFPreTrainedModel.from_pretrained("some_folder")
```
- Save the model with [`~TFPretrainedModel.save_pretrained`] and load it again with [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> from transformers import TFPreTrainedModel
>>> model.save_pretrained("path_to/model")
>>> model = TFPreTrainedModel.from_pretrained("path_to/model")
```
## ImportError
Another common error you may encounter, especially if it is a newly released model, is `ImportError`:
```
ImportError: cannot import name 'ImageGPTImageProcessor' from 'transformers' (unknown location)
```
For these error types, check to make sure you have the latest version of 🤗 Transformers installed to access the most recent models:
```bash
pip install transformers --upgrade
```
## CUDA error: device-side assert triggered
Sometimes you may run into a generic CUDA error about an error in the device code.
```
RuntimeError: CUDA error: device-side assert triggered
```
You should try to run the code on a CPU first to get a more descriptive error message. Add the following environment variable to the beginning of your code to switch to a CPU:
```py
>>> import os
>>> os.environ["CUDA_VISIBLE_DEVICES"] = ""
```
Another option is to get a better traceback from the GPU. Add the following environment variable to the beginning of your code to get the traceback to point to the source of the error:
```py
>>> import os
>>> os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
```
## Incorrect output when padding tokens aren't masked
In some cases, the output `hidden_state` may be incorrect if the `input_ids` include padding tokens. To demonstrate, load a model and tokenizer. You can access a model's `pad_token_id` to see its value. The `pad_token_id` may be `None` for some models, but you can always manually set it.
```py
>>> from transformers import AutoModelForSequenceClassification
>>> import torch
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
>>> model.config.pad_token_id
0
```
The following example shows the output without masking the padding tokens:
```py
>>> input_ids = torch.tensor([[7592, 2057, 2097, 2393, 9611, 2115], [7592, 0, 0, 0, 0, 0]])
>>> output = model(input_ids)
>>> print(output.logits)
tensor([[ 0.0082, -0.2307],
[ 0.1317, -0.1683]], grad_fn=<AddmmBackward0>)
```
Here is the actual output of the second sequence:
```py
>>> input_ids = torch.tensor([[7592]])
>>> output = model(input_ids)
>>> print(output.logits)
tensor([[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
```
Most of the time, you should provide an `attention_mask` to your model to ignore the padding tokens to avoid this silent error. Now the output of the second sequence matches its actual output:
<Tip>
By default, the tokenizer creates an `attention_mask` for you based on your specific tokenizer's defaults.
</Tip>
```py
>>> attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]])
>>> output = model(input_ids, attention_mask=attention_mask)
>>> print(output.logits)
tensor([[ 0.0082, -0.2307],
[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
```
🤗 Transformers doesn't automatically create an `attention_mask` to mask a padding token if it is provided because:
- Some models don't have a padding token.
- For some use-cases, users want a model to attend to a padding token.
## ValueError: Unrecognized configuration class XYZ for this kind of AutoModel
Generally, we recommend using the [`AutoModel`] class to load pretrained instances of models. This class
can automatically infer and load the correct architecture from a given checkpoint based on the configuration. If you see
this `ValueError` when loading a model from a checkpoint, this means the Auto class couldn't find a mapping from
the configuration in the given checkpoint to the kind of model you are trying to load. Most commonly, this happens when a
checkpoint doesn't support a given task.
For instance, you'll see this error in the following example because there is no GPT2 for question answering:
```py
>>> from transformers import AutoProcessor, AutoModelForQuestionAnswering
>>> processor = AutoProcessor.from_pretrained("gpt2-medium")
>>> model = AutoModelForQuestionAnswering.from_pretrained("gpt2-medium")
ValueError: Unrecognized configuration class <class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'> for this kind of AutoModel: AutoModelForQuestionAnswering.
Model type should be one of AlbertConfig, BartConfig, BertConfig, BigBirdConfig, BigBirdPegasusConfig, BloomConfig, ...
```
| transformers/docs/source/en/troubleshooting.md/0 | {
"file_path": "transformers/docs/source/en/troubleshooting.md",
"repo_id": "transformers",
"token_count": 2555
} | 239 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Compartir un modelo
Los últimos dos tutoriales mostraron cómo puedes realizar fine-tunning a un modelo con PyTorch, Keras y 🤗 Accelerate para configuraciones distribuidas. ¡El siguiente paso es compartir tu modelo con la comunidad! En Hugging Face creemos en compartir abiertamente a todos el conocimiento y los recursos para democratizar la inteligencia artificial. En este sentido, te animamos a considerar compartir tu modelo con la comunidad, de esta forma ayudas a otros ahorrando tiempo y recursos.
En este tutorial aprenderás dos métodos para compartir un modelo trained o fine-tuned en el [Model Hub](https://huggingface.co/models):
- Mediante Código, enviando (push) tus archivos al Hub.
- Con la interfaz Web, con Drag-and-drop de tus archivos al Hub.
<iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
picture-in-picture" allowfullscreen></iframe>
<Tip>
Para compartir un modelo con la comunidad necesitas una cuenta en [huggingface.co](https://huggingface.co/join). También puedes unirte a una organización existente o crear una nueva.
</Tip>
## Características de los repositorios
Cada repositorio en el Model Hub se comporta como cualquier otro repositorio en GitHub. Nuestros repositorios ofrecen versioning, commit history, y la habilidad para visualizar diferencias.
El versioning desarrollado dentro del Model Hub es basado en git y [git-lfs](https://git-lfs.github.com/). En otras palabras, puedes tratar un modelo como un repositorio, brindando un mejor control de acceso y escalabilidad. Version control permite *revisions*, un método para apuntar a una versión específica de un modelo utilizando un commit hash, tag o branch.
Como resultado, puedes cargar una versión específica del modelo con el parámetro `revision`:
```py
>>> model = AutoModel.from_pretrained(
... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash
... )
```
Los archivos son editados fácilmente dentro de un repositorio. Incluso puedes observar el commit history y las diferencias:
![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png)
## Configuración inicial
Antes de compartir un modelo al Hub necesitarás tus credenciales de Hugging Face. Si tienes acceso a una terminal ejecuta el siguiente comando en el entorno virtual donde 🤗 Transformers esté instalado. Esto guardará tu token de acceso dentro de tu carpeta cache de Hugging Face (~/.cache/ by default):
```bash
huggingface-cli login
```
Si usas un notebook como Jupyter o Colaboratory, asegúrate de tener instalada la biblioteca [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library). Esta biblioteca te permitirá interactuar por código con el Hub.
```bash
pip install huggingface_hub
```
Luego usa `notebook_login` para iniciar sesión al Hub, y sigue el link [aquí](https://huggingface.co/settings/token) para generar un token con el que iniciaremos sesión:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Convertir un modelo para todos los Frameworks
Para asegurarnos que tu modelo pueda ser usado por alguien que esté trabajando con un framework diferente, te recomendamos convertir y subir tu modelo con checkpoints de pytorch y tensorflow. Aunque los usuarios aún son capaces de cargar su modelo desde un framework diferente, si se omite este paso será más lento debido a que 🤗 Transformers necesitará convertir el checkpoint sobre-la-marcha.
Convertir un checkpoint para otro framework es fácil. Asegúrate tener Pytorch y TensorFlow instalado (Véase [aquí](installation) para instrucciones de instalación), y luego encuentra el modelo específico para tu tarea en el otro Framework.
Por ejemplo, supongamos que has entrenado DistilBert para clasificación de secuencias en PyTorch y quieres convertirlo a su equivalente en TensorFlow. Cargas el equivalente en TensorFlow de tu modelo para tu tarea y especificas `from_pt=True` así 🤗 Transformers convertirá el Pytorch checkpoint a un TensorFlow Checkpoint:
```py
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
```
Luego guardas tu nuevo modelo TensorFlow con su nuevo checkpoint:
```py
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
```
De manera similar, especificas `from_tf=True` para convertir un checkpoint de TensorFlow a Pytorch:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
Si algún modelo está disponible en Flax, también puedes convertir un checkpoint de Pytorch a Flax:
```py
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
... "path/to/awesome-name-you-picked", from_pt=True
... )
```
## Compartir un modelo con `Trainer`
<Youtube id="Z1-XMy-GNLQ"/>
Compartir un modelo al Hub es tan simple como añadir un parámetro extra o un callback. Si recuerdas del tutorial de [fine-tuning tutorial](training), la clase [`TrainingArguments`] es donde especificas los Hiperparámetros y opciones de entrenamiento adicionales. Una de estas opciones incluye la habilidad de compartir un modelo directamente al Hub. Para ello configuras `push_to_hub=True` dentro de [`TrainingArguments`]:
```py
>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True)
```
A continuación, como usualmente, pasa tus argumentos de entrenamiento a [`Trainer`]:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Luego que realizas fine-tune a tu modelo, llamas [`~transformers.Trainer.push_to_hub`] en [`Trainer`] para enviar el modelo al Hub!🤗 Transformers incluso añadirá automáticamente los Hiperparámetros de entrenamiento, resultados de entrenamiento y versiones del Framework a tu model card!
```py
>>> trainer.push_to_hub()
```
## Compartir un modelo con `PushToHubCallback`
Los usuarios de TensorFlow pueden activar la misma funcionalidad con [`PushToHubCallback`]. En la funcion [`PushToHubCallback`], agrega:
- Un directorio de salida para tu modelo.
- Un tokenizador.
- El `hub_model_id`, el cual es tu usuario Hub y el nombre del modelo.
```py
>>> from transformers import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
... )
```
Agregamos el callback a [`fit`](https://keras.io/api/models/model_training_apis/), y 🤗 Transformers enviará el modelo entrenado al Hub:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
```
## Usando la función `push_to_hub`
Puedes llamar la función `push_to_hub` directamente en tu modelo para subirlo al Hub.
Especifica el nombre del modelo en `push_to_hub`:
```py
>>> pt_model.push_to_hub("my-awesome-model")
```
Esto creará un repositorio bajo tu usuario con el nombre del modelo `my-awesome-model`. Ahora los usuarios pueden cargar tu modelo con la función `from_pretrained`:
```py
>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
```
Si perteneces a una organización y quieres compartir tu modelo bajo el nombre de la organización, añade el parámetro `organization`:
```py
>>> pt_model.push_to_hub("my-awesome-model", organization="my-awesome-org")
```
La función `push_to_hub` también puede ser usada para añadir archivos al repositorio del modelo. Por ejemplo, añade un tokenizador al repositorio:
```py
>>> tokenizer.push_to_hub("my-awesome-model")
```
O quizás te gustaría añadir la versión de TensorFlow de tu modelo fine-tuned en Pytorch:
```py
>>> tf_model.push_to_hub("my-awesome-model")
```
Ahora, cuando navegues a tu perfil en Hugging Face, deberías observar el repositorio de tu modelo creado recientemente. Si das click en el tab **Files** observarás todos los archivos que has subido al repositorio.
Para más detalles sobre cómo crear y subir archivos al repositorio, consulta la [documentación del Hub](https://huggingface.co/docs/hub/how-to-upstream).
## Compartir con la interfaz web
Los usuarios que prefieran un enfoque no-code tienen la opción de cargar su modelo a través de la interfaz gráfica del Hub. Visita la página [huggingface.co/new](https://huggingface.co/new) para crear un nuevo repositorio:
![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png)
Desde aquí, añade información acerca del modelo:
- Selecciona el **owner** (la persona propietaria) del repositorio. Puedes ser tú o cualquier organización a la que pertenezcas.
- Escoge un nombre para tu modelo. También será el nombre del repositorio.
- Elige si tu modelo es público o privado.
- Especifica la licencia que usará tu modelo.
Ahora puedes hacer click en el tab **Files** y luego en el botón **Add file** para subir un nuevo archivo a tu repositorio. Luego arrastra y suelta un archivo a subir y le añades un mensaje al commit.
![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png)
## Añadiendo una tarjeta de modelo
Para asegurarnos que los usuarios entiendan las capacidades de tu modelo, sus limitaciones, posibles sesgos y consideraciones éticas, por favor añade una tarjeta (como una tarjeta de presentación) al repositorio del modelo. La tarjeta de modelo es definida en el archivo `README.md`. Puedes agregar una de la siguiente manera:
* Elaborando y subiendo manualmente el archivo`README.md`.
* Dando click en el botón **Edit model card** dentro del repositorio.
Toma un momento para ver la [tarjeta de modelo](https://huggingface.co/distilbert-base-uncased) de DistilBert para que tengas un buen ejemplo del tipo de información que debería incluir. Consulta [la documentación](https://huggingface.co/docs/hub/models-cards) para más detalles acerca de otras opciones que puedes controlar dentro del archivo `README.md` como la huella de carbono del modelo o ejemplos de widgets. Consulta la documentación [aquí] (https://huggingface.co/docs/hub/models-cards).
| transformers/docs/source/es/model_sharing.md/0 | {
"file_path": "transformers/docs/source/es/model_sharing.md",
"repo_id": "transformers",
"token_count": 3982
} | 240 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Selección múltiple
La tarea de selección múltiple es parecida a la de responder preguntas, con la excepción de que se dan varias opciones de respuesta junto con el contexto. El modelo se entrena para escoger la respuesta correcta
entre varias opciones a partir del contexto dado.
Esta guía te mostrará como hacerle fine-tuning a [BERT](https://huggingface.co/bert-base-uncased) en la configuración `regular` del dataset [SWAG](https://huggingface.co/datasets/swag), de forma
que seleccione la mejor respuesta a partir de varias opciones y algún contexto.
## Cargar el dataset SWAG
Carga el dataset SWAG con la biblioteca 🤗 Datasets:
```py
>>> from datasets import load_dataset
>>> swag = load_dataset("swag", "regular")
```
Ahora, échale un vistazo a un ejemplo del dataset:
```py
>>> swag["train"][0]
{'ending0': 'passes by walking down the street playing their instruments.',
'ending1': 'has heard approaching them.',
'ending2': "arrives and they're outside dancing and asleep.",
'ending3': 'turns the lead singer watches the performance.',
'fold-ind': '3416',
'gold-source': 'gold',
'label': 0,
'sent1': 'Members of the procession walk down the street holding small horn brass instruments.',
'sent2': 'A drum line',
'startphrase': 'Members of the procession walk down the street holding small horn brass instruments. A drum line',
'video-id': 'anetv_jkn6uvmqwh4'}
```
Los campos `sent1` y `sent2` muestran cómo comienza una oración, y cada campo `ending` indica cómo podría terminar. Dado el comienzo de la oración, el modelo debe escoger el final de oración correcto indicado por el campo `label`.
## Preprocesmaiento
Carga el tokenizer de BERT para procesar el comienzo de cada oración y los cuatro finales posibles:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
La función de preprocesmaiento debe hacer lo siguiente:
1. Hacer cuatro copias del campo `sent1` de forma que se pueda combinar cada una con el campo `sent2` para recrear la forma en que empieza la oración.
2. Combinar `sent2` con cada uno de los cuatro finales de oración posibles.
3. Aplanar las dos listas para que puedas tokenizarlas, y luego des-aplanarlas para que cada ejemplo tenga los campos `input_ids`, `attention_mask` y `labels` correspondientes.
```py
>>> ending_names = ["ending0", "ending1", "ending2", "ending3"]
>>> def preprocess_function(examples):
... first_sentences = [[context] * 4 for context in examples["sent1"]]
... question_headers = examples["sent2"]
... second_sentences = [
... [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
... ]
... first_sentences = sum(first_sentences, [])
... second_sentences = sum(second_sentences, [])
... tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True)
... return {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
```
Usa la función [`~datasets.Dataset.map`] de 🤗 Datasets para aplicarle la función de preprocesamiento al dataset entero. Puedes acelerar la función `map` haciendo `batched=True` para procesar varios elementos del dataset a la vez.
```py
tokenized_swag = swag.map(preprocess_function, batched=True)
```
🤗 Transformers no tiene un collator de datos para la tarea de selección múltiple, así que tendrías que crear uno. Puedes adaptar el [`DataCollatorWithPadding`] para crear un lote de ejemplos para selección múltiple. Este también
le *añadirá relleno de manera dinámica* a tu texto y a las etiquetas para que tengan la longitud del elemento más largo en su lote, de forma que tengan una longitud uniforme. Aunque es posible rellenar el texto en la función `tokenizer` haciendo
`padding=True`, el rellenado dinámico es más eficiente.
El `DataCollatorForMultipleChoice` aplanará todas las entradas del modelo, les aplicará relleno y luego des-aplanará los resultados:
<frameworkcontent>
<pt>
```py
>>> from dataclasses import dataclass
>>> from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
>>> from typing import Optional, Union
>>> import torch
>>> @dataclass
... class DataCollatorForMultipleChoice:
... """
... Collator de datos que le añadirá relleno de forma automática a las entradas recibidas para
... una tarea de selección múltiple.
... """
... tokenizer: PreTrainedTokenizerBase
... padding: Union[bool, str, PaddingStrategy] = True
... max_length: Optional[int] = None
... pad_to_multiple_of: Optional[int] = None
... def __call__(self, features):
... label_name = "label" if "label" in features[0].keys() else "labels"
... labels = [feature.pop(label_name) for feature in features]
... batch_size = len(features)
... num_choices = len(features[0]["input_ids"])
... flattened_features = [
... [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
... ]
... flattened_features = sum(flattened_features, [])
... batch = self.tokenizer.pad(
... flattened_features,
... padding=self.padding,
... max_length=self.max_length,
... pad_to_multiple_of=self.pad_to_multiple_of,
... return_tensors="pt",
... )
... batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
... batch["labels"] = torch.tensor(labels, dtype=torch.int64)
... return batch
```
</pt>
<tf>
```py
>>> from dataclasses import dataclass
>>> from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
>>> from typing import Optional, Union
>>> import tensorflow as tf
>>> @dataclass
... class DataCollatorForMultipleChoice:
... """
... Data collator that will dynamically pad the inputs for multiple choice received.
... """
... tokenizer: PreTrainedTokenizerBase
... padding: Union[bool, str, PaddingStrategy] = True
... max_length: Optional[int] = None
... pad_to_multiple_of: Optional[int] = None
... def __call__(self, features):
... label_name = "label" if "label" in features[0].keys() else "labels"
... labels = [feature.pop(label_name) for feature in features]
... batch_size = len(features)
... num_choices = len(features[0]["input_ids"])
... flattened_features = [
... [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
... ]
... flattened_features = sum(flattened_features, [])
... batch = self.tokenizer.pad(
... flattened_features,
... padding=self.padding,
... max_length=self.max_length,
... pad_to_multiple_of=self.pad_to_multiple_of,
... return_tensors="tf",
... )
... batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()}
... batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64)
... return batch
```
</tf>
</frameworkcontent>
## Entrenamiento
<frameworkcontent>
<pt>
Carga el modelo BERT con [`AutoModelForMultipleChoice`]:
```py
>>> from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer
>>> model = AutoModelForMultipleChoice.from_pretrained("bert-base-uncased")
```
<Tip>
Para familiarizarte con el fine-tuning con [`Trainer`], ¡mira el tutorial básico [aquí](../training#finetune-with-trainer)!
</Tip>
En este punto, solo quedan tres pasos:
1. Definir tus hiperparámetros de entrenamiento en [`TrainingArguments`].
2. Pasarle los argumentos del entrenamiento al [`Trainer`] jnto con el modelo, el dataset, el tokenizer y el collator de datos.
3. Invocar el método [`~Trainer.train`] para realizar el fine-tuning del modelo.
```py
>>> training_args = TrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... learning_rate=5e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... weight_decay=0.01,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=tokenized_swag["train"],
... eval_dataset=tokenized_swag["validation"],
... tokenizer=tokenizer,
... data_collator=DataCollatorForMultipleChoice(tokenizer=tokenizer),
... )
>>> trainer.train()
```
</pt>
<tf>
Para realizar el fine-tuning de un modelo en TensorFlow, primero convierte tus datasets al formato `tf.data.Dataset` con el método [`~TFPreTrainedModel.prepare_tf_dataset`].
```py
>>> data_collator = DataCollatorForMultipleChoice(tokenizer=tokenizer)
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_swag["train"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_swag["validation"],
... shuffle=False,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
<Tip>
Para familiarizarte con el fine-tuning con Keras, ¡mira el tutorial básico [aquí](training#finetune-with-keras)!
</Tip>
Prepara una función de optimización, un programa para la tasa de aprendizaje y algunos hiperparámetros de entrenamiento:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_train_epochs = 2
>>> total_train_steps = (len(tokenized_swag["train"]) // batch_size) * num_train_epochs
>>> optimizer, schedule = create_optimizer(init_lr=5e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
```
Carga el modelo BERT con [`TFAutoModelForMultipleChoice`]:
```py
>>> from transformers import TFAutoModelForMultipleChoice
>>> model = TFAutoModelForMultipleChoice.from_pretrained("bert-base-uncased")
```
Configura el modelo para entrenarlo con [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>> model.compile(optimizer=optimizer)
```
Invoca el método [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para realizar el fine-tuning del modelo:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=2)
```
</tf>
</frameworkcontent>
| transformers/docs/source/es/tasks/multiple_choice.md/0 | {
"file_path": "transformers/docs/source/es/tasks/multiple_choice.md",
"repo_id": "transformers",
"token_count": 4153
} | 241 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Come aggiungere un modello a 🤗 Transformers?
Aggiungere un nuovo modello é spesso difficile e richiede una profonda conoscenza della libreria 🤗 Transformers e anche
della repository originale del modello. A Hugging Face cerchiamo di dare alla community sempre piú poteri per aggiungere
modelli independentemente. Quindi, per alcuni nuovi modelli che la community vuole aggiungere a 🤗 Transformers, abbiamo
creato una specifica *call-for-model-addition* che spiega passo dopo passo come aggiungere il modello richiesto. Con
questo *call-for-model-addition* vogliamo insegnare a volenterosi e esperti collaboratori della community come implementare
un modello in 🤗 Transformers.
Se questo é qualcosa che può interessarvi, siete liberi di controllare l'attuale “calls-for-model-addition” [qui](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model/open_model_proposals/README.md)
e contattarci.
Se il modello sarà selezionato, allora potrete lavorare insieme a un membro di Hugging Face per integrare il modello in 🤗
Transformers. Così facendo, ci guadagnerai in una comprensione totale, sia teorica che pratica, del modello proposto. Inoltre,
sarai l'artefice di un importante contributo open-source a 🤗 Transformers. Durante l'implementazione avrai l'opportunità di:
- ottenere più comprensione delle best practices in open-source
- capire i principi di design di una della librerie NLP più popolari
- capire come efficientemente testare complessi modelli NLP
- capire come integrare utilit Python come `black`, `ruff`, `make fix-copies` in una libreria per garantire sempre di avere un codice leggibile e pulito
Siamo anche contenti se vuoi aggiungere un modello che non può essere trovato nella cartella “calls-for-model-addition”.
Le seguenti sezioni spiegano in dettaglio come aggiungere un nuovo modello. Può anche essere molto utile controllare modelli
già aggiunti [qui](https://github.com/huggingface/transformers/pulls?q=is%3Apr+label%3A%22PR+for+Model+Addition%22+is%3Aclosed),
per capire se richiamano il modello che vorreste aggiungere.
Per cominciare, vediamo una panoramica general della libreria Transformers.
## Panoramica generale su 🤗 Transformers
Prima di tutto, vediamo in generale 🤗 Transformers. 🤗 Transformers é una libreria molto strutturata, quindi
puà essere che a volte ci sia un disaccordo con alcune filosofie della libreria o scelte di design. Dalla nostra esperienza,
tuttavia, abbiamo trovato che le scelte fondamentali di design della libreria sono cruciali per usare 🤗 Transformers efficacemente
su larga scala, mantenendo i costi a un livello accettabile.
Un buon primo punto di partenza per capire al meglio la libreria é leggere la [documentazione sulla nostra filosofia](filosofia)
Da qui, ci sono alcune scelte sul modo di lavorare che cerchiamo di applicare a tutti i modelli:
- La composizione é generalmente favorita sulla sovra-astrazione
- Duplicare il codice non é sempre male, soprattutto se migliora notevolmente la leggibilità e accessibilità del modello
- Tutti i files creati per il nuovo modello devono il piu possibile "compatti". Questo vuol dire che quando qualcuno leggerá il codice
di uno specifico modello, potrá vedere solo il corrispettivo file `modeling_....py` senza avere multiple dipendenze.
La cosa piú importante, é che consideriamo la libreria non solo un mezzo per dare un prodotto, *per esempio* dare la possibilità
di usare BERT per inferenza, ma é anche il prodotto reale che noi vogliamo migliorare sempre più. Quindi, quando aggiungi
un modello, non sei solo la persona che userà il modello, ma rappresenti anche tutti coloro che leggeranno,
cercheranno di capire e modificare il tuo modello.
Tenendo questi principi in mente, immergiamoci nel design generale della libreria.
### Panoramica sui modelli
Per aggiungere con successo un modello, é importante capire l'interazione tra il tuo modello e la sua configurazione,
[`PreTrainedModel`], e [`PretrainedConfig`]. Per dare un esempio, chiameremo il modello da aggiungere a 🤗 Transformers
`BrandNewBert`.
Diamo un'occhiata:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png"/>
Come potete vedere, ci basiamo sull'ereditarietà in 🤗 Transformers, tenendo però il livello di astrazione a un minimo
assoluto. Non ci sono mai più di due livelli di astrazione per ogni modello nella libreria. `BrandNewBertModel` eredita
da `BrandNewBertPreTrainedModel` che, a sua volta, eredita da [`PreTrainedModel`] - semplice no?
Come regola generale, vogliamo essere sicuri che un nuovo modello dipenda solo da [`PreTrainedModel`]. Le funzionalità
importanti che sono automaticamente conferite a ogni nuovo modello sono [`~PreTrainedModel.from_pretrained`]
e [`~PreTrainedModel.save_pretrained`], che sono usate per serializzazione e deserializzazione. Tutte le altre importanti
funzionalità, come ad esempio `BrandNewBertModel.forward` devono essere definite completamente nel nuovo script
`modeling_brand_new_bert.py`. Inoltre, vogliamo essere sicuri che un modello con uno specifico head layer, come
`BrandNewBertForMaskedLM` non erediti da `BrandNewBertModel`, ma piuttosto usi `BrandNewBertModel`
come componente che può essere chiamata nel passaggio forward per mantenere il livello di astrazione basso. Ogni
nuovo modello richieste una classe di configurazione, chiamata `BrandNewBertConfig`. Questa configurazione é sempre
mantenuta come un attributo in [`PreTrainedModel`], e quindi può essere accessibile tramite l'attributo `config`
per tutte le classi che ereditano da `BrandNewBertPreTrainedModel`:
```python
model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert")
model.config # il modello ha accesso al suo config
```
Analogamente al modello, la configurazione eredita le funzionalità base di serializzazione e deserializzazione da
[`PretrainedConfig`]. É da notare che la configurazione e il modello sono sempre serializzati in due formati differenti -
il modello é serializzato in un file *pytorch_model.bin* mentre la configurazione con *config.json*. Chiamando
[`~PreTrainedModel.save_pretrained`] automaticamente chiamerà [`~PretrainedConfig.save_pretrained`], cosicché sia il
modello che la configurazione siano salvati.
### Stile per il codice
Quando codifichi un nuovo modello, tieni presente che Transformers ha una sua struttura di fondo come libreria, perciò
ci sono alcuni fatti da considerare su come scrivere un codice :-)
1. Il forward pass del tuo modello dev'essere scritto completamente nel file del modello, mentre dev'essere indipendente
da altri modelli nella libreria. Se vuoi riutilizzare un blocco di codice da un altro modello, copia e incolla il codice con un commento `# Copied from` in cima al codice (guarda [qui](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
per un ottimo esempio).
2. Il codice dev'essere interamente comprensibile, anche da persone che non parlano in inglese. Questo significa che le
variabili devono avere un nome descrittivo e bisogna evitare abbreviazioni. Per esempio, `activation` é molto meglio
che `act`. Le variabili con una lettera sono da evitare fortemente, almeno che non sia per un indce in un for loop.
3. Generamente é meglio avere un codice esplicito e piú lungo che un codice corto e magico.
4. Evita di subclassare `nn.Sequential` in Pytorch, puoi subclassare `nn.Module` e scrivere il forward pass, cosicché
chiunque può effettuare debug sul tuo codice, aggiungendo print o breaking points.
5. La tua function-signature dev'essere type-annoted. Per il resto, é meglio preferire variabili con un nome accettabile
piuttosto che annotazioni per aumentare la comprensione e leggibilità del codice.
### Panoramica sui tokenizers
Questa sezione sarà creata al piu presto :-(
## Aggiungere un modello a 🤗 Transformers passo dopo passo
Ci sono differenti modi per aggiungere un modello a Hugging Face. Qui trovi una lista di blog posts da parte della community su come aggiungere un modello:
1. [Aggiungere GPT2](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) scritto da [Thomas](https://huggingface.co/thomwolf)
2. [Aggiungere WMT19 MT](https://huggingface.co/blog/porting-fsmt) scritto da [Stas](https://huggingface.co/stas)
Per esperienza, possiamo dirti che quando si aggiunge un modello é meglio tenere a mente le seguenti considerazioni:
- Non sfondare una porta giá aperta! La maggior parte del codice che aggiungerai per un nuovo modello 🤗 Transformers
esiste già da qualche parte in 🤗 Transformers. Prendi un po' di tempo per trovare codici simili in modelli e tokenizers esistenti e fare un copia-incolla. Ricorda che [grep](https://www.gnu.org/software/grep/) e [rg](https://github.com/BurntSushi/ripgrep) sono tuoi buoni amici. Inoltre, ricorda che puó essere molto probabile che il tokenizer per il tuo modello sia basato sull'implementazione di un altro modello, e il codice del tuo modello stesso su un altro ancora. *Per esempio* il modello FSMT é basato su BART, mentre il tokenizer di FSMT é basato su XLM.
- Ricorda che qui é piu una sfida ingegneristica che scientifica. Spendi piú tempo per create un efficiente ambiente di debugging piuttosto che cercare di capire tutti gli aspetti teorici dell'articolo del modello.
- Chiedi aiuto se sei in panne! I modelli sono la parte principale di 🤗 Transformers, perciò qui a Hugging Face siamo più che contenti di aiutarti in ogni passo per aggiungere il tuo modello. Non esitare a chiedere se vedi che non riesci a progredire.
Di seguito, diamo una ricetta generale per aiutare a portare un modello in 🤗 Transformers.
La lista seguente é un sommario di tutto quello che é stato fatto per aggiungere un modello, e può essere usata come To-Do List:
- 1. ☐ (Opzionale) Capire gli aspetti teorici del modello
- 2. ☐ Preparare l'ambiente dev per transformers
- 3. ☐ Preparare l'ambiente debugging della repository originale
- 4. ☐ Create uno script che gestisca con successo il forward pass usando la repository originale e checkpoint
- 5. ☐ Aggiungere con successo lo scheletro del modello a Transformers
- 6. ☐ Convertire i checkpoint original a Transformers checkpoint
- 7. ☐ Effettuare con successo la forward pass in Transformers, di modo che dia un output identico al checkpoint originale
- 8. ☐ Finire i tests per il modello in Transformers
- 9. ☐ Aggiungere con successo Tokenizer in Transformers
- 10. ☐ Testare e provare gli integration tests da capo a fine
- 11. ☐ Completare i docs
- 12. ☐ Caricare i moedl weights all'hub
- 13. ☐ Sottomettere una pull request
- 14. ☐ (Opzionale) Aggiungere un notebook con una demo
Per cominciare di solito consigliamo `BrandNewBert`, partendo dalla teoria, di modo da avere una buona comprensione della teoria generale. TUttavia, se preferisci imparare l'aspetto teorico del modello mentre *lavori* sul modello é ok immergersi direttamente nel codice di `BrandNewBert`. Questa opzione puó essere buona se le tue skills ingegneristiche sono meglio che quelle teoriche, o se il paper `BrandNewBert` ti dá problemi, o se semplicemente ti piace programmare piú che leggere articoli scientifici.
### 1. (Opzionale) Aspetti teorici di BrandNewBert
Allora con calma, prendi un po' di tempo per leggere l'articolo su *BrandNewBert* . Sicuramente, alcune sezioni dell'articolo sono molto complesse, ma non preoccuparti! L'obiettivo non é avere una compresione immensa della teoria alla base, ma estrarre le informazioni necessarie per re-implementare con successo il modello in 🤗 Transformers. Quindi, non impazzire sugli aspetti teorici, ma piuttosto focalizzati su quelli pratici, ossia:
- Che tipo di modello é *brand_new_bert*? É solo un encoder in stile BERT? O tipo decoder come GPT2? O encoder e decoder stile BART? Dai un'occhiata a [model_summary](model_summary) se non sei famigliare con le differenze tra questi modelli
- Quali sono le applicazioni di *brand_new_bert*? Classificazione di testo? Generazione di testo? O per tasks del genere seq2seq?
- Quali sono le nuove aggiunte al modello che lo rendono diverso da BERT/GPT-2/BART?
- Quali modelli estistenti in [🤗 Transformers models](https://huggingface.co/transformers/#contents) sono molto simili a *brand_new_bert*?
- Che tipo di tokenizer si usa in questo caso? Un sentencepiece tokenizer? O un word piece tokenizer? Il tokenizer é lo stesso di BERT o BART?
Una volta che senti che hai avuto una bella overview dell'architettura del modello, puoi scrivere senza problemi al team di Hugging Face per ogni domanda che tu hai. Questo puó includere domande sull'architettura del modello, o sull'attention layer, etc. Saremo molto felici di aiutarti :)
### 2. Prepare il tuo ambiente
1. Forka la [repository](https://github.com/huggingface/transformers) cliccando sul tasto ‘Fork' nella pagina della repository. Questo crea una copia del codice nel tuo account GitHub
2. Clona il tuo fork `transfomers` sul tuo dico locale, e aggiungi la repository base come remota:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Crea un ambiente di sviluppo, per esempio tramite questo comando:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
quindi torna alla directory principale:
```bash
cd ..
```
4. Attenzione, raccomandiamo di aggiungere la versione di PyTorch di *brand_new_bert* a Transfomers. Per installare PyTorch, basta seguire queste istruzioni https://pytorch.org/get-started/locally/.
**Nota bene:** Non c'é bisogno di installare o avere installato CUDA. Il nuovo modello può funzionare senza problemi su una CPU.
5. Per trasferire *brand_new_bert* To port *brand_new_bert* avrai bisogno anche accesso alla sua repository originale:
```bash
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
cd brand_new_bert
pip install -e .
```
Ok, ora hai un ambiente di sviluppo per portare *brand_new_bert* in 🤗 Transformers.
### 3.-4. Provare un pretrained checkpoint usando la repo originale
Per cominciare, comincerai a lavorare sulla repo originale di *brand_new_bert*. Come spesso accade, l'implementazione originale é molto sullo stile "ricerca". Questo significa che a volte la documentazione non é al top, magari manca qualche cosa e il codice puó essere difficile da capire. Tuttavia, questa é e dev'essere la motivazione per reimplementare *brand_new_bert*. In Hugging Face, uno degli obiettivi principali é di *mettere le persone sulle spalle dei giganti*, il che si traduce, in questo contesto, di prendere un modello funzionante e riscriverlo e renderlo il piú possibile **accessibile, user-friendly, e leggibile**. Questa é la top motivazione per re-implementare modelli in 🤗 Transformers - cercare di creare nuove complesse tecnologie NLP accessibili a **chiunque**.
Riuscire a far girare il modello pretrained originale dalla repository ufficiale é spesso il passo **piu arduo**. Dalla nostra esperienza, é molto importante spendere un p' di tempo per diventare familiari con il codice base originale. Come test, prova a capire i seguenti punti:
- Dove si trovano i pretrained weights?
- Come caricare i pretrained weights nel modello corrispondente?
- Come girare un tokenizer independentemente dal modello?
- Prova a tracciare un singolo forward pass, cosicché potrai sapere che classi e funzioni sono richieste per un semplice forward pass. Di solito, dovrai reimplementare queste funzioni e basta
- Prova a localizzare i componenti importanti del modello: Dove si trova la classe del modello? Ci sono sotto classi nel modello *per esempio* EngoderModel, DecoderMOdel? Dove si trova il self-attention layer? Ci sono molteplici differenti layer di attention, *per esempio * *self-attention*, *cross-attention*...?
- Come puoi fare debug sul modello nell'ambiente originale della repo? Devi aggiungere dei *print* o puoi usare *ipdb* come debugger interattivo, o vabene anche un IDE efficiente per debug come PyCharm?
É molto importante che prima di cominciare a trasferire il modello nuovo tu spenda tempo a fare debug del codice originale in maniera **efficiente**! Inoltre, ricorda che tutta la library é open-soruce, quindi non temere di aprire issue o fare una pull request nella repo originale. Tutti coloro che mantengono la repository saranno piú che felici di avere qualcuno che guarda e gioca con i loro codici!
A questo punto, sta a te decidere quale ambiente per debug vuoi usare. Noi consilgiamo di evitare setup con GPU, che potrebbero costare assai, lavorare su una CPU puó essere un ottimo punto di partenza per indagare la repository originale e per cominciare a scrivere il codice per 🤗 Transformers. Solo alla fine, quando il modello é stato portato con successo in 🤗 Transformers, allora si potrá verificare il suo funzionamento su GPU.
In generale ci sono due possibili ambienti di debug per il testare il modello originale:
- [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb)
- Scripts locali in Python
Il vantaggio dei Jupyter notebooks é la possibilità di eseguire cella per cella, il che può essere utile per decomporre tutte le componenti logiche, cosi da a vere un ciclo di debug più rapido, siccome si possono salvare i risultati da steps intermedi. Inoltre, i notebooks spesso sono molto facili da condividere con altri contributors, il che può essere molto utile se vuoi chiedere aiuto al team di Hugging Face. Se sei famigliare con Jupyter notebooks allora racommandiamo di lavorare in questa maniera.
Ovviamente se non siete abituati a lavorare con i notebook, questo può essere uno svantaggio nell'usare questa tecnologia, sprecando un sacco di tempo per setup e portare tutto al nuovo ambiente, siccome non potreste neanche usare dei tools di debug come `ipdb`.
Per ogni pratica code-base, é sempre meglio come primo step caricare un **piccolo** checkpoint pretrained e cercare di riprodurre un singolo forward pass usando un vettore fittizio di IDs fatti da numeri interi. Un esempio per uno script simile, in pseudocodice é:
```python
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids
original_output = model.predict(input_ids)
```
Per quanto riguarda la strategia di debugging, si può scegliere tra:
- Decomporre il modello originario in piccole componenenti e testare ognuna di esse
- Decomporre il modello originario nel *tokenizer* originale e nel *modello* originale, testare un forward pass su questi,
e usare dei print statement o breakpoints intermedi per verificare
Ancora una volta, siete liberi di scegliere quale strategia sia ottimale per voi. Spesso una strategia é piu
avvantaggiosa di un'altra, ma tutto dipende dall'code-base originario.
Se il code-base vi permette di decomporre il modello in piccole sub-componenenti, *per esempio* se il code-base
originario può essere facilmente testato in eager mode, allora vale la pena effettuare un debugging di questo genere.
Ricordate che ci sono dei vantaggi nel decidere di prendere la strada piu impegnativa sin da subito:
- negli stage piu finali, quando bisognerà comparare il modello originario all'implementazione in Hugging Face, potrete verificare
automaticamente ogni componente, individualmente, di modo che ci sia una corrispondenza 1:1
- avrete l'opportunità di decomporre un problema molto grande in piccoli passi, così da strutturare meglio il vostro lavoro
- separare il modello in componenti logiche vi aiuterà ad avere un'ottima overview sul design del modello, quindi una migliore
comprensione del modello stesso
- verso gli stage finali i test fatti componente per componente vi aiuterà ad essere sicuri di non andare avanti e indietro
nell'implementazione, così da continuare la modifica del codice senza interruzione
Un ottimo esempio di come questo può essere fatto é dato da [Lysandre](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed)
per il modello ELECTRA
Tuttavia, se il code-base originale é molto complesso o le componenti intermedie possono essere testate solo in tramite
compilazione, potrebbe richiedere parecchio tempo o addirittura essere impossibile separare il modello in piccole sotto-componenti.
Un buon esempio é [MeshTensorFlow di T5](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow). Questa libreria
é molto complessa e non offre un metodo semplice di decomposizione in sotto-componenti. Per simili librerie, potrete fare
affidamento ai print statements.
In ogni caso, indipendentemente da quale strategia scegliete, la procedura raccomandata é di cominciare a fare debug dal
primo layer al layer finale.
É consigliato recuperare gli output dai layers, tramite print o sotto-componenti, nel seguente ordine:
1. Recuperare gli IDs di input dati al modello
2. Recuperare i word embeddings
3. Recuperare l'input del primo Transformer layer
4. Recuperare l'output del primo Transformer layer
5. Recuperare l'output dei seguenti `n - 1` Transformer layers
6. Recuperare l'output dell'intero BrandNewBert Model
Gli IDs in input dovrebbero essere un arrary di interi, *per esempio* `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]`
Gli output dei seguenti layer di solito dovrebbero essere degli array di float multi-dimensionali come questo:
```
[[
[-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024],
[-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132],
[-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648],
...,
[-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288],
[-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191],
[-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]],
```
Ci aspettiamo che ogni modello aggiunto a 🤗 Transformers passi con successo un paio di test d'integrazione. Questo
significa che il modello originale e la sua implementazione in 🤗 Transformers abbiano lo stesso output con una precisione
di 0.001! Siccome é normale che lo stesso esatto modello, scritto in librerie diverse, possa dare output leggermente
diversi, la tolleranza accettata é 1e-3 (0.001). Ricordate che i due modelli devono dare output quasi identici. Dunque,
é molto conveniente comparare gli output intermedi di 🤗 Transformers molteplici volte con gli output intermedi del
modello originale di *brand_new_bert*. Di seguito vi diamo alcuni consigli per avere un ambiente di debug il piu efficiente
possibile:
- Trovate la migliore strategia per fare debug dei risultati intermedi. Per esempio, é la repository originale scritta in PyTorch?
Se si, molto probabilmente dovrete dedicare un po' di tempo per scrivere degli script piu lunghi, così da decomporre il
modello originale in piccole sotto-componenti, in modo da poter recuperare i valori intermedi. Oppure, la repo originale
é scritta in Tensorflow 1? Se é così dovrete fare affidamento ai print di Tensorflow [tf.print](https://www.tensorflow.org/api_docs/python/tf/print)
per avere i valori intermedi. Altro caso, la repo é scritta in Jax? Allora assicuratevi che il modello non sia in **jit**
quanto testate il foward pass, *per esempio* controllate [questo link](https://github.com/google/jax/issues/196).
- Usate i più piccoli pretrained checkpoint che potete trovare. Piu piccolo é il checkpoint, piu velocemente sarà il vostro
ciclo di debug. Non é efficiente avere un pretrained model così gigante che per il forward pass impieghi piu di 10 secondi.
Nel caso in cui i checkpoints siano molto grandi, e non si possa trovare di meglio, allora é buona consuetudine ricorrere
a fare un dummy model nel nuovo ambiente, con weights inizializzati random e salvare quei weights per comprare la versione 🤗 Transformers
con il vostro modello
- Accertatevi di usare la via piu semplice per chiamare il forward pass nella repo originale. Sarebbe opportuno trovare
la funzione originaria che chiami **solo** un singolo forward pass, *per esempio* questa funzione spesso viene chiamata
`predict`, `evaluate`, `forward` o `__call__`. Siate sicuri di non fare debug su una funzione che chiami `forward` molteplici
volte, *per esempio* per generare testo, come `autoregressive_sample`, `generate`.
- Cercate di separare la tokenization dal forward pass del modello. Se la repo originaria mostra esempio dove potete dare
come input una stringa, provate a cercare dove nella forward call la stringa viene cambiata in input ids e cominciate il
debug da questo punto. Questo vi garantisce un ottimo punto di partenza per scrivere un piccolo script personale dove dare
gli input al modello, anziche delle stringhe in input.
- Assicuratevi che il debugging **non** sia in training mode. Spesso questo potra il modello a dare degli output random, per
via dei molteplici dropout layers. Assicuratevi che il forward pass nell'ambiente di debug sia **deterministico**, cosicche
i dropout non siano usati. Alternativamente, potete usare *transformers.utils.set_seed* se la vecchia e nuova implementazione
sono nello stesso framework.
La seguente sezione vi da ulteriori dettagli e accorgimenti su come potete fare tutto questo per *brand_new_bert*.
### 5.-14. Trasferire BrandNewBert in 🤗 Transformers
Allora cominciamo ad aggiungere un nuovo codice in 🤗 Transformers. Andate nel vostro fork clone di 🤗 Transformers:
```bash
cd transformers
```
Nel caso speciale in cui stiate aggiungendo un modello, la cui architettura sia identica a una di un modello già esistente,
dovrete solo aggiugnere uno script di conversione, come descritto [qui](#write-a-conversion-script).
In questo caso, potete riutilizzare l'intera architettura del modello gia esistente.
Se questo non é il caso, cominciamo con il generare un nuovo modello. Avrete due opzioni:
- `transformers-cli add-new-model-like` per aggiungere un nuovo modello come uno che gia esiste
- `transformers-cli add-new-model` per aggiungere un nuovo modello da un nostro template (questo assomigliera a BERT o Bart, in base al modello che selezionerete)
In entrambi i casi, l'output vi darà un questionario da riempire con informazioni basi sul modello. Il secondo comando richiede di installare
un `cookiecutter` - maggiori informazioni [qui](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model).
**Aprire una Pull Request in main huggingface/transformers repo**
Prime di cominciare ad adattare il codice automaticamente generato, aprite una nuova PR come "Work in progress (WIP)",
*per esempio* "[WIP] Aggiungere *brand_new_bert*", cosicché il team di Hugging Face possa lavorare al vostro fianco nell'
integrare il modello in 🤗 Transformers.
Questi sarebbero gli step generali da seguire:
1. Creare un branch dal main branch con un nome descrittivo
```bash
git checkout -b add_brand_new_bert
```
2. Commit del codice automaticamente generato
```bash
git add .
git commit
```
3. Fare fetch e rebase del main esistente
```bash
git fetch upstream
git rebase upstream/main
```
4. Push dei cambiamenti al proprio account:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
5. Una volte che siete soddisfatti dei nuovi cambiamenti, andate sulla webpage del vostro fork su GitHub. Cliccate "Pull request".
Assiuratevi di aggiungere alcuni membri di Hugging Face come reviewers, nel riguardo alla destra della pagina della PR, cosicche il team
Hugging Face verrà notificato anche per i futuri cambiamenti.
6. Cambiare la PR a draft, cliccando su "Convert to draft" alla destra della pagina della PR
Da quel punto in poi, ricordate di fare commit di ogni progresso e cambiamento, cosicche venga mostrato nella PR. Inoltre,
ricordatevi di tenere aggiornato il vostro lavoro con il main esistente:
```bash
git fetch upstream
git merge upstream/main
```
In generale, tutte le domande che avrete riguardo al modello o l'implementazione dovranno essere fatte nella vostra PR
e discusse/risolte nella PR stessa. In questa maniera, il team di Hugging Face sarà sempre notificato quando farete commit
di un nuovo codice o se avrete qualche domanda. É molto utile indicare al team di Hugging Face il codice a cui fate riferimento
nella domanda, cosicche il team potra facilmente capire il problema o la domanda.
Per fare questo andate sulla tab "Files changed", dove potrete vedere tutti i vostri cambiamenti al codice, andate sulla linea
dove volete chiedere una domanda, e cliccate sul simbolo "+" per aggiungere un commento. Ogni volta che una domanda o problema
é stato risolto, cliccate sul bottone "Resolve".
In questa stessa maniera, Hugging Face aprirà domande o commenti nel rivedere il vostro codice. Mi raccomando, chiedete più
domande possibili nella pagina della vostra PR. Se avete domande molto generali, non molto utili per il pubblico, siete liberi
di chiedere al team Hugging Face direttamente su slack o email.
**5. Adattare i codici per brand_new_bert**
Per prima cosa, ci focalizzeremo sul modello e non sui tokenizer. Tutto il codice relative dovrebbe trovarsi in
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` e
`src/transformers/models/brand_new_bert/configuration_brand_new_bert.py`.
Ora potete finalmente cominciare il codice :). Il codice generato in
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` avrà sia la stessa architettura di BERT se é un
modello encoder-only o BART se é encoder-decoder. A questo punto, ricordatevi cio che avete imparato all'inizio, riguardo
agli aspetti teorici del modello: *In che maniera il modello che sto implmementando é diverso da BERT o BART?*. Implementare
questi cambi spesso vuol dire cambiare il layer *self-attention*, l'ordine dei layer di normalizzazione e così via...
Ancora una volta ripetiamo, é molto utile vedere architetture simili di modelli gia esistenti in Transformers per avere
un'idea migliore su come implementare il modello.
**Notate** che a questo punto non dovete avere subito un codice tutto corretto o pulito. Piuttosto, é consigliato cominciare con un
codice poco pulito, con copia-incolla del codice originale in `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py`
fino a che non avrete tutto il codice necessario. In base alla nostra esperienza, é molto meglio aggiungere una prima bozza
del codice richiesto e poi correggere e migliorare iterativamente. L'unica cosa essenziale che deve funzionare qui é la seguente
instanza:
```python
from transformers import BrandNewBertModel, BrandNewBertConfig
model = BrandNewBertModel(BrandNewBertConfig())
```
Questo comando creerà un modello con i parametri di default definiti in `BrandNewBergConfig()` e weights random. Questo garantisce
che `init()` di tutte le componenti funzioni correttamente.
**6. Scrivere uno script di conversione**
Il prossimo step é scrivere uno script per convertire il checkpoint che avete usato per fare debug su *brand_new_berts* nella
repo originale in un checkpoint per la nuova implementazione di *brand_new_bert* in 🤗 Transformers. Non é consigliato scrivere
lo script di conversione da zero, ma piuttosto cercate e guardate script gia esistenti in 🤗 Transformers, così da trovarne
uno simile al vostro modello. Di solito basta fare una copia di uno script gia esistente e adattarlo al vostro caso.
Non esistate a chiedre al team di Hugging Face a riguardo.
- Se state convertendo un modello da TensorFlow a PyTorch, un ottimo inizio é vedere [questo script di conversione per BERT](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91)
- Se state convertendo un modello da PyTorch a PyTorch, [lo script di conversione di BART può esservi utile](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
Qui di seguito spiegheremo come i modelli PyTorch salvano i weights per ogni layer e come i nomi dei layer sono definiti. In PyTorch,
il nomde del layer é definito dal nome della class attribute che date al layer. Definiamo un modello dummy in PyTorch,
chiamato `SimpleModel`:
```python
from torch import nn
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.dense = nn.Linear(10, 10)
self.intermediate = nn.Linear(10, 10)
self.layer_norm = nn.LayerNorm(10)
```
Ora possiamo creare un'instanza di questa definizione di modo da inizializzare a random weights: `dense`, `intermediate`, `layer_norm`.
Possiamo usare print per vedere l'architettura del modello:
```python
model = SimpleModel()
print(model)
```
Da cui si ottiene:
```
SimpleModel(
(dense): Linear(in_features=10, out_features=10, bias=True)
(intermediate): Linear(in_features=10, out_features=10, bias=True)
(layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True)
)
```
Si può vedere come i nomi dei layers siano definiti dal nome della class attribute in PyTorch. I valori dei weights di uno
specifico layer possono essere visualizzati:
```python
print(model.dense.weight.data)
```
ad esempio:
```
tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212,
-0.2077, 0.2157],
[ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190,
0.2166, -0.0212],
[-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950,
-0.1023, -0.0447],
[-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415,
-0.1876, -0.2467],
[ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465,
0.2577, 0.0402],
[ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604,
0.2132, 0.1680],
[ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090,
0.2707, -0.2509],
[-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407,
0.1829, -0.1568],
[-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923,
0.0333, -0.0536],
[-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739,
0.2220, 0.2358]]).
```
Nello script di conversione, dovreste riempire quei valori di inizializzazione random con gli stessi weights del corrispondente
layer nel checkpoint. *Per esempio*
```python
# retrieve matching layer weights, e.g. by
# recursive algorithm
layer_name = "dense"
pretrained_weight = array_of_dense_layer
model_pointer = getattr(model, "dense")
model_pointer.weight.data = torch.from_numpy(pretrained_weight)
```
Così facendo, dovete verificare che ogni inizializzazione random di un peso del modello PyTorch e il suo corrispondente peso nel pretrained checkpoint
siano esattamente gli stessi e uguali in **dimensione/shape e nome**. Per fare questo, é **necessario** aggiungere un `assert`
per la dimensione/shape e nome:
```python
assert (
model_pointer.weight.shape == pretrained_weight.shape
), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched"
```
Inoltre, dovrete fare il print sia dei nomi che dei weights per essere sicuri che siano gli stessi:
```python
logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}")
```
Se la dimensione o il nome non sono uguali, probabilmente avete sbagliato ad assegnare il peso nel checkpoint o nel layer costrutture di
🤗 Transformers.
Una dimensione sbagliata può essere dovuta ad un errore nei parameteri in `BrandNewBertConfig()`. Tuttavia, può essere anche
che l'implementazione del layer in PyTorch richieda di fare una transposizione della matrice dei weights.
Infine, controllate **tutti** che tutti i weights inizializzati e fate print di tutti i weights del checkpoint che non sono stati
usati per l'inizializzazione, di modo da essere sicuri che il modello sia correttamente convertito. É normale che ci siano
errori nel test di conversione, fai per un errore in `BrandNewBertConfig()`, o un errore nell'architettura in 🤗 Transformers,
o un bug in `init()`.
Questo step dev'essere fatto tramite iterazioni fino a che non si raggiungano gli stessi valori per i weights. Una volta che
il checkpoint é stato correttamente caricato in 🤗 Transformers, potete salvare il modello in una cartella di vostra scelta
`/path/to/converted/checkpoint/folder` che contenga sia
`pytorch_model.bin` che `config.json`:
```python
model.save_pretrained("/path/to/converted/checkpoint/folder")
```
**7. Implementare il forward pass**
Una volta che i weights pretrained sono stati correttamente caricati in 🤗 Transformers, dovrete assicurarvi che il forward pass
sia correttamente implementato. [Qui](#provare-un-pretrained-checkpoint-usando-la-repo-originale), avete give creato e provato
uno script che testi il forward pass del modello usando la repo originaria. Ora dovrete fare lo stesso con uno script analogo
usando l'implementazione in 🤗 Transformers anziché l'originale. Piu o meno lo script dovrebbe essere:
```python
model = BrandNewBertModel.from_pretrained("/path/to/converted/checkpoint/folder")
input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]
output = model(input_ids).last_hidden_states
```
Di solito l'output da 🤗 Transformers non é uguale uguale all'output originario, sopratto la prima volta. Non vi abbattete -
é normale! Prima di tutto assicuratevi che non ci siano errori o che non vengano segnalati degli errori nella forward pass.
Spesso capita che ci siano dimensioni sbagliate o data type sbagliati, *ad esempio* `torch.long` anziche `torch.float32`.
Non esistate a chiedere al team Hugging Face!
Nella parte finale assicuratevi che l'implementazione 🤗 Transformers funzioni correttamente cosi da testare che gli output
siano equivalenti a una precisione di `1e-3`. Controllate che `outputs.shape` siano le stesse tra 🤗 Transformers e l'implementazione
originaria. Poi, controllate che i valori in output siano identici. Questa é sicuramente la parte più difficile, qui una serie
di errori comuni quando gli output non sono uguali:
- Alcuni layers non sono stati aggiunti, *ad esempio* un *activation* layer non é stato aggiunto, o ci si é scordati di una connessione
- La matrice del word embedding non é stata ripareggiata
- Ci sono degli embeddings posizionali sbagliati perché l'implementazione originaria ha un offset
- Il dropout é in azione durante il forward pass. Per sistemare questo errore controllate che *model.training = False* e che
il dropout non sia stato attivato nel forward pass, * per esempio * passate *self.training* a [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout)
La miglior maniera per sistemare il problema é di vedere all'implementazione originaria del forward pass e in 🤗 Transformers
fianco a fianco e vedere se ci sono delle differenze. In teoria, con debug e print degli output intermedie di entrambe le
implementazioni nel forward pass nell'esatta posizione del network dovrebbe aiutarvi a vedere dove ci sono differenze tra
i due frameworks. Come prima mossa controllate che `input_ids` siano identici in entrambi gli scripts. Da lì andate fino
all'ultimo layer. Potrete notare una differenza tra le due implementazioni a quel punto.
Una volta che lo stesso output é stato ragguingi, verificate gli output con `torch.allclose(original_output, output, atol=1e-3)`.
A questo punto se é tutto a posto: complimenti! Le parti seguenti saranno una passeggiata 😊.
**8. Aggiungere i test necessari per il modello**
A questo punto avete aggiunto con successo il vostro nuovo modello. Tuttavia, é molto probabile che il modello non sia
del tutto ok con il design richiesto. Per essere sicuri che l'implementazione sia consona e compatibile con 🤗 Transformers é
necessario implementare dei tests. Il Cookiecutter dovrebbe fornire automaticamente dei file per test per il vostro modello,
di solito nella folder `tests/test_modeling_brand_new_bert.py`. Provate questo per verificare l'ok nei test piu comuni:
```bash
pytest tests/test_modeling_brand_new_bert.py
```
Una volta sistemati i test comuni, bisogna assicurarsi che il vostro lavoro sia correttamente testato cosicchè:
- a) La community puo capire in maniera semplice il vostro lavoro controllando tests specifici del modello *brand_new_bert*,
- b) Implementazioni future del vostro modello non rompano alcune feature importante del modello.
Per prima cosa agguingete dei test d'integrazione. Questi sono essenziali perche fanno la stessa funzione degli scripts di
debug usati precedentemente. Un template per questi tests esiste gia nel Cookiecutter ed é sotto il nome di `BrandNewBertModelIntegrationTests`,
voi dovrete solo completarlo. Una volta che questi tests sono OK, provate:
```bash
RUN_SLOW=1 pytest -sv tests/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
```
<Tip>
Nel caso siate su Windows, sostituite `RUN_SLOW=1` con `SET RUN_SLOW=1`
</Tip>
Di seguito, tutte le features che sono utili e necessarire per *brand_new_bert* devono essere testate in test separati,
contenuti in `BrandNewBertModelTester`/ `BrandNewBertModelTest`. spesso la gente si scorda questi test, ma ricordate che sono utili per:
- Aiuta gli utenti a capire il vostro codice meglio, richiamando l'attenzione su queste nuove features
- Developers e contributors futuri potranno velocemente testare nuove implementazioni del modello testanto questi casi speciali.
**9. Implementare il tokenizer**
A questo punto avremo bisogno un tokenizer per *brand_new_bert*. Di solito il tokenizer é uguale ad altri modelli in 🤗 Transformers.
É importante che troviate il file con il tokenizer originale e che lo carichiate in 🤗 Transformers.
Per controllare che il tokenizer funzioni in modo corretto, create uno script nella repo originaria che riceva come input
una stringa e ritorni gli `input_ids`. Piu o meno questo potrebbe essere il codice:
```python
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = model.tokenize(input_str)
```
Potrebbe richiedere un po' di tempo, ma guardate ancora alla repo originaria per trovare la funzione corretta del tokenizer.
A volte capita di dover riscrivere il tokenizer nella repo originaria, di modo da avere come output gli `input_ids`.
A quel punto uno script analogo é necessario in 🤗 Transformers:
```python
from transformers import BrandNewBertTokenizer
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
tokenizer = BrandNewBertTokenizer.from_pretrained("/path/to/tokenizer/folder/")
input_ids = tokenizer(input_str).input_ids
```
Una volta che `input_ids` sono uguali, bisogna aggiungere un test per il tokenizer.
Il file test per tokenizer di *brand_new_brand* dovrebbe avere un paio di hard-coded test d'integrazione.
**10. Test end-to-end**
Ora che avete il tokenizer, dovrete aggiungere dei test d'integrazione per l'intero workflow in `tests/test_modeling_brand_new_bert.py` in 🤗 Transformer.
Questi test devono mostrare che un significante campione text-to-text funzioni come ci si aspetta nell'implementazione di 🤗 Transformers.
*Per esempio* potreste usare dei source-to-target-translation, o un sommario di un articolo, o un domanda-risposta e cosi via.
Se nessuno dei checkpoints é stato ultra parametrizzato per task simili, allora i tests per il modello sono piu che sufficienti.
Nello step finale dovete assicurarvi che il modello sia totalmente funzionale, e consigliamo anche di provare a testare su GPU.
Puo succedere che ci si scordi un `.to(self.device)` ad esempio. Se non avete accesso a GPU, il team Hugging Face puo provvedere
a testare questo aspetto per voi.
**11. Aggiungere una Docstring**
Siete quasi alla fine! L'ultima cosa rimasta é avere una bella docstring e una pagina doc. Il Cookiecutter dovrebbe provvedere già
un template chiamato `docs/source/model_doc/brand_new_bert.rst`, che dovrete compilare. La prima cosa che un utente farà
per usare il vostro modello sarà dare una bella lettura al doc. Quindi proponete una documentazione chiara e concisa. É molto
utile per la community avere anche delle *Tips* per mostrare come il modello puo' essere usato. Non esitate a chiedere a Hugging Face
riguardo alle docstirng.
Quindi, assicuratevi che la docstring sia stata aggiunta a `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py`.
Assicuratevi che la docstring sia corretta e che includa tutti i necessari input e output. Abbiamo una guida dettagliata per
scrivere la documentazione e docstring.
**Rifattorizzare il codice**
Perfetto! Ora che abbiamo tutto per *brand_new_bert* controllate che lo stile del codice sia ok:
```bash
make style
```
E che il codice passi i quality check:
```bash
make quality
```
A volte capita che manchino delle informazioninella docstring o alcuni nomi sbagliati, questo farà fallire i tests sopra.
Ripetiamo: chiedete pure a Hugging Face, saremo lieti di aiutarvi.
Per ultimo, fare del refactoring del codice una volta che é stato creato.
Avete finito con il codice, congratulazioni! 🎉 Siete fantasticiiiiiii! 😎
**12. Caricare il modello sul model hub**
In questa ultima parte dovrete convertire e caricare il modello, con tutti i checkpoints, nel model hub e aggiungere una
model card per ogni checkpoint caricato. Leggete la nostra guida [Model sharing and uploading Page](model_sharing) per
avere familiarità con l'hub. Di solito in questa parte lavorate a fianco di Hugging face per decidere un nome che sia ok
per ogni checkpoint, per ottenere i permessi necessari per caricare il modello nell'organizzazione dell'autore di *brand_new_bert*.
Il metodo `push_to_hub`, presente in tutti i modelli `transformers`, é una maniera rapida e indolore per caricare il vostro checkpoint sull'hub:
```python
brand_new_bert.push_to_hub(
repo_path_or_name="brand_new_bert",
# Uncomment the following line to push to an organization
# organization="<ORGANIZATION>",
commit_message="Add model",
use_temp_dir=True,
)
```
Vale la pena spendere un po' di tempo per creare una model card ad-hoc per ogni checkpoint. Le model cards dovrebbero
suggerire le caratteristiche specifiche del checkpoint, *per esempio* su che dataset il checkpoint é stato pretrained o fine-tuned.
O che su che genere di task il modello lavoro? E anche buona pratica includere del codice su come usare il modello correttamente.
**13. (Opzionale) Aggiungere un notebook**
É molto utile aggiungere un notebook, che dimostri in dettaglio come *brand_new_bert* si utilizzi per fare inferenza e/o
fine-tuned su specifiche task. Non é una cosa obbligatoria da avere nella vostra PR, ma é molto utile per la community.
**14. Sottomettere la PR**
L'ultimissimo step! Ovvero il merge della PR nel main. Di solito il team Hugging face a questo punto vi avrà gia aiutato,
ma é ok prendere un po' di tempo per pulire la descirzione e commenti nel codice.
### Condividete il vostro lavoro!!
É ora tempo di prendere un po' di credito dalla communità per il vostro lavoro! Caricare e implementare un nuovo modello
é un grandissimo contributo per Transformers e l'intera community NLP. Il codice e la conversione dei modelli pre-trained sara
sicuramente utilizzato da centinaia o migliaia di sviluppatori e ricercatori. Siate fieri e orgogliosi di condividere il vostro
traguardo con l'intera community :)
** Avete create un altro modello che é super facile da usare per tutti quanti nella community! 🤯**
| transformers/docs/source/it/add_new_model.md/0 | {
"file_path": "transformers/docs/source/it/add_new_model.md",
"repo_id": "transformers",
"token_count": 17329
} | 242 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Inferenza Efficiente su GPU Multiple
Questo documento contiene informazioni su come fare inferenza in maniera efficiente su GPU multiple.
<Tip>
Nota: Un setup con GPU multiple può utilizzare la maggior parte delle strategie descritte nella [sezione con GPU singola](./perf_infer_gpu_one). Tuttavia, è necessario conoscere delle tecniche semplici che possono essere utilizzate per un risultato migliore.
</Tip>
## `BetterTransformer` per inferenza più rapida
Abbiamo recentemente integrato `BetterTransformer` per inferenza più rapida su multi-GPU per modelli su testo, immagini e audio. Controlla il documento con queste integrazioni [qui](https://huggingface.co/docs/optimum/bettertransformer/overview) per maggiori dettagli.
| transformers/docs/source/it/perf_infer_gpu_many.md/0 | {
"file_path": "transformers/docs/source/it/perf_infer_gpu_many.md",
"repo_id": "transformers",
"token_count": 420
} | 243 |
<!--
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ このファイルはMarkdown形式ですが、特定の文法が含まれており、通常のMarkdownビューアーでは正しく表示されない場合があります。
-->
# How to add a model to 🤗 Transformers?
🤗 Transformersライブラリは、コミュニティの貢献者のおかげで新しいモデルを提供できることがよくあります。
しかし、これは難しいプロジェクトであり、🤗 Transformersライブラリと実装するモデルについての深い知識が必要です。
Hugging Faceでは、コミュニティの多くの人々に積極的にモデルを追加する力を与えようと努力しており、
このガイドをまとめて、PyTorchモデルを追加するプロセスを説明します([PyTorchがインストールされていることを確認してください](https://pytorch.org/get-started/locally/))。
<Tip>
TensorFlowモデルを実装する興味がある場合は、[🤗 TransformersモデルをTensorFlowに変換する方法](add_tensorflow_model)ガイドを参照してみてください!
</Tip>
この過程で、以下のことを学びます:
- オープンソースのベストプラクティスに関する洞察
- 最も人気のある深層学習ライブラリの設計原則を理解する
- 大規模なモデルを効率的にテストする方法を学ぶ
- `black`、`ruff`、および`make fix-copies`などのPythonユーティリティを統合して、クリーンで読みやすいコードを確保する方法を学ぶ
Hugging Faceチームのメンバーがサポートを提供するので、一人ぼっちになることはありません。 🤗 ❤️
さあ、始めましょう!🤗 Transformersで見たいモデルについての[New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml)のイシューを開いてください。
特定のモデルを提供することに特にこだわりがない場合、[New model label](https://github.com/huggingface/transformers/labels/New%20model)で未割り当てのモデルリクエストがあるかどうかを確認して、それに取り組むことができます。
新しいモデルリクエストを開いたら、最初のステップは🤗 Transformersをよく理解することです!
## General overview of 🤗 Transformers
まず、🤗 Transformersの一般的な概要を把握する必要があります。🤗 Transformersは非常に意見が分かれるライブラリですので、
ライブラリの哲学や設計選択について同意できない可能性があります。ただし、私たちの経験から、ライブラリの基本的な設計選択と哲学は、
🤗 Transformersを効率的にスケーリングし、適切なレベルで保守コストを抑えるために不可欠です。
ライブラリの理解を深めるための良い出発点は、[哲学のドキュメント](philosophy)を読むことです。
私たちの作業方法の結果、すべてのモデルに適用しようとするいくつかの選択肢があります:
- 一般的に、抽象化よりも構成が優先されます。
- コードの重複は、読みやすさやアクセス可能性を大幅に向上させる場合、必ずしも悪いわけではありません。
- モデルファイルはできるだけ自己完結的であるべきで、特定のモデルのコードを読む際には、理想的には該当する`modeling_....py`ファイルのみを見る必要があります。
私たちの意見では、このライブラリのコードは単なる製品を提供する手段だけでなく、*例えば、推論のためにBERTを使用する能力*などの製品そのもの.
### Overview of models
モデルを正常に追加するためには、モデルとその設定、[`PreTrainedModel`]、および[`PretrainedConfig`]の相互作用を理解することが重要です。
例示的な目的で、🤗 Transformersに追加するモデルを「BrandNewBert」と呼びます。
以下をご覧ください:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png"/>
ご覧のように、🤗 Transformersでは継承を使用していますが、抽象化のレベルを最小限に保っています。
ライブラリ内のどのモデルにも、抽象化のレベルが2つを超えることはありません。
`BrandNewBertModel` は `BrandNewBertPreTrainedModel` を継承し、さらに[`PreTrainedModel`]を継承しています。
これだけです。
一般的なルールとして、新しいモデルは[`PreTrainedModel`]にのみ依存するようにしたいと考えています。
すべての新しいモデルに自動的に提供される重要な機能は、[`~PreTrainedModel.from_pretrained`]および
[`~PreTrainedModel.save_pretrained`]です。
これらはシリアライゼーションとデシリアライゼーションに使用されます。
`BrandNewBertModel.forward`などの他の重要な機能は、新しい「modeling_brand_new_bert.py」スクリプトで完全に定義されるべきです。
次に、特定のヘッドレイヤーを持つモデル(たとえば `BrandNewBertForMaskedLM` )が `BrandNewBertModel` を継承するのではなく、
抽象化のレベルを低く保つために、そのフォワードパスで `BrandNewBertModel` を呼び出すコンポーネントとして使用されるようにしたいと考えています。
新しいモデルには常に `BrandNewBertConfig` という設定クラスが必要です。この設定は常に[`PreTrainedModel`]の属性として保存され、
したがって、`BrandNewBertPreTrainedModel`から継承するすべてのクラスで`config`属性を介してアクセスできます。
```python
model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert")
model.config # model has access to its config
```
モデルと同様に、設定は[`PretrainedConfig`]から基本的なシリアル化および逆シリアル化の機能を継承しています。注意すべきは、設定とモデルは常に2つの異なる形式にシリアル化されることです - モデルは*pytorch_model.bin*ファイルに、設定は*config.json*ファイルにシリアル化されます。[`~PreTrainedModel.save_pretrained`]を呼び出すと、自動的に[`~PretrainedConfig.save_pretrained`]も呼び出され、モデルと設定の両方が保存されます。
### Code style
新しいモデルをコーディングする際には、Transformersは意見があるライブラリであり、コードの書き方に関していくつかの独自の考え方があります :-)
1. モデルのフォワードパスはモデリングファイルに完全に記述され、ライブラリ内の他のモデルとは完全に独立している必要があります。他のモデルからブロックを再利用したい場合、コードをコピーしてトップに`# Copied from`コメントを付けて貼り付けます(良い例は[こちら](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)、コピーに関する詳細なドキュメンテーションは[ここ](pr_checks#check-copies)を参照してください)。
2. コードは完全に理解可能でなければなりません。これは記述的な変数名を選択し、省略形を避けるべきであることを意味します。例えば、`act`ではなく`activation`が好まれます。1文字の変数名は、forループ内のインデックスでない限り、強く非推奨です。
3. より一般的に、魔法のような短いコードよりも長くて明示的なコードを好みます。
4. PyTorchでは`nn.Sequential`をサブクラス化せずに、`nn.Module`をサブクラス化し、フォワードパスを記述し、コードを使用する他の人が簡単にデバッグできるようにします。プリントステートメントやブレークポイントを追加してデバッグできるようにします。
5. 関数のシグネチャは型アノテーションを付けるべきです。その他の部分に関しては、型アノテーションよりも良い変数名が読みやすく理解しやすいことがあります。
### Overview of tokenizers
まだ完了していません :-( このセクションは近日中に追加されます!
## Step-by-step recipe to add a model to 🤗 Transformers
モデルを追加する方法は人それぞれ異なるため、他のコントリビューターが🤗 Transformersにモデルを追加する際の要約を確認することが非常に役立つ場合があります。以下は、他のコントリビューターが🤗 Transformersにモデルをポートする際のコミュニティブログ投稿のリストです。
1. [GPT2モデルのポーティング](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) by [Thomas](https://huggingface.co/thomwolf)
2. [WMT19 MTモデルのポーティング](https://huggingface.co/blog/porting-fsmt) by [Stas](https://huggingface.co/stas)
経験から言えることは、モデルを追加する際に最も重要なことは次のようになります:
- 車輪の再発明をしないでください!新しい🤗 Transformersモデルのために追加するコードのほとんどはすでに🤗 Transformers内のどこかに存在しています。類似した既存のモデルやトークナイザを見つけるために、いくつかの時間をかけて探すことが重要です。[grep](https://www.gnu.org/software/grep/)と[rg](https://github.com/BurntSushi/ripgrep)はあなたの友達です。モデルのトークナイザは1つのモデル実装に基づいているかもしれませんが、モデルのモデリングコードは別の実装に基づいていることがあることに注意してください。例えば、FSMTのモデリングコードはBARTに基づいており、FSMTのトークナイザコードはXLMに基づいています。
- これは科学的な課題よりもエンジニアリングの課題です。モデルの論文の理論的な側面をすべて理解しようとするよりも、効率的なデバッグ環境を作成するために時間を費やすべきです。
- 行き詰まった場合は助けを求めてください!モデルは🤗 Transformersのコアコンポーネントであり、Hugging Faceではモデルを追加するための各ステップでお手伝いするのを喜んでいます。進行がないことに気付いた場合は、進展していないことを気にしないでください。
以下では、🤗 Transformersにモデルをポートする際に最も役立つと考えられる一般的なレシピを提供しようとしています。
次のリストは、モデルを追加するために行う必要があるすべてのことの要約であり、To-Doリストとして使用できます:
- ☐ (オプション)モデルの理論的な側面を理解しました
- ☐ 🤗 Transformersの開発環境を準備しました
- ☐ オリジナルのリポジトリのデバッグ環境をセットアップしました
- ☐ `forward()` パスをオリジナルのリポジトリとチェックポイントで正常に実行するスクリプトを作成しました
- ☐ モデルの骨格を🤗 Transformersに正常に追加しました
- ☐ オリジナルのチェックポイントを🤗 Transformersのチェックポイントに正常に変換しました
- ☐ 🤗 Transformersで実行される `forward()` パスを正常に実行し、オリジナルのチェックポイントと同一の出力を得ました
- ☐ 🤗 Transformersでのモデルテストを完了しました
- ☐ 🤗 Transformersにトークナイザを正常に追加しました
- ☐ エンドツーエンドの統合テストを実行しました
- ☐ ドキュメントを完成させました
- ☐ モデルのウェイトをHubにアップロードしました
- ☐ プルリクエストを提出しました
- ☐ (オプション)デモノートブックを追加しました
まず、通常、`BrandNewBert`の理論的な理解を深めることをお勧めします。
ただし、もしモデルの理論的な側面を「実務中に理解する」方が好ましい場合、`BrandNewBert`のコードベースに直接アクセスするのも問題ありません。
このオプションは、エンジニアリングのスキルが理論的なスキルよりも優れている場合、
`BrandNewBert`の論文を理解するのに苦労している場合、または科学的な論文を読むよりもプログラミングを楽しんでいる場合に適しています。
### 1. (Optional) Theoretical aspects of BrandNewBert
BrandNewBertの論文がある場合、その説明を読むための時間を取るべきです。論文の中には理解が難しい部分があるかもしれません。
その場合でも心配しないでください。目標は論文の深い理論的理解を得ることではなく、
🤗 Transformersでモデルを効果的に再実装するために必要な情報を抽出することです。
ただし、理論的な側面にあまり多くの時間をかける必要はありません。代わりに、実践的な側面に焦点を当てましょう。具体的には次の点です:
- *brand_new_bert*はどの種類のモデルですか? BERTのようなエンコーダーのみのモデルですか? GPT2のようなデコーダーのみのモデルですか? BARTのようなエンコーダー-デコーダーモデルですか?
[model_summary](model_summary)を参照して、これらの違いについて詳しく知りたい場合があります。
- *brand_new_bert*の応用分野は何ですか? テキスト分類ですか? テキスト生成ですか? Seq2Seqタスク、例えば要約ですか?
- モデルをBERT/GPT-2/BARTとは異なるものにする新しい機能は何ですか?
- 既存の[🤗 Transformersモデル](https://huggingface.co/transformers/#contents)の中で*brand_new_bert*に最も似ているモデルはどれですか?
- 使用されているトークナイザの種類は何ですか? SentencePieceトークナイザですか? WordPieceトークナイザですか? BERTやBARTで使用されているトークナイザと同じですか?
モデルのアーキテクチャの良い概要を得たと感じたら、Hugging Faceチームに質問を送ることができます。
これにはモデルのアーキテクチャ、注意層などに関する質問が含まれるかもしれません。
私たちは喜んでお手伝いします。
### 2. Next prepare your environment
1. リポジトリのページで「Fork」ボタンをクリックして、[リポジトリ](https://github.com/huggingface/transformers)をフォークします。
これにより、コードのコピーがGitHubユーザーアカウントの下に作成されます。
2. ローカルディスクにある`transformers`フォークをクローンし、ベースリポジトリをリモートとして追加します:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
3. 開発環境をセットアップするために、次のコマンドを実行してください:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
お使いのOSに応じて、およびTransformersのオプションの依存関係の数が増えているため、このコマンドでエラーが発生する可能性があります。
その場合は、作業しているDeep Learningフレームワーク(PyTorch、TensorFlow、および/またはFlax)をインストールし、次の手順を実行してください:
```bash
pip install -e ".[quality]"
```
これはほとんどのユースケースには十分であるはずです。その後、親ディレクトリに戻ることができます。
```bash
cd ..
```
4. Transformersに*brand_new_bert*のPyTorchバージョンを追加することをお勧めします。PyTorchをインストールするには、
https://pytorch.org/get-started/locally/ の指示に従ってください。
**注意:** CUDAをインストールする必要はありません。新しいモデルをCPUで動作させることで十分です。
5. *brand_new_bert*を移植するには、元のリポジトリへのアクセスも必要です。
```bash
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
cd brand_new_bert
pip install -e .
```
*brand_new_bert*を🤗 Transformersにポートするための開発環境を設定しました。
### 3.-4. Run a pretrained checkpoint using the original repository
最初に、オリジナルの*brand_new_bert*リポジトリで作業します。通常、オリジナルの実装は非常に「研究的」であり、ドキュメンテーションが不足していたり、コードが理解しにくいことがあります。しかし、これが*brand_new_bert*を再実装する動機となるべきです。Hugging Faceでは、主要な目標の1つが、動作するモデルを取り、それをできるだけ**アクセス可能でユーザーフレンドリーで美しい**ものに書き直すことです。これは、🤗 Transformersにモデルを再実装する最も重要な動機です - 複雑な新しいNLP技術を**誰にでも**アクセス可能にしようとする試みです。
まず、オリジナルのリポジトリに入り込むことから始めるべきです。
公式の事前学習済みモデルをオリジナルのリポジトリで正常に実行することは、通常、**最も困難な**ステップです。
私たちの経験から、オリジナルのコードベースに慣れるのに時間をかけることが非常に重要です。以下のことを理解する必要があります:
- 事前学習済みの重みをどこで見つけるか?
- 対応するモデルに事前学習済みの重みをロードする方法は?
- モデルから独立してトークナイザを実行する方法は?
- 1つのフォワードパスを追跡して、単純なフォワードパスに必要なクラスと関数がわかるようにします。通常、これらの関数だけを再実装する必要があります。
- モデルの重要なコンポーネントを特定できること:モデルのクラスはどこにありますか?モデルのサブクラス、*例* EncoderModel、DecoderModelがありますか?自己注意レイヤーはどこにありますか?複数の異なる注意レイヤー、*例* *自己注意*、*クロスアテンション*などが存在しますか?
- オリジナルのリポジトリの環境でモデルをデバッグする方法は?*print*ステートメントを追加する必要があるか、*ipdb*のような対話型デバッガを使用できるか、PyCharmのような効率的なIDEを使用してモデルをデバッグする必要がありますか?
重要なのは、ポーティングプロセスを開始する前に、オリジナルのリポジトリでコードを**効率的に**デバッグできることです!また、これはオープンソースライブラリで作業していることを覚えておいてください。オリジナルのリポジトリでコードを調べる誰かを歓迎するために、問題をオープンにしたり、プルリクエストを送信したりすることをためらわないでください。このリポジトリのメンテナーは、彼らのコードを調べてくれる人に対して非常に喜んでいる可能性が高いです!
この段階では、オリジナルのモデルのデバッグにどのような環境と戦略を使用するかは、あなた次第です。最初にオリジナルのリポジトリに関するコードをデバッグできることが非常に重要です。また、GPU環境をセットアップすることはお勧めしません。まず、CPU上で作業し、モデルがすでに🤗 Transformersに正常にポートされていることを確認します。最後に、モデルがGPU上でも期待通りに動作するかどうかを検証する必要があります。
一般的に、オリジナルのモデルを実行するための2つのデバッグ環境があります:
- [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb)
- ローカルなPythonスクリプト。
Jupyterノートブックは、セルごとに実行できるため、論理的なコンポーネントをより分割し、中間結果を保存できるため、デバッグサイクルが速くなるという利点があります。また、ノートブックは他の共同作業者と簡単に共有できることが多く、Hugging Faceチームに助けを求める場合に非常に役立つ場合があります。Jupyterノートブックに精通している場合、それ
```python
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids
original_output = model.predict(input_ids)
```
デバッグ戦略については、通常、いくつかの選択肢があります:
- 元のモデルを多くの小さなテスト可能なコンポーネントに分解し、それぞれに対して前方パスを実行して検証します
- 元のモデルを元のトークナイザと元のモデルにのみ分解し、それらに対して前方パスを実行し、検証のために中間のプリントステートメントまたはブレークポイントを使用します
再度、どの戦略を選択するかはあなた次第です。元のコードベースに依存することが多く、元のコードベースに応じて一方または他方が有利なことがあります。
元のコードベースがモデルを小さなサブコンポーネントに分解できる場合、*例えば*元のコードベースが簡単にイーガーモードで実行できる場合、それを行う価値が通常あります。最初からより難しい方法を選択することにはいくつかの重要な利点があります:
- 後で元のモデルを🤗 Transformersの実装と比較する際に、各コンポーネントが対応する🤗 Transformers実装のコンポーネントと一致することを自動的に検証できるため、視覚的な比較に依存せずに済みます
- 大きな問題を小さな問題に分解する、つまり個々のコンポーネントのみをポーティングする問題に分割するのに役立ち、作業を構造化するのに役立ちます
- モデルを論理的な意味のあるコンポーネントに分割することで、モデルの設計をよりよく理解しやすくし、モデルをよりよく理解するのに役立ちます
- 後で、コンポーネントごとのテストを行うことで、コードを変更し続ける際にリグレッションが発生しないことを確認するのに役立ちます
[Lysandreの](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) ELECTRAの統合チェックは、これがどのように行われるかの良い例です。
ただし、元のコードベースが非常に複雑で、中間コンポーネントをコンパイルモードで実行することしか許可しない場合、モデルを小さなテスト可能なサブコンポーネントに分解することが時間がかかりすぎるか、不可能であることがあります。
良い例は[T5のMeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow)ライブラリであり、非常に複雑でモデルをサブコンポーネントに分解する簡単な方法を提供しないことがあります。このようなライブラリでは、通常、プリントステートメントを検証することに依存します。
どの戦略を選択しても、推奨される手順は通常同じで、最初のレイヤーからデバッグを開始し、最後のレイヤーからデバッグを行うべきです。
通常、以下の順序で次のレイヤーからの出力を取得することをお勧めします:
1. モデルに渡された入力IDを取得する
2. 単語の埋め込みを取得する
3. 最初のTransformerレイヤーの入力を取得する
4. 最初のTransformerレイヤーの出力を取得する
5. 次のn - 1つのTransformerレイヤーの出力を取得する
6. BrandNewBertモデル全体の出力を取得する
入力IDは整数の配列である必要があり、*例:* `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]` のようになります。
以下のレイヤーの出力は多次元の浮動小数点配列であることが多く、次のようになることがあります:
```
[[
[-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024],
[-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132],
[-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648],
...,
[-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288],
[-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191],
[-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]],
```
🤗 Transformersに追加されるすべてのモデルは、統合テストを数回合格することが期待されており、元のモデルと🤗 Transformersで再実装されたバージョンが、0.001の精度までまったく同じ出力を提供する必要があります。
異なるライブラリフレームワークで同じモデルを書いた場合、わずかに異なる出力を返すことが正常であるため、誤差許容値として1e-3(0.001)を受け入れています。モデルがほぼ同じ出力を返すだけでは不十分で、ほぼ同一である必要があります。そのため、🤗 Transformersバージョンの中間出力を元の*brand_new_bert*の実装の中間出力と複数回にわたって比較することになるでしょう。その際、元のリポジトリの**効率的な**デバッグ環境が非常に重要です。以下は、デバッグ環境をできるだけ効率的にするためのアドバイスです。
- 中間結果をデバッグする最適な方法を見つける。元のリポジトリはPyTorchで書かれていますか?その場合、元のモデルをより小さなサブコンポーネントに分解して中間値を取得する長いスクリプトを書くことがおそらく適切です。元のリポジトリがTensorflow 1で書かれている場合、[tf.print](https://www.tensorflow.org/api_docs/python/tf/print)などのTensorFlowのプリント操作を使用して中間値を出力する必要があるかもしれません。元のリポジトリがJaxで書かれている場合、フォワードパスの実行時にモデルが**jittedされていない**ことを確認してください。例:[このリンク](https://github.com/google/jax/issues/196)をチェック。
- 使用可能な最小の事前学習済みチェックポイントを使用します。チェックポイントが小さいほど、デバッグサイクルが速くなります。事前学習済みモデルがフォワードパスに10秒以上かかる場合、効率的ではありません。非常に大きなチェックポイントしか利用できない場合、新しい環境でランダムに初期化されたウェイトを持つダミーモデルを作成し、それらのウェイトを🤗 Transformersバージョンのモデルと比較する方が良いかもしれません。
- 元のリポジトリでフォワードパスを呼び出す最も簡単な方法を使用していることを確認してください。理想的には、元のリポジトリで**単一のフォワードパス**を呼び出す関数を見つけたいです。これは通常「predict」、「evaluate」、「forward」、「__call__」と呼ばれます。複数回「forward」を呼び出す関数をデバッグしたくありません。例:テキストを生成するために「autoregressive_sample」、「generate」と呼ばれる関数。
- トークナイゼーションとモデルの「フォワード」パスを分離しようとしてください。元のリポジトリが入力文字列を入力する必要がある例を示す場合、フォワードコール内で文字列入力が入力IDに変更される場所を特定し、このポイントから開始します。これは、スクリプトを自分で書くか、入力文字列ではなく入力IDを直接入力できるように元のコードを変更する必要があるかもしれません。
- デバッグセットアップ内のモデルがトレーニングモードではないことを確認してください。トレーニングモードでは、モデル内の複数のドロップアウトレイヤーのためにランダムな出力が生成されることがあります。デバッグ環境のフォワードパスが**決定論的**であることを確認し、ドロップアウトレイヤーが使用されないようにします。または、新しい実装が同じフレームワーク内にある場合、*transformers.utils.set_seed*を使用してください。
以下のセクションでは、*brand_new_bert*についてこれを具体的にどのように行うかについての詳細/ヒントを提供します。
### 5.-14. Port BrandNewBert to 🤗 Transformers
次に、ついに新しいコードを🤗 Transformersに追加できます。🤗 Transformersのフォークのクローンに移動してください:
```bash
cd transformers
```
特別なケースとして、既存のモデルと完全に一致するアーキテクチャのモデルを追加する場合、
[このセクション](#write-a-conversion-script)で説明されているように、変換スクリプトを追加するだけで済みます。
この場合、既存のモデルの完全なモデルアーキテクチャを再利用できます。
それ以外の場合、新しいモデルの生成を開始します。ここで2つの選択肢があります:
- `transformers-cli add-new-model-like`を使用して既存のモデルのような新しいモデルを追加します
- `transformers-cli add-new-model`を使用して、テンプレートから新しいモデルを追加します(モデルのタイプに応じてBERTまたはBartのように見えます)
どちらの場合でも、モデルの基本情報を入力するための質問事項が表示されます。
2番目のコマンドを実行するには、`cookiecutter`をインストールする必要があります。
詳細については[こちら](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model)をご覧ください。
**主要な huggingface/transformers リポジトリでプルリクエストを開く**
自動生成されたコードを適応し始める前に、🤗 Transformers に「作業中(WIP)」プルリクエストを開くタイミングです。
例:「[WIP] *brand_new_bert* を追加」などです。
これにより、ユーザーと Hugging Face チームが🤗 Transformers にモデルを統合する作業を並行して行うことができます。
以下の手順を実行してください:
1. メインブランチから分かりやすい名前のブランチを作成します。
```bash
git checkout -b add_brand_new_bert
```
2. 自動生成されたコードをコミットしてください:
```bash
git add .
git commit
```
3. 現在の main ブランチにフェッチしてリベース
```bash
git fetch upstream
git rebase upstream/main
```
4. 変更をあなたのアカウントにプッシュするには、次のコマンドを使用します:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
5. 満足したら、GitHub上のフォークのウェブページに移動します。[プルリクエスト]をクリックします。将来の変更に備えて、Hugging Face チームのメンバーのGitHubハンドルをレビュアーとして追加してください。
6. GitHubのプルリクエストウェブページの右側にある「ドラフトに変換」をクリックして、PRをドラフトに変更します。
以下では、進捗があった場合は常に作業をコミットし、プッシュしてプルリクエストに表示されるようにしてください。さらに、定期的にメインからの最新の変更を取り込むために、次のように行うことを忘れないでください:
```bash
git fetch upstream
git merge upstream/main
```
一般的に、モデルや実装に関する質問はPull Request (PR) で行い、PR内で議論し、解決します。
これにより、Hugging Face チームは新しいコードをコミットする際や質問がある場合に常に通知を受けることができます。
質問や問題が解決された際に、問題や質問が理解されやすいように、Hugging Face チームにコードを指摘することが非常に役立ちます。
このためには、「Files changed」タブに移動してすべての変更を表示し、質問したい行に移動して「+」シンボルをクリックしてコメントを追加します。
質問や問題が解決された場合は、作成されたコメントの「Resolve」ボタンをクリックできます。
同様に、Hugging Face チームはコードをレビューする際にコメントを開きます。
PR上でのほとんどの質問はGitHub上で行うことをお勧めします。
一般的な質問に関しては、公にはあまり役立たない質問については、SlackやメールでHugging Face チームに連絡することもできます。
**5. 生成されたモデルコードを"brand_new_bert"に適応させる**
最初に、モデル自体に焦点を当て、トークナイザには気にしないでください。
関連するコードは、生成されたファイル`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py`および`src/transformers/models/brand_new_bert/configuration_brand_new_bert.py`で見つかるはずです。
さて、ついにコーディングを始めることができます :smile:。
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py`にある生成されたコードは、エンコーダーのみのモデルであればBERTと同じアーキテクチャを持っているか、エンコーダー-デコーダーモデルであればBARTと同じアーキテクチャを持っているはずです。
この段階では、モデルの理論的な側面について学んだことを思い出すべきです。つまり、「このモデルはBERTまたはBARTとどのように異なるのか?」ということです。
これらの変更を実装しますが、これは通常、セルフアテンションレイヤー、正規化レイヤーの順序などを変更することを意味します。
再び、あなたのモデルがどのように実装されるべきかをより良く理解するために、Transformers内に既存のモデルの類似アーキテクチャを見ることが役立つことがあります。
この時点では、コードが完全に正確またはクリーンである必要はありません。
むしろ、まずは必要なコードの最初の*クリーンでない*コピー&ペーストバージョンを
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py`に追加し、必要なコードがすべて追加されていると感じるまで改善/修正を反復的に行うことがお勧めです。
私たちの経験から、必要なコードの最初のバージョンを迅速に追加し、次のセクションで説明する変換スクリプトを使用してコードを繰り返し改善/修正する方が効率的であることが多いです。
この時点で動作する必要があるのは、🤗 Transformersの"brand_new_bert"の実装をインスタンス化できることだけです。つまり、以下のコマンドが機能する必要があります:
```python
from transformers import BrandNewBertModel, BrandNewBertConfig
model = BrandNewBertModel(BrandNewBertConfig())
```
上記のコマンドは、`BrandNewBertConfig()` で定義されたデフォルトパラメータに従ってモデルを作成し、
すべてのコンポーネントの `init()` メソッドが正常に動作することを確認します。
すべてのランダムな初期化は、`BrandnewBertPreTrainedModel` クラスの `_init_weights` メソッドで行う必要があります。
このメソッドは、設定変数に依存するすべてのリーフモジュールを初期化する必要があります。以下は、BERT の `_init_weights` メソッドの例です:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
特定のモジュールに特別な初期化が必要な場合、カスタムスキームをさらに持つことができます。たとえば、
`Wav2Vec2ForPreTraining`では、最後の2つの線形層には通常のPyTorchの`nn.Linear`の初期化が必要ですが、
他のすべての層は上記のような初期化を使用する必要があります。これは以下のようにコーディングされています:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
```
`_is_hf_initialized`フラグは、サブモジュールを一度だけ初期化することを確実にするために内部で使用されます。
`module.project_q`と`module.project_hid`のためにそれを`True`に設定することで、
カスタム初期化が後で上書きされないようにし、`_init_weights`関数がそれらに適用されないようにします。
**6. 変換スクリプトを書く**
次に、*brand_new_bert* の元のリポジトリでデバッグに使用したチェックポイントを、新しく作成した 🤗 Transformers 実装の *brand_new_bert* と互換性のあるチェックポイントに変換できる変換スクリプトを書く必要があります。
変換スクリプトをゼロから書くことはお勧めされませんが、代わりに 🤗 Transformers で既に存在する類似のモデルを同じフレームワークで変換したスクリプトを調べることが良いでしょう。
通常、既存の変換スクリプトをコピーして、自分のユースケースにわずかに適応させることで十分です。
Hugging Face チームに既存のモデルに類似した変換スクリプトを教えてもらうことも躊躇しないでください。
- TensorFlowからPyTorchにモデルを移植している場合、良い出発点はBERTの変換スクリプトかもしれません [here](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91)
- PyTorchからPyTorchにモデルを移植している場合、良い出発点はBARTの変換スクリプトかもしれません [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
以下では、PyTorchモデルが層の重みをどのように保存し、層の名前を定義するかについて簡単に説明します。
PyTorchでは、層の名前は層に与えるクラス属性の名前によって定義されます。
PyTorchで `SimpleModel` というダミーモデルを定義しましょう:
```python
from torch import nn
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.dense = nn.Linear(10, 10)
self.intermediate = nn.Linear(10, 10)
self.layer_norm = nn.LayerNorm(10)
```
これで、このモデル定義のインスタンスを作成し、`dense`、`intermediate`、`layer_norm`のすべての重みをランダムな重みで埋めたモデルを作成できます。モデルのアーキテクチャを確認するために、モデルを印刷してみましょう。
```python
model = SimpleModel()
print(model)
```
これは以下を出力します:
```
SimpleModel(
(dense): Linear(in_features=10, out_features=10, bias=True)
(intermediate): Linear(in_features=10, out_features=10, bias=True)
(layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True)
)
```
層の名前はPyTorchのクラス属性の名前によって定義されています。特定の層の重み値を出力することができます:
```python
print(model.dense.weight.data)
```
ランダムに初期化された重みを確認するために
```
tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212,
-0.2077, 0.2157],
[ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190,
0.2166, -0.0212],
[-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950,
-0.1023, -0.0447],
[-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415,
-0.1876, -0.2467],
[ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465,
0.2577, 0.0402],
[ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604,
0.2132, 0.1680],
[ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090,
0.2707, -0.2509],
[-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407,
0.1829, -0.1568],
[-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923,
0.0333, -0.0536],
[-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739,
0.2220, 0.2358]]).
```
スクリプト内の変換スクリプトでは、ランダムに初期化された重みを、対応するチェックポイント内の正確な重みで埋める必要があります。例えば、以下のように翻訳します:
```python
# retrieve matching layer weights, e.g. by
# recursive algorithm
layer_name = "dense"
pretrained_weight = array_of_dense_layer
model_pointer = getattr(model, "dense")
model_pointer.weight.data = torch.from_numpy(pretrained_weight)
```
PyTorchモデルの各ランダム初期化された重みと対応する事前学習済みチェックポイントの重みが
**形状と名前の両方**で正確に一致することを確認する必要があります。
これを行うために、形状に対するassertステートメントを追加し、チェックポイントの重みの名前を出力することが
**必要不可欠**です。例えば、次のようなステートメントを追加する必要があります:
```python
assert (
model_pointer.weight.shape == pretrained_weight.shape
), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched"
```
また、両方の重みの名前を印刷して、一致していることを確認する必要があります。例えば、次のようにします:
```python
logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}")
```
もし形状または名前のいずれかが一致しない場合、おそらく誤って🤗 Transformersの実装に初期化されたレイヤーに間違ったチェックポイントの重みを割り当ててしまった可能性があります。
誤った形状は、おそらく`BrandNewBertConfig()`での設定パラメーターが、変換したいチェックポイントで使用されたものと正確に一致しないためです。
ただし、PyTorchのレイヤーの実装によっては、重みを事前に転置する必要がある場合もあります。
最後に、**すべて**の必要な重みが初期化されていることを確認し、初期化に使用されなかったすべてのチェックポイントの重みを表示して、モデルが正しく変換されていることを確認してください。
変換トライアルが誤った形状ステートメントまたは誤った名前割り当てで失敗するのは完全に正常です。
これはおそらく、`BrandNewBertConfig()`で誤ったパラメーターを使用したか、🤗 Transformersの実装に誤ったアーキテクチャがあるか、🤗 Transformersの実装の1つのコンポーネントの`init()`関数にバグがあるか、チェックポイントの重みの1つを転置する必要があるためです。
このステップは、以前のステップと繰り返すべきです。すべてのチェックポイントの重みが正しく🤗 Transformersモデルに読み込まれるまで繰り返すべきです。
🤗 Transformers実装に正しくチェックポイントを読み込んだ後、選択したフォルダーにモデルを保存できます `/path/to/converted/checkpoint/folder`。このフォルダには`pytorch_model.bin`ファイルと`config.json`ファイルの両方が含まれるはずです。
```python
model.save_pretrained("/path/to/converted/checkpoint/folder")
```
**7. 順伝播(forward pass)の実装**
🤗 Transformers実装で事前学習済みの重みを正しく読み込んだ後、順伝播が正しく実装されていることを確認する必要があります。[元のリポジトリを理解する](#34-run-a-pretrained-checkpoint-using-the-original-repository)で、元のリポジトリを使用してモデルの順伝播を実行するスクリプトをすでに作成しました。今度は、元のリポジトリの代わりに🤗 Transformers実装を使用して類似のスクリプトを作成する必要があります。以下のようになります:
```python
model = BrandNewBertModel.from_pretrained("/path/to/converted/checkpoint/folder")
input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]
output = model(input_ids).last_hidden_states
```
🤗 Transformersの実装と元のモデルの実装が最初の実行で完全に同じ出力を提供しないか、
フォワードパスでエラーが発生する可能性が非常に高いです。失望しないでください - これは予想されていることです!
まず、フォワードパスがエラーをスローしないことを確認する必要があります。
間違った次元が使用され、*次元の不一致*エラーや、誤ったデータ型オブジェクトが使用されることがよくあります。
例えば、`torch.long`ではなく`torch.float32`が使用されます。特定のエラーを解決できない場合は、
Hugging Faceチームに助けを求めることを躊躇しないでください。
🤗 Transformers実装が正しく機能することを確認する最終的な部分は、出力が`1e-3`の精度で同等であることを確認することです。
まず、出力の形状が同一であること、つまりスクリプトの🤗 Transformers実装と元の実装の両方で`outputs.shape`が同じ値を生成する必要があります。
次に、出力値が同一であることを確認する必要があります。
これは新しいモデルを追加する際の最も難しい部分の1つです。
出力が同一でない理由の一般的な間違いは以下の通りです。
- 一部のレイヤーが追加されていない、つまり*活性化*レイヤーが追加されていないか、リザバル接続が忘れられている
- 単語埋め込み行列が結ばれていない
- オリジナルの実装がオフセットを使用しているため、誤った位置埋め込みが使用されている
- フォワードパス中にドロップアウトが適用されています。これを修正するには、*model.trainingがFalse*であることを確認し、フォワードパス中に誤ってドロップアウトレイヤーがアクティブ化されないようにします。
*つまり* [PyTorchのfunctional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout)に*model.training*を渡します。
問題を修正する最良の方法は、通常、元の実装と🤗 Transformers実装のフォワードパスを並べて表示し、違いがあるかどうかを確認することです。
理想的には、フォワードパスの両方の実装の中間出力をデバッグ/プリントアウトして、🤗 Transformers実装が元の実装と異なる出力を示すネットワーク内の正確な位置を見つけることができます。
最初に、両方のスクリプトのハードコーディングされた`input_ids`が同一であることを確認します。
次に、`input_ids`の最初の変換(通常、単語埋め込み)の出力が同一であることを確認します。
その後、ネットワークの最後のレイヤーまで作業を進めます。
いずれかの時点で、2つの実装間で違いがあることに気付くはずで、それにより🤗 Transformers実装のバグの場所が特定されます。
経験上、元の実装と🤗 Transformers実装のフォワードパスの同じ位置に多くのプリントステートメントを追加し、
中間プレゼンテーションで同じ値を示すプリントステートメントを段階的に削除するのがシンプルかつ効果的な方法です。
両方の実装が同じ出力を生成することに自信を持っている場合、`torch.allclose(original_output, output, atol=1e-3)`を使用して出力を確認すると、最も難しい部分が完了します!
おめでとうございます - 完了する作業は簡単なものになるはずです 😊。
**8. 必要なすべてのモデルテストを追加**
この時点で、新しいモデルが正常に追加されました。
ただし、モデルがまだ必要な設計に完全に準拠していない可能性が非常に高いです。
🤗 Transformersと完全に互換性があることを確認するために、すべての一般的なテストがパスする必要があります。
Cookiecutterはおそらくモデル用のテストファイルを自動的に追加しているはずで、おそらく同じディレクトリに`tests/models/brand_new_bert/test_modeling_brand_new_bert.py`として存在します。
このテストファイルを実行して、すべての一般的なテストがパスすることを確認してください:
```bash
pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py
```
すべての一般的なテストを修正したら、今度は実行したすべての素晴らしい作業が適切にテストされていることを確認することが非常に重要です。これにより、
- a) コミュニティは*brand_new_bert*の特定のテストを見ることで、あなたの作業を簡単に理解できます。
- b) モデルへの将来の変更がモデルの重要な機能を壊さないようにすることができます。
まず、統合テストを追加する必要があります。これらの統合テストは、基本的にはデバッグスクリプトと同じことを行います。これらのモデルテストのテンプレートはCookiecutterによって既に追加されており、「BrandNewBertModelIntegrationTests」と呼ばれています。このテストを記入するだけです。これらのテストが合格していることを確認するには、次のコマンドを実行します。
```bash
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
```
<Tip>
Windowsを使用している場合、`RUN_SLOW=1`を`SET RUN_SLOW=1`に置き換えてください。
</Tip>
次に、*brand_new_bert*に特有のすべての特徴は、別個のテスト内で追加されるべきです。
`BrandNewBertModelTester`/`BrandNewBertModelTest`の下に。この部分はよく忘れられますが、2つの点で非常に役立ちます:
- モデルの追加中に獲得した知識をコミュニティに伝え、*brand_new_bert*の特別な機能がどのように動作するかを示すことによって、知識の共有を支援します。
- 将来の貢献者は、これらの特別なテストを実行することでモデルへの変更を迅速にテストできます。
**9. トークナイザの実装**
次に、*brand_new_bert*のトークナイザを追加する必要があります。通常、トークナイザは🤗 Transformersの既存のトークナイザと同等か非常に似ています。
トークナイザが正しく動作することを確認するためには、まず、元のリポジトリ内で文字列を入力し、`input_ids`を返すスクリプトを作成することをお勧めします。
このスクリプトは、次のように見えるかもしれません(疑似コードで示します):
```python
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = model.tokenize(input_str)
```
オリジナルのリポジトリを詳しく調査し、正しいトークナイザの関数を見つける必要があるかもしれません。
または、オリジナルのリポジトリのクローンを変更して、`input_ids`だけを出力するようにする必要があるかもしれません。
オリジナルのリポジトリを使用した機能的なトークナイゼーションスクリプトを作成した後、
🤗 Transformers向けの類似したスクリプトを作成する必要があります。
以下のように見えるべきです:
```python
from transformers import BrandNewBertTokenizer
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
tokenizer = BrandNewBertTokenizer.from_pretrained("/path/to/tokenizer/folder/")
input_ids = tokenizer(input_str).input_ids
```
`input_ids`が同じ値を生成した場合、最終ステップとしてトークナイザのテストファイルも追加するべきです。
*brand_new_bert*のモデルングテストファイルと同様に、*brand_new_bert*のトークナイズテストファイルには、いくつかのハードコードされた統合テストが含まれるべきです。
**10. エンドツーエンド統合テストの実行**
トークナイザを追加した後、`🤗 Transformers`内の`tests/models/brand_new_bert/test_modeling_brand_new_bert.py`に
モデルとトークナイザの両方を使用するいくつかのエンドツーエンド統合テストも追加する必要があります。
このようなテストは、🤗 Transformersの実装が期待どおりに機能することを示すべきです。
意味のあるテキスト対テキストのサンプルが含まれます。有用なテキスト対テキストのサンプルには、ソースからターゲットへの翻訳ペア、記事から要約へのペア、質問から回答へのペアなどが含まれます。
ポートされたチェックポイントがダウンストリームタスクでファインチューニングされていない場合、モデルのテストに依存するだけで十分です。
モデルが完全に機能していることを確認するために、すべてのテストをGPU上で実行することもお勧めします。
モデルの内部テンソルに`.to(self.device)`ステートメントを追加するのを忘れる可能性があるため、そのようなテストではエラーが表示されることがあります。
GPUにアクセスできない場合、Hugging Faceチームが代わりにこれらのテストを実行できます。
**11. ドキュメントの追加**
これで、*brand_new_bert*の必要なすべての機能が追加されました - ほぼ完了です!残りの追加すべきことは、良いドキュメントとドキュメントページです。
Cookiecutterが`docs/source/model_doc/brand_new_bert.md`というテンプレートファイルを追加しているはずで、これを記入する必要があります。
モデルのユーザーは通常、モデルを使用する前にまずこのページを見ます。したがって、ドキュメンテーションは理解しやすく簡潔である必要があります。
モデルの使用方法を示すためにいくつかの*Tips*を追加することはコミュニティにとって非常に役立ちます。ドキュメンテーションに関しては、Hugging Faceチームに問い合わせることをためらわないでください。
次に、`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py`に追加されたドキュメンテーション文字列が正しいこと、およびすべての必要な入力および出力を含んでいることを確認してください。
ドキュメンテーションの書き方とドキュメンテーション文字列のフォーマットについて詳細なガイドが[こちら](writing-documentation)にあります。
ドキュメンテーションは通常、コミュニティとモデルの最初の接触点であるため、コードと同じくらい注意深く扱うべきであることを常に念頭に置いてください。
**コードのリファクタリング**
素晴らしい、これで*brand_new_bert*に必要なすべてのコードが追加されました。
この時点で、次のようなポテンシャルなコードスタイルの誤りを訂正するために以下を実行する必要があります:
```bash
make style
```
あなたのコーディングスタイルが品質チェックをパスすることを確認してください:
```bash
make quality
```
🤗 Transformersの非常に厳格なデザインテストには、まだ合格していない可能性があるいくつかの他のテストが存在するかもしれません。
これは、ドキュメント文字列に情報が不足しているか、名前が間違っていることが原因であることが多いです。Hugging Faceチームは、ここで詰まっている場合には必ず助けてくれるでしょう。
最後に、コードが正しく機能することを確認した後、コードをリファクタリングするのは常に良いアイデアです。
すべてのテストがパスした今、追加したコードを再度確認してリファクタリングを行うのは良いタイミングです。
これでコーディングの部分は完了しました、おめでとうございます! 🎉 あなたは素晴らしいです! 😎
**12. モデルをモデルハブにアップロード**
最後のパートでは、すべてのチェックポイントをモデルハブに変換してアップロードし、各アップロードしたモデルチェックポイントにモデルカードを追加する必要があります。
モデルハブの機能について詳しくは、[Model sharing and uploading Page](model_sharing)を読んで理解できます。
ここでは、*brand_new_bert*の著者組織の下にモデルをアップロードできるように必要なアクセス権を取得するために、Hugging Faceチームと協力する必要があります。
`transformers`のすべてのモデルに存在する`push_to_hub`メソッドは、チェックポイントをハブにプッシュする迅速かつ効率的な方法です。
以下に、少しのコードスニペットを示します:
```python
brand_new_bert.push_to_hub("brand_new_bert")
# Uncomment the following line to push to an organization.
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
```
各チェックポイントに適切なモデルカードを作成する価値があります。モデルカードは、この特定のチェックポイントの特性をハイライトするべきです。例えば、このチェックポイントはどのデータセットで事前学習/ファインチューニングされたか、どのような下流タスクでモデルを使用すべきかを示すべきです。また、モデルの正しい使用方法に関するコードも含めるべきです。
**13.(オプション)ノートブックの追加**
*brand_new_bert*を推論または下流タスクのファインチューニングにどのように詳細に使用できるかを示すノートブックを追加することは非常に役立ちます。これはあなたのPRをマージするために必須ではありませんが、コミュニティにとって非常に有用です。
**14. 完成したPRの提出**
プログラミングが完了したら、最後のステップに移動し、PRをメインブランチにマージしましょう。通常、Hugging Faceチームはこの時点で既にあなたをサポートしているはずですが、PRに良い説明を追加し、コードにコメントを追加して、レビュアーに特定の設計の選択肢を指摘したい場合はコメントを追加することも価値があります。
### Share your work!!
さあ、コミュニティからあなたの作業に対する評価を得る時が来ました!モデルの追加を完了することは、TransformersおよびNLPコミュニティにとって重要な貢献です。あなたのコードとポートされた事前学習済みモデルは、何百人、何千人という開発者や研究者によって確実に使用されるでしょう。あなたの仕事に誇りを持ち、コミュニティとあなたの成果を共有しましょう。
**あなたはコミュニティの誰でも簡単にアクセスできる別のモデルを作成しました! 🤯**
| transformers/docs/source/ja/add_new_model.md/0 | {
"file_path": "transformers/docs/source/ja/add_new_model.md",
"repo_id": "transformers",
"token_count": 28024
} | 244 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeepSpeed Integration
[DeepSpeed](https://github.com/microsoft/DeepSpeed) は、[ZeRO 論文](https://arxiv.org/abs/1910.02054) で説明されているすべてを実装します。現在、次のものを完全にサポートしています。
1. オプティマイザーの状態分割 (ZeRO ステージ 1)
2. 勾配分割 (ZeRO ステージ 2)
3. パラメーターの分割 (ZeRO ステージ 3)
4. カスタム混合精度トレーニング処理
5. 一連の高速 CUDA 拡張ベースのオプティマイザー
6. CPU および NVMe への ZeRO オフロード
ZeRO-Offload には独自の専用ペーパーがあります: [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840)。 NVMe サポートについては、論文 [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857)。
DeepSpeed ZeRO-2 は、その機能が推論には役に立たないため、主にトレーニングのみに使用されます。
DeepSpeed ZeRO-3 は、巨大なモデルを複数の GPU にロードできるため、推論にも使用できます。
単一の GPU では不可能です。
🤗 Transformers は、2 つのオプションを介して [DeepSpeed](https://github.com/microsoft/DeepSpeed) を統合します。
1. [`Trainer`] によるコア DeepSpeed 機能の統合。何でもやってくれるタイプです
統合の場合 - カスタム構成ファイルを指定するか、テンプレートを使用するだけで、他に何もする必要はありません。たいていの
このドキュメントではこの機能に焦点を当てています。
2. [`Trainer`] を使用せず、DeepSpeed を統合した独自のトレーナーを使用したい場合
`from_pretrained` や `from_config` などのコア機能には、重要な機能の統合が含まれています。
ZeRO ステージ 3 以降の `zero.Init`などの DeepSpeed の部分。この機能を活用するには、次のドキュメントをお読みください。
[非トレーナー DeepSpeed 統合](#nontrainer-deepspeed-integration)。
統合されているもの:
トレーニング:
1. DeepSpeed ZeRO トレーニングは、ZeRO-Infinity (CPU および NVME オフロード) を使用して完全な ZeRO ステージ 1、2、および 3 をサポートします。
推論:
1. DeepSpeed ZeRO Inference は、ZeRO-Infinity による ZeRO ステージ 3 をサポートします。トレーニングと同じ ZeRO プロトコルを使用しますが、
オプティマイザと lr スケジューラは使用せず、ステージ 3 のみが関連します。詳細については、以下を参照してください。
[ゼロ推論](#zero-inference)。
DeepSpeed Inference もあります。これは、Tensor Parallelism の代わりに Tensor Parallelism を使用するまったく異なるテクノロジーです。
ZeRO (近日公開)。
<a id='deepspeed-trainer-integration'></a>
## Trainer Deepspeed Integration
<a id='deepspeed-installation'></a>
### Installation
pypi 経由でライブラリをインストールします。
```bash
pip install deepspeed
```
または`tansformers`, `extras`経由:
```bash
pip install transformers[deepspeed]
```
または、[DeepSpeed の GitHub ページ](https://github.com/microsoft/deepspeed#installation) で詳細を確認してください。
[高度なインストール](https://www.deepspeed.ai/tutorials/advanced-install/)。
それでもビルドに苦労する場合は、まず [CUDA 拡張機能のインストール ノート](trainer#cuda-extension-installation-notes) を必ず読んでください。
拡張機能を事前ビルドせず、実行時に拡張機能がビルドされることに依存しており、上記の解決策をすべて試した場合
それが役に立たなかった場合、次に試すべきことは、モジュールをインストールする前にモジュールを事前にビルドすることです。
DeepSpeed のローカル ビルドを作成するには:
```bash
git clone https://github.com/microsoft/DeepSpeed/
cd DeepSpeed
rm -rf build
TORCH_CUDA_ARCH_LIST="8.6" DS_BUILD_CPU_ADAM=1 DS_BUILD_UTILS=1 pip install . \
--global-option="build_ext" --global-option="-j8" --no-cache -v \
--disable-pip-version-check 2>&1 | tee build.log
```
NVMe オフロードを使用する場合は、上記の手順に`DS_BUILD_AIO=1`を含める必要があります (また、
*libaio-dev* システム全体にインストールします)。
`TORCH_CUDA_ARCH_LIST` を編集して、使用する GPU カードのアーキテクチャのコードを挿入します。すべてを仮定すると
あなたのカードは同じで、次の方法でアーチを取得できます。
```bash
CUDA_VISIBLE_DEVICES=0 python -c "import torch; print(torch.cuda.get_device_capability())"
```
したがって、`8, 6`を取得した場合は、`TORCH_CUDA_ARCH_LIST="8.6"`を使用します。複数の異なるカードをお持ちの場合は、すべてをリストすることができます
それらのうち、`TORCH_CUDA_ARCH_LIST="6.1;8.6"`が好きです
複数のマシンで同じセットアップを使用する必要がある場合は、バイナリ ホイールを作成します。
```bash
git clone https://github.com/microsoft/DeepSpeed/
cd DeepSpeed
rm -rf build
TORCH_CUDA_ARCH_LIST="8.6" DS_BUILD_CPU_ADAM=1 DS_BUILD_UTILS=1 \
python setup.py build_ext -j8 bdist_wheel
```
`dist/deepspeed-0.3.13+8cd046f-cp38-cp38-linux_x86_64.whl`のようなものが生成されるので、これをインストールできます
`pip install deepspeed-0.3.13+8cd046f-cp38-cp38-linux_x86_64.whl`としてローカルまたは他のマシンにインストールします。
繰り返しますが、`TORCH_CUDA_ARCH_LIST`をターゲット アーキテクチャに合わせて調整することを忘れないでください。
NVIDIA GPU の完全なリストと、それに対応する **コンピューティング機能** (この記事の Arch と同じ) を見つけることができます。
コンテキスト) [ここ](https://developer.nvidia.com/cuda-gpus)。
以下を使用して、pytorch が構築されたアーチを確認できます。
```bash
python -c "import torch; print(torch.cuda.get_arch_list())"
```
ここでは、インストールされている GPU の 1 つのアーチを見つける方法を説明します。たとえば、GPU 0 の場合:
```bash
CUDA_VISIBLE_DEVICES=0 python -c "import torch; \
print(torch.cuda.get_device_properties(torch.device('cuda')))"
```
出力が次の場合:
```bash
_CudaDeviceProperties(name='GeForce RTX 3090', major=8, minor=6, total_memory=24268MB, multi_processor_count=82)
```
そうすれば、このカードのアーチが`8.6`であることがわかります。
`TORCH_CUDA_ARCH_LIST` を完全に省略することもできます。そうすれば、ビルド プログラムが自動的にクエリを実行します。
ビルドが行われる GPU のアーキテクチャ。これは、ターゲット マシンの GPU と一致する場合もあれば、一致しない場合もあります。
目的のアーチを明示的に指定することをお勧めします。
提案されたことをすべて試してもまだビルドの問題が発生する場合は、GitHub の問題に進んでください。
[ディープスピード](https://github.com/microsoft/DeepSpeed/issues)、
<a id='deepspeed-multi-gpu'></a>
### Deployment with multiple GPUs
DeepSpeed 統合をデプロイするには、[`Trainer`] コマンド ライン引数を調整して新しい引数 `--deepspeed ds_config.json` を含めます。ここで、`ds_config.json` は DeepSpeed 構成ファイルです。
[こちら](https://www.deepspeed.ai/docs/config-json/)に記載されています。ファイル名はあなた次第です。
DeepSpeed の`add_config_arguments`ユーティリティを使用して、必要なコマンド ライン引数をコードに追加することをお勧めします。
詳細については、[DeepSpeed の引数解析](https://deepspeed.readthedocs.io/en/latest/initialize.html#argument-parsing) ドキュメントを参照してください。
ここで選択したランチャーを使用できます。 pytorch ランチャーを引き続き使用できます。
```bash
torch.distributed.run --nproc_per_node=2 your_program.py <normal cl args> --deepspeed ds_config.json
```
または、`deepspeed`によって提供されるランチャーを使用します。
```bash
deepspeed --num_gpus=2 your_program.py <normal cl args> --deepspeed ds_config.json
```
ご覧のとおり、引数は同じではありませんが、ほとんどのニーズではどちらでも機能します。の
さまざまなノードと GPU を構成する方法の詳細については、[こちら](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node) を参照してください。
`deepspeed`ランチャーを使用し、利用可能なすべての GPU を使用したい場合は、`--num_gpus`フラグを省略するだけです。
以下は、利用可能なすべての GPU をデプロイする DeepSpeed で`run_translation.py`を実行する例です。
```bash
deepspeed examples/pytorch/translation/run_translation.py \
--deepspeed tests/deepspeed/ds_config_zero3.json \
--model_name_or_path t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir --fp16 \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--source_lang en --target_lang ro
```
DeepSpeed のドキュメントには、`--deepspeed --deepspeed_config ds_config.json`が表示される可能性が高いことに注意してください。
DeepSpeed 関連の引数が 2 つありますが、簡単にするためであり、処理すべき引数がすでに非常に多いためです。
この 2 つを 1 つの引数に結合しました。
実際の使用例については、この [投稿](https://github.com/huggingface/transformers/issues/8771#issuecomment-759248400) を参照してください。
<a id='deepspeed-one-gpu'></a>
### Deployment with one GPU
1 つの GPU で DeepSpeed をデプロイするには、[`Trainer`] コマンド ライン引数を次のように調整します。
```bash
deepspeed --num_gpus=1 examples/pytorch/translation/run_translation.py \
--deepspeed tests/deepspeed/ds_config_zero2.json \
--model_name_or_path t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir --fp16 \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--source_lang en --target_lang ro
```
これは複数の GPU の場合とほぼ同じですが、ここでは、DeepSpeed に 1 つの GPU だけを使用するように明示的に指示します。
`--num_gpus=1`。デフォルトでは、DeepSpeed は指定されたノード上で認識できるすべての GPU をデプロイします。起動する GPU が 1 つだけの場合
の場合、この引数は必要ありません。次の [ドキュメント](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node) では、ランチャー オプションについて説明しています。
1 つの GPU だけで DeepSpeed を使用したいのはなぜですか?
1. 一部の計算とメモリをホストの CPU と RAM に委任できる ZeRO オフロード機能を備えているため、
モデルのニーズに合わせてより多くの GPU リソースを残しておきます。より大きなバッチ サイズ、または非常に大きなモデルのフィッティングを可能にする
普通は合わないでしょう。
2. スマートな GPU メモリ管理システムを提供し、メモリの断片化を最小限に抑えます。
より大きなモデルとデータ バッチ。
次に構成について詳しく説明しますが、単一の GPU で大幅な改善を実現するための鍵は次のとおりです。
DeepSpeed を使用するには、構成ファイルに少なくとも次の構成が必要です。
```json
{
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"overlap_comm": true,
"contiguous_gradients": true
}
}
```
これにより、オプティマイザーのオフロードやその他の重要な機能が有効になります。バッファ サイズを試してみるとよいでしょう。
詳細については、以下のディスカッションを参照してください。
このタイプのデプロイメントの実際的な使用例については、この [投稿](https://github.com/huggingface/transformers/issues/8771#issuecomment-759176685) を参照してください。
このドキュメントで詳しく説明されているように、CPU および NVMe オフロードを備えた ZeRO-3 を試すこともできます。
ノート:
- GPU 0 とは異なる特定の GPU で実行する必要がある場合、`CUDA_VISIBLE_DEVICES` を使用して制限することはできません。
利用可能な GPU の表示範囲。代わりに、次の構文を使用する必要があります。
```bash
deepspeed --include localhost:1 examples/pytorch/translation/run_translation.py ...
```
この例では、DeepSpeed に GPU 1 (2 番目の GPU) を使用するように指示します。
<a id='deepspeed-multi-node'></a>
### 複数のノードを使用したデプロイメント
このセクションの情報は DeepSpeed 統合に固有のものではなく、あらゆるマルチノード プログラムに適用できます。ただし、DeepSpeed は、SLURM 環境でない限り、他のランチャーよりも使いやすい`deepspeed`ランチャーを提供します。
このセクションでは、それぞれ 8 GPU を備えた 2 つのノードがあると仮定します。また、最初のノードには `ssh hostname1` を使用して、2 番目のノードには `ssh hostname2` を使用して接続できます。両方ともパスワードなしでローカルの ssh 経由で相互に接続できる必要があります。もちろん、これらのホスト (ノード) 名を、作業している実際のホスト名に変更する必要があります。
#### The torch.distributed.run launcher
たとえば、`torch.distributed.run` を使用するには、次のようにします。
```bash
python -m torch.distributed.run --nproc_per_node=8 --nnode=2 --node_rank=0 --master_addr=hostname1 \
--master_port=9901 your_program.py <normal cl args> --deepspeed ds_config.json
```
各ノードに SSH で接続し、それぞれのノードで同じコマンドを実行する必要があります。急ぐ必要はありません。ランチャーは両方のノードが同期するまで待機します。
詳細については、[torchrun](https://pytorch.org/docs/stable/elastic/run.html) を参照してください。ちなみに、これは pytorch の数バージョン前の`torch.distributed.launch`を置き換えたランチャーでもあります。
#### ディープスピード ランチャー
代わりに`deepspeed`ランチャーを使用するには、まず`hostfile`ファイルを作成する必要があります。
```
hostname1 slots=8
hostname2 slots=8
```
そして、次のように起動できます。
```bash
deepspeed --num_gpus 8 --num_nodes 2 --hostfile hostfile --master_addr hostname1 --master_port=9901 \
your_program.py <normal cl args> --deepspeed ds_config.json
```
`torch.distributed.run`ランチャーとは異なり、`deepspeed`は両方のノードでこのコマンドを自動的に起動します。
詳細については、[リソース構成 (マルチノード)](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node) を参照してください。
#### Launching in a SLURM environment
SLURM 環境では、次のアプローチを使用できます。以下は、特定の SLURM 環境に適合させるために必要な slurm スクリプト `launch.slurm` です。
```bash
#SBATCH --job-name=test-nodes # name
#SBATCH --nodes=2 # nodes
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=10 # number of cores per tasks
#SBATCH --gres=gpu:8 # number of gpus
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
export GPUS_PER_NODE=8
export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
export MASTER_PORT=9901
srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
--nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
--master_addr $MASTER_ADDR --master_port $MASTER_PORT \
your_program.py <normal cl args> --deepspeed ds_config.json'
```
あとは実行をスケジュールするだけです。
```bash
sbatch launch.slurm
```
#### Use of Non-shared filesystem
デフォルトでは、DeepSpeed はマルチノード環境が共有ストレージを使用することを想定しています。これが当てはまらず、各ノードがローカル ファイルシステムしか参照できない場合は、設定ファイルを調整して [`checkpoint`_section](https://www.deepspeed.ai/docs/config-json/#) を含める必要があります。チェックポイント オプション) を次の設定で指定します。
```json
{
"checkpoint": {
"use_node_local_storage": true
}
}
```
あるいは、[`Trainer`] の `--save_on_each_node` 引数を使用することもでき、上記の設定は自動的に追加されます。
<a id='deepspeed-notebook'></a>
### Deployment in Notebooks
ノートブックのセルをスクリプトとして実行する場合の問題は、依存する通常の`deepspeed`ランチャーがないことです。
特定の設定では、それをエミュレートする必要があります。
GPU を 1 つだけ使用している場合、DeepSpeed を使用するためにノートブック内のトレーニング コードを調整する必要がある方法は次のとおりです。
```python
# DeepSpeed requires a distributed environment even when only one process is used.
# This emulates a launcher in the notebook
import os
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "9994" # modify if RuntimeError: Address already in use
os.environ["RANK"] = "0"
os.environ["LOCAL_RANK"] = "0"
os.environ["WORLD_SIZE"] = "1"
# Now proceed as normal, plus pass the deepspeed config file
training_args = TrainingArguments(..., deepspeed="ds_config_zero3.json")
trainer = Trainer(...)
trainer.train()
```
注: `...` は、関数に渡す通常の引数を表します。
複数の GPU を使用する場合、DeepSpeed が動作するにはマルチプロセス環境を使用する必要があります。つまり、あなたは持っています
その目的でランチャーを使用することはできませんが、これは、提示された分散環境をエミュレートすることによっては実現できません。
このセクションの冒頭で。
現在のディレクトリのノートブックにその場で構成ファイルを作成したい場合は、専用の
セルの内容:
```python no-style
%%bash
cat <<'EOT' > ds_config_zero3.json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
EOT
```
トレーニング スクリプトがノートブックのセルではなく通常のファイルにある場合は、次のようにして`deepspeed`を通常どおり起動できます。
細胞からのシェル。たとえば、`run_translation.py` を使用するには、次のように起動します。
```python no-style
!git clone https://github.com/huggingface/transformers
!cd transformers; deepspeed examples/pytorch/translation/run_translation.py ...
```
または、`%%bash` マジックを使用すると、シェル プログラムを実行するための複数行のコードを記述することができます。
```python no-style
%%bash
git clone https://github.com/huggingface/transformers
cd transformers
deepspeed examples/pytorch/translation/run_translation.py ...
```
そのような場合、このセクションの最初に示したコードは必要ありません。
注: `%%bash` マジックは優れていますが、現時点では出力をバッファリングするため、プロセスが終了するまでログは表示されません。
完了します。
<a id='deepspeed-config'></a>
### Configuration
設定ファイルで使用できる DeepSpeed 設定オプションの完全なガイドについては、次を参照してください。
[次のドキュメント](https://www.deepspeed.ai/docs/config-json/) にアクセスしてください。
さまざまな実際のニーズに対応する数十の DeepSpeed 構成例を [DeepSpeedExamples] (https://github.com/microsoft/DeepSpeedExamples)で見つけることができます。
リポジトリ:
```bash
git clone https://github.com/microsoft/DeepSpeedExamples
cd DeepSpeedExamples
find . -name '*json'
```
上記のコードを続けて、Lamb オプティマイザーを構成しようとしているとします。したがって、次の中から検索できます
`.json` ファイルの例:
```bash
grep -i Lamb $(find . -name '*json')
```
さらにいくつかの例が [メイン リポジトリ](https://github.com/microsoft/DeepSpeed) にもあります。
DeepSpeed を使用する場合は、常に DeepSpeed 構成ファイルを指定する必要がありますが、一部の構成パラメータには
コマンドライン経由で設定します。微妙な違いについては、このガイドの残りの部分で説明します。
DeepSpeed 構成ファイルがどのようなものかを理解するために、ZeRO ステージ 2 機能を有効にする構成ファイルを次に示します。
オプティマイザー状態の CPU オフロードを含み、`AdamW`オプティマイザーと`WarmupLR`スケジューラーを使用し、混合を有効にします。
`--fp16` が渡された場合の精度トレーニング:
```json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
}
```
プログラムを実行すると、DeepSpeed は [`Trainer`] から受け取った設定をログに記録します。
コンソールに渡されるため、最終的にどのような設定が渡されたのかを正確に確認できます。
<a id='deepspeed-config-passing'></a>
### Passing Configuration
このドキュメントで説明したように、通常、DeepSpeed 設定は json ファイルへのパスとして渡されますが、
トレーニングの設定にコマンド ライン インターフェイスを使用せず、代わりにインスタンスを作成します。
[`Trainer`] via [`TrainingArguments`] その後、`deepspeed` 引数については次のことができます
ネストされた `dict` を渡します。これにより、その場で構成を作成でき、それを書き込む必要がありません。
[`TrainingArguments`] に渡す前にファイル システムを変更します。
要約すると、次のことができます。
```python
TrainingArguments(..., deepspeed="/path/to/ds_config.json")
```
または:
```python
ds_config_dict = dict(scheduler=scheduler_params, optimizer=optimizer_params)
TrainingArguments(..., deepspeed=ds_config_dict)
```
<a id='deepspeed-config-shared'></a>
### Shared Configuration
<Tip warning={true}>
このセクションは必読です
</Tip>
[`Trainer`] と DeepSpeed の両方が正しく機能するには、いくつかの設定値が必要です。
したがって、検出が困難なエラーにつながる可能性のある定義の競合を防ぐために、それらを構成することにしました。
[`Trainer`] コマンドライン引数経由。
さらに、一部の構成値はモデルの構成に基づいて自動的に導出されます。
複数の値を手動で調整することを忘れないでください。[`Trainer`] に大部分を任せるのが最善です
の設定を行います。
したがって、このガイドの残りの部分では、特別な設定値 `auto` が表示されます。これを設定すると、
正しい値または最も効率的な値に自動的に置き換えられます。これを無視することを自由に選択してください
推奨事項を参照し、値を明示的に設定します。この場合、次の点に十分注意してください。
[`Trainer`] 引数と DeepSpeed 設定は一致します。たとえば、同じものを使用していますか
学習率、バッチサイズ、または勾配累積設定?これらが一致しない場合、トレーニングは非常に失敗する可能性があります
方法を検出するのが難しい。あなたは警告を受けました。
DeepSpeed のみに固有の値や、それに合わせて手動で設定する必要がある値が他にも複数あります。
あなたの要望。
独自のプログラムで、DeepSpeed 構成をマスターとして変更したい場合は、次のアプローチを使用することもできます。
それに基づいて [`TrainingArguments`] を設定します。手順は次のとおりです。
1. マスター構成として使用する DeepSpeed 構成を作成またはロードします
2. これらの値に基づいて [`TrainingArguments`] オブジェクトを作成します
`scheduler.params.total_num_steps`などの一部の値は次のように計算されることに注意してください。
`train` 中に [`Trainer`] を実行しますが、もちろん自分で計算することもできます。
<a id='deepspeed-zero'></a>
### ZeRO
[Zero Redundancy Optimizer (ZeRO)](https://www.deepspeed.ai/tutorials/zero/) は、DeepSpeed の主力製品です。それ
3 つの異なるレベル (段階) の最適化をサポートします。最初のものは、スケーラビリティの観点からはあまり興味深いものではありません。
したがって、このドキュメントではステージ 2 と 3 に焦点を当てます。ステージ 3 は、最新の ZeRO-Infinity の追加によってさらに改善されています。
詳細については、DeepSpeed のドキュメントを参照してください。
構成ファイルの `zero_optimization` セクションは最も重要な部分です ([docs](https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training))。ここで定義します
どの ZeRO ステージを有効にするか、そしてそれらをどのように構成するか。各パラメータの説明は、
DeepSpeed のドキュメント。
このセクションは、DeepSpeed 設定を介してのみ設定する必要があります - [`Trainer`] が提供します
同等のコマンドライン引数はありません。
注: 現在、DeepSpeed はパラメーター名を検証しないため、スペルを間違えると、デフォルト設定が使用されます。
スペルが間違っているパラメータ。 DeepSpeed エンジンの起動ログ メッセージを見て、その値を確認できます。
使用するつもりです。
<a id='deepspeed-zero2-config'></a>
#### ZeRO-2 Config
以下は、ZeRO ステージ 2 の構成例です。
```json
{
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true
}
}
```
**性能調整:**
- `offload_optimizer` を有効にすると、GPU RAM の使用量が削減されます (`"stage": 2` が必要です)
- `"overlap_comm": true` は、GPU RAM 使用量の増加とトレードオフして、遅延をすべて削減します。 `overlap_comm`は 4.5x を使用します
`allgather_bucket_size`と`reduce_bucket_size`の値。したがって、5e8 に設定されている場合、9GB が必要になります。
フットプリント (`5e8 x 2Bytes x 2 x 4.5`)。したがって、8GB 以下の RAM を搭載した GPU を使用している場合、
OOM エラーが発生した場合は、これらのパラメータを`2e8`程度に減らす必要があり、それには 3.6GB が必要になります。やりたくなるでしょう
OOM に達し始めている場合は、より大容量の GPU でも同様です。
- これらのバッファを減らすと、より多くの GPU RAM を利用するために通信速度を犠牲にすることになります。バッファサイズが小さいほど、
通信が遅くなり、他のタスクで使用できる GPU RAM が増えます。したがって、バッチサイズが大きい場合は、
重要なのは、トレーニング時間を少し遅らせることは良いトレードになる可能性があります。
さらに、`deepspeed==0.4.4`には、次のコマンドで有効にできる新しいオプション`round_robin_gradients`が追加されました。
```json
{
"zero_optimization": {
"round_robin_gradients": true
}
}
```
これは、きめ細かい勾配パーティショニングによってランク間の CPU メモリへの勾配コピーを並列化する、CPU オフロードのステージ 2 最適化です。パフォーマンスの利点は、勾配累積ステップ (オプティマイザー ステップ間のコピーの増加) または GPU 数 (並列処理の増加) に応じて増加します。
<a id='deepspeed-zero3-config'></a>
#### ZeRO-3 Config
以下は、ZeRO ステージ 3 の構成例です。
```json
{
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}
```
モデルまたはアクティベーションが GPU メモリに適合せず、CPU が未使用であるために OOM が発生している場合
`"device": "cpu"` を使用してオプティマイザの状態とパラメータを CPU メモリにメモリオフロードすると、この制限が解決される可能性があります。
CPU メモリにオフロードしたくない場合は、`device`エントリに`cpu`の代わりに`none`を使用します。オフロード先
NVMe については後ほど説明します。
固定メモリは、`pin_memory`を`true`に設定すると有効になります。この機能により、次のようなコストをかけてスループットを向上させることができます。
他のプロセスが使用できるメモリが少なくなります。ピン留めされたメモリは、それを要求した特定のプロセスのために確保されます。
通常、通常の CPU メモリよりもはるかに高速にアクセスされます。
**性能調整:**
- `stage3_max_live_parameters`: `1e9`
- `stage3_max_reuse_distance`: `1e9`
OOM に達した場合は、「stage3_max_live_parameters」と「stage3_max_reuse_ distance」を減らします。影響は最小限に抑えられるはずです
アクティブ化チェックポイントを実行しない限り、パフォーマンスに影響します。 `1e9`は約 2GB を消費します。記憶を共有しているのは、
`stage3_max_live_parameters` と `stage3_max_reuse_distance` なので、加算されるものではなく、合計で 2GB になります。
`stage3_max_live_parameters` は、特定の時点で GPU 上に保持する完全なパラメータの数の上限です。
時間。 「再利用距離」は、パラメータが将来いつ再び使用されるかを判断するために使用する指標です。
`stage3_max_reuse_ distance`を使用して、パラメータを破棄するか保持するかを決定します。パラメータが
近い将来に再び使用される予定 (`stage3_max_reuse_distance`未満) なので、通信を減らすために保持します。
オーバーヘッド。これは、アクティベーション チェックポイントを有効にしている場合に非常に役立ちます。フォワード再計算が行われ、
backward は単一レイヤー粒度を渡し、後方再計算までパラメータを前方再計算に保持したいと考えています。
次の構成値は、モデルの非表示サイズによって異なります。
- `reduce_bucket_size`: `hidden_size*hidden_size`
- `stage3_prefetch_bucket_size`: `0.9 * hidden_size * hidden_size`
- `stage3_param_persistence_threshold`: `10 * hidden_size`
したがって、これらの値を `auto` に設定すると、[`Trainer`] が推奨される値を自動的に割り当てます。
価値観。ただし、もちろん、これらを明示的に設定することもできます。
`stage3_gather_16bit_weights_on_model_save` は、モデルの保存時にモデル fp16 の重み統合を有効にします。大きい
モデルと複数の GPU の場合、これはメモリと速度の両方の点で高価な操作です。現在必須となっているのは、
トレーニングを再開する予定です。この制限を取り除き、より便利にする今後のアップデートに注目してください。
フレキシブル。
ZeRO-2 構成から移行している場合は、`allgather_partitions`、`allgather_bucket_size`、および
`reduce_scatter`設定パラメータは ZeRO-3 では使用されません。これらを設定ファイルに保存しておくと、
無視される。
- `sub_group_size`: `1e9`
`sub_group_size` は、オプティマイザーのステップ中にパラメーターが更新される粒度を制御します。パラメータは次のとおりです。
`sub_group_size` のバケットにグループ化され、各バケットは一度に 1 つずつ更新されます。 NVMeオフロードで使用する場合
したがって、ZeRO-Infinity の `sub_group_size`は、モデルの状態が CPU に出入りする粒度を制御します。
オプティマイザステップ中に NVMe からメモリを取得します。これにより、非常に大規模なモデルの CPU メモリ不足が防止されます。
NVMe オフロードを使用しない場合は、`sub_group_size`をデフォルト値の *1e9* のままにすることができます。変更することもできます
次の場合のデフォルト値:
1. オプティマイザー ステップ中に OOM が発生する: `sub_group_size` を減らして、一時バッファーのメモリ使用量を削減します。
2. オプティマイザー ステップに時間がかかります。`sub_group_size`を増やして、帯域幅の使用率を向上させます。
データバッファの増加。
#### ZeRO-0 Config
ステージ 0 と 1 はめったに使用されないため、最後にリストしていることに注意してください。
ステージ 0 では、すべてのタイプのシャーディングを無効にし、DDP として DeepSpeed のみを使用します。次のコマンドでオンにできます。
```json
{
"zero_optimization": {
"stage": 0
}
}
```
これにより、他に何も変更する必要がなく、基本的に ZeRO が無効になります。
#### ZeRO-1 Config
ステージ 1 は、ステージ 2 からグラデーション シャーディングを除いたものです。オプティマイザーの状態をシャード化するだけで、処理を少し高速化するためにいつでも試すことができます。
```json
{
"zero_optimization": {
"stage": 1
}
}
```
<a id='deepspeed-nvme'></a>
### NVMe Support
ZeRO-Infinity は、GPU と CPU メモリを NVMe メモリで拡張することで、非常に大規模なモデルのトレーニングを可能にします。おかげで
スマート パーティショニングおよびタイリング アルゴリズムでは、各 GPU が非常に少量のデータを送受信する必要があります。
オフロードにより、最新の NVMe がトレーニングに利用できる合計メモリ プールをさらに大きくするのに適していることが判明しました。
プロセス。 ZeRO-Infinity には、ZeRO-3 が有効になっている必要があります。
次の設定例では、NVMe がオプティマイザの状態とパラメータの両方をオフロードできるようにします。
```json
{
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "nvme",
"nvme_path": "/local_nvme",
"pin_memory": true,
"buffer_count": 4,
"fast_init": false
},
"offload_param": {
"device": "nvme",
"nvme_path": "/local_nvme",
"pin_memory": true,
"buffer_count": 5,
"buffer_size": 1e8,
"max_in_cpu": 1e9
},
"aio": {
"block_size": 262144,
"queue_depth": 32,
"thread_count": 1,
"single_submit": false,
"overlap_events": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
}
```
オプティマイザの状態とパラメータの両方を NVMe にオフロードするか、どちらか 1 つだけをオフロードするか、まったくオフロードしないかを選択できます。たとえば、次の場合
利用可能な CPU メモリが大量にある場合は、高速になるため、必ず CPU メモリのみにオフロードしてください (ヒント:
*"device": "CPU"*)。
[オプティマイザーの状態](https://www.deepspeed.ai/docs/config-json/#optimizer-offloading) と [パラメーター](https://www.deepspeed.ai/docs/config-json/#parameter-offloading)。
`nvme_path`が実際に NVMe であることを確認してください。NVMe は通常のハードドライブまたは SSD で動作しますが、
はるかに遅くなります。高速スケーラブルなトレーニングは、最新の NVMe 転送速度を念頭に置いて設計されました (この時点では
書き込みでは、読み取り最大 3.5 GB/秒、書き込み最大 3 GB/秒のピーク速度が得られます)。
最適な`aio`構成ブロックを見つけるには、ターゲット設定でベンチマークを実行する必要があります。
[ここで説明](https://github.com/microsoft/DeepSpeed/issues/998)。
<a id='deepspeed-zero2-zero3-performance'></a>
#### ZeRO-2 vs ZeRO-3 Performance
ZeRO-3 は、他のすべてが同じように構成されている場合、ZeRO-2 よりも遅くなる可能性があります。前者は収集する必要があるためです。
ZeRO-2 の機能に加えてモデルの重み付けを行います。 ZeRO-2 がニーズを満たし、数個の GPU を超えて拡張する必要がない場合
そうすれば、それに固執することを選択することもできます。 ZeRO-3 により、はるかに高いスケーラビリティ容量が可能になることを理解することが重要です
スピードを犠牲にして。
ZeRO-3 の構成を調整して、ZeRO-2 に近づけることができます。
- `stage3_param_persistence_threshold` を非常に大きな数値に設定します。たとえば、`6 * hidden_size * hidden_size` のように、最大パラメータよりも大きくなります。これにより、パラメータが GPU に保持されます。
- ZeRO-2 にはそのオプションがないため、`offload_params` をオフにします。
変更しなくても、`offload_params`をオフにするだけでパフォーマンスが大幅に向上する可能性があります。
`stage3_param_persistence_threshold`。もちろん、これらの変更はトレーニングできるモデルのサイズに影響します。それで
これらは、ニーズに応じて、スケーラビリティと引き換えに速度を向上させるのに役立ちます。
<a id='deepspeed-zero2-example'></a>
#### ZeRO-2 Example
以下は、完全な ZeRO-2 自動構成ファイル `ds_config_zero2.json` です。
```json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
```
以下は、手動で設定された完全な ZeRO-2 のすべてが有効な構成ファイルです。ここでは主に、典型的なものを確認するためのものです。
値は次のようになりますが、複数の`auto`設定が含まれる値を使用することを強くお勧めします。
```json
{
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 3e-5,
"betas": [0.8, 0.999],
"eps": 1e-8,
"weight_decay": 3e-7
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 3e-5,
"warmup_num_steps": 500
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
```
<a id='deepspeed-zero3-example'></a>
#### ZeRO-3 Example
以下は、完全な ZeRO-3 自動構成ファイル`ds_config_zero3.json`です。
```json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
```
以下は、手動で設定された完全な ZeRO-3 のすべてが有効な構成ファイルです。ここでは主に、典型的なものを確認するためのものです。
値は次のようになりますが、複数の`auto`設定が含まれる値を使用することを強くお勧めします。
```json
{
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 3e-5,
"betas": [0.8, 0.999],
"eps": 1e-8,
"weight_decay": 3e-7
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 3e-5,
"warmup_num_steps": 500
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": 1e6,
"stage3_prefetch_bucket_size": 0.94e6,
"stage3_param_persistence_threshold": 1e4,
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
```
#### How to Choose Which ZeRO Stage and Offloads To Use For Best Performance
これで、さまざまな段階があることがわかりました。どちらを使用するかをどのように決定すればよいでしょうか?このセクションでは、この質問に答えていきます。
一般に、次のことが当てはまります。
- 速度の点(左の方が右より速い)
ステージ 0 (DDP) > ステージ 1 > ステージ 2 > ステージ 2 + オフロード > ステージ 3 > ステージ 3 + オフロード
- GPU メモリの使用状況 (右は左よりも GPU メモリ効率が高い)
ステージ 0 (DDP) < ステージ 1 < ステージ 2 < ステージ 2 + オフロード < ステージ 3 < ステージ 3 + オフロード
したがって、最小限の数の GPU に収まりながら最速の実行を実現したい場合は、次のプロセスに従うことができます。最も速いアプローチから開始し、GPU OOM に陥った場合は、次に遅いアプローチに進みますが、これにより使用される GPU メモリが少なくなります。などなど。
まず、バッチ サイズを 1 に設定します (必要な有効バッチ サイズに対して、いつでも勾配累積を使用できます)。
1. `--gradient_checkpointing 1` (HF Trainer) または直接 `model.gradient_checkpointing_enable()` を有効にします - OOM の場合
2. 最初に ZeRO ステージ 2 を試してください。 OOMの場合
3. ZeRO ステージ 2 + `offload_optimizer` を試します - OOM の場合
4. ZeRO ステージ 3 に切り替える - OOM の場合
5. `cpu` に対して `offload_param` を有効にします - OOM の場合
6. OOM の場合は、`cpu`に対して`offload_optimizer`を有効にします。
7. それでもバッチ サイズ 1 に適合しない場合は、まずさまざまなデフォルト値を確認し、可能であれば値を下げます。たとえば、`generate`を使用し、広い検索ビームを使用しない場合は、大量のメモリを消費するため、検索ビームを狭くします。
8. fp32 では必ず混合半精度を使用します。つまり、Ampere 以上の GPU では bf16、古い GPU アーキテクチャでは fp16 を使用します。
9. それでも OOM を行う場合は、ハードウェアを追加するか、ZeRO-Infinity を有効にすることができます。つまり、オフロード `offload_param` と `offload_optimizer` を `nvme` に切り替えます。非常に高速な nvme であることを確認する必要があります。逸話として、ZeRO-Infinity を使用して小さな GPU で BLOOM-176B を推論することができましたが、非常に遅かったです。でも、うまくいきました!
もちろん、最も GPU メモリ効率の高い構成から始めて、後から逆に進むことで、これらの手順を逆に実行することもできます。あるいは二等分してみてください。
OOM を引き起こさないバッチ サイズ 1 を取得したら、実効スループットを測定します。
次に、バッチ サイズをできるだけ大きくしてみます。バッチ サイズが大きいほど、乗算する行列が巨大な場合に GPU のパフォーマンスが最高になるため、GPU の効率が向上します。
ここで、パフォーマンス最適化ゲームが始まります。一部のオフロード機能をオフにするか、ZeRO 段階でステップダウンしてバッチ サイズを増減して、実効スループットを再度測定することができます。満足するまで洗い流し、繰り返します。
永遠にこれに費やす必要はありませんが、3 か月のトレーニングを開始しようとしている場合は、スループットに関して最も効果的な設定を見つけるために数日かけてください。そのため、トレーニングのコストが最小限になり、トレーニングをより早く完了できます。現在の目まぐるしく変化する ML の世界では、何かをトレーニングするのにさらに 1 か月かかる場合、絶好の機会を逃す可能性があります。もちろん、これは私が意見を共有しているだけであり、決してあなたを急かそうとしているわけではありません。 BLOOM-176B のトレーニングを開始する前に、このプロセスに 2 日間費やし、スループットを 90 TFLOP から 150 TFLOP に向上させることができました。この取り組みにより、トレーニング時間を 1 か月以上節約できました。
これらのメモは主にトレーニング モード用に書かれたものですが、ほとんどの場合は推論にも適用されるはずです。たとえば、勾配チェックポイントはトレーニング中にのみ役立つため、推論中は何も行われません。さらに、マルチ GPU 推論を実行していて、[DeepSpeed-Inference](https://www.deepspeed.ai/tutorials/inference-tutorial/)、[Accelerate](https://ハグフェイス.co/blog/bloom-inference-pytorch-scripts) は優れたパフォーマンスを提供するはずです。
その他のパフォーマンス関連の簡単なメモ:
- 何かを最初からトレーニングしている場合は、常に 16 で割り切れる形状のテンソル (隠れたサイズなど) を使用するようにしてください。バッチ サイズについては、少なくとも 2 で割り切れるようにしてください。 GPU からさらに高いパフォーマンスを引き出したい場合は、ハードウェア固有の [波とタイルの量子化](https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/) の可分性があります。
### Activation Checkpointing or Gradient Checkpointing
アクティベーション チェックポイントと勾配チェックポイントは、同じ方法論を指す 2 つの異なる用語です。とてもややこしいですが、こんな感じです。
勾配チェックポイントを使用すると、速度を GPU メモリと引き換えにできます。これにより、GPU OOM を克服したり、バッチ サイズを増やすことができ、多くの場合、パフォーマンスの向上につながります。
HF Transformers モデルは、DeepSpeed のアクティベーション チェックポイントについて何も知らないため、DeepSpeed 構成ファイルでその機能を有効にしようとしても、何も起こりません。
したがって、この非常に有益な機能を活用するには 2 つの方法があります。
1. HF Transformers モデルを使用したい場合は、`model.gradient_checkpointing_enable()` を実行するか、HF トレーナーで `--gradient_checkpointing` を使用します。これにより、これが自動的に有効になります。そこで使われるのが `torch.utils.checkpoint` です。
2. 独自のモデルを作成し、DeepSpeed のアクティベーション チェックポイントを使用したい場合は、[そこで規定されている API](https://deepspeed.readthedocs.io/en/latest/activation-checkpointing.html) を使用できます。 HF Transformers モデリング コードを使用して、`torch.utils.checkpoint` を DeepSpeed の API に置き換えることもできます。後者は、順方向アクティベーションを再計算する代わりに CPU メモリにオフロードできるため、より柔軟です。
### Optimizer and Scheduler
`offload_optimizer`を有効にしない限り、DeepSpeed スケジューラーと HuggingFace スケジューラーを組み合わせて使用できます。
オプティマイザー (HuggingFace スケジューラーと DeepSpeed オプティマイザーの組み合わせを除く):
| Combos | HF Scheduler | DS Scheduler |
|:-------------|:-------------|:-------------|
| HF Optimizer | Yes | Yes |
| DS Optimizer | No | Yes |
`offload_optimizer`が有効な場合、CPU と
GPU 実装 (LAMB を除く)。
<a id='deepspeed-optimizer'></a>
#### Optimizer
DeepSpeed の主なオプティマイザーは、Adam、AdamW、OneBitAdam、Lamb です。これらは ZeRO で徹底的にテストされており、
したがって、使用することをお勧めします。ただし、他のオプティマイザを「torch」からインポートすることはできます。完全なドキュメントは [こちら](https://www.deepspeed.ai/docs/config-json/#optimizer-parameters) にあります。
設定ファイルで `optimizer` エントリを設定しない場合、[`Trainer`] は
自動的に`AdamW`に設定され、指定された値または次のコマンドラインのデフォルトが使用されます。
引数: `--learning_rate`、`--adam_beta1`、`--adam_beta2`、`--adam_epsilon`、および `--weight_decay`。
以下は、`AdamW`の自動構成された`optimizer`エントリの例です。
```json
{
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
}
}
```
コマンドライン引数によって構成ファイル内の値が設定されることに注意してください。これは 1 つあるためです
値の決定的なソースを提供し、たとえば学習率が次のように設定されている場合に、見つけにくいエラーを回避します。
さまざまな場所でさまざまな価値観。コマンドラインのルール。オーバーライドされる値は次のとおりです。
- `lr` と `--learning_rate` の値
- `betas` と `--adam_beta1 --adam_beta2` の値
- `eps` と `--adam_epsilon` の値
- `weight_decay` と `--weight_decay` の値
したがって、コマンドラインで共有ハイパーパラメータを調整することを忘れないでください。
値を明示的に設定することもできます。
```json
{
"optimizer": {
"type": "AdamW",
"params": {
"lr": 0.001,
"betas": [0.8, 0.999],
"eps": 1e-8,
"weight_decay": 3e-7
}
}
}
```
ただし、[`Trainer`] コマンドライン引数と DeepSpeed を自分で同期することになります。
構成。
上記にリストされていない別のオプティマイザーを使用する場合は、トップレベルの構成に追加する必要があります。
```json
{
"zero_allow_untested_optimizer": true
}
```
`AdamW`と同様に、公式にサポートされている他のオプティマイザーを構成できます。これらは異なる設定値を持つ可能性があることに注意してください。例えばAdam の場合は、`weight_decay`を`0.01`付近にする必要があります。
さらに、オフロードは、Deepspeed の CPU Adam オプティマイザーと併用すると最も効果的に機能します。 `deepspeed==0.8.3` なので、オフロードで別のオプティマイザーを使用したい場合は、以下も追加する必要があります。
```json
{
"zero_force_ds_cpu_optimizer": false
}
```
最上位の構成に移行します。
<a id='deepspeed-scheduler'></a>
#### Scheduler
DeepSpeed は、`LRRangeTest`、`OneCycle`、`WarmupLR`、および`WarmupDecayLR`学習率スケジューラーをサポートしています。完全な
ドキュメントは[ここ](https://www.deepspeed.ai/docs/config-json/#scheduler-parameters)です。
ここでは、🤗 Transformers と DeepSpeed の間でスケジューラーが重複する場所を示します。
- `--lr_scheduler_type constant_with_warmup` 経由の `WarmupLR`
- `--lr_scheduler_type Linear` を介した `WarmupDecayLR`。これは `--lr_scheduler_type` のデフォルト値でもあります。
したがって、スケジューラを設定しない場合、これがデフォルトで設定されるスケジューラになります。
設定ファイルで `scheduler` エントリを設定しない場合、[`Trainer`] は
`--lr_scheduler_type`、`--learning_rate`、および `--warmup_steps` または `--warmup_ratio` の値を設定します。
🤗 それのトランスフォーマーバージョン。
以下は、`WarmupLR`の自動構成された`scheduler`エントリの例です。
```json
{
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
}
}
```
*"auto"* が使用されているため、[`Trainer`] 引数は設定に正しい値を設定します。
ファイル。これは、値の決定的なソースが 1 つあることと、たとえば次のような場合に見つけにくいエラーを避けるためです。
学習率は、場所ごとに異なる値に設定されます。コマンドラインのルール。設定される値は次のとおりです。
- `warmup_min_lr` の値は `0` です。
- `warmup_max_lr` と `--learning_rate` の値。
- `warmup_num_steps` と `--warmup_steps` の値 (指定されている場合)。それ以外の場合は `--warmup_ratio` を使用します
トレーニング ステップの数を乗算し、切り上げます。
- `total_num_steps` には `--max_steps` の値を指定するか、指定されていない場合は実行時に自動的に導出されます。
環境、データセットのサイズ、およびその他のコマンド ライン引数 (
`WarmupDecayLR`)。
もちろん、構成値の一部またはすべてを引き継いで、自分で設定することもできます。
```json
{
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 0.001,
"warmup_num_steps": 1000
}
}
}
```
ただし、[`Trainer`] コマンドライン引数と DeepSpeed を自分で同期することになります。
構成。
たとえば、`WarmupDecayLR`の場合は、次のエントリを使用できます。
```json
{
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"last_batch_iteration": -1,
"total_num_steps": "auto",
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
}
}
```
`total_num_steps`、`warmup_max_lr`、`warmup_num_steps`、および `total_num_steps` はロード時に設定されます。
<a id='deepspeed-fp32'></a>
### fp32 Precision
Deepspeed は、完全な fp32 と fp16 の混合精度をサポートします。
fp16 混合精度を使用すると、必要なメモリが大幅に削減され、速度が向上するため、
使用しているモデルがこのトレーニング モードで適切に動作しない場合は、使用しない方がよいでしょう。通常これ
モデルが fp16 混合精度で事前トレーニングされていない場合に発生します (たとえば、これは bf16 で事前トレーニングされた場合によく発生します)
モデル)。このようなモデルでは、オーバーフローまたはアンダーフローが発生し、`NaN`損失が発生する可能性があります。これがあなたの場合は、使用したいと思うでしょう
完全な fp32 モード。デフォルトの fp16 混合精度モードを次のように明示的に無効にします。
```json
{
"fp16": {
"enabled": false,
}
}
```
Ampere アーキテクチャ ベースの GPU を使用している場合、pytorch バージョン 1.7 以降は自動的に を使用するように切り替わります。
一部の操作でははるかに効率的な tf32 形式を使用しますが、結果は依然として fp32 になります。詳細と
ベンチマークについては、[Ampere デバイス上の TensorFloat-32(TF32)](https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) を参照してください。文書には以下が含まれます
何らかの理由でこの自動変換を使用したくない場合は、この自動変換を無効にする方法について説明します。
🤗 トレーナーでは、`--tf32` を使用して有効にするか、`--tf32 0` または `--no_tf32` を使用して無効にすることができます。デフォルトでは、PyTorch のデフォルトが使用されます。
<a id='deepspeed-amp'></a>
### Automatic Mixed Precision
pytorch のような AMP の方法または apex のような方法で自動混合精度を使用できます。
### fp16
fp16 (float16) を設定して pytorch AMP のようなモードを設定するには:
```json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
}
}
```
[`Trainer`] は、の値に基づいてそれを自動的に有効または無効にします。
`args.fp16_backend`。残りの設定値はあなた次第です。
このモードは、`--fp16 --fp16_backend amp`または`--fp16_full_eval`コマンドライン引数が渡されると有効になります。
このモードを明示的に有効/無効にすることもできます。
```json
{
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
}
}
```
ただし、[`Trainer`] コマンドライン引数と DeepSpeed を自分で同期することになります。
構成。
これが[ドキュメント](https://www.deepspeed.ai/docs/config-json/#fp16-training-options)です。
### BF16
fp16 の代わりに bf16 (bfloat16) が必要な場合は、次の構成セクションが使用されます。
```json
{
"bf16": {
"enabled": "auto"
}
}
```
bf16 は fp32 と同じダイナミック レンジを備えているため、損失スケーリングは必要ありません。
このモードは、`--bf16` または `--bf16_full_eval` コマンドライン引数が渡されると有効になります。
このモードを明示的に有効/無効にすることもできます。
```json
{
"bf16": {
"enabled": true
}
}
```
<Tip>
`deepspeed==0.6.0`の時点では、bf16 サポートは新しく実験的なものです。
bf16 が有効な状態で [勾配累積](#gradient-accumulation) を使用する場合は、bf16 で勾配が累積されることに注意する必要があります。この形式の精度が低いため、これは希望どおりではない可能性があります。損失のある蓄積につながります。
この問題を修正し、より高精度の `dtype` (fp16 または fp32) を使用するオプションを提供するための作業が行われています。
</Tip>
### NCCL Collectives
訓練体制の`dtype`があり、さまざまな削減や収集/分散操作などのコミュニケーション集合体に使用される別の`dtype`があります。
すべての収集/分散操作は、データが含まれているのと同じ `dtype` で実行されるため、bf16 トレーニング体制を使用している場合、データは bf16 で収集されます。収集は損失のない操作です。
さまざまなリデュース操作は非常に損失が大きい可能性があります。たとえば、複数の GPU 間で勾配が平均化される場合、通信が fp16 または bf16 で行われる場合、結果は損失が多くなる可能性があります。複数の数値を低精度でアドバタイズすると結果は正確ではないためです。 。 bf16 では fp16 よりも精度が低いため、さらにそうです。通常は非常に小さい grad を平均する際の損失が最小限に抑えられるため、fp16 で十分であることがよくあります。したがって、デフォルトでは、半精度トレーニングでは fp16 がリダクション演算のデフォルトとして使用されます。ただし、この機能を完全に制御でき、必要に応じて小さなオーバーヘッドを追加して、リダクションが累積 dtype として fp32 を使用し、結果の準備ができた場合にのみ半精度 `dtype` にダウンキャストするようにすることもできます。でトレーニング中です。
デフォルトをオーバーライドするには、新しい構成エントリを追加するだけです。
```json
{
"communication_data_type": "fp32"
}
```
この記事の執筆時点での有効な値は、"fp16"、"bfp16"、"fp32"です。
注: ステージ ゼロ 3 には、bf16 通信タイプに関するバグがあり、`deepspeed==0.8.1`で修正されました。
### apex
apex AMP のようなモード セットを設定するには:
```json
"amp": {
"enabled": "auto",
"opt_level": "auto"
}
```
[`Trainer`] は `args.fp16_backend` の値に基づいて自動的に設定します。
`args.fp16_opt_level`。
このモードは、`--fp16 --fp16_backend apex --fp16_opt_level 01`コマンド ライン引数が渡されると有効になります。
このモードを明示的に構成することもできます。
```json
{
"amp": {
"enabled": true,
"opt_level": "O1"
}
}
```
ただし、[`Trainer`] コマンドライン引数と DeepSpeed を自分で同期することになります。
構成。
これは[ドキュメント](https://www.deepspeed.ai/docs/config-json/#automatic-mixed-precision-amp-training-options)です。
<a id='deepspeed-bs'></a>
### Batch Size
バッチサイズを設定するには、次を使用します。
```json
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto"
}
```
[`Trainer`] は自動的に `train_micro_batch_size_per_gpu` を次の値に設定します。
`args.per_device_train_batch_size`と`train_batch_size`を`args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps`に変更します。
値を明示的に設定することもできます。
```json
{
"train_batch_size": 12,
"train_micro_batch_size_per_gpu": 4
}
```
ただし、[`Trainer`] コマンドライン引数と DeepSpeed を自分で同期することになります。
構成。
<a id='deepspeed-grad-acc'></a>
### Gradient Accumulation
勾配累積セットを構成するには:
```json
{
"gradient_accumulation_steps": "auto"
}
```
[`Trainer`] は自動的にそれを `args.gradient_accumulation_steps` の値に設定します。
値を明示的に設定することもできます。
```json
{
"gradient_accumulation_steps": 3
}
```
ただし、[`Trainer`] コマンドライン引数と DeepSpeed を自分で同期することになります。
構成。
<a id='deepspeed-grad-clip'></a>
### Gradient Clipping
グラデーション グラデーション クリッピング セットを構成するには:
```json
{
"gradient_clipping": "auto"
}
```
[`Trainer`] は自動的にそれを `args.max_grad_norm` の値に設定します。
値を明示的に設定することもできます。
```json
{
"gradient_clipping": 1.0
}
```
ただし、[`Trainer`] コマンドライン引数と DeepSpeed を自分で同期することになります。
構成。
<a id='deepspeed-weight-extraction'></a>
### Getting The Model Weights Out
トレーニングを継続し、DeepSpeed の使用を再開する限り、何も心配する必要はありません。 DeepSpeed ストア
fp32 のカスタム チェックポイント オプティマイザー ファイル内のマスターの重み。これは `global_step*/*optim_states.pt` (これは glob
パターン)、通常のチェックポイントの下に保存されます。
**FP16 ウェイト:**
モデルを ZeRO-2 で保存すると、モデルの重みを含む通常の `pytorch_model.bin` ファイルが作成されますが、
これらは重みの fp16 バージョンにすぎません。
ZeRO-3 では、モデルの重みが複数の GPU に分割されるため、状況はさらに複雑になります。
したがって、fp16 を保存するための `Trainer` を取得するには、`"stage3_gather_16bit_weights_on_model_save": true` が必要です。
重みのバージョン。この設定が`False`の場合、`pytorch_model.bin`は作成されません。これは、デフォルトで DeepSpeed の `state_dict` に実際の重みではなくプレースホルダーが含まれるためです。この `state_dict` を保存した場合、ロードし直すことはできません。
```json
{
"zero_optimization": {
"stage3_gather_16bit_weights_on_model_save": true
}
}
```
**FP32 重量:**
fp16 ウェイトはトレーニングを再開するのに適していますが、モデルの微調整が完了し、それを
[モデル ハブ](https://huggingface.co/models) にアクセスするか、fp32 を入手したいと思われる他の人に渡します。
重み。これは大量のメモリを必要とするプロセスであるため、トレーニング中に行うべきではないのが理想的です。
したがって、トレーニングの完了後にオフラインで実行するのが最適です。ただし、必要に応じて、空き CPU が十分にある場合は、
同じトレーニング スクリプトで実行できることを思い出してください。次のセクションでは、両方のアプローチについて説明します。
**ライブ FP32 ウェイト リカバリ:**
モデルが大きく、トレーニングの終了時に空き CPU メモリがほとんど残っていない場合、このアプローチは機能しない可能性があります。
少なくとも 1 つのチェックポイントを保存していて、最新のチェックポイントを使用したい場合は、次の手順を実行できます。
```python
from transformers.trainer_utils import get_last_checkpoint
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
checkpoint_dir = get_last_checkpoint(trainer.args.output_dir)
fp32_model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
```
`--load_best_model_at_end` class:*~transformers.TrainingArguments* 引数を使用している場合 (最適なモデルを追跡するため)
チェックポイント)、最初に最終モデルを明示的に保存してから、上記と同じことを行うことでトレーニングを終了できます。
```python
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
checkpoint_dir = os.path.join(trainer.args.output_dir, "checkpoint-final")
trainer.deepspeed.save_checkpoint(checkpoint_dir)
fp32_model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
```
<Tip>
`load_state_dict_from_zero_checkpoint` が実行されると、`model` はもはや使用できなくなることに注意してください。
同じアプリケーションの DeepSpeed コンテキスト。つまり、deepspeed エンジンを再初期化する必要があります。
`model.load_state_dict(state_dict)` はそこからすべての DeepSpeed マジックを削除します。したがって、これは最後にのみ実行してください
トレーニングの様子。
</Tip>
もちろん、class:*~transformers.Trainer* を使用する必要はなく、上記の例を独自のものに調整することができます。
トレーナー。
何らかの理由でさらに改良したい場合は、重みの fp32 `state_dict` を抽出して適用することもできます。
次の例に示すように、これらは自分で作成します。
```python
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
model = model.cpu()
model.load_state_dict(state_dict)
```
**オフライン FP32 ウェイト リカバリ:**
DeepSpeed は特別な変換スクリプト`zero_to_fp32.py`を作成し、チェックポイントの最上位に配置します。
フォルダ。このスクリプトを使用すると、いつでも重みを抽出できます。スクリプトはスタンドアロンなので、もう必要ありません。
抽出を行うための設定ファイルまたは `Trainer` が必要です。
チェックポイント フォルダーが次のようになっているとします。
```bash
$ ls -l output_dir/checkpoint-1/
-rw-rw-r-- 1 stas stas 1.4K Mar 27 20:42 config.json
drwxrwxr-x 2 stas stas 4.0K Mar 25 19:52 global_step1/
-rw-rw-r-- 1 stas stas 12 Mar 27 13:16 latest
-rw-rw-r-- 1 stas stas 827K Mar 27 20:42 optimizer.pt
-rw-rw-r-- 1 stas stas 231M Mar 27 20:42 pytorch_model.bin
-rw-rw-r-- 1 stas stas 623 Mar 27 20:42 scheduler.pt
-rw-rw-r-- 1 stas stas 1.8K Mar 27 20:42 special_tokens_map.json
-rw-rw-r-- 1 stas stas 774K Mar 27 20:42 spiece.model
-rw-rw-r-- 1 stas stas 1.9K Mar 27 20:42 tokenizer_config.json
-rw-rw-r-- 1 stas stas 339 Mar 27 20:42 trainer_state.json
-rw-rw-r-- 1 stas stas 2.3K Mar 27 20:42 training_args.bin
-rwxrw-r-- 1 stas stas 5.5K Mar 27 13:16 zero_to_fp32.py*
```
この例では、DeepSpeed チェックポイント サブフォルダー *global_step1* が 1 つだけあります。したがって、FP32を再構築するには
重みを実行するだけです:
```bash
python zero_to_fp32.py . pytorch_model.bin
```
これだよ。 `pytorch_model.bin`には、複数の GPU から統合された完全な fp32 モデルの重みが含まれるようになります。
スクリプトは、ZeRO-2 または ZeRO-3 チェックポイントを自動的に処理できるようになります。
`python zero_to_fp32.py -h` を実行すると、使用方法の詳細が表示されます。
スクリプトは、ファイル`latest`の内容を使用して deepspeed サブフォルダーを自動検出します。
例には`global_step1`が含まれます。
注: 現在、スクリプトには最終的な fp32 モデルの重みの 2 倍の一般 RAM が必要です。
### ZeRO-3 と Infinity Nuances
ZeRO-3 は、パラメータ シャーディング機能の点で ZeRO-2 とは大きく異なります。
ZeRO-Infinity は ZeRO-3 をさらに拡張し、NVMe メモリやその他の複数の速度とスケーラビリティの向上をサポートします。
モデルに特別な変更を加える必要がなくても正常に動作するようにあらゆる努力が払われてきましたが、特定の点では
状況によっては、次の情報が必要になる場合があります。
#### Constructing Massive Models
DeepSpeed/ZeRO-3 は、既存の RAM に収まらない可能性のある数兆のパラメータを持つモデルを処理できます。そのような場合、
また、初期化をより高速に実行したい場合は、*deepspeed.zero.Init()* を使用してモデルを初期化します。
コンテキスト マネージャー (関数デコレーターでもあります)。次のようになります。
```python
from transformers import T5ForConditionalGeneration, T5Config
import deepspeed
with deepspeed.zero.Init():
config = T5Config.from_pretrained("t5-small")
model = T5ForConditionalGeneration(config)
```
ご覧のとおり、これによりランダムに初期化されたモデルが得られます。
事前トレーニングされたモデルを使用したい場合、`model_class.from_pretrained` は次の条件を満たす限りこの機能を有効にします。
`is_deepspeed_zero3_enabled()` は `True` を返します。これは現在、
[`TrainingArguments`] オブジェクト (渡された DeepSpeed 構成ファイルに ZeRO-3 構成が含まれている場合)
セクション。したがって、呼び出しの前に** [`TrainingArguments`] オブジェクトを作成する必要があります。
`from_pretrained`。考えられるシーケンスの例を次に示します。
```python
from transformers import AutoModel, Trainer, TrainingArguments
training_args = TrainingArguments(..., deepspeed=ds_config)
model = AutoModel.from_pretrained("t5-small")
trainer = Trainer(model=model, args=training_args, ...)
```
公式のサンプル スクリプトを使用していて、コマンド ライン引数に `--deepspeed ds_config.json` が含まれている場合
ZeRO-3 設定を有効にすると、これがサンプル スクリプトの記述方法であるため、すべてがすでに完了しています。
注: モデルの fp16 重みが単一の GPU のメモリに収まらない場合は、この機能を使用する必要があります。
この方法とその他の関連機能の詳細については、[大規模モデルの構築](https://deepspeed.readthedocs.io/en/latest/zero3.html#constructing-massive-models) を参照してください。
また、fp16 で事前訓練されたモデルをロードするときは、`from_pretrained` に使用するように指示する必要があります。
`torch_dtype=torch.float16`。詳細については、[from_pretrained-torch-dtype](#from_pretrained-torch-dtype) を参照してください。
#### Gathering Parameters
複数の GPU 上の ZeRO-3 では、現在の GPU のパラメータでない限り、単一の GPU がすべてのパラメータを持つことはありません。
実行層。したがって、すべてのレイヤーのすべてのパラメーターに一度にアクセスする必要がある場合は、それを行うための特定の方法があります。
ほとんどの場合は必要ありませんが、必要な場合は、[パラメータの収集](https://deepspeed.readthedocs.io/en/latest/zero3.html#manual-parameter-coordination) を参照してください。
ただし、いくつかの場所で内部的に使用しています。その例の 1 つは、事前トレーニングされたモデルの重みをロードするときです。
`from_pretrained`。一度に 1 つのレイヤーをロードし、参加しているすべての GPU に即座に分割します。
大規模なモデルでは、メモリの関係で、1 つの GPU にロードしてから複数の GPU に分散することはできません。
制限。
また、ZeRO-3 では、独自のコードを作成し、次のようなモデル パラメーターの重みが発生するとします。
```python
tensor([1.0], device="cuda:0", dtype=torch.float16, requires_grad=True)
```
`tensor([1.])` にストレスを感じた場合、またはパラメータのサイズが `1` であるというエラーが発生した場合
より大きな多次元形状。これは、パラメーターが分割されており、表示されるのは ZeRO-3 プレースホルダーであることを意味します。
<a id='deepspeed-zero-inference'></a>
### ZeRO Inference
ZeRO Inference は、ZeRO-3 Training と同じ構成を使用します。オプティマイザーとスケジューラーのセクションは必要ありません。で
実際、同じものをトレーニングと共有したい場合は、これらを設定ファイルに残すことができます。彼らはただそうなるだろう
無視されました。
それ以外の場合は、通常の [`TrainingArguments`] 引数を渡すだけです。例えば:
```bash
deepspeed --num_gpus=2 your_program.py <normal cl args> --do_eval --deepspeed ds_config.json
```
唯一重要なことは、ZeRO-2 には何の利点もないため、ZeRO-3 構成を使用する必要があるということです。
ZeRO-3 のみがパラメーターのシャーディングを実行するのに対し、ZeRO-1 は勾配とオプティマイザーの状態をシャーディングするため、推論に役立ちます。
以下は、利用可能なすべての GPU をデプロイする DeepSpeed で`run_translation.py`を実行する例です。
```bash
deepspeed examples/pytorch/translation/run_translation.py \
--deepspeed tests/deepspeed/ds_config_zero3.json \
--model_name_or_path t5-small --output_dir output_dir \
--do_eval --max_eval_samples 50 --warmup_steps 50 \
--max_source_length 128 --val_max_target_length 128 \
--overwrite_output_dir --per_device_eval_batch_size 4 \
--predict_with_generate --dataset_config "ro-en" --fp16 \
--source_lang en --target_lang ro --dataset_name wmt16 \
--source_prefix "translate English to Romanian: "
```
推論のために、オプティマイザーの状態と勾配によって使用される追加の大きなメモリは必要ないため、
はるかに大きなバッチやシーケンス長を同じハードウェアに適合できる必要があります。
さらに、DeepSpeed は現在、Deepspeed-Inference と呼ばれる関連製品を開発していますが、これとは何の関係もありません。
ZeRO テクノロジーに準拠していますが、代わりにテンソル並列処理を使用して、単一の GPU に収まらないモデルをスケーリングします。これは
現在開発中です。製品が完成したら統合を提供する予定です。
### Memory Requirements
Deepspeed ZeRO はメモリを CPU (および NVMe) にオフロードできるため、フレームワークは、使用されている GPU の数に応じて必要な CPU および GPU メモリの量を知ることができるユーティリティを提供します。
単一の GPU で `bigscience/T0_3B`を微調整するために必要なメモリの量を見積もってみましょう。
```bash
$ python -c 'from transformers import AutoModel; \
from deepspeed.runtime.zero.stage3 import estimate_zero3_model_states_mem_needs_all_live; \
model = AutoModel.from_pretrained("bigscience/T0_3B"); \
estimate_zero3_model_states_mem_needs_all_live(model, num_gpus_per_node=1, num_nodes=1)'
[...]
Estimated memory needed for params, optim states and gradients for a:
HW: Setup with 1 node, 1 GPU per node.
SW: Model with 2783M total params, 65M largest layer params.
per CPU | per GPU | Options
70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=1
70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=0
62.23GB | 5.43GB | offload_param=none, offload_optimizer=cpu , zero_init=1
62.23GB | 5.43GB | offload_param=none, offload_optimizer=cpu , zero_init=0
0.37GB | 46.91GB | offload_param=none, offload_optimizer=none, zero_init=1
15.56GB | 46.91GB | offload_param=none, offload_optimizer=none, zero_init=0
```
したがって、単一の 80 GB GPU で CPU オフロードなしで搭載することも、小さな 8 GB GPU でも最大 60 GB の CPU メモリが必要になることも可能です。 (これはパラメータ、オプティマイザの状態、および勾配のためのメモリであることに注意してください。cuda カーネル、アクティベーション、および一時メモリにはもう少し多くのメモリが必要です。)
次に、コストと速度のトレードオフになります。より小さい GPU を購入またはレンタルした方が安くなります (Deepspeed ZeRO では複数の GPU を使用できるため、GPU の数を減らすこともできます)。しかし、その場合は遅くなります。そのため、何かを実行する速度を気にしなくても、速度の低下は GPU の使用時間に直接影響し、コストが増大するため、どれが最も効果的かを実験して比較してください。
十分な GPU メモリがある場合は、すべてが高速になるため、CPU/NVMe オフロードを必ず無効にしてください。
たとえば、2 つの GPU に対して同じことを繰り返してみましょう。
```bash
$ python -c 'from transformers import AutoModel; \
from deepspeed.runtime.zero.stage3 import estimate_zero3_model_states_mem_needs_all_live; \
model = AutoModel.from_pretrained("bigscience/T0_3B"); \
estimate_zero3_model_states_mem_needs_all_live(model, num_gpus_per_node=2, num_nodes=1)'
[...]
Estimated memory needed for params, optim states and gradients for a:
HW: Setup with 1 node, 2 GPUs per node.
SW: Model with 2783M total params, 65M largest layer params.
per CPU | per GPU | Options
70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=1
70.00GB | 0.25GB | offload_param=cpu , offload_optimizer=cpu , zero_init=0
62.23GB | 2.84GB | offload_param=none, offload_optimizer=cpu , zero_init=1
62.23GB | 2.84GB | offload_param=none, offload_optimizer=cpu , zero_init=0
0.74GB | 23.58GB | offload_param=none, offload_optimizer=none, zero_init=1
31.11GB | 23.58GB | offload_param=none, offload_optimizer=none, zero_init=0
```
したがって、ここでは、CPU にオフロードせずに 2x 32GB 以上の GPU が必要になります。
詳細については、[メモリ推定ツール](https://deepspeed.readthedocs.io/en/latest/memory.html) を参照してください。
### Filing Issues
ここでは、問題の真相をすぐに解明し、作業のブロックを解除できるよう、問題を報告する方法を説明します。
レポートには必ず次の内容を含めてください。
1. レポート内の完全な Deepspeed 構成ファイル
2. [`Trainer`] を使用している場合はコマンドライン引数、または
トレーナーのセットアップを自分でスクリプト作成している場合は、[`TrainingArguments`] 引数。しないでください
[`TrainingArguments`] には無関係なエントリが多数含まれているため、ダンプします。
3. 次の出力:
```bash
python -c 'import torch; print(f"torch: {torch.__version__}")'
python -c 'import transformers; print(f"transformers: {transformers.__version__}")'
python -c 'import deepspeed; print(f"deepspeed: {deepspeed.__version__}")'
```
4. 可能であれば、問題を再現できる Google Colab ノートブックへのリンクを含めてください。これを使えます
[ノートブック](https://github.com/stas00/porting/blob/master/transformers/deepspeed/DeepSpeed_on_colab_CLI.ipynb) として
出発点。
5. 不可能でない限り、カスタムデータセットではなく、常に使用できる標準データセットを使用してください。
6. 可能であれば、既存の [サンプル](https://github.com/huggingface/transformers/tree/main/examples/pytorch) のいずれかを使用して問題を再現してみてください。
- Deepspeed が問題の原因ではないことがよくあります。
提出された問題の一部は、Deepspeed とは無関係であることが判明しました。それは、Deepspeed がセットアップから削除された後です。
問題はまだ残っていた。
したがって、完全に明白でない場合は、DeepSpeed 関連の問題です。
例外が発生し、DeepSpeed モジュールが関係していることがわかります。まず、DeepSpeed を含まないセットアップを再テストしてください。
問題が解決しない場合にのみ、Deepspeed について言及し、必要な詳細をすべて提供してください。
- 問題が統合部分ではなく DeepSpeed コアにあることが明らかな場合は、問題を提出してください。
[Deepspeed](https://github.com/microsoft/DeepSpeed/) を直接使用します。よくわからない場合でも、ご安心ください。
どちらの問題トラッカーでも問題ありません。投稿されたらそれを判断し、次の場合は別の問題トラッカーにリダイレクトします。
そうである必要がある。
### Troubleshooting
#### the `deepspeed` process gets killed at startup without a traceback
`deepspeed`プロセスが起動時にトレースバックなしで強制終了された場合、それは通常、プログラムが試行したことを意味します。
システムが持っているよりも多くの CPU メモリを割り当てるか、プロセスが割り当てを許可されているため、OS カーネルがそれを強制終了します。
プロセス。これは、設定ファイルに `offload_optimizer` または `offload_param` が含まれている可能性が高いためです。
どちらも`cpu`にオフロードするように設定されています。 NVMe を使用している場合は、次の環境で実行している場合は NVMe へのオフロードを試してください。
ゼロ-3。 [特定のモデルに必要なメモリ量を見積もる]方法は次のとおりです(https://deepspeed.readthedocs.io/en/latest/memory.html)。
#### training and/or eval/predict loss is `NaN`
これは、bf16 混合精度モードで事前トレーニングされたモデルを取得し、それを fp16 (混合精度の有無にかかわらず) で使用しようとした場合によく発生します。 TPU でトレーニングされたほとんどのモデル、および多くの場合、Google によってリリースされたモデルは、このカテゴリに分類されます (たとえば、ほぼすべての t5 ベースのモデル)。ここでの解決策は、ハードウェアがサポートしている場合 (TPU、Ampere GPU 以降)、fp32 または bf16 を使用することです。
```json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
}
}
```
ログには、Deepspeed が次のように`OVERFLOW!`を報告していることがわかります。
```
0%| | 0/189 [00:00<?, ?it/s]
[deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 262144, reducing to 262144
1%|▌ | 1/189 [00:00<01:26, 2.17it/s]
[deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 262144, reducing to 131072.0
1%|█▏
[...]
[deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1
14%|████████████████▌ | 27/189 [00:14<01:13, 2.21it/s]
[deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1
15%|█████████████████▏ | 28/189 [00:14<01:13, 2.18it/s]
[deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1
15%|█████████████████▊ | 29/189 [00:15<01:13, 2.18it/s]
[deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 1, reducing to 1
[...]
```
これは、Deepspeed 損失スケーラーが損失オーバーフローを克服するスケーリング係数を見つけられないことを意味します。
(ログはここで読みやすくするためにマッサージされています。)
この場合、通常は `initial_scale_power` の値を上げる必要があります。通常、`initial_scale_power: 32` に設定すると問題が解決します。
### Notes
- DeepSpeed には pip でインストール可能な PyPI パッケージがありますが、ハードウェアに最も適合するように、また有効にする必要がある場合は、[ソース](https://github.com/microsoft/deepspeed#installation) からインストールすることを強くお勧めします。
1 ビット Adam などの特定の機能は、pypi ディストリビューションでは利用できません。
- 🤗 Transformers で DeepSpeed を使用するために [`Trainer`] を使用する必要はありません - 任意のモデルを使用できます
後者は [DeepSpeed 統合手順](https://www.deepspeed.ai/getting-started/#writing-deepspeed-models) に従って調整する必要があります。
## Non-Trainer Deepspeed Integration
[`~integrations.HfDeepSpeedConfig`] は、Deepspeed を 🤗 Transformers コアに統合するために使用されます
[`Trainer`] を使用しない場合の機能。実行する唯一のことは、Deepspeed ZeRO-3 パラメータ収集を処理し、`from_pretrained`呼び出し中にモデルを複数の GPU に自動的に分割することです。それ以外はすべて自分で行う必要があります。
[`Trainer`] を使用すると、すべてが自動的に処理されます。
[`Trainer`] を使用しない場合、DeepSpeed ZeRO-3 を効率的に導入するには、
モデルをインスタンス化する前に [`~integrations.HfDeepSpeedConfig`] オブジェクトを削除し、そのオブジェクトを生きたままにします。
Deepspeed ZeRO-1 または ZeRO-2 を使用している場合は、`HfDeepSpeedConfig`を使用する必要はまったくありません。
たとえば、事前トレーニングされたモデルの場合は次のようになります。
```python
from transformers.integrations import HfDeepSpeedConfig
from transformers import AutoModel
import deepspeed
ds_config = {...} # deepspeed config object or path to the file
# must run before instantiating the model to detect zero 3
dschf = HfDeepSpeedConfig(ds_config) # keep this object alive
model = AutoModel.from_pretrained("gpt2")
engine = deepspeed.initialize(model=model, config_params=ds_config, ...)
```
または、事前トレーニングされていないモデルの場合:
```python
from transformers.integrations import HfDeepSpeedConfig
from transformers import AutoModel, AutoConfig
import deepspeed
ds_config = {...} # deepspeed config object or path to the file
# must run before instantiating the model to detect zero 3
dschf = HfDeepSpeedConfig(ds_config) # keep this object alive
config = AutoConfig.from_pretrained("gpt2")
model = AutoModel.from_config(config)
engine = deepspeed.initialize(model=model, config_params=ds_config, ...)
```
[`Trainer`] 統合を使用していない場合は、完全に独力で行うことになることに注意してください。基本的には、[Deepspeed](https://www.deepspeed.ai/) Web サイトのドキュメントに従ってください。また、設定ファイルを明示的に設定する必要があります。`"auto"`値は使用できず、代わりに実際の値を入力する必要があります。
## HfDeepSpeedConfig
[[autodoc]] integrations.HfDeepSpeedConfig
- all
### Custom DeepSpeed ZeRO Inference
以下は、単一の GPU にモデルを適合できない場合に、[`Trainer`] を使用せずに DeepSpeed ZeRO 推論を実行する方法の例です。解決策には、追加の GPU の使用、または GPU メモリを CPU メモリにオフロードすることが含まれます。
ここで理解すべき重要なニュアンスは、ZeRO の設計方法により、異なる GPU で異なる入力を並行して処理できるということです。
この例には大量のメモがあり、自己文書化されています。
必ず次のことを行ってください。
1. 十分な GPU メモリがある場合は、CPU オフロードを無効にします (速度が低下するため)。
2. Ampere または新しい GPU を所有している場合は、処理を高速化するために bf16 を有効にします。そのハードウェアがない場合は、bf16 混合精度で事前トレーニングされたモデル (ほとんどの t5 モデルなど) を使用しない限り、fp16 を有効にすることができます。これらは通常、fp16 でオーバーフローし、出力としてガベージが表示されます。
```python
#!/usr/bin/env python
# This script demonstrates how to use Deepspeed ZeRO in an inference mode when one can't fit a model
# into a single GPU
#
# 1. Use 1 GPU with CPU offload
# 2. Or use multiple GPUs instead
#
# First you need to install deepspeed: pip install deepspeed
#
# Here we use a 3B "bigscience/T0_3B" model which needs about 15GB GPU RAM - so 1 largish or 2
# small GPUs can handle it. or 1 small GPU and a lot of CPU memory.
#
# To use a larger model like "bigscience/T0" which needs about 50GB, unless you have an 80GB GPU -
# you will need 2-4 gpus. And then you can adapt the script to handle more gpus if you want to
# process multiple inputs at once.
#
# The provided deepspeed config also activates CPU memory offloading, so chances are that if you
# have a lot of available CPU memory and you don't mind a slowdown you should be able to load a
# model that doesn't normally fit into a single GPU. If you have enough GPU memory the program will
# run faster if you don't want offload to CPU - so disable that section then.
#
# To deploy on 1 gpu:
#
# deepspeed --num_gpus 1 t0.py
# or:
# python -m torch.distributed.run --nproc_per_node=1 t0.py
#
# To deploy on 2 gpus:
#
# deepspeed --num_gpus 2 t0.py
# or:
# python -m torch.distributed.run --nproc_per_node=2 t0.py
from transformers import AutoTokenizer, AutoConfig, AutoModelForSeq2SeqLM
from transformers.integrations import HfDeepSpeedConfig
import deepspeed
import os
import torch
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To avoid warnings about parallelism in tokenizers
# distributed setup
local_rank = int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
torch.cuda.set_device(local_rank)
deepspeed.init_distributed()
model_name = "bigscience/T0_3B"
config = AutoConfig.from_pretrained(model_name)
model_hidden_size = config.d_model
# batch size has to be divisible by world_size, but can be bigger than world_size
train_batch_size = 1 * world_size
# ds_config notes
#
# - enable bf16 if you use Ampere or higher GPU - this will run in mixed precision and will be
# faster.
#
# - for older GPUs you can enable fp16, but it'll only work for non-bf16 pretrained models - e.g.
# all official t5 models are bf16-pretrained
#
# - set offload_param.device to "none" or completely remove the `offload_param` section if you don't
# - want CPU offload
#
# - if using `offload_param` you can manually finetune stage3_param_persistence_threshold to control
# - which params should remain on gpus - the larger the value the smaller the offload size
#
# For in-depth info on Deepspeed config see
# https://huggingface.co/docs/transformers/main/main_classes/deepspeed
# keeping the same format as json for consistency, except it uses lower case for true/false
# fmt: off
ds_config = {
"fp16": {
"enabled": False
},
"bf16": {
"enabled": False
},
"zero_optimization": {
"stage": 3,
"offload_param": {
"device": "cpu",
"pin_memory": True
},
"overlap_comm": True,
"contiguous_gradients": True,
"reduce_bucket_size": model_hidden_size * model_hidden_size,
"stage3_prefetch_bucket_size": 0.9 * model_hidden_size * model_hidden_size,
"stage3_param_persistence_threshold": 10 * model_hidden_size
},
"steps_per_print": 2000,
"train_batch_size": train_batch_size,
"train_micro_batch_size_per_gpu": 1,
"wall_clock_breakdown": False
}
# fmt: on
# next line instructs transformers to partition the model directly over multiple gpus using
# deepspeed.zero.Init when model's `from_pretrained` method is called.
#
# **it has to be run before loading the model AutoModelForSeq2SeqLM.from_pretrained(model_name)**
#
# otherwise the model will first be loaded normally and only partitioned at forward time which is
# less efficient and when there is little CPU RAM may fail
dschf = HfDeepSpeedConfig(ds_config) # keep this object alive
# now a model can be loaded.
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# initialise Deepspeed ZeRO and store only the engine object
ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0]
ds_engine.module.eval() # inference
# Deepspeed ZeRO can process unrelated inputs on each GPU. So for 2 gpus you process 2 inputs at once.
# If you use more GPUs adjust for more.
# And of course if you have just one input to process you then need to pass the same string to both gpus
# If you use only one GPU, then you will have only rank 0.
rank = torch.distributed.get_rank()
if rank == 0:
text_in = "Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy"
elif rank == 1:
text_in = "Is this review positive or negative? Review: this is the worst restaurant ever"
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer.encode(text_in, return_tensors="pt").to(device=local_rank)
with torch.no_grad():
outputs = ds_engine.module.generate(inputs, synced_gpus=True)
text_out = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"rank{rank}:\n in={text_in}\n out={text_out}")
```
それを`t0.py`として保存して実行しましょう。
```
$ deepspeed --num_gpus 2 t0.py
rank0:
in=Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy
out=Positive
rank1:
in=Is this review positive or negative? Review: this is the worst restaurant ever
out=negative
```
これは非常に基本的な例であり、ニーズに合わせて調整してください。
### `generate` nuances
ZeRO Stage-3 で複数の GPU を使用する場合、`generate(..., synced_gpus=True)`を呼び出して GPU を同期する必要があります。これを行わないと、1 つの GPU が他の GPU より先に生成を終了した場合、残りの GPU が生成を停止した GPU からウェイトのシャードを受信できなくなるため、システム全体がハングします。
`transformers>=4.28` 以降、`synced_gpus` が明示的に指定されていない場合、これらの条件が検出されると自動的に `True` に設定されます。ただし、必要に応じて `synced_gpus` の値をオーバーライドすることもできます。
## Deepspeed 統合のテスト
DeepSpeed 統合を含む PR を送信する場合は、CircleCI PR CI セットアップには GPU がないことに注意してください。そのため、GPU を必要とするテストは別の CI で毎晩のみ実行されます。したがって、PR で緑色の CI レポートが表示されても、DeepSpeed テストが合格したことを意味するわけではありません。
DeepSpeed テストを実行するには、少なくとも以下を実行してください。
```
RUN_SLOW=1 pytest tests/deepspeed/test_deepspeed.py
```
モデリングまたは pytorch サンプル コードのいずれかを変更した場合は、Model Zoo テストも実行します。以下はすべての DeepSpeed テストを実行します。
```
RUN_SLOW=1 pytest tests/deepspeed
```
## Main DeepSpeed Resources
- [プロジェクトの github](https://github.com/microsoft/deepspeed)
- [使用方法ドキュメント](https://www.deepspeed.ai/getting-started/)
- [API ドキュメント](https://deepspeed.readthedocs.io/en/latest/index.html)
- [ブログ投稿](https://www.microsoft.com/en-us/research/search/?q=deepspeed)
論文:
- [ZeRO: 兆パラメータ モデルのトレーニングに向けたメモリの最適化](https://arxiv.org/abs/1910.02054)
- [ZeRO-Offload: 10 億規模のモデル トレーニングの民主化](https://arxiv.org/abs/2101.06840)
- [ZeRO-Infinity: 極限スケールの深層学習のための GPU メモリの壁を打ち破る](https://arxiv.org/abs/2104.07857)
最後に、HuggingFace [`Trainer`] は DeepSpeed のみを統合していることを覚えておいてください。
DeepSpeed の使用に関して問題や質問がある場合は、[DeepSpeed GitHub](https://github.com/microsoft/DeepSpeed/issues) に問題を提出してください。
| transformers/docs/source/ja/main_classes/deepspeed.md/0 | {
"file_path": "transformers/docs/source/ja/main_classes/deepspeed.md",
"repo_id": "transformers",
"token_count": 49390
} | 245 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ALIGN
## 概要
ALIGNモデルは、「[Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)」という論文でChao Jia、Yinfei Yang、Ye Xia、Yi-Ting Chen、Zarana Parekh、Hieu Pham、Quoc V. Le、Yunhsuan Sung、Zhen Li、Tom Duerigによって提案されました。ALIGNはマルチモーダルな視覚言語モデルです。これは画像とテキストの類似度や、ゼロショット画像分類に使用できます。ALIGNは[EfficientNet](efficientnet)を視覚エンコーダーとして、[BERT](bert)をテキストエンコーダーとして搭載したデュアルエンコーダー構造を特徴とし、対照学習によって視覚とテキストの表現を整合させることを学びます。それまでの研究とは異なり、ALIGNは巨大でノイジーなデータセットを活用し、コーパスのスケールを利用して単純な方法ながら最先端の表現を達成できることを示しています。
論文の要旨は以下の通りです:
*事前学習された表現は、多くの自然言語処理(NLP)および知覚タスクにとって重要になっています。NLPにおける表現学習は、人間のアノテーションのない生のテキストでの学習へと移行していますが、視覚および視覚言語の表現は依然として精巧な学習データセットに大きく依存しており、これは高価であったり専門知識を必要としたりします。視覚アプリケーションの場合、ImageNetやOpenImagesのような明示的なクラスラベルを持つデータセットを使用して学習されることがほとんどです。視覚言語の場合、Conceptual Captions、MSCOCO、CLIPなどの人気のあるデータセットはすべて、それぞれ無視できないデータ収集(およびクリーニング)プロセスを含みます。このコストのかかるキュレーションプロセスはデータセットのサイズを制限し、訓練されたモデルのスケーリングを妨げます。本論文では、Conceptual Captionsデータセットの高価なフィルタリングや後処理ステップなしで得られた、10億を超える画像alt-textペアのノイズの多いデータセットを活用します。シンプルなデュアルエンコーダーアーキテクチャは、対照損失を使用して画像とテキストペアの視覚的および言語的表現を整合させることを学習します。我々は、コーパスの規模がそのノイズを補い、このような単純な学習スキームでも最先端の表現につながることを示します。我々の視覚表現は、ImageNetやVTABなどの分類タスクへの転移において強力な性能を発揮します。整合した視覚的および言語的表現は、ゼロショット画像分類を可能にし、また、より洗練されたクロスアテンションモデルと比較しても、Flickr30KおよびMSCOCO画像テキスト検索ベンチマークにおいて新たな最先端の結果を達成します。また、これらの表現は、複雑なテキストおよびテキスト+画像のクエリを用いたクロスモーダル検索を可能にします。*
このモデルは[Alara Dirik](https://huggingface.co/adirik)により提供されました。
オリジナルのコードは公開されておらず、この実装は元論文に基づいたKakao Brainの実装をベースにしています。
## 使用例
ALIGNはEfficientNetを使用して視覚的特徴を、BERTを使用してテキスト特徴を取得します。テキストと視覚の両方の特徴は、同一の次元を持つ潜在空間に射影されます。射影された画像とテキスト特徴間のドット積が類似度スコアとして使用されます。
[`AlignProcessor`]は、テキストのエンコードと画像の前処理を両方行うために、[`EfficientNetImageProcessor`]と[`BertTokenizer`]を単一のインスタンスにラップします。以下の例は、[`AlignProcessor`]と[`AlignModel`]を使用して画像-テキスト類似度スコアを取得する方法を示しています。
```python
import requests
import torch
from PIL import Image
from transformers import AlignProcessor, AlignModel
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
model = AlignModel.from_pretrained("kakaobrain/align-base")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["an image of a cat", "an image of a dog"]
inputs = processor(text=candidate_labels, images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# this is the image-text similarity score
logits_per_image = outputs.logits_per_image
# we can take the softmax to get the label probabilities
probs = logits_per_image.softmax(dim=1)
print(probs)
```
## 参考資料
ALIGNの使用を開始するのに役立つ公式のHugging Faceとコミュニティ(🌎で示されている)の参考資料の一覧です。
- [ALIGNとCOYO-700Mデータセット](https://huggingface.co/blog/vit-align)に関するブログ投稿。
- ゼロショット画像分類[デモ](https://huggingface.co/spaces/adirik/ALIGN-zero-shot-image-classification)。
- `kakaobrain/align-base` モデルの[モデルカード](https://huggingface.co/kakaobrain/align-base)。
ここに参考資料を提出したい場合は、気兼ねなくPull Requestを開いてください。私たちはそれをレビューいたします!参考資料は、既存のものを複製するのではなく、何か新しいことを示すことが理想的です。
## AlignConfig
[[autodoc]] AlignConfig
- from_text_vision_configs
## AlignTextConfig
[[autodoc]] AlignTextConfig
## AlignVisionConfig
[[autodoc]] AlignVisionConfig
## AlignProcessor
[[autodoc]] AlignProcessor
## AlignModel
[[autodoc]] AlignModel
- forward
- get_text_features
- get_image_features
## AlignTextModel
[[autodoc]] AlignTextModel
- forward
## AlignVisionModel
[[autodoc]] AlignVisionModel
- forward
| transformers/docs/source/ja/model_doc/align.md/0 | {
"file_path": "transformers/docs/source/ja/model_doc/align.md",
"repo_id": "transformers",
"token_count": 2911
} | 246 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BioGPT
## Overview
BioGPT モデルは、[BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo、Liai Sun、Yingce Xia、 Tao Qin、Sheng Zhang、Hoifung Poon、Tie-Yan Liu。 BioGPT は、生物医学テキストの生成とマイニングのための、ドメイン固有の生成事前トレーニング済み Transformer 言語モデルです。 BioGPT は、Transformer 言語モデルのバックボーンに従い、1,500 万の PubMed 抄録で最初から事前トレーニングされています。
論文の要約は次のとおりです。
*事前トレーニング済み言語モデルは、一般的な自然言語領域での大きな成功に触発されて、生物医学領域でますます注目を集めています。一般言語ドメインの事前トレーニング済み言語モデルの 2 つの主なブランチ、つまり BERT (およびそのバリアント) と GPT (およびそのバリアント) のうち、1 つ目は BioBERT や PubMedBERT などの生物医学ドメインで広く研究されています。これらはさまざまな下流の生物医学的タスクで大きな成功を収めていますが、生成能力の欠如により応用範囲が制限されています。この論文では、大規模な生物医学文献で事前トレーニングされたドメイン固有の生成 Transformer 言語モデルである BioGPT を提案します。私たちは 6 つの生物医学的自然言語処理タスクで BioGPT を評価し、ほとんどのタスクで私たちのモデルが以前のモデルよりも優れていることを実証しました。特に、BC5CDR、KD-DTI、DDI のエンドツーエンド関係抽出タスクではそれぞれ 44.98%、38.42%、40.76% の F1 スコアを獲得し、PubMedQA では 78.2% の精度を獲得し、新記録を樹立しました。テキスト生成に関する私たちのケーススタディは、生物医学文献における BioGPT の利点をさらに実証し、生物医学用語の流暢な説明を生成します。*
## Usage tips
- BioGPT は絶対位置埋め込みを備えたモデルであるため、通常は入力を左側ではなく右側にパディングすることをお勧めします。
- BioGPT は因果言語モデリング (CLM) 目的でトレーニングされているため、シーケンス内の次のトークンを予測するのに強力です。 run_generation.py サンプル スクリプトで確認できるように、この機能を利用すると、BioGPT は構文的に一貫したテキストを生成できます。
- モデルは、以前に計算されたキーと値のアテンション ペアである`past_key_values`(PyTorch の場合) を入力として受け取ることができます。この (past_key_values または past) 値を使用すると、モデルがテキスト生成のコンテキストで事前に計算された値を再計算できなくなります。 PyTorch の使用法の詳細については、BioGptForCausalLM.forward() メソッドの past_key_values 引数を参照してください。
このモデルは、[kamalkraj](https://huggingface.co/kamalkraj) によって提供されました。元のコードは [ここ](https://github.com/microsoft/BioGPT) にあります。
## Documentation resources
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
## BioGptConfig
[[autodoc]] BioGptConfig
## BioGptTokenizer
[[autodoc]] BioGptTokenizer
- save_vocabulary
## BioGptModel
[[autodoc]] BioGptModel
- forward
## BioGptForCausalLM
[[autodoc]] BioGptForCausalLM
- forward
## BioGptForTokenClassification
[[autodoc]] BioGptForTokenClassification
- forward
## BioGptForSequenceClassification
[[autodoc]] BioGptForSequenceClassification
- forward
| transformers/docs/source/ja/model_doc/biogpt.md/0 | {
"file_path": "transformers/docs/source/ja/model_doc/biogpt.md",
"repo_id": "transformers",
"token_count": 1982
} | 247 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# CLIPSeg
## Overview
CLIPSeg モデルは、Timo Lüddecke, Alexander Ecker によって [Image Segmentation using Text and Image Prompts](https://arxiv.org/abs/2112.10003) で提案されました。
そしてアレクサンダー・エッカー。 CLIPSeg は、ゼロショットおよびワンショット画像セグメンテーションのために、凍結された [CLIP](clip) モデルの上に最小限のデコーダを追加します。
論文の要約は次のとおりです。
*画像のセグメンテーションは通常、トレーニングによって解決されます。
オブジェクト クラスの固定セットのモデル。後で追加のクラスやより複雑なクエリを組み込むとコストがかかります
これらの式を含むデータセットでモデルを再トレーニングする必要があるためです。ここでシステムを提案します
任意の情報に基づいて画像セグメンテーションを生成できます。
テスト時にプロンプトが表示されます。プロンプトはテキストまたは
画像。このアプローチにより、統一されたモデルを作成できます。
3 つの一般的なセグメンテーション タスクについて (1 回トレーニング済み)
参照式のセグメンテーション、ゼロショット セグメンテーション、ワンショット セグメンテーションという明確な課題が伴います。
CLIP モデルをバックボーンとして構築し、これをトランスベースのデコーダで拡張して、高密度なデータ通信を可能にします。
予測。の拡張バージョンでトレーニングした後、
PhraseCut データセット、私たちのシステムは、フリーテキスト プロンプトまたは
クエリを表す追加の画像。後者の画像ベースのプロンプトのさまざまなバリエーションを詳細に分析します。
この新しいハイブリッド入力により、動的適応が可能になります。
前述の 3 つのセグメンテーション タスクのみですが、
テキストまたは画像をクエリするバイナリ セグメンテーション タスクに
定式化することができる。最後に、システムがうまく適応していることがわかりました
アフォーダンスまたはプロパティを含む一般化されたクエリ*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/clipseg_architecture.png"
alt="描画" width="600"/>
<small> CLIPSeg の概要。 <a href="https://arxiv.org/abs/2112.10003">元の論文から抜粋。</a> </small>
このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。
元のコードは [ここ](https://github.com/timojl/clipseg) にあります。
## Usage tips
- [`CLIPSegForImageSegmentation`] は、[`CLIPSegModel`] の上にデコーダを追加します。後者は [`CLIPModel`] と同じです。
- [`CLIPSegForImageSegmentation`] は、テスト時に任意のプロンプトに基づいて画像セグメンテーションを生成できます。プロンプトはテキストのいずれかです
(`input_ids` としてモデルに提供される) または画像 (`conditional_pixel_values` としてモデルに提供される)。カスタムを提供することもできます
条件付き埋め込み (`conditional_embeddings`としてモデルに提供されます)。
## Resources
CLIPSeg の使用を開始するのに役立つ、公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
<PipelineTag pipeline="image-segmentation"/>
- [CLIPSeg を使用したゼロショット画像セグメンテーション](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/CLIPSeg/Zero_shot_image_segmentation_with_CLIPSeg.ipynb) を説明するノートブック。
## CLIPSegConfig
[[autodoc]] CLIPSegConfig
- from_text_vision_configs
## CLIPSegTextConfig
[[autodoc]] CLIPSegTextConfig
## CLIPSegVisionConfig
[[autodoc]] CLIPSegVisionConfig
## CLIPSegProcessor
[[autodoc]] CLIPSegProcessor
## CLIPSegModel
[[autodoc]] CLIPSegModel
- forward
- get_text_features
- get_image_features
## CLIPSegTextModel
[[autodoc]] CLIPSegTextModel
- forward
## CLIPSegVisionModel
[[autodoc]] CLIPSegVisionModel
- forward
## CLIPSegForImageSegmentation
[[autodoc]] CLIPSegForImageSegmentation
- forward | transformers/docs/source/ja/model_doc/clipseg.md/0 | {
"file_path": "transformers/docs/source/ja/model_doc/clipseg.md",
"repo_id": "transformers",
"token_count": 2201
} | 248 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Deformable DETR
## Overview
変形可能 DETR モデルは、Xizhou Zhu、Weijie Su、Lewei Lu、Bin Li、Xiaogang Wang, Jifeng Dai によって [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) で提案されました
変形可能な DETR は、参照周囲の少数の主要なサンプリング ポイントのみに注目する新しい変形可能なアテンション モジュールを利用することにより、収束の遅さの問題と元の [DETR](detr) の制限された特徴の空間解像度を軽減します。
論文の要約は次のとおりです。
*DETR は、優れたパフォーマンスを実証しながら、物体検出における多くの手作業で設計されたコンポーネントの必要性を排除するために最近提案されました。ただし、画像特徴マップの処理における Transformer アテンション モジュールの制限により、収束が遅く、特徴の空間解像度が制限されるという問題があります。これらの問題を軽減するために、私たちは Deformable DETR を提案しました。この DETR のアテンション モジュールは、参照周囲の少数の主要なサンプリング ポイントのみに注目します。変形可能な DETR は、10 分の 1 のトレーニング エポックで、DETR よりも優れたパフォーマンス (特に小さなオブジェクトの場合) を達成できます。 COCO ベンチマークに関する広範な実験により、私たちのアプローチの有効性が実証されました。*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png"
alt="描画" width="600"/>
<small> 変形可能な DETR アーキテクチャ。 <a href="https://arxiv.org/abs/2010.04159">元の論文</a>から抜粋。</small>
このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。元のコードは [ここ](https://github.com/fundamentalvision/Deformable-DETR) にあります。
## Usage tips
- トレーニング Deformable DETR は、元の [DETR](detr) モデルをトレーニングすることと同等です。デモ ノートブックについては、以下の [resources](#resources) セクションを参照してください。
## Resources
Deformable DETR の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示される) リソースのリスト。
<PipelineTag pipeline="object-detection"/>
- [`DeformableDetrForObjectDetection`] のカスタム データセットでの推論と微調整に関するデモ ノートブックは、[こちら](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Deformable-DETR) にあります。
- [物体検出タスクガイド](../tasks/object_detection) も参照してください。
ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
## DeformableDetrImageProcessor
[[autodoc]] DeformableDetrImageProcessor
- preprocess
- post_process_object_detection
## DeformableDetrFeatureExtractor
[[autodoc]] DeformableDetrFeatureExtractor
- __call__
- post_process_object_detection
## DeformableDetrConfig
[[autodoc]] DeformableDetrConfig
## DeformableDetrModel
[[autodoc]] DeformableDetrModel
- forward
## DeformableDetrForObjectDetection
[[autodoc]] DeformableDetrForObjectDetection
- forward
| transformers/docs/source/ja/model_doc/deformable_detr.md/0 | {
"file_path": "transformers/docs/source/ja/model_doc/deformable_detr.md",
"repo_id": "transformers",
"token_count": 1792
} | 249 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Efficient Inference on a Single GPU
このガイドに加えて、[1つのGPUでのトレーニングガイド](perf_train_gpu_one)と[CPUでの推論ガイド](perf_infer_cpu)に関連する情報があります。
## Flash Attention 2
<Tip>
この機能は実験的であり、将来のバージョンで大幅に変更される可能性があります。たとえば、Flash Attention 2 APIは近い将来`BetterTransformer` APIに移行するかもしれません。
</Tip>
Flash Attention 2は、トランスフォーマーベースのモデルのトレーニングと推論速度を大幅に高速化できます。Flash Attention 2は、Tri Dao氏によって[公式のFlash Attentionリポジトリ](https://github.com/Dao-AILab/flash-attention)で導入されました。Flash Attentionに関する科学論文は[こちら](https://arxiv.org/abs/2205.14135)で見ることができます。
Flash Attention 2を正しくインストールするには、上記のリポジトリに記載されているインストールガイドに従ってください。
以下のモデルに対してFlash Attention 2をネイティブサポートしています:
- Llama
- Falcon
さらに多くのモデルにFlash Attention 2のサポートを追加することをGitHubで提案することもでき、変更を統合するためにプルリクエストを開くこともできます。サポートされているモデルは、パディングトークンを使用してトレーニングを含む、推論とトレーニングに使用できます(現在の`BetterTransformer` APIではサポートされていない)。
<Tip>
Flash Attention 2は、モデルのdtypeが`fp16`または`bf16`の場合にのみ使用でき、NVIDIA-GPUデバイスでのみ実行されます。この機能を使用する前に、モデルを適切なdtypeにキャストし、サポートされているデバイスにロードしてください。
</Tip>
### Quick usage
モデルでFlash Attention 2を有効にするには、`from_pretrained`の引数に`attn_implementation="flash_attention_2"`を追加します。
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM
model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
```
こちらは、生成または微調整のために使用するテキストです。
### Expected speedups
特に長いシーケンスに対して、微調整と推論の際には、かなりの高速化が期待できます。ただし、Flash Attentionはパディングトークンを使用してアテンションスコアを計算しないため、シーケンスにパディングトークンが含まれる場合、バッチ推論においてアテンションスコアを手動でパッド/アンパッドする必要があり、パディングトークンを含むバッチ生成の大幅な遅延が発生します。
これを克服するために、トレーニング中にシーケンスにパディングトークンを使用せずにFlash Attentionを使用する必要があります(たとえば、データセットをパックすることにより、シーケンスを最大シーケンス長に達するまで連結することなど)。ここに[例](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516)が提供されています。
以下は、パディングトークンのない場合に、シーケンス長が4096の[tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b)に対する単純なフォワードパスの予想される高速化です。さまざまなバッチサイズが示されています:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png">
</div>
以下は、パディングトークンのない場合に、シーケンス長が4096の[`meta-llama/Llama-7b-hf`](https://hf.co/meta-llama/Llama-7b-hf)に対する単純なフォワードパスの予想される高速化です。さまざまなバッチサイズが示されています:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png">
</div>
パディングトークンを含むシーケンス(パディングトークンを使用してトレーニングまたは生成する)の場合、アテンションスコアを正しく計算するために入力シーケンスをアンパッド/パッドする必要があります。比較的小さいシーケンス長の場合、純粋なフォワードパスではパディングトークンが30%未満しか埋められていないため、これはわずかな高速化をもたらします。
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png">
</div>
しかし、大きなシーケンス長の場合、純粋な推論(トレーニングも含む)には興味深い高速化が得られます。
Flash Attentionは、アテンション計算をよりメモリ効率の良いものにし、大きなシーケンス長でのCUDA OOMの問題を回避できるようにします。大きなシーケンス長に対して最大20のメモリ削減をもたらすことがあります。詳細については、[公式のFlash Attentionリポジトリ](https://github.com/Dao-AILab/flash-attention)をご覧ください。
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png">
</div>
### Advanced usage
この機能をモデルの最適化に多くの既存の機能と組み合わせることができます。以下にいくつかの例を示します:
### Combining Flash Attention 2 and 8-bit models
この機能を8ビットの量子化と組み合わせることができます:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM
model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_8bit=True,
attn_implementation="flash_attention_2",
)
```
### Combining Flash Attention 2 and 4-bit models
この機能を 4 ビットの量子化と組み合わせることができます:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM
model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
```
### Combining Flash Attention 2 and PEFT
この機能を使用して、Flash Attention 2をベースにアダプターをトレーニングする際にPEFTを組み合わせることができます。
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM
from peft import LoraConfig
model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
lora_config = LoraConfig(
r=8,
task_type="CAUSAL_LM"
)
model.add_adapter(lora_config)
... # train your model
```
## BetterTransformer
[BetterTransformer](https://huggingface.co/docs/optimum/bettertransformer/overview)は、🤗 TransformersモデルをPyTorchネイティブの高速パス実行に変換します。これにより、Flash Attentionなどの最適化されたカーネルが内部で呼び出されます。
BetterTransformerは、テキスト、画像、およびオーディオモデルの単一およびマルチGPUでの高速な推論をサポートしています。
<Tip>
Flash Attentionは、fp16またはbf16のdtypeを使用するモデルにのみ使用できます。BetterTransformerを使用する前に、モデルを適切なdtypeにキャストしてください。
</Tip>
### Encoder models
PyTorchネイティブの[`nn.MultiHeadAttention`](https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/)アテンション高速パス、BetterTransformerと呼ばれるものは、[🤗 Optimumライブラリ](https://huggingface.co/docs/optimum/bettertransformer/overview)の統合を通じてTransformersと一緒に使用できます。
PyTorchのアテンション高速パスを使用すると、カーネルフュージョンと[ネストされたテンソル](https://pytorch.org/docs/stable/nested.html)の使用により、推論を高速化できます。詳細なベンチマーク情報は[このブログ記事](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2)にあります。
[`optimum`](https://github.com/huggingface/optimum)パッケージをインストールした後、推論中にBetter Transformerを使用するには、関連する内部モジュールを呼び出すことで置き換える必要があります[`~PreTrainedModel.to_bettertransformer`]:
```python
model = model.to_bettertransformer()
```
メソッド [`~PreTrainedModel.reverse_bettertransformer`] は、モデルを保存する前に使用すべきで、標準のトランスフォーマーモデリングを使用するためのものです:
```python
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```
BetterTransformer APIを使ったエンコーダーモデルの可能性について詳しく知るには、[このブログポスト](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2)をご覧ください。
### Decoder models
テキストモデル、特にデコーダーベースのモデル(GPT、T5、Llamaなど)にとって、BetterTransformer APIはすべての注意操作を[`torch.nn.functional.scaled_dot_product_attention`オペレーター](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention)(SDPA)を使用するように変換します。このオペレーターはPyTorch 2.0以降でのみ利用可能です。
モデルをBetterTransformerに変換するには、以下の手順を実行してください:
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
# convert the model to BetterTransformer
model.to_bettertransformer()
# Use it for training or inference
```
SDPAは、ハードウェアや問題のサイズに応じて[Flash Attention](https://arxiv.org/abs/2205.14135)カーネルを使用することもできます。Flash Attentionを有効にするか、特定の設定(ハードウェア、問題サイズ)で使用可能かどうかを確認するには、[`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel)をコンテキストマネージャとして使用します。
```diff
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda")
# convert the model to BetterTransformer
model.to_bettertransformer()
input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
もしトレースバックにバグが表示された場合
```bash
RuntimeError: No available kernel. Aborting execution.
```
Flash Attention の広範なカバレッジを持つかもしれない PyTorch のナイトリーバージョンを試してみることをお勧めします。
```bash
pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
```
Or make sure your model is correctly casted in float16 or bfloat16
モデルが正しくfloat16またはbfloat16にキャストされていることを確認してください。
Have a look at [this detailed blogpost](https://pytorch.org/blog/out-of-the-box-acceleration/) to read more about what is possible to do with `BetterTransformer` + SDPA API.
`BetterTransformer` + SDPA APIを使用して何が可能かについて詳しく読むには、[この詳細なブログポスト](https://pytorch.org/blog/out-of-the-box-acceleration/)をご覧ください。
## `bitsandbytes` integration for FP4 mixed-precision inference
FP4混合精度推論のための`bitsandbytes`統合
You can install `bitsandbytes` and benefit from easy model compression on GPUs. Using FP4 quantization you can expect to reduce up to 8x the model size compared to its native full precision version. Check out below how to get started.
`bitsandbytes`をインストールし、GPUで簡単なモデルの圧縮を利用できます。FP4量子化を使用すると、ネイティブのフルプレシジョンバージョンと比較してモデルサイズを最大8倍削減できることが期待できます。以下を確認して、どのように始めるかをご覧ください。
<Tip>
Note that this feature can also be used in a multi GPU setup.
この機能は、マルチGPUセットアップでも使用できることに注意してください。
</Tip>
### Requirements [[requirements-for-fp4-mixedprecision-inference]]
- Latest `bitsandbytes` library
`pip install bitsandbytes>=0.39.0`
- Install latest `accelerate` from source
`pip install git+https://github.com/huggingface/accelerate.git`
- Install latest `transformers` from source
`pip install git+https://github.com/huggingface/transformers.git`
### Running FP4 models - single GPU setup - Quickstart
以下のコードを実行することで、簡単に単一のGPUでFP4モデルを実行できます:
```py
from transformers import AutoModelForCausalLM
model_name = "bigscience/bloom-2b5"
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
```
注意: `device_map`はオプションですが、推論時に `device_map = 'auto'` を設定することが推奨されています。これにより、利用可能なリソースに効率的にモデルがディスパッチされます。
### Running FP4 models - multi GPU setup
混合4ビットモデルを複数のGPUにロードする方法は、単一GPUセットアップと同じです(単一GPUセットアップと同じコマンドです):
```py
model_name = "bigscience/bloom-2b5"
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
```
しかし、`accelerate`を使用して、各GPUに割り当てるGPU RAMを制御することができます。以下のように、`max_memory`引数を使用します:
```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
model_4bit = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```
この例では、最初のGPUは600MBのメモリを使用し、2番目のGPUは1GBを使用します。
### Advanced usage
このメソッドのさらなる高度な使用法については、[量子化](main_classes/quantization)のドキュメンテーションページをご覧ください。
## `bitsandbytes` integration for Int8 mixed-precision matrix decomposition
<Tip>
この機能は、マルチGPU環境でも使用できます。
</Tip>
論文[`LLM.int8():スケーラブルなTransformer向けの8ビット行列乗算`](https://arxiv.org/abs/2208.07339)によれば、Hugging Face統合がHub内のすべてのモデルでわずか数行のコードでサポートされています。このメソッドは、半精度(`float16`および`bfloat16`)の重みの場合に`nn.Linear`サイズを2倍、単精度(`float32`)の重みの場合は4倍に縮小し、外れ値に対してほとんど影響を与えません。
![HFxbitsandbytes.png](https://cdn-uploads.huggingface.co/production/uploads/1659861207959-62441d1d9fdefb55a0b7d12c.png)
Int8混合精度行列分解は、行列乗算を2つのストリームに分割することによって動作します:(1) システマティックな特徴外れ値ストリームがfp16で行列乗算(0.01%)、(2) int8行列乗算の通常のストリーム(99.9%)。この方法を使用すると、非常に大きなモデルに対して予測の劣化なしにint8推論が可能です。
このメソッドの詳細については、[論文](https://arxiv.org/abs/2208.07339)または[この統合に関するブログ記事](https://huggingface.co/blog/hf-bitsandbytes-integration)をご確認ください。
![MixedInt8.gif](https://cdn-uploads.huggingface.co/production/uploads/1660567469965-62441d1d9fdefb55a0b7d12c.gif)
なお、この機能を使用するにはGPUが必要であり、カーネルはGPU専用にコンパイルされている必要があります。この機能を使用する前に、モデルの1/4(またはハーフ精度の重みの場合は1/2)を保存するのに十分なGPUメモリがあることを確認してください。
このモジュールを使用する際のヘルプに関する詳細は、以下のノートをご覧いただくか、[Google Colabのデモ](#colab-demos)をご覧ください。
### Requirements [[requirements-for-int8-mixedprecision-matrix-decomposition]]
- `bitsandbytes<0.37.0`を使用する場合、NVIDIA GPUを使用していることを確認し、8ビットテンソルコアをサポートしていることを確認してください(Turing、Ampere、またはそれ以降のアーキテクチャー、例:T4、RTX20s RTX30s、A40-A100など)。`bitsandbytes>=0.37.0`の場合、すべてのGPUがサポートされるはずです。
- 正しいバージョンの`bitsandbytes`をインストールするには、次のコマンドを実行してください:
`pip install bitsandbytes>=0.31.5`
- `accelerate`をインストールします:
`pip install accelerate>=0.12.0`
### Running mixed-Int8 models - single GPU setup
必要なライブラリをインストールした後、ミックス 8 ビットモデルを読み込む方法は次の通りです:
```py
from transformers import AutoModelForCausalLM
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```
以下はシンプルな例です:
* `pipeline()` 関数の代わりに、モデルの `generate()` メソッドを使用することをお勧めします。`pipeline()` 関数を使用して推論することは可能ですが、混合8ビットモデルに最適化されておらず、`generate()` メソッドを使用するよりも遅くなります。また、一部のサンプリング戦略(例:ヌクレウスサンプリング)は、`pipeline()` 関数では混合8ビットモデルではサポートされていません。
* すべての入力をモデルと同じデバイスに配置してください。
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
prompt = "Hello, my llama is cute"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```
### Running mixed-int8 models - multi GPU setup
複数のGPUに混合8ビットモデルをロードする方法は、次の通りです(シングルGPUセットアップと同じコマンドです):
```py
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```
`accelerate`を使用して各GPUに割り当てるGPU RAMを制御する際には、以下のように`max_memory`引数を使用します:
```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```
In this example, the first GPU will use 1GB of memory and the second 2GB.
### Colab demos
この方法を使用すると、以前のGoogle Colabでは推論できなかったモデルに対して推論を行うことができます。以下は、Google Colabで8ビット量子化を使用してT5-11b(fp32で42GB)を実行するデモのリンクです:
[![Open In Colab: T5-11b demo](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing)
また、BLOOM-3Bのデモもご覧いただけます:
[![Open In Colab: BLOOM-3b demo](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing)
## Advanced usage: mixing FP4 (or Int8) and BetterTransformer
異なる方法を組み合わせて、モデルの最適なパフォーマンスを得ることができます。例えば、BetterTransformerを使用してFP4ミックスプレシジョン推論とフラッシュアテンションを組み合わせることができます。
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config)
input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
``` | transformers/docs/source/ja/perf_infer_gpu_one.md/0 | {
"file_path": "transformers/docs/source/ja/perf_infer_gpu_one.md",
"repo_id": "transformers",
"token_count": 9331
} | 250 |
<!--
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ このファイルはMarkdown形式ですが、特定のMDXに類似したドキュメントビルダーの構文を含んでおり、
Markdownビューアーで正しく表示されないことがあります。
-->
# Preprocess
[[open-in-colab]]
データセットでモデルをトレーニングする前に、それをモデルの期待する入力形式に前処理する必要があります。
データがテキスト、画像、またはオーディオであるかどうかにかかわらず、それらはテンソルのバッチに変換して組み立てる必要があります。
🤗 Transformersは、データをモデル用に準備するのに役立つ前処理クラスのセットを提供しています。
このチュートリアルでは、次のことを学びます:
* テキストの場合、[Tokenizer](./main_classes/tokenizer)を使用してテキストをトークンのシーケンスに変換し、トークンの数値表現を作成し、それらをテンソルに組み立てる方法。
* 音声とオーディオの場合、[Feature extractor](./main_classes/feature_extractor)を使用してオーディオ波形から連続的な特徴を抽出し、それらをテンソルに変換する方法。
* 画像入力の場合、[ImageProcessor](./main_classes/image)を使用して画像をテンソルに変換する方法。
* マルチモーダル入力の場合、[Processor](./main_classes/processors)を使用してトークナイザと特徴抽出器または画像プロセッサを組み合わせる方法。
<Tip>
`AutoProcessor`は常に動作し、使用するモデルに適切なクラスを自動的に選択します。
トークナイザ、画像プロセッサ、特徴抽出器、またはプロセッサを使用しているかにかかわらず、動作します。
</Tip>
始める前に、🤗 Datasetsをインストールして、いくつかのデータセットを試すことができるようにしてください:
```bash
pip install datasets
```
## Natural Language Processing
<Youtube id="Yffk5aydLzg"/>
テキストデータの前処理に使用する主要なツールは、[トークナイザ](main_classes/tokenizer)です。トークナイザは、一連のルールに従ってテキストを*トークン*に分割します。トークンは数値に変換され、その後テンソルに変換され、モデルの入力となります。モデルが必要とする追加の入力は、トークナイザによって追加されます。
<Tip>
事前学習済みモデルを使用する予定の場合、関連する事前学習済みトークナイザを使用することが重要です。これにより、テキストが事前学習コーパスと同じ方法で分割され、事前学習中に通常*ボキャブ*として参照される対応するトークンインデックスを使用します。
</Tip>
[`AutoTokenizer.from_pretrained`]メソッドを使用して事前学習済みトークナイザをロードして、開始しましょう。これにより、モデルが事前学習された*ボキャブ*がダウンロードされます:
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
```
次に、テキストをトークナイザに渡します:
```py
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
>>> print(encoded_input)
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
トークナイザは、重要な3つの項目を持つ辞書を返します:
* [input_ids](glossary#input-ids) は文中の各トークンに対応するインデックスです。
* [attention_mask](glossary#attention-mask) はトークンがアテンションを受ける必要があるかどうかを示します。
* [token_type_ids](glossary#token-type-ids) は複数のシーケンスがある場合、トークンがどのシーケンスに属しているかを識別します。
`input_ids` をデコードして入力を返します:
```python
>>> tokenizer.decode(encoded_input["input_ids"])
'[CLS] 魔法使いの事に干渉するな、彼らは微妙で怒りっぽい。 [SEP]'
```
如何にお分かりいただけるかと思いますが、トークナイザはこの文章に2つの特別なトークン、`CLS`(クラシファイア)と`SEP`(セパレータ)を追加しました。
すべてのモデルが特別なトークンを必要とするわけではありませんが、必要な場合、トークナイザは自動的にそれらを追加します。
複数の文章を前処理する場合、トークナイザにリストとして渡してください:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_inputs = tokenizer(batch_sentences)
>>> print(encoded_inputs)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]}
```
### Pad
文章は常に同じ長さではないことがあり、これはテンソル(モデルの入力)が均一な形状を持つ必要があるため問題となります。
パディングは、短い文に特別な「パディングトークン」を追加して、テンソルを長いシーケンスに合わせるための戦略です。
バッチ内の短いシーケンスを最長のシーケンスに合わせるために、`padding`パラメータを`True`に設定します:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
1番目と3番目の文は、短いために`0`でパディングされています。
### Truncation
逆のスペクトルでは、時折、モデルが処理するのに長すぎるシーケンスがあるかもしれません。この場合、シーケンスを短縮する必要があります。
モデルが受け入れる最大の長さにシーケンスを切り詰めるには、`truncation`パラメータを`True`に設定します:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
<Tip>
異なるパディングと切り詰めの引数について詳しくは、[パディングと切り詰め](./pad_truncation)のコンセプトガイドをご覧ください。
</Tip>
### Build tensors
最後に、トークナイザがモデルに供給される実際のテンソルを返すように設定します。
`return_tensors`パラメータを`pt`(PyTorch用)または`tf`(TensorFlow用)に設定します:
<frameworkcontent>
<pt>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
>>> print(encoded_input)
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
</pt>
<tf>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
>>> print(encoded_input)
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>,
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
```
</tf>
</frameworkcontent>
## Audio
オーディオタスクの場合、データセットをモデル用に準備するために[特徴抽出器](main_classes/feature_extractor)が必要です。
特徴抽出器は生のオーディオデータから特徴を抽出し、それらをテンソルに変換するために設計されています。
[PolyAI/minds14](https://huggingface.co/datasets/PolyAI/minds14)データセットをロードして(データセットのロード方法の詳細については🤗 [Datasetsチュートリアル](https://huggingface.co/docs/datasets/load_hub)を参照)、
オーディオデータセットで特徴抽出器をどのように使用できるかを確認してみましょう:
```python
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
アクセスして`audio`列の最初の要素を確認します。`audio`列を呼び出すと、自動的にオーディオファイルが読み込まれ、リサンプリングされます:
```py
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
これにより、3つのアイテムが返されます:
* `array` は読み込まれた音声信号で、1Dの配列として読み込まれます。必要に応じてリサンプリングされることもあります。
* `path` は音声ファイルの場所を指します。
* `sampling_rate` は音声信号内のデータポイントが1秒間にいくつ測定されるかを示します。
このチュートリアルでは、[Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base)モデルを使用します。
モデルカードを確認すると、Wav2Vec2が16kHzのサンプリングされた音声オーディオで事前学習されていることがわかります。
モデルの事前学習に使用されたデータセットのサンプリングレートと、あなたのオーディオデータのサンプリングレートが一致することが重要です。
データのサンプリングレートが異なる場合、データをリサンプリングする必要があります。
1. 🤗 Datasetsの [`~datasets.Dataset.cast_column`] メソッドを使用して、サンプリングレートを16kHzにアップサンプリングします:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
```
2. 再び `audio` 列を呼び出してオーディオファイルをリサンプルします:
```py
>>> dataset[0]["audio"]
{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ...,
3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 16000}
```
次に、入力を正規化しパディングするために特徴抽出器をロードします。テキストデータをパディングする場合、短いシーケンスには `0` が追加されます。同じ考え方がオーディオデータにも適用されます。特徴抽出器は `array` に `0` を追加します(これは無音として解釈されます)。
[`AutoFeatureExtractor.from_pretrained`]を使用して特徴抽出器をロードします:
```python
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
オーディオ `array` を特徴抽出器に渡します。特徴抽出器で発生する可能性のある無音エラーをより良くデバッグするために、特徴抽出器に `sampling_rate` 引数を追加することをお勧めします。
```python
>>> audio_input = [dataset[0]["audio"]["array"]]
>>> feature_extractor(audio_input, sampling_rate=16000)
{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ...,
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
```
同様に、トークナイザと同様に、バッチ内の可変シーケンスを処理するためにパディングまたは切り詰めを適用できます。次に、これらの2つのオーディオサンプルのシーケンス長を確認してみましょう:
```python
>>> dataset[0]["audio"]["array"].shape
(173398,)
>>> dataset[1]["audio"]["array"].shape
(106496,)
```
この関数は、データセットを前処理してオーディオサンプルの長さを同じにするためのものです。最大サンプル長を指定し、特徴抽出器はシーケンスをそれに合わせてパディングまたは切り詰めます。
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays,
... sampling_rate=16000,
... padding=True,
... max_length=100000,
... truncation=True,
... )
... return inputs
```
`preprocess_function`をデータセットの最初の数例に適用します:
```python
>>> processed_dataset = preprocess_function(dataset[:5])
```
サンプルの長さは現在同じで、指定された最大長と一致しています。これで処理されたデータセットをモデルに渡すことができます!
```py
>>> processed_dataset["input_values"][0].shape
(100000,)
>>> processed_dataset["input_values"][1].shape
(100000,)
```
## Computer Vision
コンピュータビジョンタスクでは、モデル用にデータセットを準備するための[画像プロセッサ](main_classes/image_processor)が必要です。
画像の前処理には、画像をモデルが期待する入力形式に変換するためのいくつかのステップが含まれています。これらのステップには、リサイズ、正規化、カラーチャネルの補正、および画像をテンソルに変換するなどが含まれます。
<Tip>
画像の前処理は、通常、画像の増強の形式に従います。画像の前処理と画像の増強の両方は画像データを変換しますが、異なる目的があります:
* 画像の増強は、過学習を防ぎ、モデルの堅牢性を向上させるのに役立つ方法で画像を変更します。データを増強する方法は無限で、明るさや色の調整、クロップ、回転、リサイズ、ズームなど、様々な方法があります。ただし、増強操作によって画像の意味が変わらないように注意する必要があります。
* 画像の前処理は、画像がモデルの期待する入力形式と一致することを保証します。コンピュータビジョンモデルをファインチューニングする場合、画像はモデルが最初にトレーニングされたときとまったく同じ方法で前処理する必要があります。
画像の増強には任意のライブラリを使用できます。画像の前処理には、モデルに関連付けられた`ImageProcessor`を使用します。
</Tip>
コンピュータビジョンのデータセットで画像プロセッサを使用する方法を示すために、[food101](https://huggingface.co/datasets/food101)データセットをロードします(データセットのロード方法の詳細については🤗[Datasetsチュートリアル](https://huggingface.co/docs/datasets/load_hub)を参照):
<Tip>
データセットがかなり大きいため、🤗 Datasetsの`split`パラメータを使用してトレーニングデータの小さなサンプルのみをロードします!
</Tip>
```python
>>> from datasets import load_dataset
>>> dataset = load_dataset("food101", split="train[:100]")
```
次に、🤗 Datasetsの [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image) 機能で画像を見てみましょう:
```python
>>> dataset[0]["image"]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png"/>
</div>
AutoImageProcessorを[`AutoImageProcessor.from_pretrained`]を使用してロードします:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
1. まず、画像の拡張を追加しましょう。好きなライブラリを使用できますが、このチュートリアルではtorchvisionの[`transforms`](https://pytorch.org/vision/stable/transforms.html)モジュールを使用します。別のデータ拡張ライブラリを使用したい場合は、[Albumentations](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)または[Kornia notebooks](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)で詳細を学ぶことができます。
ここでは、[`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html)を使用していくつかの変換を連鎖させます - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html)と[`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html)。
サイズの変更に関しては、`image_processor`から画像サイズの要件を取得できます。
一部のモデルでは、正確な高さと幅が必要ですが、他のモデルでは`shortest_edge`のみが定義されています。
```py
>>> from torchvision.transforms import RandomResizedCrop, ColorJitter, Compose
>>> size = (
... image_processor.size["shortest_edge"]
... if "shortest_edge" in image_processor.size
... else (image_processor.size["height"], image_processor.size["width"])
... )
>>> _transforms = Compose([RandomResizedCrop(size), ColorJitter(brightness=0.5, hue=0.5)])
```
2. モデルは[`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values)を入力として受け取ります。
`ImageProcessor`は画像の正規化と適切なテンソルの生成を処理できます。
一連の画像に対する画像拡張と画像前処理を組み合わせ、`pixel_values`を生成する関数を作成します:
```python
>>> def transforms(examples):
... images = [_transforms(img.convert("RGB")) for img in examples["image"]]
... examples["pixel_values"] = image_processor(images, do_resize=False, return_tensors="pt")["pixel_values"]
... return examples
```
<Tip>
上記の例では、画像のサイズ変更を既に画像増強変換で行っているため、`do_resize=False`を設定しました。
適切な `image_processor` からの `size` 属性を活用しています。画像増強中に画像のサイズ変更を行わない場合は、このパラメータを省略してください。
デフォルトでは、`ImageProcessor` がサイズ変更を処理します。
画像を増強変換の一部として正規化したい場合は、`image_processor.image_mean` と `image_processor.image_std` の値を使用してください。
</Tip>
3. 次に、🤗 Datasetsの[`set_transform`](https://huggingface.co/docs/datasets/process#format-transform)を使用して、変換をリアルタイムで適用します:
```python
>>> dataset.set_transform(transforms)
```
4. 画像にアクセスすると、画像プロセッサが `pixel_values` を追加したことがわかります。これで処理済みのデータセットをモデルに渡すことができます!
```python
>>> dataset[0].keys()
```
以下は、変換が適用された後の画像の外観です。 画像はランダムに切り抜かれ、その色の特性も異なります。
```py
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> img = dataset[0]["pixel_values"]
>>> plt.imshow(img.permute(1, 2, 0))
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png"/>
</div>
<Tip>
オブジェクト検出、意味セグメンテーション、インスタンスセグメンテーション、およびパノプティックセグメンテーションなどのタスクの場合、`ImageProcessor`は
ポスト処理メソッドを提供します。これらのメソッドは、モデルの生の出力を境界ボックスやセグメンテーションマップなどの意味のある予測に変換します。
</Tip>
### Pad
一部の場合、たとえば、[DETR](./model_doc/detr)をファインチューニングする場合、モデルはトレーニング時にスケールの変更を適用します。
これにより、バッチ内の画像のサイズが異なる場合があります。[`DetrImageProcessor`]から[`DetrImageProcessor.pad`]を使用し、
カスタムの`collate_fn`を定義して画像を一緒にバッチ処理できます。
```py
>>> def collate_fn(batch):
... pixel_values = [item["pixel_values"] for item in batch]
... encoding = image_processor.pad(pixel_values, return_tensors="pt")
... labels = [item["labels"] for item in batch]
... batch = {}
... batch["pixel_values"] = encoding["pixel_values"]
... batch["pixel_mask"] = encoding["pixel_mask"]
... batch["labels"] = labels
... return batch
```
## Multi Modal
マルチモーダル入力を使用するタスクの場合、モデル用にデータセットを準備するための[プロセッサ](main_classes/processors)が必要です。プロセッサは、トークナイザや特徴量抽出器などの2つの処理オブジェクトを結合します。
自動音声認識(ASR)のためのプロセッサの使用方法を示すために、[LJ Speech](https://huggingface.co/datasets/lj_speech)データセットをロードします(データセットのロード方法の詳細については🤗 [Datasets チュートリアル](https://huggingface.co/docs/datasets/load_hub)を参照):
```python
>>> from datasets import load_dataset
>>> lj_speech = load_dataset("lj_speech", split="train")
```
ASR(自動音声認識)の場合、主に `audio` と `text` に焦点を当てているため、他の列を削除できます:
```python
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
```
次に、`audio`と`text`の列を見てみましょう:
```python
>>> lj_speech[0]["audio"]
{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ...,
7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav',
'sampling_rate': 22050}
>>> lj_speech[0]["text"]
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
```
常に、オーディオデータセットのサンプリングレートを、モデルの事前学習に使用されたデータセットのサンプリングレートと一致させるように[リサンプル](preprocessing#audio)する必要があります!
```py
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
```
プロセッサを [`AutoProcessor.from_pretrained`] を使用してロードします:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
```
1. `array`内に含まれるオーディオデータを`input_values`に処理し、`text`を`labels`にトークン化する関数を作成します:
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... return example
```
2. サンプルに`prepare_dataset`関数を適用します:
```py
>>> prepare_dataset(lj_speech[0])
```
| transformers/docs/source/ja/preprocessing.md/0 | {
"file_path": "transformers/docs/source/ja/preprocessing.md",
"repo_id": "transformers",
"token_count": 12716
} | 251 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 큰 모델 인스턴스화 [[instantiating-a-big-model]]
매우 큰 사전훈련된 모델을 사용하려면, RAM 사용을 최소화해야 하는 과제가 있습니다. 일반적인 PyTorch 워크플로우는 다음과 같습니다:
1. 무작위 가중치로 모델을 생성합니다.
2. 사전훈련된 가중치를 불러옵니다.
3. 사전훈련된 가중치를 무작위 모델에 적용합니다.
1단계와 2단계 모두 모델의 전체 버전을 메모리에 적재해야 하며, 대부분 문제가 없지만 모델이 기가바이트급의 용량을 차지하기 시작하면 복사본 2개가 RAM을 초과하여 메모리 부족 이슈를 야기할 수 있습니다. 더 심각한 문제는 분산 학습을 위해 `torch.distributed`를 사용하는 경우, 프로세스마다 사전훈련된 모델을 로드하고 복사본을 2개씩 RAM에 저장한다는 것입니다.
<Tip>
무작위로 생성된 모델은 "비어 있는" (즉 그때 메모리에 있던 것으로 이뤄진) 텐서로 초기화되며 메모리 공간을 차지합니다. 초기화된 모델/파라미터의 종류에 적합한 분포(예: 정규 분포)에 따른 무작위 초기화는 가능한 한 빠르게 하기 위해 초기화되지 않은 가중치에 대해 3단계 이후에만 수행됩니다!
</Tip>
이 안내서에서는 Transformers가 이 문제를 해결하기 위해 제공하는 솔루션을 살펴봅니다. 주의할 점은 아직 활발히 개발 중인 분야이므로 여기서 설명하는 API가 앞으로 약간 변경될 수 있다는 것입니다.
## 샤딩된 체크포인트 [[sharded-checkpoints]]
4.18.0 버전 이후, 10GB 이상의 공간을 차지하는 모델 체크포인트는 자동으로 작은 조각들로 샤딩됩니다. `model.save_pretrained(save_dir)`를 실행할 때 하나의 단일 체크포인트를 가지게 될 대신, 여러 부분 체크포인트(각각의 크기는 10GB 미만)와 매개변수 이름을 해당 파일에 매핑하는 인덱스가 생성됩니다.
`max_shard_size` 매개변수로 샤딩 전 최대 크기를 제어할 수 있으므로, 이 예제를 위해 샤드 크기가 작은 일반 크기의 모델을 사용하겠습니다: 전통적인 BERT 모델을 사용해 봅시다.
```py
from transformers import AutoModel
model = AutoModel.from_pretrained("bert-base-cased")
```
[`~PreTrainedModel.save_pretrained`]을 사용하여 모델을 저장하면, 모델의 구성과 가중치가 들어있는 두 개의 파일이 있는 새 폴더가 생성됩니다:
```py
>>> import os
>>> import tempfile
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir)
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model.bin']
```
이제 최대 샤드 크기를 200MB로 사용해 봅시다:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json']
```
모델의 구성에 더해, 세 개의 다른 가중치 파일과 파라미터 이름과 해당 파일의 매핑이 포함된 `index.json` 파일을 볼 수 있습니다. 이러한 체크포인트는 [`~PreTrainedModel.from_pretrained`] 메서드를 사용하여 완전히 다시 로드할 수 있습니다:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... new_model = AutoModel.from_pretrained(tmp_dir)
```
큰 모델의 경우 이러한 방식으로 처리하는 주된 장점은 위에서 보여준 흐름의 2단계에서, 각 샤드가 이전 샤드 다음에 로드되므로 메모리 사용량이 모델 크기와 가장 큰 샤드의 크기를 초과하지 않는다는 점입니다.
이 인덱스 파일은 키가 체크포인트에 있는지, 그리고 해당 가중치가 어디에 저장되어 있는지를 결정하는 데 사용됩니다. 이 인덱스를 json과 같이 로드하고 딕셔너리를 얻을 수 있습니다:
```py
>>> import json
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f:
... index = json.load(f)
>>> print(index.keys())
dict_keys(['metadata', 'weight_map'])
```
메타데이터는 현재 모델의 총 크기만 포함됩니다. 앞으로 다른 정보를 추가할 계획입니다:
```py
>>> index["metadata"]
{'total_size': 433245184}
```
가중치 맵은 이 인덱스의 주요 부분으로, 각 매개변수 이름(PyTorch 모델 `state_dict`에서 보통 찾을 수 있는)을 해당 파일에 매핑합니다:
```py
>>> index["weight_map"]
{'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin',
'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin',
...
```
만약 [`~PreTrainedModel.from_pretrained`]를 사용하지 않고 모델 내에서 이러한 샤딩된 체크포인트를 직접 가져오려면 (전체 체크포인트를 위해 `model.load_state_dict()`를 수행하는 것처럼), [`~modeling_utils.load_sharded_checkpoint`]를 사용해야 합니다.
```py
>>> from transformers.modeling_utils import load_sharded_checkpoint
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... load_sharded_checkpoint(model, tmp_dir)
```
## 저(低)메모리 로딩 [[low-memory-loading]]
샤딩된 체크포인트는 위에서 언급한 작업 흐름의 2단계에서 메모리 사용량을 줄이지만, 저(低)메모리 설정에서 모델을 사용하기 위해 우리의 Accelerate 라이브러리를 기반으로 한 도구를 활용하는 것이 좋습니다.
자세한 사항은 다음 가이드를 참조해주세요: [Accelerate로 대규모 모델 가져오기 (영문)](../en/main_classes/model#large-model-loading) | transformers/docs/source/ko/big_models.md/0 | {
"file_path": "transformers/docs/source/ko/big_models.md",
"repo_id": "transformers",
"token_count": 4434
} | 252 |
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# 모델 학습 해부하기 [[model-training-anatomy]]
모델 훈련 속도와 메모리 활용의 효율성을 향상시키기 위해 적용할 수 있는 성능 최적화 기술을 이해하려면 GPU가 훈련 중에 어떻게 활용되는지, 그리고 수행되는 연산에 따라 연산 강도가 어떻게 변하는지에 익숙해져야 합니다.
먼저 GPU 활용과 모델 훈련 실행에 대한 예시를 살펴보겠습니다. 데모를 위해 몇몇 라이브러리를 설치해야 합니다:
```bash
pip install transformers datasets accelerate nvidia-ml-py3
```
`nvidia-ml-py3` 라이브러리는 Python 내부에서 모델의 메모리 사용량을 모니터링할 수 있게 해줍니다. 터미널의 `nvidia-smi` 명령어에 익숙할 수 있는데, 이 라이브러리는 Python에서 직접 동일한 정보에 접근할 수 있게 해줍니다.
그 다음, 100과 30000 사이의 무작위 토큰 ID와 분류기를 위한 이진 레이블인 더미 데이터를 생성합니다.
길이가 각각 512인 총 512개의 시퀀스를 가져와 PyTorch 형식의 [`~datasets.Dataset`]에 저장합니다.
```py
>>> import numpy as np
>>> from datasets import Dataset
>>> seq_len, dataset_size = 512, 512
>>> dummy_data = {
... "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),
... "labels": np.random.randint(0, 1, (dataset_size)),
... }
>>> ds = Dataset.from_dict(dummy_data)
>>> ds.set_format("pt")
```
GPU 활용 및 [`Trainer`]로 실행한 훈련 과정에 대한 요약 통계를 출력하기 위해 두 개의 도우미 함수를 정의하겠습니다:
```py
>>> from pynvml import *
>>> def print_gpu_utilization():
... nvmlInit()
... handle = nvmlDeviceGetHandleByIndex(0)
... info = nvmlDeviceGetMemoryInfo(handle)
... print(f"GPU memory occupied: {info.used//1024**2} MB.")
>>> def print_summary(result):
... print(f"Time: {result.metrics['train_runtime']:.2f}")
... print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
... print_gpu_utilization()
```
시작할 때 GPU 메모리가 비어 있는지 확인해 봅시다:
```py
>>> print_gpu_utilization()
GPU memory occupied: 0 MB.
```
좋습니다. 모델을 로드하기 전에는 예상대로 GPU 메모리가 점유되지 않았습니다. 그렇지 않다면 사용자의 기기에서 GPU 메모리를 사용하는 모든 프로세스를 중단해야 합니다. 그러나 사용자는 모든 여유 GPU 메모리를 사용할 수는 없습니다. 모델이 GPU에 로드될 때 커널도 로드되므로 1-2GB의 메모리를 차지할 수 있습니다. 얼마나 되는지 확인하기 위해 GPU에 작은 텐서를 로드하여 커널이 로드되도록 트리거합니다.
```py
>>> import torch
>>> torch.ones((1, 1)).to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 1343 MB.
```
커널만으로도 GPU 메모리의 1.3GB를 차지합니다. 이제 모델이 얼마나 많은 공간을 사용하는지 확인해 보겠습니다.
## 모델 로드 [[load-model]]
우선, `bert-large-uncased` 모델을 로드합니다. 모델의 가중치를 직접 GPU에 로드해서 가중치만이 얼마나 많은 공간을 차지하는지 확인할 수 있습니다.
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-large-uncased").to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 2631 MB.
```
모델의 가중치만으로도 GPU 메모리를 1.3 GB 차지하는 것을 볼 수 있습니다. 정확한 숫자는 사용하는 GPU에 따라 다릅니다. 최신 GPU에서는 모델 사용 속도를 높이는 최적화된 방식으로 가중치가 로드되므로, 모델이 더 많은 공간을 차지할 수 있습니다. 이제 `nvidia-smi` CLI와 동일한 결과를 얻는지 빠르게 확인할 수 있습니다:
```bash
nvidia-smi
```
```bash
Tue Jan 11 08:58:05 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... On | 00000000:00:04.0 Off | 0 |
| N/A 37C P0 39W / 300W | 2631MiB / 16160MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 3721 C ...nvs/codeparrot/bin/python 2629MiB |
+-----------------------------------------------------------------------------+
```
이전과 동일한 숫자가 출력되고 16GB 메모리를 가진 V100 GPU를 사용하고 있다는 것도 볼 수 있습니다. 그러므로 이제 모델 훈련을 시작하여 GPU 메모리 사용량이 어떻게 달라지는지 볼 수 있습니다. 우선 몇몇 표준 훈련 인수를 설정합니다:
```py
default_args = {
"output_dir": "tmp",
"evaluation_strategy": "steps",
"num_train_epochs": 1,
"log_level": "error",
"report_to": "none",
}
```
<Tip>
여러 실험을 실행할 계획이라면, 실험 간에 메모리를 제대로 비우기 위해서 Python 커널을 실험 사이마다 재시작해야 합니다.
</Tip>
## 기본 훈련에서의 메모리 활용 [[memory-utilization-at-vanilla-training]]
[`Trainer`]를 사용하여, GPU 성능 최적화 기술을 사용하지 않고 배치 크기가 4인 모델을 훈련시키겠습니다:
```py
>>> from transformers import TrainingArguments, Trainer, logging
>>> logging.set_verbosity_error()
>>> training_args = TrainingArguments(per_device_train_batch_size=4, **default_args)
>>> trainer = Trainer(model=model, args=training_args, train_dataset=ds)
>>> result = trainer.train()
>>> print_summary(result)
```
```
Time: 57.82
Samples/second: 8.86
GPU memory occupied: 14949 MB.
```
우리는 비교적 작은 배치 크기로도 전체 GPU 메모리를 거의 다 차지하는 것을 볼 수 있습니다. 그러나 배치 크기가 클수록 모델 수렴 속도가 빨라지고 최종 성능이 향상되는 경우가 많습니다. 그래서 이상적으로는 GPU 제한이 아닌 우리 모델의 요구사항에 맞게 배치 크기를 조정하려고 합니다. 흥미롭게도 우리는 모델의 크기보다 훨씬 더 많은 메모리를 사용합니다. 왜 이런 현상이 발생하는지 조금 더 잘 이해하기 위해 모델의 연산과 메모리 요구 사항을 살펴보겠습니다.
## 모델의 연산 해부하기 [[anatomy-of-models-operations]]
트랜스포머 아키텍처에는 연산 강도(compute-intensity)에 따라 그룹화된 3가지 주요 연산 그룹이 있습니다.
1. **텐서 축약(Tensor Contractions)**
선형 레이어와 멀티헤드 어텐션의 구성 요소는 모두 **행렬-행렬 곱셈(matrix-matrix multiplications)**을 일괄적으로 처리합니다. 이 연산은 트랜스포머 훈련에서 가장 연산 강도가 높은 부분입니다.
2. **통계 정규화(Statistical Normalizations)**
소프트맥스와 레이어 정규화는 텐서 축약보다 연산 강도가 낮습니다. 하나 이상의 **감소 연산(reduction operations)**을 포함하며, 그 결과는 map을 통해 적용됩니다.
3. **원소별 연산자(Element-wise Operators)**
그 외 연산자들, **편향(biases), 드롭아웃(dropout), 활성화 함수(activations), 잔차 연결(residual connections)**이 여기에 해당합니다. 이 연산들은 연산 강도가 가장 낮습니다.
이러한 지식은 성능 병목 현상을 분석할 때 도움이 될 수 있습니다.
이 내용은 [Data Movement Is All You Need: A Case Study on Optimizing Transformers 2020](https://arxiv.org/abs/2007.00072)을 참고하였습니다.
## 모델의 메모리 구조 [[anatomy-of-models-memory]]
모델을 훈련시키는 데는 단순히 GPU에 모델을 올리는 것보다 훨씬 더 많은 메모리를 사용한다는 것을 보았습니다. 이는 훈련 중 GPU 메모리를 사용하는 많은 구성 요소가 있기 때문입니다. GPU 메모리의 구성 요소는 다음과 같습니다:
1. 모델 가중치
2. 옵티마이저 상태
3. 그라디언트
4. 그라디언트 계산을 위해 저장된 순방향 활성화
5. 임시 버퍼
6. 기능별 메모리
AdamW를 사용하여 혼합 정밀도로 훈련된 일반적인 모델은 모델 파라미터당 18 바이트와 활성화 메모리가 필요합니다. 추론 단계에서는 옵티마이저와 그라디언트가 필요하지 않으므로 이들은 제외합니다. 따라서 혼합 정밀도 추론의 경우 모델 매개변수당 6 바이트와 활성화 메모리가 필요합니다.
자세히 살펴보겠습니다.
**모델 가중치:**
- fp32 훈련의 경우 매개 변수 수 * 4 바이트
- 혼합 정밀도 훈련의 경우 매개 변수 수 * 6 바이트 (메모리에 fp32와 fp16 두 가지 모델을 유지)
**옵티마이저 상태:**
- 일반 AdamW의 경우 매개 변수 수 * 8 바이트 (2가지 상태 유지)
- [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)와 같은 8비트 AdamW 옵티마이저의 경우 매개 변수 수 * 2 바이트
- Momentum을 가진 SGD와 같은 옵티마이저의 경우 매개 변수 수 * 4 바이트 (하나의 상태만 유지)
**그라디언트**
- fp32 또는 혼합 정밀도 훈련의 경우 매개 변수 수 * 4 바이트 (그라디언트는 항상 fp32으로 유지됩니다.)
**순방향 활성화**
- 크기는 여러 요인에 따라 달라지며, 주요 요인은 시퀀스 길이, 은닉 상태의 크기 및 배치 크기입니다.
순방향 및 역방향 함수에서 전달 및 반환되는 입력과 출력이 있으며, 그라디언트 계산을 위해 저장된 순방향 활성화가 있습니다.
**임시 메모리**
더불어 모든 종류의 임시 변수는 연산이 완료되면 곧바로 해제되지만, 그 순간에는 추가 메모리가 필요할 수 있고 OOM을 유발할 수 있습니다. 따라서 코딩할 때 이러한 임시 변수에 대해 전략적으로 생각하고 때로는 더 이상 필요 없는 임시 변수를 즉시 명시적으로 메모리에서 제거하는 것이 중요합니다.
**기능별 메모리**
그런 다음, 소프트웨어에는 특별한 메모리 요구 사항이 있을 수 있습니다. 예를 들어, 빔 검색을 사용하여 텍스트를 생성할 때 소프트웨어는 입력과 출력 사본을 여러 개 유지해야 합니다.
**`forward` vs `backward` 실행 속도**
합성곱과 선형 레이어의 경우 순방향에 비해 역방향에서는 2배의 플롭스가 필요하므로 일반적으로 2배 정도 느리게 변환됩니다(역방향의 경우 사이즈가 부자연스럽기 때문에, 때로는 더욱 느릴 수도 있습니다). 활성화는 일반적으로 대역폭이 제한되어 있으며, 일반적으로 순방향보다 역방향에서 더 많은 데이터를 읽어야 합니다. (예를 들어, 순방향 활성화 시 한 번 씩 읽고 쓰지만, 역방향 활성화에서는 순방향 gradOutput과 출력에 대해 총 두 번 읽고 gradInput에 대해 한 번 씁니다.)
보다시피, GPU 메모리를 절약하거나 작업 속도를 높일 수 있는 몇 가지 방법이 있습니다.
이제 GPU 활용과 계산 속도에 영향을 주는 것이 무엇인지를 이해했으므로, [Methods and tools for efficient training on a single GPU](perf_train_gpu_one) 문서 페이지를 참조하여 성능 최적화 기법에 대해 알아보세요. | transformers/docs/source/ko/model_memory_anatomy.md/0 | {
"file_path": "transformers/docs/source/ko/model_memory_anatomy.md",
"repo_id": "transformers",
"token_count": 8869
} | 253 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 이념과 목표 [[philosophy]]
🤗 Transformers는 다음과 같은 목적으로 만들어진 독자적인 라이브러리입니다:
- 대규모 Transformers 모델을 사용하거나 연구하거나 확장하려는 기계 학습 연구원 및 교육자를 위한 것입니다.
- 모델을 미세 조정하거나 제작용으로 사용하고자 하는 실전 개발자를 위한 것입니다.
- 특정 기계 학습 작업을 해결하기 위해 사전훈련된 모델을 다운로드하고 사용하기만 하려는 엔지니어를 위한 것입니다.
이 라이브러리는 두 가지 주요 목표를 가지고 설계되었습니다:
1. 사용하기 쉽고 빠르게 만드는 것:
- 학습해야 할 사용자 대상 추상화의 수를 제한했습니다. 실제로 거의 추상화가 없으며, 각 모델을 사용하기 위해 필요한 세 가지 표준 클래스인 [configuration](main_classes/configuration), [models](main_classes/model) 및 전처리 클래스인 ([tokenizer](main_classes/tokenizer)는 NLP용, [image processor](main_classes/image_processor)는 비전용, [feature extractor](main_classes/feature_extractor)는 오디오용, [processor](main_classes/processors)는 멀티모달 입력용)만 사용합니다.
- 이러한 클래스는 공통적인 `from_pretrained()` 메서드를 사용하여 미리 훈련된 인스턴스에서 간단하고 통일된 방식으로 초기화할 수 있습니다. 이 메소드는 미리 훈련된 체크포인트에서 관련 클래스 인스턴스와 관련 데이터(구성의 하이퍼파라미터, 토크나이저의 어휘, 모델의 가중치)를 (필요한 경우) 다운로드하고 캐시하며 가져옵니다. 체크포인트는 [Hugging Face Hub](https://huggingface.co/models)에서 제공되거나 사용자 자체의 저장된 체크포인트에서 제공됩니다.
- 이 세 가지 기본 클래스 위에 라이브러리는 [`pipeline`] API를 제공하여 주어진 작업에 대해 모델을 빠르게 추론하는 데 사용하고, [`Trainer`]를 제공하여 PyTorch 모델을 빠르게 훈련하거나 미세 조정할 수 있도록 합니다(모든 TensorFlow 모델은 `Keras.fit`과 호환됩니다).
- 결과적으로, 이 라이브러리는 신경망을 구축하기 위한 모듈식 도구 상자가 아닙니다. 라이브러리를 확장하거나 구축하려면 일반적인 Python, PyTorch, TensorFlow, Keras 모듈을 사용하고 라이브러리의 기본 클래스를 상속하여 모델 로딩 및 저장과 같은 기능을 재사용하면 됩니다. 모델에 대한 코딩 철학에 대해 더 자세히 알고 싶다면 [Repeat Yourself](https://huggingface.co/blog/transformers-design-philosophy) 블로그 글을 확인해보세요.
2. 원래 모델과 가능한 한 근접한 성능을 제공하는 최신 모델을 제공하는 것:
- 각 아키텍처에 대해 공식 저자가 제공한 결과를 재현하는 적어도 한 가지 예제를 제공합니다.
- 코드는 원래 코드와 가능한 한 유사하게 유지되므로 PyTorch 코드는 TensorFlow 코드로 변환되어 *pytorchic*하지 않을 수 있고, 그 반대의 경우도 마찬가지입니다.
기타 목표 몇 가지:
- 모델의 내부를 가능한 일관되게 노출시키기:
- 전체 은닉 상태와 어텐션 가중치에 대한 액세스를 단일 API를 사용하여 제공합니다.
- 전처리 클래스 및 기본 모델 API는 모델 간에 쉽게 전환할 수 있도록 표준화되어 있습니다.
- 미세 조정 및 모델 탐색을 위한 유망한 도구들을 주관적으로 선택하기:
- 미세 조정을 위해 어휘 및 임베딩에 새로운 토큰을 간단하고 일관된 방식으로 추가하는 방법을 제공합니다.
- Transformer 헤드를 마스킹하고 가지치기하는 간단한 방법을 제공합니다.
- PyTorch, TensorFlow 2.0 및 Flax 간에 쉽게 전환할 수 있도록 하여 하나의 프레임워크로 훈련하고 다른 프레임워크로 추론할 수 있게 합니다.
## 주요 개념 [[main-concepts]]
이 라이브러리는 각 모델에 대해 세 가지 유형의 클래스를 기반으로 구축되었습니다:
- **모델 클래스**는 라이브러리에서 제공하는 사전 훈련된 가중치와 함께 작동하는 PyTorch 모델([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)), Keras 모델([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)), JAX/Flax 모델([flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html))일 수 있습니다.
- **구성 클래스**는 모델을 구축하는 데 필요한 하이퍼파라미터(예: 레이어 수 및 은닉 크기)를 저장합니다. 구성 클래스를 직접 인스턴스화할 필요는 없습니다. 특히, 수정 없이 고 사전 학습된 모델을 사용하는 경우 모델을 생성하면 모델의 일부인 구성을 자동으로 인스턴스화됩니다.
- **전처리 클래스**는 원시 데이터를 모델이 수용하는 형식으로 변환합니다. [Tokenizer](main_classes/tokenizer)는 각 모델의 어휘를 저장하고, 문자열을 토큰 임베딩 인덱스 리스트로 인코딩하고 디코딩하기 위한 메소드를 제공합니다. [Image processors](main_classes/image_processor)는 비전 입력을 전처리하고, [feature extractors](main_classes/feature_extractor)는 오디오 입력을 전처리하며, [processor](main_classes/processors)는 멀티모달 입력을 처리합니다.
모든 이러한 클래스는 사전 훈련된 인스턴스에서 인스턴스화하고 로컬로 저장하며, 세 가지 메소드를 사용하여 Hub에서 공유할 수 있습니다:
- `from_pretrained()` 메소드를 사용하면 라이브러리 자체에서 제공하는 사전 훈련된 버전(지원되는 모델은 [Model Hub](https://huggingface.co/models)에서 찾을 수 있음)이나 사용자가 로컬로 저장한 경우(또는 서버에 저장한 경우)의 모델, 구성 및 전처리 클래스를 인스턴스화할 수 있습니다.
- `save_pretrained()` 메소드를 사용하면 모델, 구성 및 전처리 클래스를 로컬로 저장하여 `from_pretrained()`를 사용하여 다시 가져올 수 있습니다.
- `push_to_hub()` 메소드를 사용하면 모델, 구성 및 전처리 클래스를 Hub에 공유하여 모두에게 쉽게 접근할 수 있습니다.
| transformers/docs/source/ko/philosophy.md/0 | {
"file_path": "transformers/docs/source/ko/philosophy.md",
"repo_id": "transformers",
"token_count": 5165
} | 254 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TensorFlow 모델을 위한 XLA 통합 [[xla-integration-for-tensorflow-models]]
[[open-in-colab]]
XLA(Accelerated Linear Algebra)는 TensorFlow 모델의 실행 시간을 가속화하기 위한 컴파일러입니다. [공식 문서](https://www.tensorflow.org/xla)에 따르면 다음과 같습니다:
XLA(Accelerated Linear Algebra)는 선형 대수를 위한 도메인 특화 컴파일러로, TensorFlow 모델을 소스 코드 변경 없이 가속화할 수 있습니다.
TensorFlow에서 XLA를 사용하는 것은 간단합니다. XLA는 `tensorflow` 라이브러리 내에 패키지로 제공되며, [`tf.function`](https://www.tensorflow.org/guide/intro_to_graphs)과 같은 그래프 생성 함수에서 `jit_compile` 인수를 사용하여 활성화할 수 있습니다. `fit()` 및 `predict()`와 같은 Keras 메소드를 사용하는 경우, `jit_compile` 인수를 `model.compile()`에 전달하여 XLA를 간단하게 활성화할 수 있습니다. 그러나 XLA는 이러한 메소드에 국한되지 않고 임의의 `tf.function`을 가속화하는 데에도 사용할 수 있습니다.
🤗 Transformers에서는 [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2), [T5](https://huggingface.co/docs/transformers/model_doc/t5), [OPT](https://huggingface.co/docs/transformers/model_doc/opt)와 같은 모델의 텍스트 생성, 그리고 [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)와 같은 모델의 음성 처리를 포함하여 여러 TensorFlow 메소드가 XLA와 호환되도록 다시 작성되었습니다.
정확한 속도 향상은 모델에 따라 다르지만, 🤗 Transformers 내의 TensorFlow 텍스트 생성 모델의 경우 최대 100배의 속도 향상을 확인했습니다. 이 문서에서는 이러한 모델에 대해 XLA를 사용하여 최대 성능을 얻는 방법을 설명합니다. 또한 XLA 통합의 벤치마크 및 디자인 철학에 대한 추가 자료 링크도 제공할 것입니다.
## XLA를 사용하여 TF 함수 실행하기 [[running-tf-functions-with-xla]]
TensorFlow에서 다음과 같은 모델을 고려해 봅시다:
```py
import tensorflow as tf
model = tf.keras.Sequential(
[tf.keras.layers.Dense(10, input_shape=(10,), activation="relu"), tf.keras.layers.Dense(5, activation="softmax")]
)
```
위 모델은 차원이 `(10, )`인 입력을 받습니다. 다음과 같이 모델을 사용하여 순전파를 실행할 수 있습니다:
```py
# 모델에 대한 임의의 입력을 생성합니다.
batch_size = 16
input_vector_dim = 10
random_inputs = tf.random.normal((batch_size, input_vector_dim))
# 순전파를 실행합니다.
_ = model(random_inputs)
```
XLA로 컴파일된 함수로 순전파를 실행하려면 다음과 같이 해야 합니다:
```py
xla_fn = tf.function(model, jit_compile=True)
_ = xla_fn(random_inputs)
```
`model`의 기본 `call()` 함수는 XLA 그래프를 컴파일하는 데 사용됩니다. 그러나 다른 모델 함수를 XLA로 컴파일하려면 다음과 같이 할 수도 있습니다:
```py
my_xla_fn = tf.function(model.my_xla_fn, jit_compile=True)
```
## 🤗 Transformers에서 XLA를 사용하여 TF 텍스트 생성 모델 실행하기 [[running-a-tf-text-generation-model-with-xla-from-transformers]]
🤗 Transformers에서 XLA로 가속화된 생성을 활성화하려면 최신 버전의 `transformers`가 설치되어 있어야 합니다. 다음과 같이 설치할 수 있습니다:
```bash
pip install transformers --upgrade
```
그리고 다음 코드를 실행할 수 있습니다:
```py
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
# 최소 버전의 Transformers가 설치되어 있지 않다면 오류가 발생합니다.
from transformers.utils import check_min_version
check_min_version("4.21.0")
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", pad_token="</s>")
model = TFAutoModelForCausalLM.from_pretrained("gpt2")
input_string = ["TensorFlow is"]
# XLA 생성 함수를 만들기 위한 한 줄
xla_generate = tf.function(model.generate, jit_compile=True)
tokenized_input = tokenizer(input_string, return_tensors="tf")
generated_tokens = xla_generate(**tokenized_input, num_beams=2)
decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print(f"Generated -- {decoded_text}")
# Generated -- TensorFlow is an open-source, open-source, distributed-source application # framework for the
```
알 수 있듯이, `generate()`에서 XLA를 활성화하는 것은 단 한 줄의 코드입니다. 코드의 나머지 부분은 변경되지 않습니다. 그러나 위 코드 스니펫에서는 XLA에 특정한 몇 가지 주의할 점이 있습니다. XLA가 가져다줄 속도 향상을 실현하기 위해서는 이를 알고 있어야 합니다. 다음 섹션에서 이에 대해 논의합니다.
## 주의할 점 [[gotchas-to-be-aware-of]]
XLA 활성화 함수(`xla_generate()`와 같은)를 처음 실행할 때 내부적으로 계산 그래프를 추론하려고 하며, 이는 시간이 소요됩니다. 이 과정은 [“추적(tracing)”](https://www.tensorflow.org/guide/intro_to_graphs#when_is_a_function_tracing)이라고 알려져 있습니다.
생성 시간이 빠르지 않다는 것을 알 수 있을 것입니다. `xla_generate()`(또는 다른 XLA 활성화 함수)의 연속 호출은 함수에 전달된 입력이 초기에 구축된 계산 그래프와 동일한 형태를 따른다면, 계산 그래프를 추론할 필요가 없습니다. 이는 입력 형태가 고정된 모달리티(예: 이미지)에는 문제가 되지 않지만, 가변 입력 형태 모달리티(예: 텍스트)를 사용할 때 주의해야 합니다.
`xla_generate()`가 항상 동일한 입력 형태로 동작하도록 하려면, 토크나이저를 호출할 때 `padding` 인수를 지정할 수 있습니다.
```py
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", pad_token="</s>")
model = TFAutoModelForCausalLM.from_pretrained("gpt2")
input_string = ["TensorFlow is"]
xla_generate = tf.function(model.generate, jit_compile=True)
# 여기서, padding 옵션이 있는 토크나이저를 호출합니다.
tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf")
generated_tokens = xla_generate(**tokenized_input, num_beams=2)
decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print(f"Generated -- {decoded_text}")
```
이렇게 하면 `xla_generate()`에 대한 입력이 항상 추적된 형태로 전달되어 생성 시간이 가속화됩니다. 다음 코드로 이를 확인할 수 있습니다:
```py
import time
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", pad_token="</s>")
model = TFAutoModelForCausalLM.from_pretrained("gpt2")
xla_generate = tf.function(model.generate, jit_compile=True)
for input_string in ["TensorFlow is", "TensorFlow is a", "TFLite is a"]:
tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf")
start = time.time_ns()
generated_tokens = xla_generate(**tokenized_input, num_beams=2)
end = time.time_ns()
print(f"Execution time -- {(end - start) / 1e6:.1f} ms\n")
```
Tesla T4 GPU에서는 다음과 같은 출력을 예상할 수 있습니다:
```bash
Execution time -- 30819.6 ms
Execution time -- 79.0 ms
Execution time -- 78.9 ms
```
`xla_generate()`의 첫 번째 호출은 추적 때문에 시간이 오래 걸리지만, 연속 호출은 몇 배나 빠릅니다. 생성 옵션에 대한 어떤 변경이든 다시 추적을 유발하므로 생성 시간이 느려질 수 있음을 명심하세요.
이 문서에서는 🤗 Transformers에서 제공하는 모든 텍스트 생성 옵션을 다루지 않았습니다. 고급 사용 사례에 대해 문서를 참조하시기 바랍니다.
## 추가 자료 [[additional-resources]]
여기에 🤗 Transformers와 XLA에 대해 더 자세히 알고 싶은 경우 도움이 될 수 있는 몇 가지 추가 자료를 제공합니다.
* [이 Colab 노트북](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/91_tf_xla_generate.ipynb)은 XLA와 호환되는 인코더-디코더([T5](https://huggingface.co/docs/transformers/model_doc/t5)와 같은) 및 디코더 전용([GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)와 같은) 텍스트 생성 모델을 실험해 볼 수 있는 대화형 데모를 제공합니다.
* [이 블로그 글](https://huggingface.co/blog/tf-xla-generate)은 TensorFlow에서 XLA에 대한 친절한 소개와 함께 XLA와 호환되는 모델의 비교 벤치마크에 대한 개요를 제공합니다.
* [이 블로그 글](https://blog.tensorflow.org/2022/11/how-hugging-face-improved-text-generation-performance-with-xla.html)은 🤗 Transformers의 TensorFlow 모델에 XLA 지원을 추가하는 것에 대한 디자인 철학을 논의합니다.
* XLA와 TensorFlow 그래프에 대해 더 자세히 알고 싶은 경우 추천하는 글:
* [XLA: 기계 학습을 위한 최적화 컴파일러](https://www.tensorflow.org/xla)
* [그래프 및 tf.function 소개](https://www.tensorflow.org/guide/intro_to_graphs)
* [tf.function으로 성능 향상하기](https://www.tensorflow.org/guide/function) | transformers/docs/source/ko/tf_xla.md/0 | {
"file_path": "transformers/docs/source/ko/tf_xla.md",
"repo_id": "transformers",
"token_count": 6205
} | 255 |
<!--版权2023年HuggingFace团队保留所有权利。
根据Apache许可证第2.0版(“许可证”)许可;除非符合许可证,否则您不得使用此文件。您可以在以下网址获取许可证的副本:
http://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或书面同意,否则按“按原样”分发的软件,无论是明示还是暗示的,都没有任何担保或条件。请参阅许可证以了解特定语言下的权限和限制。
⚠️ 请注意,本文件虽然使用Markdown编写,但包含了特定的语法,适用于我们的doc-builder(类似于MDX),可能无法在您的Markdown查看器中正常渲染。
-->
# 🤗 加速分布式训练
随着模型变得越来越大,并行性已经成为在有限硬件上训练更大模型和加速训练速度的策略,增加了数个数量级。在Hugging Face,我们创建了[🤗 加速](https://huggingface.co/docs/accelerate)库,以帮助用户在任何类型的分布式设置上轻松训练🤗 Transformers模型,无论是在一台机器上的多个GPU还是在多个机器上的多个GPU。在本教程中,了解如何自定义您的原生PyTorch训练循环,以启用分布式环境中的训练。
## 设置
通过安装🤗 加速开始:
```bash
pip install accelerate
```
然后导入并创建[`~accelerate.Accelerator`]对象。[`~accelerate.Accelerator`]将自动检测您的分布式设置类型,并初始化所有必要的训练组件。您不需要显式地将模型放在设备上。
```py
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
```
## 准备加速
下一步是将所有相关的训练对象传递给[`~accelerate.Accelerator.prepare`]方法。这包括您的训练和评估DataLoader、一个模型和一个优化器:
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
... train_dataloader, eval_dataloader, model, optimizer
... )
```
## 反向传播
最后一步是用🤗 加速的[`~accelerate.Accelerator.backward`]方法替换训练循环中的典型`loss.backward()`:
```py
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... outputs = model(**batch)
... loss = outputs.loss
... accelerator.backward(loss)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
如您在下面的代码中所见,您只需要添加四行额外的代码到您的训练循环中即可启用分布式训练!
```diff
+ from accelerate import Accelerator
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
+ accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
optimizer = AdamW(model.parameters(), lr=3e-5)
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+ train_dataloader, eval_dataloader, model, optimizer
+ )
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## 训练
在添加了相关代码行后,可以在脚本或笔记本(如Colaboratory)中启动训练。
### 用脚本训练
如果您从脚本中运行训练,请运行以下命令以创建和保存配置文件:
```bash
accelerate config
```
然后使用以下命令启动训练:
```bash
accelerate launch train.py
```
### 用笔记本训练
🤗 加速还可以在笔记本中运行,如果您计划使用Colaboratory的TPU,则可在其中运行。将负责训练的所有代码包装在一个函数中,并将其传递给[`~accelerate.notebook_launcher`]:
```py
>>> from accelerate import notebook_launcher
>>> notebook_launcher(training_function)
```
有关🤗 加速及其丰富功能的更多信息,请参阅[文档](https://huggingface.co/docs/accelerate)。 | transformers/docs/source/zh/accelerate.md/0 | {
"file_path": "transformers/docs/source/zh/accelerate.md",
"repo_id": "transformers",
"token_count": 2552
} | 256 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 快速上手
[[open-in-colab]]
快来使用 🤗 Transformers 吧!无论你是开发人员还是日常用户,这篇快速上手教程都将帮助你入门并且向你展示如何使用 [`pipeline`] 进行推理,使用 [AutoClass](./model_doc/auto) 加载一个预训练模型和预处理器,以及使用 PyTorch 或 TensorFlow 快速训练一个模型。如果你是一个初学者,我们建议你接下来查看我们的教程或者[课程](https://huggingface.co/course/chapter1/1),来更深入地了解在这里介绍到的概念。
在开始之前,确保你已经安装了所有必要的库:
```bash
!pip install transformers datasets
```
你还需要安装喜欢的机器学习框架:
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
</tf>
</frameworkcontent>
## Pipeline
<Youtube id="tiZFewofSLM"/>
使用 [`pipeline`] 是利用预训练模型进行推理的最简单的方式。你能够将 [`pipeline`] 开箱即用地用于跨不同模态的多种任务。来看看它支持的任务列表:
| **任务** | **描述** | **模态** | **Pipeline** |
|------------------------------|-----------------------------------|-----------------|-----------------------------------------------|
| 文本分类 | 为给定的文本序列分配一个标签 | NLP | pipeline(task="sentiment-analysis") |
| 文本生成 | 根据给定的提示生成文本 | NLP | pipeline(task="text-generation") |
| 命名实体识别 | 为序列里的每个 token 分配一个标签(人, 组织, 地址等等) | NLP | pipeline(task="ner") |
| 问答系统 | 通过给定的上下文和问题, 在文本中提取答案 | NLP | pipeline(task="question-answering") |
| 掩盖填充 | 预测出正确的在序列中被掩盖的token | NLP | pipeline(task="fill-mask") |
| 文本摘要 | 为文本序列或文档生成总结 | NLP | pipeline(task="summarization") |
| 文本翻译 | 将文本从一种语言翻译为另一种语言 | NLP | pipeline(task="translation") |
| 图像分类 | 为图像分配一个标签 | Computer vision | pipeline(task="image-classification") |
| 图像分割 | 为图像中每个独立的像素分配标签(支持语义、全景和实例分割) | Computer vision | pipeline(task="image-segmentation") |
| 目标检测 | 预测图像中目标对象的边界框和类别 | Computer vision | pipeline(task="object-detection") |
| 音频分类 | 给音频文件分配一个标签 | Audio | pipeline(task="audio-classification") |
| 自动语音识别 | 将音频文件中的语音提取为文本 | Audio | pipeline(task="automatic-speech-recognition") |
| 视觉问答 | 给定一个图像和一个问题,正确地回答有关图像的问题 | Multimodal | pipeline(task="vqa") |
创建一个 [`pipeline`] 实例并且指定你想要将它用于的任务,就可以开始了。你可以将 [`pipeline`] 用于任何一个上面提到的任务,如果想知道支持的任务的完整列表,可以查阅 [pipeline API 参考](./main_classes/pipelines)。不过, 在这篇教程中,你将把 [`pipeline`] 用在一个情感分析示例上:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("sentiment-analysis")
```
[`pipeline`] 会下载并缓存一个用于情感分析的默认的[预训练模型](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)和分词器。现在你可以在目标文本上使用 `classifier` 了:
```py
>>> classifier("We are very happy to show you the 🤗 Transformers library.")
[{'label': 'POSITIVE', 'score': 0.9998}]
```
如果你有不止一个输入,可以把所有输入放入一个列表然后传给[`pipeline`],它将会返回一个字典列表:
```py
>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
>>> for result in results:
... print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
label: POSITIVE, with score: 0.9998
label: NEGATIVE, with score: 0.5309
```
[`pipeline`] 也可以为任何你喜欢的任务遍历整个数据集。在下面这个示例中,让我们选择自动语音识别作为我们的任务:
```py
>>> import torch
>>> from transformers import pipeline
>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
```
加载一个你想遍历的音频数据集(查阅 🤗 Datasets [快速开始](https://huggingface.co/docs/datasets/quickstart#audio) 获得更多信息)。比如,加载 [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) 数据集:
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT
```
你需要确保数据集中的音频的采样率与 [`facebook/wav2vec2-base-960h`](https://huggingface.co/facebook/wav2vec2-base-960h) 训练用到的音频的采样率一致:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
```
当调用 `"audio"` 列时, 音频文件将会自动加载并重采样。
从前四个样本中提取原始波形数组,将它作为列表传给 pipeline:
```py
>>> result = speech_recognizer(dataset[:4]["audio"])
>>> print([d["text"] for d in result])
['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FODING HOW I'D SET UP A JOIN TO HET WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE AP SO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AND I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I THURN A JOIN A COUNT']
```
对于输入非常庞大的大型数据集(比如语音或视觉),你会想到使用一个生成器,而不是一个将所有输入都加载进内存的列表。查阅 [pipeline API 参考](./main_classes/pipelines) 来获取更多信息。
### 在 pipeline 中使用另一个模型和分词器
[`pipeline`] 可以容纳 [Hub](https://huggingface.co/models) 中的任何模型,这让 [`pipeline`] 更容易适用于其他用例。比如,你想要一个能够处理法语文本的模型,就可以使用 Hub 上的标记来筛选出合适的模型。靠前的筛选结果会返回一个为情感分析微调的多语言的 [BERT 模型](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment),你可以将它用于法语文本:
```py
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
<frameworkcontent>
<pt>
使用 [`AutoModelForSequenceClassification`] 和 [`AutoTokenizer`] 来加载预训练模型和它关联的分词器(更多信息可以参考下一节的 `AutoClass`):
```py
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</pt>
<tf>
使用 [`TFAutoModelForSequenceClassification`] 和 [`AutoTokenizer`] 来加载预训练模型和它关联的分词器(更多信息可以参考下一节的 `TFAutoClass`):
```py
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</tf>
</frameworkcontent>
在 [`pipeline`] 中指定模型和分词器,现在你就可以在法语文本上使用 `classifier` 了:
```py
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
[{'label': '5 stars', 'score': 0.7273}]
```
如果你没有找到适合你的模型,就需要在你的数据上微调一个预训练模型了。查看 [微调教程](./training) 来学习怎样进行微调。最后,微调完模型后,考虑一下在 Hub 上与社区 [分享](./model_sharing) 这个模型,把机器学习普及到每一个人! 🤗
## AutoClass
<Youtube id="AhChOFRegn4"/>
在幕后,是由 [`AutoModelForSequenceClassification`] 和 [`AutoTokenizer`] 一起支持你在上面用到的 [`pipeline`]。[AutoClass](./model_doc/auto) 是一个能够通过预训练模型的名称或路径自动查找其架构的快捷方式。你只需要为你的任务选择合适的 `AutoClass` 和它关联的预处理类。
让我们回过头来看上一节的示例,看看怎样使用 `AutoClass` 来重现使用 [`pipeline`] 的结果。
### AutoTokenizer
分词器负责预处理文本,将文本转换为用于输入模型的数字数组。有多个用来管理分词过程的规则,包括如何拆分单词和在什么样的级别上拆分单词(在 [分词器总结](./tokenizer_summary) 学习更多关于分词的信息)。要记住最重要的是你需要实例化的分词器要与模型的名称相同, 来确保和模型训练时使用相同的分词规则。
使用 [`AutoTokenizer`] 加载一个分词器:
```py
>>> from transformers import AutoTokenizer
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
将文本传入分词器:
```py
>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
>>> print(encoding)
{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
分词器返回了含有如下内容的字典:
* [input_ids](./glossary#input-ids):用数字表示的 token。
* [attention_mask](.glossary#attention-mask):应该关注哪些 token 的指示。
分词器也可以接受列表作为输入,并填充和截断文本,返回具有统一长度的批次:
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="pt",
... )
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="tf",
... )
```
</tf>
</frameworkcontent>
<Tip>
查阅[预处理](./preprocessing)教程来获得有关分词的更详细的信息,以及如何使用 [`AutoFeatureExtractor`] 和 [`AutoProcessor`] 来处理图像,音频,还有多模式输入。
</Tip>
### AutoModel
<frameworkcontent>
<pt>
🤗 Transformers 提供了一种简单统一的方式来加载预训练的实例. 这表示你可以像加载 [`AutoTokenizer`] 一样加载 [`AutoModel`]。唯一不同的地方是为你的任务选择正确的[`AutoModel`]。对于文本(或序列)分类,你应该加载[`AutoModelForSequenceClassification`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
通过 [任务摘要](./task_summary) 查找 [`AutoModel`] 支持的任务.
</Tip>
现在可以把预处理好的输入批次直接送进模型。你只需要通过 `**` 来解包字典:
```py
>>> pt_outputs = pt_model(**pt_batch)
```
模型在 `logits` 属性输出最终的激活结果. 在 `logits` 上应用 softmax 函数来查询概率:
```py
>>> from torch import nn
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
>>> print(pt_predictions)
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
```
</pt>
<tf>
🤗 Transformers 提供了一种简单统一的方式来加载预训练的实例。这表示你可以像加载 [`AutoTokenizer`] 一样加载 [`TFAutoModel`]。唯一不同的地方是为你的任务选择正确的 [`TFAutoModel`],对于文本(或序列)分类,你应该加载 [`TFAutoModelForSequenceClassification`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
通过 [任务摘要](./task_summary) 查找 [`AutoModel`] 支持的任务.
</Tip>
现在通过直接将字典的键传给张量,将预处理的输入批次传给模型。
```py
>>> tf_outputs = tf_model(tf_batch)
```
模型在 `logits` 属性输出最终的激活结果。在 `logits` 上应用softmax函数来查询概率:
```py
>>> import tensorflow as tf
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
>>> tf_predictions # doctest: +IGNORE_RESULT
```
</tf>
</frameworkcontent>
<Tip>
所有 🤗 Transformers 模型(PyTorch 或 TensorFlow)在最终的激活函数(比如 softmax)*之前* 输出张量,
因为最终的激活函数常常与 loss 融合。模型的输出是特殊的数据类,所以它们的属性可以在 IDE 中被自动补全。模型的输出就像一个元组或字典(你可以通过整数、切片或字符串来索引它),在这种情况下,为 None 的属性会被忽略。
</Tip>
### 保存模型
<frameworkcontent>
<pt>
当你的模型微调完成,你就可以使用 [`PreTrainedModel.save_pretrained`] 把它和它的分词器保存下来:
```py
>>> pt_save_directory = "./pt_save_pretrained"
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
>>> pt_model.save_pretrained(pt_save_directory)
```
当你准备再次使用这个模型时,就可以使用 [`PreTrainedModel.from_pretrained`] 加载它了:
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
</pt>
<tf>
当你的模型微调完成,你就可以使用 [`TFPreTrainedModel.save_pretrained`] 把它和它的分词器保存下来:
```py
>>> tf_save_directory = "./tf_save_pretrained"
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
>>> tf_model.save_pretrained(tf_save_directory)
```
当你准备再次使用这个模型时,就可以使用 [`TFPreTrainedModel.from_pretrained`] 加载它了:
```py
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
```
</tf>
</frameworkcontent>
🤗 Transformers 有一个特别酷的功能,它能够保存一个模型,并且将它加载为 PyTorch 或 TensorFlow 模型。`from_pt` 或 `from_tf` 参数可以将模型从一个框架转换为另一个框架:
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</tf>
</frameworkcontent>
## 自定义模型构建
你可以修改模型的配置类来改变模型的构建方式。配置指明了模型的属性,比如隐藏层或者注意力头的数量。当你从自定义的配置类初始化模型时,你就开始自定义模型构建了。模型属性是随机初始化的,你需要先训练模型,然后才能得到有意义的结果。
通过导入 [`AutoConfig`] 来开始,之后加载你想修改的预训练模型。在 [`AutoConfig.from_pretrained`] 中,你能够指定想要修改的属性,比如注意力头的数量:
```py
>>> from transformers import AutoConfig
>>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12)
```
<frameworkcontent>
<pt>
使用 [`AutoModel.from_config`] 根据你的自定义配置创建一个模型:
```py
>>> from transformers import AutoModel
>>> my_model = AutoModel.from_config(my_config)
```
</pt>
<tf>
使用 [`TFAutoModel.from_config`] 根据你的自定义配置创建一个模型:
```py
>>> from transformers import TFAutoModel
>>> my_model = TFAutoModel.from_config(my_config)
```
</tf>
</frameworkcontent>
查阅 [创建一个自定义结构](./create_a_model) 指南获取更多关于构建自定义配置的信息。
## Trainer - PyTorch 优化训练循环
所有的模型都是标准的 [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module),所以你可以在任何典型的训练模型中使用它们。当你编写自己的训练循环时,🤗 Transformers 为 PyTorch 提供了一个 [`Trainer`] 类,它包含了基础的训练循环并且为诸如分布式训练,混合精度等特性增加了额外的功能。
取决于你的任务, 你通常可以传递以下的参数给 [`Trainer`]:
1. [`PreTrainedModel`] 或者 [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module):
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
2. [`TrainingArguments`] 含有你可以修改的模型超参数,比如学习率,批次大小和训练时的迭代次数。如果你没有指定训练参数,那么它会使用默认值:
```py
>>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(
... output_dir="path/to/save/folder/",
... learning_rate=2e-5,
... per_device_train_batch_size=8,
... per_device_eval_batch_size=8,
... num_train_epochs=2,
... )
```
3. 一个预处理类,比如分词器,特征提取器或者处理器:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
```
4. 加载一个数据集:
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT
```
5. 创建一个给数据集分词的函数,并且使用 [`~datasets.Dataset.map`] 应用到整个数据集:
```py
>>> def tokenize_dataset(dataset):
... return tokenizer(dataset["text"])
>>> dataset = dataset.map(tokenize_dataset, batched=True)
```
6. 用来从数据集中创建批次的 [`DataCollatorWithPadding`]:
```py
>>> from transformers import DataCollatorWithPadding
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
```
现在把所有的类传给 [`Trainer`]:
```py
>>> from transformers import Trainer
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=dataset["train"],
... eval_dataset=dataset["test"],
... tokenizer=tokenizer,
... data_collator=data_collator,
... ) # doctest: +SKIP
```
一切准备就绪后,调用 [`~Trainer.train`] 进行训练:
```py
>>> trainer.train() # doctest: +SKIP
```
<Tip>
对于像翻译或摘要这些使用序列到序列模型的任务,用 [`Seq2SeqTrainer`] 和 [`Seq2SeqTrainingArguments`] 来替代。
</Tip>
你可以通过子类化 [`Trainer`] 中的方法来自定义训练循环。这样你就可以自定义像损失函数,优化器和调度器这样的特性。查阅 [`Trainer`] 参考手册了解哪些方法能够被子类化。
另一个自定义训练循环的方式是通过[回调](./main_classes/callbacks)。你可以使用回调来与其他库集成,查看训练循环来报告进度或提前结束训练。回调不会修改训练循环。如果想自定义损失函数等,就需要子类化 [`Trainer`] 了。
## 使用 Tensorflow 训练
所有模型都是标准的 [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model),所以你可以通过 [Keras](https://keras.io/) API 实现在 Tensorflow 中训练。🤗 Transformers 提供了 [`~TFPreTrainedModel.prepare_tf_dataset`] 方法来轻松地将数据集加载为 `tf.data.Dataset`,这样你就可以使用 Keras 的 [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) 和 [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) 方法马上开始训练。
1. 使用 [`TFPreTrainedModel`] 或者 [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) 来开始:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
2. 一个预处理类,比如分词器,特征提取器或者处理器:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
```
3. 创建一个给数据集分词的函数
```py
>>> def tokenize_dataset(dataset):
... return tokenizer(dataset["text"]) # doctest: +SKIP
```
4. 使用 [`~datasets.Dataset.map`] 将分词器应用到整个数据集,之后将数据集和分词器传给 [`~TFPreTrainedModel.prepare_tf_dataset`]。如果你需要的话,也可以在这里改变批次大小和是否打乱数据集:
```py
>>> dataset = dataset.map(tokenize_dataset) # doctest: +SKIP
>>> tf_dataset = model.prepare_tf_dataset(
... dataset, batch_size=16, shuffle=True, tokenizer=tokenizer
... ) # doctest: +SKIP
```
5. 一切准备就绪后,调用 `compile` 和 `fit` 开始训练:
```py
>>> from tensorflow.keras.optimizers import Adam
>>> model.compile(optimizer=Adam(3e-5))
>>> model.fit(dataset) # doctest: +SKIP
```
## 接下来做什么?
现在你已经完成了 🤗 Transformers 的快速上手教程,来看看我们的指南并且学习如何做一些更具体的事情,比如写一个自定义模型,为某个任务微调一个模型以及如何使用脚本来训练模型。如果你有兴趣了解更多 🤗 Transformers 的核心章节,那就喝杯咖啡然后来看看我们的概念指南吧!
| transformers/docs/source/zh/quicktour.md/0 | {
"file_path": "transformers/docs/source/zh/quicktour.md",
"repo_id": "transformers",
"token_count": 12880
} | 257 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Language model training examples
The following example showcases how to train a language model from scratch
using the JAX/Flax backend.
JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU.
Models written in JAX/Flax are **immutable** and updated in a purely functional
way which enables simple and efficient model parallelism.
## Masked language modeling
In the following, we demonstrate how to train a bi-directional transformer model
using masked language modeling objective as introduced in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`roberta-base`**](https://huggingface.co/roberta-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-roberta-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware ☕.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-roberta-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**roberta-base**`](https://huggingface.co/roberta-base)
in the local model folder:
```python
from transformers import RobertaConfig
config = RobertaConfig.from_pretrained("roberta-base", vocab_size=50265)
config.save_pretrained("./norwegian-roberta-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_mlm_flax.py \
--output_dir="./norwegian-roberta-base" \
--model_type="roberta" \
--config_name="./norwegian-roberta-base" \
--tokenizer_name="./norwegian-roberta-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 1.78 and 0.64 respectively after 18 epochs on a single TPUv3-8.
This should take less than 18 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).
For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb) google colab.
## Causal language modeling
In the following, we demonstrate how to train an auto-regressive causal transformer model
in JAX/Flax.
More specifically, we pretrain a randomly initialized [**`gpt2`**](https://huggingface.co/gpt2) model in Norwegian on a single TPUv3-8.
to pre-train 124M [**`gpt2`**](https://huggingface.co/gpt2)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-gpt2
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware ☕.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50257, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-gpt2/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**gpt2**`](https://huggingface.co/gpt2)
in the local model folder:
```python
from transformers import GPT2Config
config = GPT2Config.from_pretrained("gpt2", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, vocab_size=50257)
config.save_pretrained("./norwegian-gpt2")
```
Great, we have set up our model repository. During training, we will now automatically
push the training logs and model weights to the repo.
### Train model
Finally, we can run the example script to pretrain the model:
```bash
python run_clm_flax.py \
--output_dir="./norwegian-gpt2" \
--model_type="gpt2" \
--config_name="./norwegian-gpt2" \
--tokenizer_name="./norwegian-gpt2" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--do_train --do_eval \
--block_size="512" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="64" \
--learning_rate="5e-3" --warmup_steps="1000" \
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
--overwrite_output_dir \
--num_train_epochs="20" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and perplexity
of 3.24 and 25.72 respectively after 20 epochs on a single TPUv3-8.
This should take less than ~21 hours.
Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/2zEhLwJ0Qp2FAkI3WVH9qA).
For a step-by-step walkthrough of how to do causal language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb) google colab.
## T5-like span-masked language modeling
In the following, we demonstrate how to train a T5 model using the span-masked language model
objective as proposed in the [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`google/t5-v1_1-base`**](https://huggingface.co/google/t5-v1_1-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
Let's start by creating a model repository to save the trained model and logs.
Here we call the model `"norwegian-t5-base"`, but you can change the model name as you like.
To setup all relevant files for training, let's create a directory.
```bash
cd ./norwegian-t5-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model.
We make use of the [tokenizers](https://github.com/huggingface/tokenizers) library to train
a sentencepiece unigram tokenizer as shown in [t5_tokenizer_model.py](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling/t5_tokenizer_model.py)
which is heavily inspired from [yandex-research/DeDLOC's tokenizer model](https://github.com/yandex-research/DeDLOC/blob/5c994bc64e573702a9a79add3ecd68b38f14b548/sahajbert/tokenizer/tokenizer_model.py) .
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 120 minutes depending on your hardware ☕☕☕ .
```python
import datasets
from t5_tokenizer_model import SentencePieceUnigramTokenizer
vocab_size = 32_000
input_sentence_size = None
# Initialize a dataset
dataset = datasets.load_dataset("oscar", name="unshuffled_deduplicated_no", split="train")
tokenizer = SentencePieceUnigramTokenizer(unk_token="<unk>", eos_token="</s>", pad_token="<pad>")
# Build an iterator over this dataset
def batch_iterator(input_sentence_size=None):
if input_sentence_size is None:
input_sentence_size = len(dataset)
batch_length = 100
for i in range(0, input_sentence_size, batch_length):
yield dataset[i: i + batch_length]["text"]
# Train tokenizer
tokenizer.train_from_iterator(
iterator=batch_iterator(input_sentence_size=input_sentence_size),
vocab_size=vocab_size,
show_progress=True,
)
# Save files to disk
tokenizer.save("./norwegian-t5-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**google/t5-v1_1-base**`](https://huggingface.co/google/t5-v1_1-base)
in the local model folder:
```python
from transformers import T5Config
config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size())
config.save_pretrained("./norwegian-t5-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_t5_mlm_flax.py \
--output_dir="./norwegian-t5-base" \
--model_type="t5" \
--config_name="./norwegian-t5-base" \
--tokenizer_name="./norwegian-t5-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="512" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--adafactor \
--learning_rate="0.005" \
--weight_decay="0.001" \
--warmup_steps="2000" \
--overwrite_output_dir \
--logging_steps="500" \
--save_steps="10000" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 2.36 and 57.0 respectively after 3 epochs on a single TPUv3-8.
This should take around 4.5 hours.
Training statistics can be accessed on directly on the 🤗 [hub](https://huggingface.co/patrickvonplaten/t5-base-norwegian/tensorboard)
## BART: Denoising language modeling
In the following, we demonstrate how to train a BART model
using denoising language modeling objective as introduced in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`bart-base`**](https://huggingface.co/facebook/bart-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-bart-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware ☕.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-bart-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**facebook/bart-base**`](https://huggingface.co/facebook/bart-base)
in the local model folder:
```python
from transformers import BartConfig
config = BartConfig.from_pretrained("facebook/bart-base", vocab_size=50265)
config.save_pretrained("./norwegian-bart-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_bart_dlm_flax.py \
--output_dir="./norwegian-bart-base" \
--config_name="./norwegian-bart-base" \
--tokenizer_name="./norwegian-bart-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="1024" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--learning_rate="1e-4" \
--warmup_steps="2000" \
--overwrite_output_dir \
--logging_steps="500" \
--save_steps="2000" \
--eval_steps="2000" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 1.36 and 0.77 respectively after 3 epochs on a single TPUv3-8.
This should take less than 6 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/Maw62QlaSXWS0MOf2V2lbg/).
## Runtime evaluation
We also ran masked language modeling using PyTorch/XLA on a TPUv3-8, and PyTorch on 8 V100 GPUs. We report the
overall training time below.
For reproducibility, we state the training commands used for PyTorch/XLA and PyTorch further below.
| Task | [TPU v3-8 (Flax)](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg/) | [TPU v3-8 (Pytorch/XLA)](https://tensorboard.dev/experiment/7Jq1kcQQRAmy12KOdXek7A/)| [8 GPU (PyTorch)](https://tensorboard.dev/experiment/PJneV8FQRxa2unPw1QnVHA) |
|-------|-----------|------------|------------|
| MLM | 15h32m | 23h46m | 44h14m |
*All experiments are ran on Google Cloud Platform.
GPU experiments are ran without further optimizations besides JAX
transformations. GPU experiments are ran with full precision (fp32). "TPU v3-8"
are 8 TPU cores on 4 chips (each chips has 2 cores), while "8 GPU" are 8 GPU chips.
### Script to run MLM with PyTorch/XLA on TPUv3-8
For comparison one can run the same pre-training with PyTorch/XLA on TPU. To set up PyTorch/XLA on Cloud TPU VMs, please
refer to [this](https://cloud.google.com/tpu/docs/pytorch-xla-ug-tpu-vm) guide.
Having created the tokenizer and configuration in `norwegian-roberta-base`, we create the following symbolic links:
```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
ln -s ~/transformers/examples/pytorch/xla_spawn.py ./
```
, set the following environment variables:
```bash
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
unset LD_PRELOAD
export NUM_TPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```
, and start training as follows:
```bash
python3 xla_spawn.py --num_cores ${NUM_TPUS} run_mlm.py --output_dir="./runs" \
--model_type="roberta" \
--config_name="${MODEL_DIR}" \
--tokenizer_name="${MODEL_DIR}" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--do_train \
--do_eval \
--logging_steps="500" \
--evaluation_strategy="epoch" \
--report_to="tensorboard" \
--save_strategy="no"
```
### Script to compare pre-training with PyTorch on 8 GPU V100's
For comparison you can run the same pre-training with PyTorch on GPU. Note that we have to make use of `gradient_accumulation`
because the maximum batch size that fits on a single V100 GPU is 32 instead of 128.
Having created the tokenizer and configuration in `norwegian-roberta-base`, we create the following symbolic links:
```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
```
, set some environment variables:
```bash
export NUM_GPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```
, and can start training as follows:
```bash
python3 -m torch.distributed.launch --nproc_per_node ${NUM_GPUS} run_mlm.py \
--output_dir="${MODEL_DIR}" \
--model_type="roberta" \
--config_name="${MODEL_DIR}" \
--tokenizer_name="${MODEL_DIR}" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--gradient_accumulation="4" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--do_train \
--do_eval \
--logging_steps="500" \
--evaluation_strategy="steps" \
--report_to="tensorboard" \
--save_strategy="no"
```
| transformers/examples/flax/language-modeling/README.md/0 | {
"file_path": "transformers/examples/flax/language-modeling/README.md",
"repo_id": "transformers",
"token_count": 6820
} | 258 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for summarization.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import json
import logging
import math
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from functools import partial
from pathlib import Path
from typing import Callable, Optional
import datasets
import evaluate
import jax
import jax.numpy as jnp
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
import optax
from datasets import Dataset, load_dataset
from filelock import FileLock
from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository, create_repo
from tqdm import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForSeq2SeqLM,
HfArgumentParser,
is_tensorboard_available,
)
from transformers.utils import is_offline_mode, send_example_telemetry
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class TrainingArguments:
output_dir: str = field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
overwrite_output_dir: bool = field(
default=False,
metadata={
"help": (
"Overwrite the content of the output directory. "
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
)
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
per_device_train_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
label_smoothing_factor: float = field(
default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
)
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
push_to_hub: bool = field(
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
)
hub_model_id: str = field(
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
)
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
gradient_checkpointing: bool = field(
default=False,
metadata={
"help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
},
)
def __post_init__(self):
if self.output_dir is not None:
self.output_dir = os.path.expanduser(self.output_dir)
def to_dict(self):
"""
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
the token values by removing their value.
"""
d = asdict(self)
for k, v in d.items():
if isinstance(v, Enum):
d[k] = v.value
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
d[k] = [x.value for x in v]
if k.endswith("_token"):
d[k] = f"<{k.upper()}>"
return d
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input predict data file to do prediction on (a text file)."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
"during evaluation."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
predict_with_generate: bool = field(
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
)
num_beams: Optional[int] = field(
default=1,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
"which is used during evaluation."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
and self.test_file is None
):
raise ValueError("Need either a dataset name or a training, validation, or test file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
}
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True):
"""
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
"""
if shuffle:
batch_idx = jax.random.permutation(rng, len(dataset))
batch_idx = np.asarray(batch_idx)
else:
batch_idx = np.arange(len(dataset))
if drop_last:
steps_per_epoch = len(dataset) // batch_size
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
else:
steps_per_epoch = math.ceil(len(dataset) / batch_size)
batch_idx = np.array_split(batch_idx, steps_per_epoch)
for idx in batch_idx:
batch = dataset[idx]
batch = {k: np.array(v) for k, v in batch.items()}
yield batch
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_summarization", model_args, data_args, framework="flax")
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Handle the repository creation
if training_args.push_to_hub:
# Retrieve of infer repo_name
repo_name = training_args.hub_model_id
if repo_name is None:
repo_name = Path(training_args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
# Clone repo locally
repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
keep_in_memory=False,
token=model_args.token,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
dataset = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
if model_args.config_name:
config = AutoConfig.from_pretrained(
model_args.config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
model = FlaxAutoModelForSeq2SeqLM.from_config(
config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
trust_remote_code=model_args.trust_remote_code,
)
if training_args.gradient_checkpointing:
model.enable_gradient_checkpointing()
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset")
column_names = dataset["train"].column_names
elif training_args.do_eval:
if "validation" not in dataset:
raise ValueError("--do_eval requires a validation dataset")
column_names = dataset["validation"].column_names
elif training_args.do_predict:
if "test" not in dataset:
raise ValueError("--do_predict requires a test dataset")
column_names = dataset["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
# In Flax, for seq2seq models we need to pass `decoder_input_ids`
# as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
# for that dynamically import the `shift_tokens_right` function from the model file
model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"])
shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")
# Setting padding="max_length" as we need fixed length inputs for jitted functions
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[summary_column]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
)
# Setup the tokenizer for targets
labels = tokenizer(
text_target=targets,
max_length=max_target_length,
padding="max_length",
truncation=True,
return_tensors="np",
)
model_inputs["labels"] = labels["input_ids"]
decoder_input_ids = shift_tokens_right_fn(
labels["input_ids"], config.pad_token_id, config.decoder_start_token_id
)
model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)
# We need decoder_attention_mask so we can ignore pad tokens from loss
model_inputs["decoder_attention_mask"] = labels["attention_mask"]
return model_inputs
if training_args.do_train:
train_dataset = dataset["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
eval_dataset = dataset["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
predict_dataset = dataset["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Metric
metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(preds, labels):
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
eval_batch_size = per_device_eval_batch_size * jax.device_count()
steps_per_epoch = len(train_dataset) // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
len(train_dataset),
train_batch_size,
training_args.num_train_epochs,
training_args.warmup_steps,
training_args.learning_rate,
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
# find out all LayerNorm parameters
layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
layer_norm_named_params = {
layer[-2:]
for layer_norm_name in layer_norm_candidates
for layer in flat_params.keys()
if layer_norm_name in "".join(layer).lower()
}
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
# label smoothed cross entropy
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
"""
The label smoothing implementation is adapted from Flax's official example:
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
"""
vocab_size = logits.shape[-1]
confidence = 1.0 - label_smoothing_factor
low_confidence = (1.0 - confidence) / (vocab_size - 1)
normalizing_constant = -(
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
)
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
loss = optax.softmax_cross_entropy(logits, soft_labels)
loss = loss - normalizing_constant
# ignore padded tokens from loss
loss = loss * padding_mask
loss = loss.sum()
num_labels = padding_mask.sum()
return loss, num_labels
# Define gradient update step fn
def train_step(state, batch, label_smoothing_factor=0.0):
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
return loss, num_labels
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
(loss, num_labels), grad = grad_fn(state.params)
num_labels = jax.lax.psum(num_labels, "batch")
# true loss = total loss / total samples
loss = jax.lax.psum(loss, "batch")
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
# true grad = total grad / total samples
grad = jax.lax.psum(grad, "batch")
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
return new_state, metrics
# Define eval fn
def eval_step(params, batch, label_smoothing_factor=0.0):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
num_labels = jax.lax.psum(num_labels, "batch")
# true loss = total loss / total samples
loss = jax.lax.psum(loss, "batch")
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
metrics = {"loss": loss}
return metrics
# Define generation function
max_length = (
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
)
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def generate_step(params, batch):
model.params = params
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
return output_ids.sequences
# Create parallel version of the train and eval step
p_train_step = jax.pmap(
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
)
p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
p_generate_step = jax.pmap(generate_step, "batch")
# Replicate the train state on each device
state = state.replicate()
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
logger.info(f" Total optimization steps = {total_train_steps}")
train_time = 0
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
train_metrics = []
# Generate an epoch by shuffling sampling indices from the train dataset
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
steps_per_epoch = len(train_dataset) // train_batch_size
# train
for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
batch = next(train_loader)
batch = shard(batch)
state, train_metric = p_train_step(state, batch)
train_metrics.append(train_metric)
train_time += time.time() - train_start
train_metric = unreplicate(train_metric)
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:"
f" {train_metric['learning_rate']})"
)
# ======================== Evaluating ==============================
eval_metrics = []
eval_preds = []
eval_labels = []
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
# Model forward
batch = next(eval_loader)
labels = batch["labels"]
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
state.params, batch, min_device_batch=per_device_eval_batch_size
)
eval_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch)
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
eval_labels.extend(labels)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
# compute ROUGE metrics
rouge_desc = ""
if data_args.predict_with_generate:
rouge_metrics = compute_metrics(eval_preds, eval_labels)
eval_metrics.update(rouge_metrics)
rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics and update progress bar
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
epochs.write(desc)
epochs.desc = desc
# Save metrics
if has_tensorboard and jax.process_index() == 0:
cur_step = epoch * (len(train_dataset) // train_batch_size)
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
model.save_pretrained(training_args.output_dir, params=params)
tokenizer.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False)
# ======================== Prediction loop ==============================
if training_args.do_predict:
logger.info("*** Predict ***")
pred_metrics = []
pred_generations = []
pred_labels = []
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size, drop_last=False)
pred_steps = math.ceil(len(predict_dataset) / eval_batch_size)
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
# Model forward
batch = next(pred_loader)
labels = batch["labels"]
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
state.params, batch, min_device_batch=per_device_eval_batch_size
)
pred_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch)
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
pred_labels.extend(labels)
# normalize prediction metrics
pred_metrics = get_metrics(pred_metrics)
pred_metrics = jax.tree_util.tree_map(jnp.mean, pred_metrics)
# compute ROUGE metrics
rouge_desc = ""
if data_args.predict_with_generate:
rouge_metrics = compute_metrics(pred_generations, pred_labels)
pred_metrics.update(rouge_metrics)
rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics
desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
logger.info(desc)
# save final metrics in json
if jax.process_index() == 0:
rouge_metrics = {f"test_{metric_name}": value for metric_name, value in rouge_metrics.items()}
path = os.path.join(training_args.output_dir, "test_results.json")
with open(path, "w") as f:
json.dump(rouge_metrics, f, indent=4, sort_keys=True)
if __name__ == "__main__":
main()
| transformers/examples/flax/summarization/run_summarization_flax.py/0 | {
"file_path": "transformers/examples/flax/summarization/run_summarization_flax.py",
"repo_id": "transformers",
"token_count": 18177
} | 259 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
logger = logging.getLogger(__name__)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())})
data_dir: str = field(metadata={"help": "Should contain the data files for the task."})
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
processor = processors[data_args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.train,
)
if training_args.do_train
else None
)
eval_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.dev,
)
if training_args.do_eval
else None
)
def compute_metrics(p: EvalPrediction) -> Dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": simple_accuracy(preds, p.label_ids)}
# Data collator
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
data_collator=data_collator,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers/examples/legacy/multiple_choice/run_multiple_choice.py/0 | {
"file_path": "transformers/examples/legacy/multiple_choice/run_multiple_choice.py",
"repo_id": "transformers",
"token_count": 3303
} | 260 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner.
Finetuning the library models for multiple choice on SWAG (Bert).
"""
import argparse
import csv
import glob
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
import transformers
from transformers import (
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
get_linear_schedule_with_warmup,
)
from transformers.trainer_utils import is_main_process
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
class SwagExample(object):
"""A single training/test example for the SWAG dataset."""
def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
self.swag_id = swag_id
self.context_sentence = context_sentence
self.start_ending = start_ending
self.endings = [
ending_0,
ending_1,
ending_2,
ending_3,
]
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
attributes = [
"swag_id: {}".format(self.swag_id),
"context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending),
"ending_0: {}".format(self.endings[0]),
"ending_1: {}".format(self.endings[1]),
"ending_2: {}".format(self.endings[2]),
"ending_3: {}".format(self.endings[3]),
]
if self.label is not None:
attributes.append("label: {}".format(self.label))
return ", ".join(attributes)
class InputFeatures(object):
def __init__(self, example_id, choices_features, label):
self.example_id = example_id
self.choices_features = [
{"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
def read_swag_examples(input_file, is_training=True):
with open(input_file, "r", encoding="utf-8") as f:
lines = list(csv.reader(f))
if is_training and lines[0][-1] != "label":
raise ValueError("For training, the input file must contain a label column.")
examples = [
SwagExample(
swag_id=line[2],
context_sentence=line[4],
start_ending=line[5], # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
ending_0=line[7],
ending_1=line[8],
ending_2=line[9],
ending_3=line[10],
label=int(line[11]) if is_training else None,
)
for line in lines[1:] # we skip the line with the column names
]
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training):
"""Loads a data file into a list of `InputBatch`s."""
# Swag is a multiple choice task. To perform this task using Bert,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# Each choice will correspond to a sample on which we run the
# inference. For a given Swag example, we will create the 4
# following inputs:
# - [CLS] context [SEP] choice_1 [SEP]
# - [CLS] context [SEP] choice_2 [SEP]
# - [CLS] context [SEP] choice_3 [SEP]
# - [CLS] context [SEP] choice_4 [SEP]
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 4
# outputs.
features = []
for example_index, example in tqdm(enumerate(examples)):
context_tokens = tokenizer.tokenize(example.context_sentence)
start_ending_tokens = tokenizer.tokenize(example.start_ending)
choices_features = []
for ending_index, ending in enumerate(example.endings):
# We create a copy of the context tokens in order to be
# able to shrink it according to ending_tokens
context_tokens_choice = context_tokens[:]
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
# Modifies `context_tokens_choice` and `ending_tokens` in
# place so that the total length is less than the
# specified length. Account for [CLS], [SEP], [SEP] with
# "- 3"
_truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
if example_index < 5:
logger.info("*** Example ***")
logger.info("swag_id: {}".format(example.swag_id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info("tokens: {}".format(" ".join(tokens)))
logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
if is_training:
logger.info("label: {}".format(label))
features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def select_field(features, field):
return [[choice[field] for choice in feature.choices_features] for feature in features]
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(
os.path.dirname(input_file),
"cached_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_swag_examples(input_file)
features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
all_label = torch.tensor([f.label for f in features], dtype=torch.long)
if evaluate:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
else:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if output_examples:
return dataset, examples, features
return dataset
def train(args, train_dataset, model, tokenizer):
"""Train the model"""
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproducibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2],
"token_type_ids": batch[2],
"labels": batch[3],
}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[5],
# 'p_mask': batch[6]})
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
"token_type_ids": batch[2],
"labels": batch[3],
}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[4],
# 'p_mask': batch[5]})
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
logits = logits.detach().cpu().numpy()
label_ids = inputs["labels"].to("cpu").numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_accuracy += tmp_eval_accuracy
nb_eval_steps += 1
nb_eval_examples += inputs["input_ids"].size(0)
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info("%s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv"
)
parser.add_argument(
"--predict_file",
default=None,
type=str,
required=True,
help="SWAG csv for predictions. E.g., val.csv or test.csv",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded."
),
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
)
model = AutoModelForMultipleChoice.from_pretrained(
args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = AutoModelForMultipleChoice.from_pretrained(args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if args.do_train:
checkpoints = [args.output_dir]
else:
# if do_train is False and do_eval is true, load model directly from pretrained.
checkpoints = [args.model_name_or_path]
if args.eval_all_checkpoints:
checkpoints = [
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
model = AutoModelForMultipleChoice.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
results.update(result)
logger.info("Results: {}".format(results))
return results
if __name__ == "__main__":
main()
| transformers/examples/legacy/run_swag.py/0 | {
"file_path": "transformers/examples/legacy/run_swag.py",
"repo_id": "transformers",
"token_count": 12598
} | 261 |
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fill examples with bitext up to max_tokens without breaking up examples.
[['I went', 'yo fui'],
['to the store', 'a la tienda']
]
=> ['I went to the store', 'yo fui a la tienda']
"""
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024):
finished_src, finished_tgt = [], []
sorted_examples = list(zip(src_examples, tgt_examples))
new_src, new_tgt = sorted_examples[0]
def is_too_big(strang):
return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:]):
cand_src = new_src + " " + src
cand_tgt = new_tgt + " " + tgt
if is_too_big(cand_src) or is_too_big(cand_tgt): # cant fit, finalize example
finished_src.append(new_src)
finished_tgt.append(new_tgt)
new_src, new_tgt = src, tgt
else: # can fit, keep adding
new_src, new_tgt = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(new_src)
finished_tgt.append(new_tgt)
return finished_src, finished_tgt
def pack_data_dir(tok, data_dir: Path, max_tokens, save_path):
save_path = Path(save_path)
save_path.mkdir(exist_ok=True)
for split in ["train"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
src_docs = [x.rstrip() for x in Path(src_path).open().readlines()]
tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()]
packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens)
print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.")
Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src))
Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt))
for split in ["val", "test"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
shutil.copyfile(src_path, save_path / f"{split}.source")
shutil.copyfile(tgt_path, save_path / f"{split}.target")
def packer_cli():
parser = argparse.ArgumentParser()
parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.")
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--data_dir", type=str)
parser.add_argument("--save_path", type=str)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.tok_name)
return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path)
if __name__ == "__main__":
packer_cli()
| transformers/examples/legacy/seq2seq/pack_dataset.py/0 | {
"file_path": "transformers/examples/legacy/seq2seq/pack_dataset.py",
"repo_id": "transformers",
"token_count": 1358
} | 262 |
if ! [ -f ./dev.txt ]; then
echo "Download dev dataset...."
curl -L -o ./dev.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-dev.conllu'
fi
if ! [ -f ./test.txt ]; then
echo "Download test dataset...."
curl -L -o ./test.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-test.conllu'
fi
if ! [ -f ./train.txt ]; then
echo "Download train dataset...."
curl -L -o ./train.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-train.conllu'
fi
export MAX_LENGTH=200
export BERT_MODEL=bert-base-uncased
export OUTPUT_DIR=postagger-model
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
python3 run_ner.py \
--task_type POS \
--data_dir . \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_gpu_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
| transformers/examples/legacy/token-classification/run_pos.sh/0 | {
"file_path": "transformers/examples/legacy/token-classification/run_pos.sh",
"repo_id": "transformers",
"token_count": 416
} | 263 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning any 🤗 Transformers model for image classification leveraging 🤗 Accelerate."""
import argparse
import json
import logging
import math
import os
from pathlib import Path
import datasets
import evaluate
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from torchvision.transforms import (
CenterCrop,
Compose,
Lambda,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, AutoImageProcessor, AutoModelForImageClassification, SchedulerType, get_scheduler
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
def parse_args():
parser = argparse.ArgumentParser(description="Fine-tune a Transformers model on an image classification dataset")
parser.add_argument(
"--dataset_name",
type=str,
default="cifar10",
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset)."
),
)
parser.add_argument("--train_dir", type=str, default=None, help="A folder containing the training data.")
parser.add_argument("--validation_dir", type=str, default=None, help="A folder containing the validation data.")
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
),
)
parser.add_argument(
"--train_val_split",
type=float,
default=0.15,
help="Percent to split off of train for validation",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
default="google/vit-base-patch16-224-in21k",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--trust_remote_code",
type=bool,
default=False,
help=(
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
),
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--ignore_mismatched_sizes",
action="store_true",
help="Whether or not to enable to load a pretrained model whose head dimensions are different.",
)
parser.add_argument(
"--image_column_name",
type=str,
default="image",
help="The name of the dataset column containing the image data. Defaults to 'image'.",
)
parser.add_argument(
"--label_column_name",
type=str,
default="label",
help="The name of the dataset column containing the labels. Defaults to 'label'.",
)
args = parser.parse_args()
# Sanity checks
if args.dataset_name is None and args.train_dir is None and args.validation_dir is None:
raise ValueError("Need either a dataset name or a training/validation folder.")
if args.push_to_hub or args.with_tracking:
if args.output_dir is None:
raise ValueError(
"Need an `output_dir` to create a repo when `--push_to_hub` or `with_tracking` is specified."
)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_image_classification_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
logger.info(accelerator.state)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(args.dataset_name)
else:
data_files = {}
if args.train_dir is not None:
data_files["train"] = os.path.join(args.train_dir, "**")
if args.validation_dir is not None:
data_files["validation"] = os.path.join(args.validation_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder.
dataset_column_names = dataset["train"].column_names if "train" in dataset else dataset["validation"].column_names
if args.image_column_name not in dataset_column_names:
raise ValueError(
f"--image_column_name {args.image_column_name} not found in dataset '{args.dataset_name}'. "
"Make sure to set `--image_column_name` to the correct audio column - one of "
f"{', '.join(dataset_column_names)}."
)
if args.label_column_name not in dataset_column_names:
raise ValueError(
f"--label_column_name {args.label_column_name} not found in dataset '{args.dataset_name}'. "
"Make sure to set `--label_column_name` to the correct text column - one of "
f"{', '.join(dataset_column_names)}."
)
# If we don't have a validation split, split off a percentage of train as validation.
args.train_val_split = None if "validation" in dataset.keys() else args.train_val_split
if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
split = dataset["train"].train_test_split(args.train_val_split)
dataset["train"] = split["train"]
dataset["validation"] = split["test"]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
labels = dataset["train"].features[args.label_column_name].names
label2id = {label: str(i) for i, label in enumerate(labels)}
id2label = {str(i): label for i, label in enumerate(labels)}
# Load pretrained model and image processor
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
args.model_name_or_path,
num_labels=len(labels),
i2label=id2label,
label2id=label2id,
finetuning_task="image-classification",
trust_remote_code=args.trust_remote_code,
)
image_processor = AutoImageProcessor.from_pretrained(
args.model_name_or_path,
trust_remote_code=args.trust_remote_code,
)
model = AutoModelForImageClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
ignore_mismatched_sizes=args.ignore_mismatched_sizes,
trust_remote_code=args.trust_remote_code,
)
# Preprocessing the datasets
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
size = image_processor.size["shortest_edge"]
else:
size = (image_processor.size["height"], image_processor.size["width"])
normalize = (
Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std")
else Lambda(lambda x: x)
)
train_transforms = Compose(
[
RandomResizedCrop(size),
RandomHorizontalFlip(),
ToTensor(),
normalize,
]
)
val_transforms = Compose(
[
Resize(size),
CenterCrop(size),
ToTensor(),
normalize,
]
)
def preprocess_train(example_batch):
"""Apply _train_transforms across a batch."""
example_batch["pixel_values"] = [
train_transforms(image.convert("RGB")) for image in example_batch[args.image_column_name]
]
return example_batch
def preprocess_val(example_batch):
"""Apply _val_transforms across a batch."""
example_batch["pixel_values"] = [
val_transforms(image.convert("RGB")) for image in example_batch[args.image_column_name]
]
return example_batch
with accelerator.main_process_first():
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
if args.max_eval_samples is not None:
dataset["validation"] = dataset["validation"].shuffle(seed=args.seed).select(range(args.max_eval_samples))
# Set the validation transforms
eval_dataset = dataset["validation"].with_transform(preprocess_val)
# DataLoaders creation:
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
labels = torch.tensor([example[args.label_column_name] for example in examples])
return {"pixel_values": pixel_values, "labels": labels}
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("image_classification_no_trainer", experiment_config)
# Get the metric function
metric = evaluate.load("accuracy")
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress {completed_steps} steps",
blocking=False,
auto_lfs_prune=True,
)
if completed_steps >= args.max_train_steps:
break
model.eval()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
logger.info(f"epoch {epoch}: {eval_metric}")
if args.with_tracking:
accelerator.log(
{
"accuracy": eval_metric,
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
all_results = {f"eval_{k}": v for k, v in eval_metric.items()}
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump(all_results, f)
if __name__ == "__main__":
main()
| transformers/examples/pytorch/image-classification/run_image_classification_no_trainer.py/0 | {
"file_path": "transformers/examples/pytorch/image-classification/run_image_classification_no_trainer.py",
"repo_id": "transformers",
"token_count": 11204
} | 264 |
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for multiple choice.
"""
# You can also adapt this script on your own multiple choice task. Pointers for this are left as comments.
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
def __post_init__(self):
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class DataCollatorForMultipleChoice:
"""
Data collator that will dynamically pad the inputs for multiple choice received.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature.pop(label_name) for feature in features]
batch_size = len(features)
num_choices = len(features[0]["input_ids"])
flattened_features = [
[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
]
flattened_features = list(chain(*flattened_features))
batch = self.tokenizer.pad(
flattened_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
# Un-flatten
batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
# Add back labels
batch["labels"] = torch.tensor(labels, dtype=torch.int64)
return batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
else:
# Downloading and loading the swag dataset from the hub.
raw_datasets = load_dataset(
"swag",
"regular",
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
model = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# When using your own dataset or a different dataset from swag, you will probably need to change this.
ending_names = [f"ending{i}" for i in range(4)]
context_name = "sent1"
question_header_name = "sent2"
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
# Preprocessing the datasets.
def preprocess_function(examples):
first_sentences = [[context] * 4 for context in examples[context_name]]
question_headers = examples[question_header_name]
second_sentences = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
]
# Flatten out
first_sentences = list(chain(*first_sentences))
second_sentences = list(chain(*second_sentences))
# Tokenize
tokenized_examples = tokenizer(
first_sentences,
second_sentences,
truncation=True,
max_length=max_seq_length,
padding="max_length" if data_args.pad_to_max_length else False,
)
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
data_collator = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
)
# Metric
def compute_metrics(eval_predictions):
predictions, label_ids = eval_predictions
preds = np.argmax(predictions, axis=1)
return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers/examples/pytorch/multiple-choice/run_swag.py/0 | {
"file_path": "transformers/examples/pytorch/multiple-choice/run_swag.py",
"repo_id": "transformers",
"token_count": 8510
} | 265 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning any 🤗 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation."""
import argparse
import json
import math
import os
import random
from pathlib import Path
import datasets
import evaluate
import numpy as np
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo, hf_hub_download
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.transforms import functional
from tqdm.auto import tqdm
import transformers
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoModelForSemanticSegmentation,
SchedulerType,
default_data_collator,
get_scheduler,
)
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")
def pad_if_smaller(img, size, fill=0):
min_size = min(img.size)
if min_size < size:
original_width, original_height = img.size
pad_height = size - original_height if original_height < size else 0
pad_width = size - original_width if original_width < size else 0
img = functional.pad(img, (0, 0, pad_width, pad_height), fill=fill)
return img
class Compose:
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
class Identity:
def __init__(self):
pass
def __call__(self, image, target):
return image, target
class Resize:
def __init__(self, size):
self.size = size
def __call__(self, image, target):
image = functional.resize(image, self.size)
target = functional.resize(target, self.size, interpolation=transforms.InterpolationMode.NEAREST)
return image, target
class RandomResize:
def __init__(self, min_size, max_size=None):
self.min_size = min_size
if max_size is None:
max_size = min_size
self.max_size = max_size
def __call__(self, image, target):
size = random.randint(self.min_size, self.max_size)
image = functional.resize(image, size)
target = functional.resize(target, size, interpolation=transforms.InterpolationMode.NEAREST)
return image, target
class RandomCrop:
def __init__(self, size):
self.size = size
def __call__(self, image, target):
image = pad_if_smaller(image, self.size)
target = pad_if_smaller(target, self.size, fill=255)
crop_params = transforms.RandomCrop.get_params(image, (self.size, self.size))
image = functional.crop(image, *crop_params)
target = functional.crop(target, *crop_params)
return image, target
class RandomHorizontalFlip:
def __init__(self, flip_prob):
self.flip_prob = flip_prob
def __call__(self, image, target):
if random.random() < self.flip_prob:
image = functional.hflip(image)
target = functional.hflip(target)
return image, target
class PILToTensor:
def __call__(self, image, target):
image = functional.pil_to_tensor(image)
target = torch.as_tensor(np.array(target), dtype=torch.int64)
return image, target
class ConvertImageDtype:
def __init__(self, dtype):
self.dtype = dtype
def __call__(self, image, target):
image = functional.convert_image_dtype(image, self.dtype)
return image, target
class Normalize:
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, target):
image = functional.normalize(image, mean=self.mean, std=self.std)
return image, target
class ReduceLabels:
def __call__(self, image, target):
if not isinstance(target, np.ndarray):
target = np.array(target).astype(np.uint8)
# avoid using underflow conversion
target[target == 0] = 255
target = target - 1
target[target == 254] = 255
target = Image.fromarray(target)
return image, target
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to a pretrained model or model identifier from huggingface.co/models.",
default="nvidia/mit-b0",
)
parser.add_argument(
"--dataset_name",
type=str,
help="Name of the dataset on the hub.",
default="segments/sidewalk-semantic",
)
parser.add_argument(
"--reduce_labels",
action="store_true",
help="Whether or not to reduce all labels by 1 and replace background by 255.",
)
parser.add_argument(
"--train_val_split",
type=float,
default=0.15,
help="Fraction of the dataset to be used for validation.",
)
parser.add_argument(
"--cache_dir",
type=str,
help="Path to a folder in which the model and dataset will be cached.",
)
parser.add_argument(
"--use_auth_token",
action="store_true",
help="Whether to use an authentication token to access the model repository.",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--adam_beta1",
type=float,
default=0.9,
help="Beta1 for AdamW optimizer",
)
parser.add_argument(
"--adam_beta2",
type=float,
default=0.999,
help="Beta2 for AdamW optimizer",
)
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-8,
help="Epsilon for AdamW optimizer",
)
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="polynomial",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--trust_remote_code",
type=bool,
default=False,
help=(
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
),
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
"Only applicable when `--with_tracking` is passed."
),
)
args = parser.parse_args()
# Sanity checks
if args.push_to_hub or args.with_tracking:
if args.output_dir is None:
raise ValueError(
"Need an `output_dir` to create a repo when `--push_to_hub` or `with_tracking` is specified."
)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_semantic_segmentation_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
# We set device_specific to True as we want different data augmentation per device.
if args.seed is not None:
set_seed(args.seed, device_specific=True)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Load dataset
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# TODO support datasets from local folders
dataset = load_dataset(args.dataset_name, cache_dir=args.cache_dir)
# Rename column names to standardized names (only "image" and "label" need to be present)
if "pixel_values" in dataset["train"].column_names:
dataset = dataset.rename_columns({"pixel_values": "image"})
if "annotation" in dataset["train"].column_names:
dataset = dataset.rename_columns({"annotation": "label"})
# If we don't have a validation split, split off a percentage of train as validation.
args.train_val_split = None if "validation" in dataset.keys() else args.train_val_split
if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
split = dataset["train"].train_test_split(args.train_val_split)
dataset["train"] = split["train"]
dataset["validation"] = split["test"]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
if args.dataset_name == "scene_parse_150":
repo_id = "huggingface/label-files"
filename = "ade20k-id2label.json"
else:
repo_id = args.dataset_name
filename = "id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
label2id = {v: k for k, v in id2label.items()}
# Load pretrained model and image processor
config = AutoConfig.from_pretrained(
args.model_name_or_path, id2label=id2label, label2id=label2id, trust_remote_code=args.trust_remote_code
)
image_processor = AutoImageProcessor.from_pretrained(
args.model_name_or_path, trust_remote_code=args.trust_remote_code
)
model = AutoModelForSemanticSegmentation.from_pretrained(
args.model_name_or_path, config=config, trust_remote_code=args.trust_remote_code
)
# Preprocessing the datasets
# Define torchvision transforms to be applied to each image + target.
# Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
# Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
if "shortest_edge" in image_processor.size:
# We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
size = (image_processor.size["shortest_edge"], image_processor.size["shortest_edge"])
else:
size = (image_processor.size["height"], image_processor.size["width"])
train_transforms = Compose(
[
ReduceLabels() if args.reduce_labels else Identity(),
RandomCrop(size=size),
RandomHorizontalFlip(flip_prob=0.5),
PILToTensor(),
ConvertImageDtype(torch.float),
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
]
)
# Define torchvision transform to be applied to each image.
# jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
val_transforms = Compose(
[
ReduceLabels() if args.reduce_labels else Identity(),
Resize(size=size),
PILToTensor(),
ConvertImageDtype(torch.float),
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
]
)
def preprocess_train(example_batch):
pixel_values = []
labels = []
for image, target in zip(example_batch["image"], example_batch["label"]):
image, target = train_transforms(image.convert("RGB"), target)
pixel_values.append(image)
labels.append(target)
encoding = {}
encoding["pixel_values"] = torch.stack(pixel_values)
encoding["labels"] = torch.stack(labels)
return encoding
def preprocess_val(example_batch):
pixel_values = []
labels = []
for image, target in zip(example_batch["image"], example_batch["label"]):
image, target = val_transforms(image.convert("RGB"), target)
pixel_values.append(image)
labels.append(target)
encoding = {}
encoding["pixel_values"] = torch.stack(pixel_values)
encoding["labels"] = torch.stack(labels)
return encoding
with accelerator.main_process_first():
train_dataset = dataset["train"].with_transform(preprocess_train)
eval_dataset = dataset["validation"].with_transform(preprocess_val)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(
eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size
)
# Optimizer
optimizer = torch.optim.AdamW(
list(model.parameters()),
lr=args.learning_rate,
betas=[args.adam_beta1, args.adam_beta2],
eps=args.adam_epsilon,
)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Instantiate metric
metric = evaluate.load("mean_iou", cache_dir=args.cache_dir)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("semantic_segmentation_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress {completed_steps} steps",
blocking=False,
auto_lfs_prune=True,
)
if completed_steps >= args.max_train_steps:
break
logger.info("***** Running evaluation *****")
model.eval()
for step, batch in enumerate(tqdm(eval_dataloader, disable=not accelerator.is_local_main_process)):
with torch.no_grad():
outputs = model(**batch)
upsampled_logits = torch.nn.functional.interpolate(
outputs.logits, size=batch["labels"].shape[-2:], mode="bilinear", align_corners=False
)
predictions = upsampled_logits.argmax(dim=1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metrics = metric.compute(
num_labels=len(id2label),
ignore_index=255,
reduce_labels=False, # we've already reduced the labels before
)
logger.info(f"epoch {epoch}: {eval_metrics}")
if args.with_tracking:
accelerator.log(
{
"mean_iou": eval_metrics["mean_iou"],
"mean_accuracy": eval_metrics["mean_accuracy"],
"overall_accuracy": eval_metrics["overall_accuracy"],
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
all_results = {
f"eval_{k}": v.tolist() if isinstance(v, np.ndarray) else v for k, v in eval_metrics.items()
}
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump(all_results, f)
if __name__ == "__main__":
main()
| transformers/examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py/0 | {
"file_path": "transformers/examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py",
"repo_id": "transformers",
"token_count": 11989
} | 266 |
# Text Summarization with Pretrained Encoders
This folder contains part of the code necessary to reproduce the results on abstractive summarization from the article [Text Summarization with Pretrained Encoders](https://arxiv.org/pdf/1908.08345.pdf) by [Yang Liu](https://nlp-yang.github.io/) and [Mirella Lapata](https://homepages.inf.ed.ac.uk/mlap/). It can also be used to summarize any document.
The original code can be found on the Yang Liu's [github repository](https://github.com/nlpyang/PreSumm).
The model is loaded with the pre-trained weights for the abstractive summarization model trained on the CNN/Daily Mail dataset with an extractive and then abstractive tasks.
## Setup
```
git clone https://github.com/huggingface/transformers && cd transformers
pip install .
pip install nltk py-rouge
cd examples/seq2seq/bertabs
```
## Reproduce the authors' ROUGE score
To be able to reproduce the authors' results on the CNN/Daily Mail dataset you first need to download both CNN and Daily Mail datasets [from Kyunghyun Cho's website](https://cs.nyu.edu/~kcho/DMQA/) (the links next to "Stories") in the same folder. Then uncompress the archives by running:
```bash
tar -xvf cnn_stories.tgz && tar -xvf dailymail_stories.tgz
```
And move all the stories to the same folder. We will refer as `$DATA_PATH` the path to where you uncompressed both archive. Then run the following in the same folder as `run_summarization.py`:
```bash
python run_summarization.py \
--documents_dir $DATA_PATH \
--summaries_output_dir $SUMMARIES_PATH \ # optional
--no_cuda false \
--batch_size 4 \
--min_length 50 \
--max_length 200 \
--beam_size 5 \
--alpha 0.95 \
--block_trigram true \
--compute_rouge true
```
The scripts executes on GPU if one is available and if `no_cuda` is not set to `true`. Inference on multiple GPUs is not supported yet. The ROUGE scores will be displayed in the console at the end of evaluation and written in a `rouge_scores.txt` file. The script takes 30 hours to compute with a single Tesla V100 GPU and a batch size of 10 (300,000 texts to summarize).
## Summarize any text
Put the documents that you would like to summarize in a folder (the path to which is referred to as `$DATA_PATH` below) and run the following in the same folder as `run_summarization.py`:
```bash
python run_summarization.py \
--documents_dir $DATA_PATH \
--summaries_output_dir $SUMMARIES_PATH \ # optional
--no_cuda false \
--batch_size 4 \
--min_length 50 \
--max_length 200 \
--beam_size 5 \
--alpha 0.95 \
--block_trigram true \
```
You may want to play around with `min_length`, `max_length` and `alpha` to suit your use case. If you want to compute ROUGE on another dataset you will need to tweak the stories/summaries import in `utils_summarization.py` and tell it where to fetch the reference summaries.
| transformers/examples/research_projects/bertabs/README.md/0 | {
"file_path": "transformers/examples/research_projects/bertabs/README.md",
"repo_id": "transformers",
"token_count": 908
} | 267 |
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0
PATH_TO_DATA=/h/xinji/projects/GLUE
MODEL_TYPE=bert # bert or roberta
MODEL_SIZE=base # base or large
DATASET=MRPC # SST-2, MRPC, RTE, QNLI, QQP, or MNLI
MODEL_NAME=${MODEL_TYPE}-${MODEL_SIZE}
if [ $MODEL_TYPE = 'bert' ]
then
MODEL_NAME=${MODEL_NAME}-uncased
fi
python -u run_glue_deebert.py \
--model_type $MODEL_TYPE \
--model_name_or_path ./saved_models/${MODEL_TYPE}-${MODEL_SIZE}/$DATASET/two_stage \
--task_name $DATASET \
--do_eval \
--do_lower_case \
--data_dir $PATH_TO_DATA/$DATASET \
--output_dir ./saved_models/${MODEL_TYPE}-${MODEL_SIZE}/$DATASET/two_stage \
--plot_data_dir ./results/ \
--max_seq_length 128 \
--eval_each_highway \
--eval_highway \
--overwrite_cache \
--per_gpu_eval_batch_size=1
| transformers/examples/research_projects/deebert/eval_deebert.sh/0 | {
"file_path": "transformers/examples/research_projects/deebert/eval_deebert.sh",
"repo_id": "transformers",
"token_count": 360
} | 268 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training DistilBERT.
Specific to BERT -> DistilBERT.
"""
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=(
"Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned"
" Distillation"
)
)
parser.add_argument("--model_type", default="bert", choices=["bert"])
parser.add_argument("--model_name", default="bert-base-uncased", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
args = parser.parse_args()
if args.model_type == "bert":
model = BertForMaskedLM.from_pretrained(args.model_name)
prefix = "bert"
else:
raise ValueError('args.model_type should be "bert".')
state_dict = model.state_dict()
compressed_sd = {}
for w in ["word_embeddings", "position_embeddings"]:
compressed_sd[f"distilbert.embeddings.{w}.weight"] = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
compressed_sd[f"distilbert.embeddings.LayerNorm.{w}"] = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
std_idx = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.v_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.out_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.ffn.lin1.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.ffn.lin2.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.output_layer_norm.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
compressed_sd["vocab_projector.weight"] = state_dict["cls.predictions.decoder.weight"]
compressed_sd["vocab_projector.bias"] = state_dict["cls.predictions.bias"]
if args.vocab_transform:
for w in ["weight", "bias"]:
compressed_sd[f"vocab_transform.{w}"] = state_dict[f"cls.predictions.transform.dense.{w}"]
compressed_sd[f"vocab_layer_norm.{w}"] = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| transformers/examples/research_projects/distillation/scripts/extract_distilbert.py/0 | {
"file_path": "transformers/examples/research_projects/distillation/scripts/extract_distilbert.py",
"repo_id": "transformers",
"token_count": 1864
} | 269 |
# Information Gain Filtration(IGF)
Authors @Tuko @mraunak
This folder contains the code how to implement IGF for finetuning on GPT-2.
## What is IGF?
Here we present a general fine-tuning method that we call information gain filtration for improving the overall training efficiency and final
performance of language model fine-tuning(see paper below). The method is an alternative fine-tuning method that trains
a secondary model (e.g., a simple convolutional network) to predict the amount of information
gained over a given pre-trained model. The secondary model is lightweight and trained to
predict the Information Gain measure. Information Gain is defined as the change in a loss
function for a model before and after an SGD update with a sample (Equation X in the paper).
A small subset of the training set named the “objective” set, is used to measure information
gain on the pre-trained model, and consequently to train the secondary model. After
training, the model is used for filtering samples for the fine-tuning process. Therefore,
a high information gain value would suggest a sample is informative, whereas a low value
would suggest a non-informative sample that should be filtered out. Thus, a thresholding
strategy is defined to select informative samples. With such a strategy, samples are filtered
and once enough samples are selected to form a mini-batch and a usual fine-tuning/optimization
step is applied. The filtration process is repeated until the fine-tuning process is over.
Paper [Selecting Informative Contexts Improves Language Model Finetuning](https://arxiv.org/abs/2005.00175)
# Results
Several experiments were conducted to show the robustness of the IGF method versus the
standard fine-tuning process. For example, we achieve a median perplexity of 54.0 on the
Books dataset compared to 57.3 for standard fine-tuning on GPT-2 Small. The code was
implemented using the Transformers library and Pytorch. While the method may seem more
expensive, we saw enough evidence that it may lead to a performance benefit in the final models.
![IGF performance](result_igf.png)
Figure 1: Comparing IGF to Standard Fine-tuning:
IGF with constant (p < 10−3 , t-test) and shifting(p < 10−6 , t-test) thresholding significantly outperform standard fine-tuning. The left-hand figure shows
test-set perplexity after each fine-tuning batch, averaged over 50 runs (error bars denote ± one standard error). The right-hand figure shows the perplexity of each
method after 60 batches. IGF with shifting thresholding (red) clearly improves over standard batched fine-tuning with Adam
## How to use this project?
To fine-tune a transformer model with IGF on a language modeling task, use the following script:
- `model_name_or_path`: Path to pretrained model or model identifier from huggingface.co/models
- `data_file`: A jbl file containing tokenized data which can be split as objective dataset,
train_dataset and test_dataset
- `igf_data_file`: A jbl file containing the context and information gain pairs to train secondary learner.
- `context_len`: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded.
- `size_objective_set`: Number of articles that are long enough to be used as our objective set"
- `min_len`: The minimum length of the article to be used as objective set
- `trim`: Truncate the example if it exceeds context length
- `eval_freq`: Secondary model evaluation can be triggered at eval_freq
- `max_steps`: To calculate training epochs
- `number`: The number of examples split to be used as objective_set/test_data
- `secondary_learner_batch_size`: The batch size of training data for secondary learner
- `secondary_learner_max_epochs`: The number of epochs to train secondary learner
- `recopy_model`: Reset the model to the original pretrained GPT-2 weights after each iteration
- `eval_interval`: Decay the selectivity of our secondary learner filter from"
1 standard deviation above average to 1 below average after eval_interval(10) batches"
```python
python run_clm_igf.py\
--model_name_or_path "gpt2" \
--data_file="data/tokenized_stories_train_wikitext103" \
--igf_data_file="data/IGF_values" \
--context_len 32 \
--size_objective_set 100 \
--min_len 1026 \
--trim True \
--eval_freq 100 \
--max_steps 1000 \
--secondary_learner_batch_size 128 \
--secondary_learner_max_epochs 15 \
--number 100 \
--recopy_model \
--eval_interval 10 \
```
## Citation
If you find the resource useful, please cite the following paper
```
@inproceedings{antonello-etal-2021-selecting,
title = "Selecting Informative Contexts Improves Language Model Fine-tuning",
author = "Antonello, Richard and Beckage, Nicole and Turek, Javier and Huth, Alexander",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.87",
doi = "10.18653/v1/2021.acl-long.87",
pages = "1072--1085",
}
```
| transformers/examples/research_projects/information-gain-filtration/README.md/0 | {
"file_path": "transformers/examples/research_projects/information-gain-filtration/README.md",
"repo_id": "transformers",
"token_count": 1453
} | 270 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=fill-mask
"""
import logging
import os
import sys
import time
from collections import defaultdict
from dataclasses import dataclass, field
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import datasets
import flax
import jax
import jax.numpy as jnp
import numpy as np
import optax
from datasets import load_dataset
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from tqdm import tqdm
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForMaskedLM,
HfArgumentParser,
PreTrainedTokenizerBase,
TensorType,
TrainingArguments,
is_tensorboard_available,
set_seed,
)
if datasets.__version__ <= "1.8.0":
raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
text_column_name: str = field(
default="text", metadata={"help": "The name of the column to retrieve the training text."}
)
shuffle_buffer_size: int = field(
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
)
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
@flax.struct.dataclass
class FlaxDataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input.
.. note::
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
argument :obj:`return_special_tokens_mask=True`.
"""
tokenizer: PreTrainedTokenizerBase
mlm_probability: float = 0.15
def __post_init__(self):
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, return_tensors=TensorType.NUMPY)
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
return batch
def mask_tokens(
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.copy()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = np.full(labels.shape, self.mlm_probability)
special_tokens_mask = special_tokens_mask.astype("bool")
probability_matrix[special_tokens_mask] = 0.0
masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
indices_random &= masked_indices & ~indices_replaced
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int) -> np.ndarray:
num_samples = len(samples_idx)
samples_to_remove = num_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = num_samples // batch_size
batch_idx = np.split(samples_idx, sections_split)
return batch_idx
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
"""
The training iterator is advanced so that after groupifying the samples,
`num_samples` of length `max_seq_length` are returned.
"""
num_total_tokens = max_seq_length * num_samples
samples = defaultdict(list)
i = 0
while i < num_total_tokens:
tokenized_samples = next(train_iterator)
i += len(tokenized_samples["input_ids"])
# concatenate tokenized samples to list (excluding "id" and "text")
samples = {
k: samples[k] + tokenized_samples[k] for k in ["input_ids", "attention_mask", "special_tokens_mask"]
}
# Concatenated tokens are split to lists of length `max_seq_length`.
# Note that remainedr of % max_seq_length are thrown away.
def group_texts(examples):
result = {
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
for k, t in examples.items()
}
return result
grouped_samples = group_texts(samples)
return grouped_samples
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
if __name__ == "__main__":
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
level="INFO",
datefmt="[%X]",
)
# Log on each process the small summary:
logger = logging.getLogger(__name__)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
streaming=True,
split="train",
)
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
# efficient when it receives the `special_tokens_mask`.
def tokenize_function(examples):
return tokenizer(examples[data_args.text_column_name], return_special_tokens_mask=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=list(dataset.features.keys()))
shuffle_seed = training_args.seed
tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
if model_args.model_name_or_path:
model = FlaxAutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
else:
model = FlaxAutoModelForMaskedLM.from_config(
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
# define number steps per stream epoch
num_train_steps = data_args.num_train_steps
# Create learning rate schedule
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
)
decay_fn = optax.linear_schedule(
init_value=training_args.learning_rate,
end_value=0,
transition_steps=num_train_steps - training_args.warmup_steps,
)
linear_decay_lr_schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBERT-like models.
# For other models, one should correct the layer norm parameter naming
# accordingly.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
# Define gradient update step fn
def train_step(state, batch, dropout_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
def loss_fn(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# take average
loss = loss.sum() / label_mask.sum()
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean(
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
)
return new_state, metrics, new_dropout_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# compute accuracy
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
# summarize metrics
metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
metrics = jax.lax.psum(metrics, axis_name="batch")
return metrics
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
train_time = 0
train_start = time.time()
train_metrics = []
eval_metrics = []
training_iter = iter(tokenized_datasets)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
steps = tqdm(range(num_train_steps), desc="Training...", position=0)
for step in range(num_train_steps):
# ======================== Training ================================
try:
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
except StopIteration:
# Once the end of the dataset stream is reached, the training iterator
# is reinitialized and reshuffled and a new eval dataset is randomly chosen.
shuffle_seed += 1
tokenized_datasets.set_epoch(shuffle_seed)
training_iter = iter(tokenized_datasets)
eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
# process input samples
model_inputs = data_collator(samples)
# Model forward
model_inputs = shard(model_inputs.data)
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
train_metrics.append(train_metric)
if step % training_args.logging_steps == 0 and step > 0:
steps.write(
f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
f" {train_metric['learning_rate'].mean()})"
)
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, step)
train_metrics = []
# ======================== Evaluating ==============================
if step % training_args.eval_steps == 0 and step > 0:
# Avoid using jax.numpy here in case of TPU training
eval_samples_idx = np.arange(data_args.num_eval_samples)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
# process input samples
batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
model_inputs = data_collator(batch_eval_samples)
# Model forward
model_inputs = shard(model_inputs.data)
metrics = p_eval_step(state.params, model_inputs)
eval_metrics.append(metrics)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics)
eval_normalizer = eval_metrics.pop("normalizer")
eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
# Update progress bar
steps.desc = (
f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc:"
f" {eval_metrics['accuracy']})"
)
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(summary_writer, eval_metrics, step)
eval_metrics = []
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of step {step+1}",
)
# update tqdm bar
steps.update(1)
| transformers/examples/research_projects/jax-projects/dataset-streaming/run_mlm_flax_stream.py/0 | {
"file_path": "transformers/examples/research_projects/jax-projects/dataset-streaming/run_mlm_flax_stream.py",
"repo_id": "transformers",
"token_count": 10617
} | 271 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=fill-mask
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
def __post_init__(self):
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def add_chinese_references(dataset, ref_file):
with open(ref_file, "r", encoding="utf-8") as f:
refs = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
assert len(dataset) == len(refs)
dataset_dict = {c: dataset[c] for c in dataset.column_names}
dataset_dict["chinese_ref"] = refs
return Dataset.from_dict(dataset_dict)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
if "validation" not in datasets.keys():
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if extension == "txt":
extension = "text"
datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
model = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForMaskedLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = datasets["train"].column_names
else:
column_names = datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
padding = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(examples):
# Remove empty lines
examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
return tokenizer(examples["text"], padding=padding, truncation=True, max_length=data_args.max_seq_length)
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
)
# Add the chinese references if provided
if data_args.train_ref_file is not None:
tokenized_datasets["train"] = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file)
if data_args.validation_ref_file is not None:
tokenized_datasets["validation"] = add_chinese_references(
tokenized_datasets["validation"], data_args.validation_ref_file
)
# If we have ref files, need to avoid it removed by trainer
has_ref = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
training_args.remove_unused_columns = False
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
if trainer.is_world_process_zero():
with open(output_train_file, "w") as writer:
logger.info("***** Train results *****")
for key, value in sorted(train_result.metrics.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
eval_output = trainer.evaluate()
perplexity = math.exp(eval_output["eval_loss"])
results["perplexity"] = perplexity
output_eval_file = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt")
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in sorted(results.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers/examples/research_projects/mlm_wwm/run_mlm_wwm.py/0 | {
"file_path": "transformers/examples/research_projects/mlm_wwm/run_mlm_wwm.py",
"repo_id": "transformers",
"token_count": 7241
} | 272 |
# Sample script to finetune RAG using Ray for distributed retrieval.
# Add parent directory to python path to access lightning_base.py
export PYTHONPATH="../":"${PYTHONPATH}"
#creates the custom knowlegebase
python use_own_knowledge_dataset.py \
--csv_path /DIR/SQUAD-KB/squad-kb.csv \
--output_dir /DIR/SQUAD-KB
# Start a single-node Ray cluster.
ray start --head
# A sample finetuning run, you need to specify data_dir, output_dir and model_name_or_path
# run ./examples/rag/finetune_rag_ray.sh --help to see all the possible options
python finetune_rag.py \
--data_dir /DIR/squad-training-data \
--output_dir /DIR/model_checkpoints \
--model_name_or_path facebook/rag-token-base \
--model_type rag_token \
--fp16 \
--gpus 2 \
--profile \
--do_train \
--end2end \
--do_predict \
--n_val -1 \
--train_batch_size 4 \
--eval_batch_size 1 \
--max_source_length 128 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-05 \
--num_train_epochs 10 \
--warmup_steps 500 \
--gradient_accumulation_steps 8 \
--distributed_retriever ray \
--num_retrieval_workers 4 \
--passages_path /DIR/SQUAD-KB/my_knowledge_dataset \
--index_path /DIR/SQUAD-KB/my_knowledge_dataset_hnsw_index.faiss \
--index_name custom \
--context_encoder_name facebook/dpr-ctx_encoder-multiset-base \
--csv_path /DIR/SQUAD-KB/squad-kb.csv \
--index_gpus 1 \
--gpu_order [5,6,7,8,9,0,1,2,3,4] \
--shard_dir ./test_dir/kb-shards \
--indexing_freq 500
# Stop the Ray cluster.
ray stop
#this script was used to test the SQuAD data.
#change the dir paramater acording to your prefernece.
#please use the same device ordere when running CUDA_VISIBLE_DEVICES=5,6,7,8,9,0,1,2,3,4 sh finetune_rag_ray_end2end.sh | transformers/examples/research_projects/rag-end2end-retriever/finetune_rag_ray_end2end.sh/0 | {
"file_path": "transformers/examples/research_projects/rag-end2end-retriever/finetune_rag_ray_end2end.sh",
"repo_id": "transformers",
"token_count": 876
} | 273 |
#!/usr/bin/env python
import os
from pathlib import Path
from typing import Dict, List
import fire
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.utils.logging import get_logger
logger = get_logger(__name__)
def remove_prefix(text: str, prefix: str):
if text.startswith(prefix):
return text[len(prefix) :]
return text # or whatever
def sanitize(sd):
return {remove_prefix(k, "model."): v for k, v in sd.items()}
def average_state_dicts(state_dicts: List[Dict[str, torch.Tensor]]):
new_sd = {}
for k in state_dicts[0].keys():
tensors = [sd[k] for sd in state_dicts]
new_t = sum(tensors) / len(tensors)
assert isinstance(new_t, torch.Tensor)
new_sd[k] = new_t
return new_sd
def convert_pl_to_hf(pl_ckpt_path: str, hf_src_model_dir: str, save_path: str) -> None:
"""Cleanup a pytorch-lightning .ckpt file or experiment dir and save a huggingface model with that state dict.
Silently allows extra pl keys (like teacher.) Puts all ckpt models into CPU RAM at once!
Args:
pl_ckpt_path (:obj:`str`): Path to a .ckpt file saved by pytorch_lightning or dir containing ckpt files.
If a directory is passed, all .ckpt files inside it will be averaged!
hf_src_model_dir (:obj:`str`): Path to a directory containing a correctly shaped checkpoint
save_path (:obj:`str`): Directory to save the new model
"""
hf_model = AutoModelForSeq2SeqLM.from_pretrained(hf_src_model_dir)
if os.path.isfile(pl_ckpt_path):
ckpt_files = [pl_ckpt_path]
else:
assert os.path.isdir(pl_ckpt_path)
ckpt_files = list(Path(pl_ckpt_path).glob("*.ckpt"))
assert ckpt_files, f"could not find any ckpt files inside the {pl_ckpt_path} directory"
if len(ckpt_files) > 1:
logger.info(f"averaging the weights of {ckpt_files}")
state_dicts = [sanitize(torch.load(x, map_location="cpu")["state_dict"]) for x in ckpt_files]
state_dict = average_state_dicts(state_dicts)
missing, unexpected = hf_model.load_state_dict(state_dict, strict=False)
assert not missing, f"missing keys: {missing}"
hf_model.save_pretrained(save_path)
try:
tok = AutoTokenizer.from_pretrained(hf_src_model_dir)
tok.save_pretrained(save_path)
except Exception:
pass
# dont copy tokenizer if cant
if __name__ == "__main__":
fire.Fire(convert_pl_to_hf)
| transformers/examples/research_projects/seq2seq-distillation/convert_pl_checkpoint_to_hf.py/0 | {
"file_path": "transformers/examples/research_projects/seq2seq-distillation/convert_pl_checkpoint_to_hf.py",
"repo_id": "transformers",
"token_count": 1017
} | 274 |
#!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
export BS=32
export GAS=1
python finetune.py \
--learning_rate=3e-5 \
--fp16 \
--gpus 1 \
--do_train \
--do_predict \
--val_check_interval 0.25 \
--n_val 500 \
--num_train_epochs 2 \
--freeze_encoder --freeze_embeds --data_dir cnn_dm \
--max_target_length 142 --val_max_target_length=142 \
--train_batch_size=$BS --eval_batch_size=$BS --gradient_accumulation_steps=$GAS \
--model_name_or_path sshleifer/student_cnn_12_6 \
--tokenizer_name facebook/bart-large \
--warmup_steps 500 \
--output_dir distilbart-cnn-12-6 \
"$@"
| transformers/examples/research_projects/seq2seq-distillation/train_distilbart_cnn.sh/0 | {
"file_path": "transformers/examples/research_projects/seq2seq-distillation/train_distilbart_cnn.sh",
"repo_id": "transformers",
"token_count": 292
} | 275 |
#!/usr/bin/env bash
python run_asr.py \
--output_dir="./wav2vec2-large-lv60-timit-asr" \
--num_train_epochs="30" \
--per_device_train_batch_size="2" \
--per_device_eval_batch_size="2" \
--gradient_accumulation_steps="4" \
--evaluation_strategy="steps" \
--save_steps="500" \
--eval_steps="100" \
--logging_steps="50" \
--learning_rate="5e-4" \
--warmup_steps="3000" \
--model_name_or_path="facebook/wav2vec2-large-lv60" \
--fp16 \
--dataset_name="timit_asr" \
--train_split_name="train" \
--validation_split_name="test" \
--orthography="timit" \
--preprocessing_num_workers="$(nproc)" \
--group_by_length \
--freeze_feature_extractor \
--verbose_logging \
| transformers/examples/research_projects/wav2vec2/finetune_large_lv60_timit_asr.sh/0 | {
"file_path": "transformers/examples/research_projects/wav2vec2/finetune_large_lv60_timit_asr.sh",
"repo_id": "transformers",
"token_count": 276
} | 276 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Examples
This folder contains actively maintained examples of the use of 🤗 Transformers organized into different ML tasks. All examples in this folder are **TensorFlow** examples and are written using native Keras. If you've previously only used 🤗 Transformers via `TFTrainer`, we highly recommend taking a look at the new style - we think it's a big improvement!
In addition, all scripts here now support the [🤗 Datasets](https://github.com/huggingface/datasets) library - you can grab entire datasets just by changing one command-line argument!
## A note on code folding
Most of these examples have been formatted with #region blocks. In IDEs such as PyCharm and VSCode, these blocks mark
named regions of code that can be folded for easier viewing. If you find any of these scripts overwhelming or difficult
to follow, we highly recommend beginning with all regions folded and then examining regions one at a time!
## The Big Table of Tasks
Here is the list of all our examples:
| Task | Example datasets |
|---|---|
| [**`language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling) | WikiText-2
| [**`multiple-choice`**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) | SWAG
| [**`question-answering`**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) | SQuAD
| [**`summarization`**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) | XSum
| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) | GLUE
| [**`token-classification`**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) | CoNLL NER
| [**`translation`**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) | WMT
## Coming soon
- **Colab notebooks** to easily run through these scripts!
| transformers/examples/tensorflow/README.md/0 | {
"file_path": "transformers/examples/tensorflow/README.md",
"repo_id": "transformers",
"token_count": 731
} | 277 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for training a Unigram tokenizer."""
import argparse
import logging
import datasets
from tokenizers import Tokenizer, decoders, normalizers, pre_tokenizers, processors
from tokenizers.models import Unigram
from tokenizers.trainers import UnigramTrainer
from transformers import AlbertTokenizerFast
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Train a unigram tokenizer on the wikitext dataset.")
parser.add_argument(
"--dataset_name",
type=str,
default="wikitext",
help="Name of the training. Explore datasets at: hf.co/datasets.",
)
parser.add_argument(
"--dataset_config", type=str, default="wikitext-103-raw-v1", help="Configuration name of the dataset."
)
parser.add_argument(
"--batch_size",
type=int,
default=1000,
help="Batch size during training.",
)
parser.add_argument(
"--vocab_size",
type=int,
default=10048,
help="Size of the desired vocabulary.",
)
parser.add_argument(
"--limit",
default=None,
type=int,
help="Limit the number of shards (used for debugging).",
)
parser.add_argument(
"--export_to_hub",
action="store_true",
)
args = parser.parse_args()
return args
def main(args):
dataset = datasets.load_dataset(args.dataset_name, args.dataset_config, split="train")
if args.limit is not None:
max_train_samples = min(len(dataset), args.limit)
dataset = dataset.select(range(max_train_samples))
logger.info(f"Limiting the dataset to {args.limit} entries.")
def batch_iterator():
for i in range(0, len(dataset), args.batch_size):
yield dataset[i : i + args.batch_size]["text"]
# Prepare the tokenizer.
tokenizer = Tokenizer(Unigram())
tokenizer.normalizer = normalizers.Sequence([normalizers.Replace("``", '"'), normalizers.Replace("''", '"')])
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace()
# Prepare the trainer.
trainer = UnigramTrainer(
unk_token="<unk>",
special_tokens=["[CLS]", "[SEP]", "<unk>", "<pad>", "[MASK]"],
vocab_size=args.vocab_size,
)
logger.info("Training the tokenizer.")
tokenizer.train_from_iterator(batch_iterator(), trainer=trainer)
logger.info("Tokenizer training complete!")
cls_token_id = tokenizer.token_to_id("[CLS]")
sep_token_id = tokenizer.token_to_id("[SEP]")
tokenizer.post_processor = processors.TemplateProcessing(
single="[CLS]:0 $A:0 [SEP]:0",
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
special_tokens=[
("[CLS]", cls_token_id),
("[SEP]", sep_token_id),
],
)
tokenizer.decoder = decoders.Metaspace()
if args.export_to_hub:
logger.info("Exporting the trained tokenizer to Hub.")
new_tokenizer = AlbertTokenizerFast(tokenizer_object=tokenizer)
new_tokenizer.push_to_hub("unigram-tokenizer-dataset")
if __name__ == "__main__":
args = parse_args()
main(args)
| transformers/examples/tensorflow/language-modeling-tpu/train_unigram.py/0 | {
"file_path": "transformers/examples/tensorflow/language-modeling-tpu/train_unigram.py",
"repo_id": "transformers",
"token_count": 1489
} | 278 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Text classification examples
This folder contains some scripts showing examples of *text classification* with the 🤗 Transformers library.
For straightforward use-cases you may be able to use these scripts without modification, although we have also
included comments in the code to indicate areas that you may need to adapt to your own projects.
## run_text_classification.py
This script handles perhaps the single most common use-case for this entire library: Training an NLP classifier
on your own training data. This can be whatever you want - you could classify text as abusive/hateful or
allowable, or forum posts as spam or not-spam, or classify the genre of a headline as politics, sports or any
number of other categories. Any task that involves classifying natural language into two or more different categories
can work with this! You can even do regression, such as predicting the score on a 1-10 scale that a user gave,
given the text of their review.
The preferred input format is either a CSV or newline-delimited JSON file that contains a `sentence1` and
`label` field. If your task involves comparing two texts (for example, if your classifier
is deciding whether two sentences are paraphrases of each other, or were written by the same author) then you should also include a `sentence2` field in each example. If you do not have a `sentence1` field then the script will assume the non-label fields are the input text, which
may not always be what you want, especially if you have more than two fields!
Here is a snippet of a valid input JSON file, though note that your texts can be much longer than these, and are not constrained
(despite the field name) to being single grammatical sentences:
```
{"sentence1": "COVID-19 vaccine updates: How is the rollout proceeding?", "label": "news"}
{"sentence1": "Manchester United celebrates Europa League success", "label": "sports"}
```
### Usage notes
If your inputs are long (more than ~60-70 words), you may wish to increase the `--max_seq_length` argument
beyond the default value of 128. The maximum supported value for most models is 512 (about 200-300 words),
and some can handle even longer. This will come at a cost in runtime and memory use, however.
We assume that your labels represent *categories*, even if they are integers, since text classification
is a much more common task than text regression. If your labels are floats, however, the script will assume
you want to do regression. This is something you can edit yourself if your use-case requires it!
After training, the model will be saved to `--output_dir`. Once your model is trained, you can get predictions
by calling the script without a `--train_file` or `--validation_file`; simply pass it the output_dir containing
the trained model and a `--test_file` and it will write its predictions to a text file for you.
### Multi-GPU and TPU usage
By default, the script uses a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs
can also be used by passing the name of the TPU resource with the `--tpu` argument.
### Memory usage and data loading
One thing to note is that all data is loaded into memory in this script. Most text classification datasets are small
enough that this is not an issue, but if you have a very large dataset you will need to modify the script to handle
data streaming. This is particularly challenging for TPUs, given the stricter requirements and the sheer volume of data
required to keep them fed. A full explanation of all the possible pitfalls is a bit beyond this example script and
README, but for more information you can see the 'Input Datasets' section of
[this document](https://www.tensorflow.org/guide/tpu).
### Example command
```
python run_text_classification.py \
--model_name_or_path distilbert-base-cased \
--train_file training_data.json \
--validation_file validation_data.json \
--output_dir output/ \
--test_file data_to_predict.json
```
## run_glue.py
This script handles training on the GLUE dataset for various text classification and regression tasks. The GLUE datasets will be loaded automatically, so you only need to specify the task you want (with the `--task_name` argument). You can also supply your own files for prediction with the `--predict_file` argument, for example if you want to train a model on GLUE for e.g. paraphrase detection and then predict whether your own data contains paraphrases or not. Please ensure the names of your input fields match the names of the features in the relevant GLUE dataset - you can see a list of the column names in the `task_to_keys` dict in the `run_glue.py` file.
### Usage notes
The `--do_train`, `--do_eval` and `--do_predict` arguments control whether training, evaluations or predictions are performed. After training, the model will be saved to `--output_dir`. Once your model is trained, you can call the script without the `--do_train` or `--do_eval` arguments to quickly get predictions from your saved model.
### Multi-GPU and TPU usage
By default, the script uses a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs
can also be used by passing the name of the TPU resource with the `--tpu` argument.
### Memory usage and data loading
One thing to note is that all data is loaded into memory in this script. Most text classification datasets are small
enough that this is not an issue, but if you have a very large dataset you will need to modify the script to handle
data streaming. This is particularly challenging for TPUs, given the stricter requirements and the sheer volume of data
required to keep them fed. A full explanation of all the possible pitfalls is a bit beyond this example script and
README, but for more information you can see the 'Input Datasets' section of
[this document](https://www.tensorflow.org/guide/tpu).
### Example command
```
python run_glue.py \
--model_name_or_path distilbert-base-cased \
--task_name mnli \
--do_train \
--do_eval \
--do_predict \
--predict_file data_to_predict.json
```
| transformers/examples/tensorflow/text-classification/README.md/0 | {
"file_path": "transformers/examples/tensorflow/text-classification/README.md",
"repo_id": "transformers",
"token_count": 1663
} | 279 |
#!/usr/bin/env python
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def printflock(*msgs):
"""solves multi-process interleaved print problem"""
with open(__file__, "r") as fh:
fcntl.flock(fh, fcntl.LOCK_EX)
try:
print(*msgs)
finally:
fcntl.flock(fh, fcntl.LOCK_UN)
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
hostname = socket.gethostname()
gpu = f"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
rank = dist.get_rank()
world_size = dist.get_world_size()
printflock(f"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(f"{gpu} is broken")
raise
| transformers/scripts/distributed/torch-distributed-gpu-test.py/0 | {
"file_path": "transformers/scripts/distributed/torch-distributed-gpu-test.py",
"repo_id": "transformers",
"token_count": 1240
} | 280 |
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
Setup transformers following instructions in README.md, (I would fork first).
```bash
git clone [email protected]:huggingface/transformers.git
cd transformers
pip install -e .
pip install pandas GitPython wget
```
Get required metadata
```
curl https://cdn-datasets.huggingface.co/language_codes/language-codes-3b2.csv > language-codes-3b2.csv
curl https://cdn-datasets.huggingface.co/language_codes/iso-639-3.csv > iso-639-3.csv
```
Install Tatoeba-Challenge repo inside transformers
```bash
git clone [email protected]:Helsinki-NLP/Tatoeba-Challenge.git
```
To convert a few models, call the conversion script from command line:
```bash
python src/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py --models heb-eng eng-heb --save_dir converted
```
To convert lots of models you can pass your list of Tatoeba model names to `resolver.convert_models` in a python client or script.
```python
from transformers.convert_marian_tatoeba_to_pytorch import TatoebaConverter
resolver = TatoebaConverter(save_dir='converted')
resolver.convert_models(['heb-eng', 'eng-heb'])
```
### Upload converted models
Since version v3.5.0, the model sharing workflow is switched to git-based system . Refer to [model sharing doc](https://huggingface.co/transformers/main/model_sharing.html#model-sharing-and-uploading) for more details.
To upload all converted models,
1. Install [git-lfs](https://git-lfs.github.com/).
2. Login to `huggingface-cli`
```bash
huggingface-cli login
```
3. Run the `upload_models` script
```bash
./scripts/tatoeba/upload_models.sh
```
### Modifications
- To change naming logic, change the code near `os.rename`. The model card creation code may also need to change.
- To change model card content, you must modify `TatoebaCodeResolver.write_model_card`
| transformers/scripts/tatoeba/README.md/0 | {
"file_path": "transformers/scripts/tatoeba/README.md",
"repo_id": "transformers",
"token_count": 760
} | 281 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
_has_cookiecutter = True
except ImportError:
_has_cookiecutter = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def add_new_model_command_factory(args: Namespace):
return AddNewModelCommand(args.testing, args.testing_file, path=args.path)
class AddNewModelCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
add_new_model_parser = parser.add_parser("add-new-model")
add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode.")
add_new_model_parser.add_argument("--testing_file", type=str, help="Configuration file on which to run.")
add_new_model_parser.add_argument(
"--path", type=str, help="Path to cookiecutter. Should only be used for testing purposes."
)
add_new_model_parser.set_defaults(func=add_new_model_command_factory)
def __init__(self, testing: bool, testing_file: str, path=None, *args):
self._testing = testing
self._testing_file = testing_file
self._path = path
def run(self):
warnings.warn(
"The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. "
"It is not actively maintained anymore, so might give a result that won't pass all tests and quality "
"checks, you should use `transformers-cli add-new-model-like` instead."
)
if not _has_cookiecutter:
raise ImportError(
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
"the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n"
)
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
directories = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]]
if len(directories) > 0:
raise ValueError(
"Several directories starting with `cookiecutter-template-` in current working directory. "
"Please clean your directory by removing all folders starting with `cookiecutter-template-` or "
"change your working directory."
)
path_to_transformer_root = (
Path(__file__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent
)
path_to_cookiecutter = path_to_transformer_root / "templates" / "adding_a_new_model"
# Execute cookiecutter
if not self._testing:
cookiecutter(str(path_to_cookiecutter))
else:
with open(self._testing_file, "r") as configuration_file:
testing_configuration = json.load(configuration_file)
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path),
no_input=True,
extra_context=testing_configuration,
)
directory = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0]
# Retrieve configuration
with open(directory + "/configuration.json", "r") as configuration_file:
configuration = json.load(configuration_file)
lowercase_model_name = configuration["lowercase_modelname"]
generate_tensorflow_pytorch_and_flax = configuration["generate_tensorflow_pytorch_and_flax"]
os.remove(f"{directory}/configuration.json")
output_pytorch = "PyTorch" in generate_tensorflow_pytorch_and_flax
output_tensorflow = "TensorFlow" in generate_tensorflow_pytorch_and_flax
output_flax = "Flax" in generate_tensorflow_pytorch_and_flax
model_dir = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"
os.makedirs(model_dir, exist_ok=True)
os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}", exist_ok=True)
# Tests require submodules as they have parent imports
with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py", "w"):
pass
shutil.move(
f"{directory}/__init__.py",
f"{model_dir}/__init__.py",
)
shutil.move(
f"{directory}/configuration_{lowercase_model_name}.py",
f"{model_dir}/configuration_{lowercase_model_name}.py",
)
def remove_copy_lines(path):
with open(path, "r") as f:
lines = f.readlines()
with open(path, "w") as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(line)
if output_pytorch:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_{lowercase_model_name}.py",
f"{model_dir}/modeling_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py")
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_tf_{lowercase_model_name}.py",
f"{model_dir}/modeling_tf_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_tf_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py")
if output_flax:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_flax_{lowercase_model_name}.py",
f"{model_dir}/modeling_flax_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_flax_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py")
shutil.move(
f"{directory}/{lowercase_model_name}.md",
f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md",
)
shutil.move(
f"{directory}/tokenization_{lowercase_model_name}.py",
f"{model_dir}/tokenization_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/tokenization_fast_{lowercase_model_name}.py",
f"{model_dir}/tokenization_{lowercase_model_name}_fast.py",
)
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(original_file: str, line_to_copy_below: str, lines_to_copy: List[str]):
# Create temp file
fh, abs_path = mkstemp()
line_found = False
with fdopen(fh, "w") as new_file:
with open(original_file) as old_file:
for line in old_file:
new_file.write(line)
if line_to_copy_below in line:
line_found = True
for line_to_copy in lines_to_copy:
new_file.write(line_to_copy)
if not line_found:
raise ValueError(f"Line {line_to_copy_below} was not found in file.")
# Copy the file permissions from the old file to the new file
copymode(original_file, abs_path)
# Remove original file
remove(original_file)
# Move new file
move(abs_path, original_file)
def skip_units(line):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(path_to_datafile):
with open(path_to_datafile) as datafile:
lines_to_copy = []
skip_file = False
skip_snippet = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
file_to_replace_in = line.split('"')[1]
skip_file = skip_units(line)
elif "# Below: " in line and "##" not in line:
line_to_copy_below = line.split('"')[1]
skip_snippet = skip_units(line)
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(file_to_replace_in, line_to_copy_below, lines_to_copy)
lines_to_copy = []
elif "# Replace with" in line and "##" not in line:
lines_to_copy = []
elif "##" not in line:
lines_to_copy.append(line)
remove(path_to_datafile)
replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py")
os.rmdir(directory)
| transformers/src/transformers/commands/add_new_model.py/0 | {
"file_path": "transformers/src/transformers/commands/add_new_model.py",
"repo_id": "transformers",
"token_count": 5123
} | 282 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Convert slow tokenizers checkpoints in fast (serialization format of the `tokenizers` library)"""
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
TOKENIZER_CLASSES = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
def convert_slow_checkpoint_to_fast(tokenizer_name, checkpoint_name, dump_path, force_download):
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys())}.")
if tokenizer_name is None:
tokenizer_names = TOKENIZER_CLASSES
else:
tokenizer_names = {tokenizer_name: getattr(transformers, tokenizer_name + "Fast")}
logger.info(f"Loading tokenizer classes: {tokenizer_names}")
for tokenizer_name in tokenizer_names:
tokenizer_class = TOKENIZER_CLASSES[tokenizer_name]
add_prefix = True
if checkpoint_name is None:
checkpoint_names = list(tokenizer_class.max_model_input_sizes.keys())
else:
checkpoint_names = [checkpoint_name]
logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}")
for checkpoint in checkpoint_names:
logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}")
# Load tokenizer
tokenizer = tokenizer_class.from_pretrained(checkpoint, force_download=force_download)
# Save fast tokenizer
logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}")
# For organization names we create sub-directories
if "/" in checkpoint:
checkpoint_directory, checkpoint_prefix_name = checkpoint.split("/")
dump_path_full = os.path.join(dump_path, checkpoint_directory)
elif add_prefix:
checkpoint_prefix_name = checkpoint
dump_path_full = dump_path
else:
checkpoint_prefix_name = None
dump_path_full = dump_path
logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}")
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values())[0]:
file_path = list(tokenizer.pretrained_vocab_files_map.values())[0][checkpoint]
next_char = file_path.split(checkpoint)[-1][0]
if next_char == "/":
dump_path_full = os.path.join(dump_path_full, checkpoint_prefix_name)
checkpoint_prefix_name = None
logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}")
file_names = tokenizer.save_pretrained(
dump_path_full, legacy_format=False, filename_prefix=checkpoint_prefix_name
)
logger.info(f"=> File names {file_names}")
for file_name in file_names:
if not file_name.endswith("tokenizer.json"):
os.remove(file_name)
logger.info(f"=> removing {file_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help=(
f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
"download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--checkpoint_name",
default=None,
type=str,
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
)
parser.add_argument(
"--force_download",
action="store_true",
help="Re-download checkpoints.",
)
args = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| transformers/src/transformers/convert_slow_tokenizers_checkpoints_to_fast.py/0 | {
"file_path": "transformers/src/transformers/convert_slow_tokenizers_checkpoints_to_fast.py",
"repo_id": "transformers",
"token_count": 1993
} | 283 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integration with Deepspeed - kept for backward compatiblity, if you plan to make any edit, make sure to modify the file
in `integrations/deepspeed` instead.
Check: https://github.com/huggingface/transformers/pull/25599
"""
import warnings
warnings.warn(
"transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations",
FutureWarning,
)
# Backward compatibility imports, to make sure all those objects can be found in integrations/deepspeed
from .integrations.deepspeed import ( # noqa
HfDeepSpeedConfig,
HfTrainerDeepSpeedConfig,
deepspeed_config,
deepspeed_init,
deepspeed_load_checkpoint,
deepspeed_optim_sched,
is_deepspeed_available,
is_deepspeed_zero3_enabled,
set_hf_deepspeed_config,
unset_hf_deepspeed_config,
)
| transformers/src/transformers/deepspeed.py/0 | {
"file_path": "transformers/src/transformers/deepspeed.py",
"repo_id": "transformers",
"token_count": 432
} | 284 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class BaseStreamer:
"""
Base class from which `.generate()` streamers should inherit.
"""
def put(self, value):
"""Function that is called by `.generate()` to push new tokens"""
raise NotImplementedError()
def end(self):
"""Function that is called by `.generate()` to signal the end of generation"""
raise NotImplementedError()
class TextStreamer(BaseStreamer):
"""
Simple text streamer that prints the token(s) to stdout as soon as entire words are formed.
<Tip warning={true}>
The API for the streamer classes is still under development and may change in the future.
</Tip>
Parameters:
tokenizer (`AutoTokenizer`):
The tokenized used to decode the tokens.
skip_prompt (`bool`, *optional*, defaults to `False`):
Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
decode_kwargs (`dict`, *optional*):
Additional keyword arguments to pass to the tokenizer's `decode` method.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
>>> tok = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
>>> streamer = TextStreamer(tok)
>>> # Despite returning the usual output, the streamer will also print the generated text to stdout.
>>> _ = model.generate(**inputs, streamer=streamer, max_new_tokens=20)
An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
```
"""
def __init__(self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, **decode_kwargs):
self.tokenizer = tokenizer
self.skip_prompt = skip_prompt
self.decode_kwargs = decode_kwargs
# variables used in the streaming process
self.token_cache = []
self.print_len = 0
self.next_tokens_are_prompt = True
def put(self, value):
"""
Receives tokens, decodes them, and prints them to stdout as soon as they form entire words.
"""
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
self.next_tokens_are_prompt = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist())
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
# After the symbol for a new line, we flush the cache.
if text.endswith("\n"):
printable_text = text[self.print_len :]
self.token_cache = []
self.print_len = 0
# If the last token is a CJK character, we print the characters.
elif len(text) > 0 and self._is_chinese_char(ord(text[-1])):
printable_text = text[self.print_len :]
self.print_len += len(printable_text)
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
printable_text = text[self.print_len : text.rfind(" ") + 1]
self.print_len += len(printable_text)
self.on_finalized_text(printable_text)
def end(self):
"""Flushes any remaining cache and prints a newline to stdout."""
# Flush the cache, if it exists
if len(self.token_cache) > 0:
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
printable_text = text[self.print_len :]
self.token_cache = []
self.print_len = 0
else:
printable_text = ""
self.next_tokens_are_prompt = True
self.on_finalized_text(printable_text, stream_end=True)
def on_finalized_text(self, text: str, stream_end: bool = False):
"""Prints the new text to stdout. If the stream is ending, also prints a newline."""
print(text, flush=True, end="" if not stream_end else None)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
class TextIteratorStreamer(TextStreamer):
"""
Streamer that stores print-ready text in a queue, to be used by a downstream application as an iterator. This is
useful for applications that benefit from acessing the generated text in a non-blocking way (e.g. in an interactive
Gradio demo).
<Tip warning={true}>
The API for the streamer classes is still under development and may change in the future.
</Tip>
Parameters:
tokenizer (`AutoTokenizer`):
The tokenized used to decode the tokens.
skip_prompt (`bool`, *optional*, defaults to `False`):
Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
timeout (`float`, *optional*):
The timeout for the text queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
in `.generate()`, when it is called in a separate thread.
decode_kwargs (`dict`, *optional*):
Additional keyword arguments to pass to the tokenizer's `decode` method.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
>>> from threading import Thread
>>> tok = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
>>> streamer = TextIteratorStreamer(tok)
>>> # Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
>>> generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20)
>>> thread = Thread(target=model.generate, kwargs=generation_kwargs)
>>> thread.start()
>>> generated_text = ""
>>> for new_text in streamer:
... generated_text += new_text
>>> generated_text
'An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,'
```
"""
def __init__(
self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, timeout: Optional[float] = None, **decode_kwargs
):
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
self.text_queue = Queue()
self.stop_signal = None
self.timeout = timeout
def on_finalized_text(self, text: str, stream_end: bool = False):
"""Put the new text in the queue. If the stream is ending, also put a stop signal in the queue."""
self.text_queue.put(text, timeout=self.timeout)
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout)
def __iter__(self):
return self
def __next__(self):
value = self.text_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
| transformers/src/transformers/generation/streamers.py/0 | {
"file_path": "transformers/src/transformers/generation/streamers.py",
"repo_id": "transformers",
"token_count": 3605
} | 285 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integrations with other Python libraries.
"""
import functools
import importlib.metadata
import importlib.util
import json
import numbers
import os
import pickle
import shutil
import sys
import tempfile
from dataclasses import asdict
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union
import numpy as np
from .. import __version__ as version
from ..utils import flatten_dict, is_datasets_available, is_pandas_available, is_torch_available, logging
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
# comet_ml requires to be imported before any ML frameworks
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED"
if _has_comet:
try:
import comet_ml # noqa: F401
if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"):
_has_comet = True
else:
if os.getenv("COMET_MODE", "").upper() != "DISABLED":
logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.")
_has_comet = False
except (ImportError, ValueError):
_has_comet = False
_has_neptune = (
importlib.util.find_spec("neptune") is not None or importlib.util.find_spec("neptune-client") is not None
)
if TYPE_CHECKING and _has_neptune:
try:
_neptune_version = importlib.metadata.version("neptune")
logger.info(f"Neptune version {_neptune_version} available.")
except importlib.metadata.PackageNotFoundError:
try:
_neptune_version = importlib.metadata.version("neptune-client")
logger.info(f"Neptune-client version {_neptune_version} available.")
except importlib.metadata.PackageNotFoundError:
_has_neptune = False
from ..trainer_callback import ProgressCallback, TrainerCallback # noqa: E402
from ..trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402
from ..training_args import ParallelMode # noqa: E402
from ..utils import ENV_VARS_TRUE_VALUES, is_torch_tpu_available # noqa: E402
# Integration functions:
def is_wandb_available():
# any value of WANDB_DISABLED disables wandb
if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES:
logger.warning(
"Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the "
"--report_to flag to control the integrations used for logging result (for instance --report_to none)."
)
return False
return importlib.util.find_spec("wandb") is not None
def is_clearml_available():
return importlib.util.find_spec("clearml") is not None
def is_comet_available():
return _has_comet
def is_tensorboard_available():
return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None
def is_optuna_available():
return importlib.util.find_spec("optuna") is not None
def is_ray_available():
return importlib.util.find_spec("ray") is not None
def is_ray_tune_available():
if not is_ray_available():
return False
return importlib.util.find_spec("ray.tune") is not None
def is_sigopt_available():
return importlib.util.find_spec("sigopt") is not None
def is_azureml_available():
if importlib.util.find_spec("azureml") is None:
return False
if importlib.util.find_spec("azureml.core") is None:
return False
return importlib.util.find_spec("azureml.core.run") is not None
def is_mlflow_available():
if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE":
return False
return importlib.util.find_spec("mlflow") is not None
def is_dagshub_available():
return None not in [importlib.util.find_spec("dagshub"), importlib.util.find_spec("mlflow")]
def is_neptune_available():
return _has_neptune
def is_codecarbon_available():
return importlib.util.find_spec("codecarbon") is not None
def is_flytekit_available():
return importlib.util.find_spec("flytekit") is not None
def is_flyte_deck_standard_available():
if not is_flytekit_available():
return False
return importlib.util.find_spec("flytekitplugins.deck") is not None
def is_dvclive_available():
return importlib.util.find_spec("dvclive") is not None
def hp_params(trial):
if is_optuna_available():
import optuna
if isinstance(trial, optuna.Trial):
return trial.params
if is_ray_tune_available():
if isinstance(trial, dict):
return trial
if is_sigopt_available():
if isinstance(trial, dict):
return trial
if is_wandb_available():
if isinstance(trial, dict):
return trial
raise RuntimeError(f"Unknown type for trial {trial.__class__}")
def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import optuna
if trainer.args.process_index == 0:
def _objective(trial, checkpoint_dir=None):
checkpoint = None
if checkpoint_dir:
for subdir in os.listdir(checkpoint_dir):
if subdir.startswith(PREFIX_CHECKPOINT_DIR):
checkpoint = os.path.join(checkpoint_dir, subdir)
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(trial)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=checkpoint)
else:
trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return trainer.objective
timeout = kwargs.pop("timeout", None)
n_jobs = kwargs.pop("n_jobs", 1)
directions = direction if isinstance(direction, list) else None
direction = None if directions is not None else direction
study = optuna.create_study(direction=direction, directions=directions, **kwargs)
study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs)
if not study._is_multi_objective():
best_trial = study.best_trial
return BestRun(str(best_trial.number), best_trial.value, best_trial.params)
else:
best_trials = study.best_trials
return [BestRun(str(best.number), best.values, best.params) for best in best_trials]
else:
for i in range(n_trials):
trainer.objective = None
args_main_rank = list(pickle.dumps(trainer.args))
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
torch.distributed.broadcast_object_list(args_main_rank, src=0)
args = pickle.loads(bytes(args_main_rank))
for key, value in asdict(args).items():
if key != "local_rank":
setattr(trainer.args, key, value)
trainer.train(resume_from_checkpoint=None)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return None
def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import ray
import ray.train
def _objective(trial: dict, local_trainer):
try:
from transformers.utils.notebook import NotebookProgressCallback
if local_trainer.pop_callback(NotebookProgressCallback):
local_trainer.add_callback(ProgressCallback)
except ModuleNotFoundError:
pass
local_trainer.objective = None
checkpoint = ray.train.get_checkpoint()
if checkpoint:
# Upon trial resume, the local_trainer's objective gets reset to None.
# If `local_trainer.train` is a noop (training has already reached
# the target number of epochs/steps), then this would
# trigger an unnecessary extra checkpoint at the end of training.
# -> Set the objective to a dummy value upon resume as a workaround.
local_trainer.objective = "objective"
with checkpoint.as_directory() as checkpoint_dir:
checkpoint_path = next(Path(checkpoint_dir).glob(f"{PREFIX_CHECKPOINT_DIR}*")).as_posix()
local_trainer.train(resume_from_checkpoint=checkpoint_path, trial=trial)
else:
local_trainer.train(trial=trial)
# If there hasn't been any evaluation during the training loop.
if getattr(local_trainer, "objective", None) is None:
metrics = local_trainer.evaluate()
local_trainer.objective = local_trainer.compute_objective(metrics)
metrics.update({"objective": local_trainer.objective, "done": True})
with tempfile.TemporaryDirectory() as temp_checkpoint_dir:
local_trainer._tune_save_checkpoint(checkpoint_dir=temp_checkpoint_dir)
checkpoint = ray.train.Checkpoint.from_directory(temp_checkpoint_dir)
ray.train.report(metrics, checkpoint=checkpoint)
if not trainer._memory_tracker.skip_memory_metrics:
from ..trainer_utils import TrainerMemoryTracker
logger.warning(
"Memory tracking for your Trainer is currently "
"enabled. Automatically disabling the memory tracker "
"since the memory tracker is not serializable."
)
trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True)
# The model and TensorBoard writer do not pickle so we have to remove them (if they exists)
# while doing the ray hp search.
_tb_writer = trainer.pop_callback(TensorBoardCallback)
trainer.model = None
# Setup default `resources_per_trial`.
if "resources_per_trial" not in kwargs:
# Default to 1 CPU and 1 GPU (if applicable) per trial.
kwargs["resources_per_trial"] = {"cpu": 1}
if trainer.args.n_gpu > 0:
kwargs["resources_per_trial"]["gpu"] = 1
resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "")
logger.info(
"No `resources_per_trial` arg was passed into "
"`hyperparameter_search`. Setting it to a default value "
f"of {resource_msg} for each trial."
)
# Make sure each trainer only uses GPUs that were allocated per trial.
gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0)
trainer.args._n_gpu = gpus_per_trial
# Setup default `progress_reporter`.
if "progress_reporter" not in kwargs:
from ray.tune import CLIReporter
kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"])
if "scheduler" in kwargs:
from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining
# Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting.
if isinstance(
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining)
) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO):
raise RuntimeError(
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. "
"This means your trials will not report intermediate results to Ray Tune, and "
"can thus not be stopped early or used to exploit other trials parameters. "
"If this is what you want, do not use {cls}. If you would like to use {cls}, "
"make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the "
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__)
)
trainable = ray.tune.with_parameters(_objective, local_trainer=trainer)
@functools.wraps(trainable)
def dynamic_modules_import_trainable(*args, **kwargs):
"""
Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor.
Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565.
Assumes that `_objective`, defined above, is a function.
"""
if is_datasets_available():
import datasets.load
dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py")
# load dynamic_modules from path
spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path)
datasets_modules = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = datasets_modules
spec.loader.exec_module(datasets_modules)
return trainable(*args, **kwargs)
# special attr set by tune.with_parameters
if hasattr(trainable, "__mixins__"):
dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__
analysis = ray.tune.run(
dynamic_modules_import_trainable,
config=trainer.hp_space(None),
num_samples=n_trials,
**kwargs,
)
best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope)
best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config, analysis)
if _tb_writer is not None:
trainer.add_callback(_tb_writer)
return best_run
def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import sigopt
if trainer.args.process_index == 0:
if importlib.metadata.version("sigopt") >= "8.0.0":
sigopt.set_project("huggingface")
experiment = sigopt.create_experiment(
name="huggingface-tune",
type="offline",
parameters=trainer.hp_space(None),
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}],
parallel_bandwidth=1,
budget=n_trials,
)
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
for run in experiment.loop():
with run:
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(run.run)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=None)
else:
trainer.train(resume_from_checkpoint=None, trial=run.run)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
run.log_metric("objective", trainer.objective)
best = list(experiment.get_best_runs())[0]
best_run = BestRun(best.id, best.values["objective"].value, best.assignments)
else:
from sigopt import Connection
conn = Connection()
proxies = kwargs.pop("proxies", None)
if proxies is not None:
conn.set_proxies(proxies)
experiment = conn.experiments().create(
name="huggingface-tune",
parameters=trainer.hp_space(None),
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}],
parallel_bandwidth=1,
observation_budget=n_trials,
project="huggingface",
)
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
while experiment.progress.observation_count < experiment.observation_budget:
suggestion = conn.experiments(experiment.id).suggestions().create()
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(suggestion)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=None)
else:
trainer.train(resume_from_checkpoint=None, trial=suggestion)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
values = [{"name": "objective", "value": trainer.objective}]
obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values)
logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]")
experiment = conn.experiments(experiment.id).fetch()
best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0]
best_run = BestRun(best.id, best.value, best.assignments)
return best_run
else:
for i in range(n_trials):
trainer.objective = None
args_main_rank = list(pickle.dumps(trainer.args))
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
torch.distributed.broadcast_object_list(args_main_rank, src=0)
args = pickle.loads(bytes(args_main_rank))
for key, value in asdict(args).items():
if key != "local_rank":
setattr(trainer.args, key, value)
trainer.train(resume_from_checkpoint=None)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return None
def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
from ..integrations import is_wandb_available
if not is_wandb_available():
raise ImportError("This function needs wandb installed: `pip install wandb`")
import wandb
# add WandbCallback if not already added in trainer callbacks
reporting_to_wandb = False
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, WandbCallback):
reporting_to_wandb = True
break
if not reporting_to_wandb:
trainer.add_callback(WandbCallback())
trainer.args.report_to = ["wandb"]
best_trial = {"run_id": None, "objective": None, "hyperparameters": None}
sweep_id = kwargs.pop("sweep_id", None)
project = kwargs.pop("project", None)
name = kwargs.pop("name", None)
entity = kwargs.pop("entity", None)
metric = kwargs.pop("metric", "eval/loss")
sweep_config = trainer.hp_space(None)
sweep_config["metric"]["goal"] = direction
sweep_config["metric"]["name"] = metric
if name:
sweep_config["name"] = name
def _objective():
run = wandb.run if wandb.run else wandb.init()
trainer.state.trial_name = run.name
run.config.update({"assignments": {}, "metric": metric})
config = wandb.config
trainer.objective = None
trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"])
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
format_metrics = rewrite_logs(metrics)
if metric not in format_metrics:
logger.warning(
f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available"
f" metrics are {format_metrics.keys()}"
)
best_score = False
if best_trial["run_id"] is not None:
if direction == "minimize":
best_score = trainer.objective < best_trial["objective"]
elif direction == "maximize":
best_score = trainer.objective > best_trial["objective"]
if best_score or best_trial["run_id"] is None:
best_trial["run_id"] = run.id
best_trial["objective"] = trainer.objective
best_trial["hyperparameters"] = dict(config)
return trainer.objective
sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id
logger.info(f"wandb sweep id - {sweep_id}")
wandb.agent(sweep_id, function=_objective, count=n_trials)
return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"])
def get_available_reporting_integrations():
integrations = []
if is_azureml_available() and not is_mlflow_available():
integrations.append("azure_ml")
if is_comet_available():
integrations.append("comet_ml")
if is_dagshub_available():
integrations.append("dagshub")
if is_dvclive_available():
integrations.append("dvclive")
if is_mlflow_available():
integrations.append("mlflow")
if is_neptune_available():
integrations.append("neptune")
if is_tensorboard_available():
integrations.append("tensorboard")
if is_wandb_available():
integrations.append("wandb")
if is_codecarbon_available():
integrations.append("codecarbon")
if is_clearml_available():
integrations.append("clearml")
return integrations
def rewrite_logs(d):
new_d = {}
eval_prefix = "eval_"
eval_prefix_len = len(eval_prefix)
test_prefix = "test_"
test_prefix_len = len(test_prefix)
for k, v in d.items():
if k.startswith(eval_prefix):
new_d["eval/" + k[eval_prefix_len:]] = v
elif k.startswith(test_prefix):
new_d["test/" + k[test_prefix_len:]] = v
else:
new_d["train/" + k] = v
return new_d
class TensorBoardCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard).
Args:
tb_writer (`SummaryWriter`, *optional*):
The writer to use. Will instantiate one if not set.
"""
def __init__(self, tb_writer=None):
has_tensorboard = is_tensorboard_available()
if not has_tensorboard:
raise RuntimeError(
"TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or"
" install tensorboardX."
)
if has_tensorboard:
try:
from torch.utils.tensorboard import SummaryWriter # noqa: F401
self._SummaryWriter = SummaryWriter
except ImportError:
try:
from tensorboardX import SummaryWriter
self._SummaryWriter = SummaryWriter
except ImportError:
self._SummaryWriter = None
else:
self._SummaryWriter = None
self.tb_writer = tb_writer
def _init_summary_writer(self, args, log_dir=None):
log_dir = log_dir or args.logging_dir
if self._SummaryWriter is not None:
self.tb_writer = self._SummaryWriter(log_dir=log_dir)
def on_train_begin(self, args, state, control, **kwargs):
if not state.is_world_process_zero:
return
log_dir = None
if state.is_hyper_param_search:
trial_name = state.trial_name
if trial_name is not None:
log_dir = os.path.join(args.logging_dir, trial_name)
if self.tb_writer is None:
self._init_summary_writer(args, log_dir)
if self.tb_writer is not None:
self.tb_writer.add_text("args", args.to_json_string())
if "model" in kwargs:
model = kwargs["model"]
if hasattr(model, "config") and model.config is not None:
model_config_json = model.config.to_json_string()
self.tb_writer.add_text("model_config", model_config_json)
def on_log(self, args, state, control, logs=None, **kwargs):
if not state.is_world_process_zero:
return
if self.tb_writer is None:
self._init_summary_writer(args)
if self.tb_writer is not None:
logs = rewrite_logs(logs)
for k, v in logs.items():
if isinstance(v, (int, float)):
self.tb_writer.add_scalar(k, v, state.global_step)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of Tensorboard's writer.add_scalar() "
"is incorrect so we dropped this attribute."
)
self.tb_writer.flush()
def on_train_end(self, args, state, control, **kwargs):
if self.tb_writer:
self.tb_writer.close()
self.tb_writer = None
class WandbCallback(TrainerCallback):
"""
A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/).
"""
def __init__(self):
has_wandb = is_wandb_available()
if not has_wandb:
raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.")
if has_wandb:
import wandb
self._wandb = wandb
self._initialized = False
# log model
if os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}):
DeprecationWarning(
f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in "
"version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead."
)
logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead")
self._log_model = "end"
else:
self._log_model = os.getenv("WANDB_LOG_MODEL", "false").lower()
def setup(self, args, state, model, **kwargs):
"""
Setup the optional Weights & Biases (*wandb*) integration.
One can subclass and override this method to customize the setup if needed. Find more information
[here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment
variables:
Environment:
- **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`):
Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set
to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint
will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along
with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model.
<Deprecated version="5.0">
Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of 🤗 Transformers.
</Deprecated>
- **WANDB_WATCH** (`str`, *optional* defaults to `"false"`):
Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and
parameters.
- **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`):
Set this to a custom string to store results in a different project.
- **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`):
Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable.
"""
if self._wandb is None:
return
self._initialized = True
if state.is_world_process_zero:
logger.info(
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
)
combined_dict = {**args.to_dict()}
if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
combined_dict = {**model_config, **combined_dict}
trial_name = state.trial_name
init_args = {}
if trial_name is not None:
init_args["name"] = trial_name
init_args["group"] = args.run_name
else:
if not (args.run_name is None or args.run_name == args.output_dir):
init_args["name"] = args.run_name
if self._wandb.run is None:
self._wandb.init(
project=os.getenv("WANDB_PROJECT", "huggingface"),
**init_args,
)
# add config parameters (run may have been created manually)
self._wandb.config.update(combined_dict, allow_val_change=True)
# define default x-axis (for latest wandb versions)
if getattr(self._wandb, "define_metric", None):
self._wandb.define_metric("train/global_step")
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True)
# keep track of model topology and gradients, unsupported on TPU
_watch_model = os.getenv("WANDB_WATCH", "false")
if not is_torch_tpu_available() and _watch_model in ("all", "parameters", "gradients"):
self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps))
self._wandb.run._label(code="transformers_trainer")
def on_train_begin(self, args, state, control, model=None, **kwargs):
if self._wandb is None:
return
hp_search = state.is_hyper_param_search
if hp_search:
self._wandb.finish()
self._initialized = False
args.run_name = None
if not self._initialized:
self.setup(args, state, model, **kwargs)
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
if self._wandb is None:
return
if self._log_model in ("end", "checkpoint") and self._initialized and state.is_world_process_zero:
from ..trainer import Trainer
fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer)
with tempfile.TemporaryDirectory() as temp_dir:
fake_trainer.save_model(temp_dir)
metadata = (
{
k: v
for k, v in dict(self._wandb.summary).items()
if isinstance(v, numbers.Number) and not k.startswith("_")
}
if not args.load_best_model_at_end
else {
f"eval/{args.metric_for_best_model}": state.best_metric,
"train/total_floss": state.total_flos,
}
)
logger.info("Logging model artifacts. ...")
model_name = (
f"model-{self._wandb.run.id}"
if (args.run_name is None or args.run_name == args.output_dir)
else f"model-{self._wandb.run.name}"
)
artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata)
for f in Path(temp_dir).glob("*"):
if f.is_file():
with artifact.new_file(f.name, mode="wb") as fa:
fa.write(f.read_bytes())
self._wandb.run.log_artifact(artifact)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if self._wandb is None:
return
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
logs = rewrite_logs(logs)
self._wandb.log({**logs, "train/global_step": state.global_step})
def on_save(self, args, state, control, **kwargs):
if self._log_model == "checkpoint" and self._initialized and state.is_world_process_zero:
checkpoint_metadata = {
k: v
for k, v in dict(self._wandb.summary).items()
if isinstance(v, numbers.Number) and not k.startswith("_")
}
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...")
checkpoint_name = (
f"checkpoint-{self._wandb.run.id}"
if (args.run_name is None or args.run_name == args.output_dir)
else f"checkpoint-{self._wandb.run.name}"
)
artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata)
artifact.add_dir(artifact_path)
self._wandb.log_artifact(artifact, aliases=[f"checkpoint-{state.global_step}"])
class CometCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.ml/site/).
"""
def __init__(self):
if not _has_comet:
raise RuntimeError("CometCallback requires comet-ml to be installed. Run `pip install comet-ml`.")
self._initialized = False
self._log_assets = False
def setup(self, args, state, model):
"""
Setup the optional Comet.ml integration.
Environment:
- **COMET_MODE** (`str`, *optional*, defaults to `ONLINE`):
Whether to create an online, offline experiment or disable Comet logging. Can be `OFFLINE`, `ONLINE`, or
`DISABLED`.
- **COMET_PROJECT_NAME** (`str`, *optional*):
Comet project name for experiments.
- **COMET_OFFLINE_DIRECTORY** (`str`, *optional*):
Folder to use for saving offline experiments when `COMET_MODE` is `OFFLINE`.
- **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`):
Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or
`FALSE`.
For a number of configurable items in the environment, see
[here](https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables).
"""
self._initialized = True
log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper()
if log_assets in {"TRUE", "1"}:
self._log_assets = True
if state.is_world_process_zero:
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
experiment = None
experiment_kwargs = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
if comet_mode == "ONLINE":
experiment = comet_ml.Experiment(**experiment_kwargs)
experiment.log_other("Created from", "transformers")
logger.info("Automatic Comet.ml online logging enabled")
elif comet_mode == "OFFLINE":
experiment_kwargs["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
experiment = comet_ml.OfflineExperiment(**experiment_kwargs)
experiment.log_other("Created from", "transformers")
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
if experiment is not None:
experiment._set_model_graph(model, framework="transformers")
experiment._log_parameters(args, prefix="args/", framework="transformers")
if hasattr(model, "config"):
experiment._log_parameters(model.config, prefix="config/", framework="transformers")
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers")
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
if self._log_assets is True:
logger.info("Logging checkpoints. This may take time.")
experiment.log_asset_folder(
args.output_dir, recursive=True, log_file_name=True, step=state.global_step
)
experiment.end()
class AzureMLCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/).
"""
def __init__(self, azureml_run=None):
if not is_azureml_available():
raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.")
self.azureml_run = azureml_run
def on_init_end(self, args, state, control, **kwargs):
from azureml.core.run import Run
if self.azureml_run is None and state.is_world_process_zero:
self.azureml_run = Run.get_context()
def on_log(self, args, state, control, logs=None, **kwargs):
if self.azureml_run and state.is_world_process_zero:
for k, v in logs.items():
if isinstance(v, (int, float)):
self.azureml_run.log(k, v, description=k)
class MLflowCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting
environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`.
"""
def __init__(self):
if not is_mlflow_available():
raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.")
import mlflow
self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH
self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH
self._initialized = False
self._auto_end_run = False
self._log_artifacts = False
self._ml_flow = mlflow
def setup(self, args, state, model):
"""
Setup the optional MLflow integration.
Environment:
- **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*):
Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a
remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in
[`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote
storage will just copy the files to your artifact location.
- **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`):
Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point
to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be
activated. If an experiment with this name does not exist, a new experiment with this name is created.
- **MLFLOW_TAGS** (`str`, *optional*):
A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example:
`os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`.
- **MLFLOW_NESTED_RUN** (`str`, *optional*):
Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current
run.
- **MLFLOW_RUN_ID** (`str`, *optional*):
Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When
`MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID
and other parameters are ignored.
- **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`):
Whether to flatten the parameters dictionary before logging.
"""
self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None)
self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._run_id = os.getenv("MLFLOW_RUN_ID", None)
logger.debug(
f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run},"
f" tags={self._nested_run}"
)
if state.is_world_process_zero:
if self._ml_flow.active_run() is None or self._nested_run or self._run_id:
if self._experiment_name:
# Use of set_experiment() ensure that Experiment is created if not exists
self._ml_flow.set_experiment(self._experiment_name)
self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run)
logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}")
self._auto_end_run = True
combined_dict = args.to_dict()
if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
combined_dict = {**model_config, **combined_dict}
combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict
# remove params that are too long for MLflow
for name, value in list(combined_dict.items()):
# internally, all values are converted to str in MLflow
if len(str(value)) > self._MAX_PARAM_VAL_LENGTH:
logger.warning(
f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
" log_param() only accepts values no longer than 250 characters so we dropped this attribute."
" You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and"
" avoid this message."
)
del combined_dict[name]
# MLflow cannot log more than 100 values in one go, so we have to split it
combined_dict_items = list(combined_dict.items())
for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH):
self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]))
mlflow_tags = os.getenv("MLFLOW_TAGS", None)
if mlflow_tags:
mlflow_tags = json.loads(mlflow_tags)
self._ml_flow.set_tags(mlflow_tags)
self._initialized = True
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
def on_log(self, args, state, control, logs, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
metrics = {}
for k, v in logs.items():
if isinstance(v, (int, float)):
metrics[k] = v
else:
logger.warning(
f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
"MLflow's log_metric() only accepts float and int types so we dropped this attribute."
)
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step, synchronous=False)
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
if self._auto_end_run and self._ml_flow.active_run():
self._ml_flow.end_run()
def on_save(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero and self._log_artifacts:
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.")
self._ml_flow.pyfunc.log_model(
ckpt_dir,
artifacts={"model_path": artifact_path},
python_model=self._ml_flow.pyfunc.PythonModel(),
)
def __del__(self):
# if the previous run is not terminated correctly, the fluent API will
# not let you start a new run before the previous one is killed
if (
self._auto_end_run
and callable(getattr(self._ml_flow, "active_run", None))
and self._ml_flow.active_run() is not None
):
self._ml_flow.end_run()
class DagsHubCallback(MLflowCallback):
"""
A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`]
"""
def __init__(self):
super().__init__()
if not is_dagshub_available():
raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.")
from dagshub.upload import Repo
self.Repo = Repo
def setup(self, *args, **kwargs):
"""
Setup the DagsHub's Logging integration.
Environment:
- **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*):
Whether to save the data and model artifacts for the experiment. Default to `False`.
"""
self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main"
self.remote = os.getenv("MLFLOW_TRACKING_URI")
self.repo = self.Repo(
owner=self.remote.split(os.sep)[-2],
name=self.remote.split(os.sep)[-1].split(".")[0],
branch=os.getenv("BRANCH") or "main",
)
self.path = Path("artifacts")
if self.remote is None:
raise RuntimeError(
"DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run"
" `dagshub.init()`?"
)
super().setup(*args, **kwargs)
def on_train_end(self, args, state, control, **kwargs):
if self.log_artifacts:
if getattr(self, "train_dataloader", None):
torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt"))
self.repo.directory(str(self.path)).add_dir(args.output_dir)
class NeptuneMissingConfiguration(Exception):
def __init__(self):
super().__init__(
"""
------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to
`NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and
`project` by saving them as environment variables or passing them to the callback.
"""
)
class NeptuneCallback(TrainerCallback):
"""TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai).
Args:
api_token (`str`, *optional*): Neptune API token obtained upon registration.
You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment
variable (strongly recommended). See full setup instructions in the
[docs](https://docs.neptune.ai/setup/installation).
project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name".
You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the
value of the `NEPTUNE_PROJECT` environment variable is used.
name (`str`, *optional*): Custom name for the run.
base_namespace (`str`, optional, defaults to "finetuning"): In the Neptune run, the root namespace
that will contain all of the metadata logged by the callback.
log_parameters (`bool`, *optional*, defaults to `True`):
If True, logs all Trainer arguments and model parameters provided by the Trainer.
log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer.
If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among
the ones saved by the Trainer). If `None`, does not upload checkpoints.
run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run.
Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object).
**neptune_run_kwargs (*optional*):
Additional keyword arguments to be passed directly to the
[`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created.
For instructions and examples, see the [Transformers integration
guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation.
"""
integration_version_key = "source_code/integrations/transformers"
model_parameters_key = "model_parameters"
trial_name_key = "trial"
trial_params_key = "trial_params"
trainer_parameters_key = "trainer_parameters"
flat_metrics = {"train/epoch"}
def __init__(
self,
*,
api_token: Optional[str] = None,
project: Optional[str] = None,
name: Optional[str] = None,
base_namespace: str = "finetuning",
run=None,
log_parameters: bool = True,
log_checkpoints: Optional[str] = None,
**neptune_run_kwargs,
):
if not is_neptune_available():
raise ValueError(
"NeptuneCallback requires the Neptune client library to be installed. "
"To install the library, run `pip install neptune`."
)
try:
from neptune import Run
from neptune.internal.utils import verify_type
except ImportError:
from neptune.new.internal.utils import verify_type
from neptune.new.metadata_containers.run import Run
verify_type("api_token", api_token, (str, type(None)))
verify_type("project", project, (str, type(None)))
verify_type("name", name, (str, type(None)))
verify_type("base_namespace", base_namespace, str)
verify_type("run", run, (Run, type(None)))
verify_type("log_parameters", log_parameters, bool)
verify_type("log_checkpoints", log_checkpoints, (str, type(None)))
self._base_namespace_path = base_namespace
self._log_parameters = log_parameters
self._log_checkpoints = log_checkpoints
self._initial_run: Optional[Run] = run
self._run = None
self._is_monitoring_run = False
self._run_id = None
self._force_reset_monitoring_run = False
self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs}
self._volatile_checkpoints_dir = None
self._should_upload_checkpoint = self._log_checkpoints is not None
self._recent_checkpoint_path = None
if self._log_checkpoints in {"last", "best"}:
self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}"
self._should_clean_recently_uploaded_checkpoint = True
else:
self._target_checkpoints_namespace = "checkpoints"
self._should_clean_recently_uploaded_checkpoint = False
def _stop_run_if_exists(self):
if self._run:
self._run.stop()
del self._run
self._run = None
def _initialize_run(self, **additional_neptune_kwargs):
try:
from neptune import init_run
from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException
except ImportError:
from neptune.new import init_run
from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException
self._stop_run_if_exists()
try:
self._run = init_run(**self._init_run_kwargs, **additional_neptune_kwargs)
self._run_id = self._run["sys/id"].fetch()
except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e:
raise NeptuneMissingConfiguration() from e
def _use_initial_run(self):
self._run = self._initial_run
self._is_monitoring_run = True
self._run_id = self._run["sys/id"].fetch()
self._initial_run = None
def _ensure_run_with_monitoring(self):
if self._initial_run is not None:
self._use_initial_run()
else:
if not self._force_reset_monitoring_run and self._is_monitoring_run:
return
if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run:
self._initialize_run(with_id=self._run_id)
self._is_monitoring_run = True
else:
self._initialize_run()
self._force_reset_monitoring_run = False
def _ensure_at_least_run_without_monitoring(self):
if self._initial_run is not None:
self._use_initial_run()
else:
if not self._run:
self._initialize_run(
with_id=self._run_id,
capture_stdout=False,
capture_stderr=False,
capture_hardware_metrics=False,
capture_traceback=False,
)
self._is_monitoring_run = False
@property
def run(self):
if self._run is None:
self._ensure_at_least_run_without_monitoring()
return self._run
@property
def _metadata_namespace(self):
return self.run[self._base_namespace_path]
def _log_integration_version(self):
self.run[NeptuneCallback.integration_version_key] = version
def _log_trainer_parameters(self, args):
self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict()
def _log_model_parameters(self, model):
from neptune.utils import stringify_unsupported
if model and hasattr(model, "config") and model.config is not None:
self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported(
model.config.to_dict()
)
def _log_hyper_param_search_parameters(self, state):
if state and hasattr(state, "trial_name"):
self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name
if state and hasattr(state, "trial_params") and state.trial_params is not None:
self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params
def _log_model_checkpoint(self, source_directory: str, checkpoint: str):
target_path = relative_path = os.path.join(source_directory, checkpoint)
if self._volatile_checkpoints_dir is not None:
consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint)
try:
# Remove leading ../ from a relative path.
cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep)
copy_path = os.path.join(consistent_checkpoint_path, cpkt_path)
shutil.copytree(relative_path, copy_path)
target_path = consistent_checkpoint_path
except IOError as e:
logger.warning(
"NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. "
"Could fail trying to upload.".format(e)
)
self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path)
if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None:
self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path)
self._recent_checkpoint_path = relative_path
def on_init_end(self, args, state, control, **kwargs):
self._volatile_checkpoints_dir = None
if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None):
self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name
if self._log_checkpoints == "best" and not args.load_best_model_at_end:
raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.")
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not state.is_world_process_zero:
return
self._ensure_run_with_monitoring()
self._force_reset_monitoring_run = True
self._log_integration_version()
if self._log_parameters:
self._log_trainer_parameters(args)
self._log_model_parameters(model)
if state.is_hyper_param_search:
self._log_hyper_param_search_parameters(state)
def on_train_end(self, args, state, control, **kwargs):
self._stop_run_if_exists()
def __del__(self):
if self._volatile_checkpoints_dir is not None:
shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True)
self._stop_run_if_exists()
def on_save(self, args, state, control, **kwargs):
if self._should_upload_checkpoint:
self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}")
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if self._log_checkpoints == "best":
best_metric_name = args.metric_for_best_model
if not best_metric_name.startswith("eval_"):
best_metric_name = f"eval_{best_metric_name}"
metric_value = metrics.get(best_metric_name)
operator = np.greater if args.greater_is_better else np.less
self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric)
@classmethod
def get_run(cls, trainer):
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, cls):
return callback.run
raise Exception("The trainer doesn't have a NeptuneCallback configured.")
def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs):
if not state.is_world_process_zero:
return
if logs is not None:
for name, value in rewrite_logs(logs).items():
if isinstance(value, (int, float)):
if name in NeptuneCallback.flat_metrics:
self._metadata_namespace[name] = value
else:
self._metadata_namespace[name].log(value, step=state.global_step)
class CodeCarbonCallback(TrainerCallback):
"""
A [`TrainerCallback`] that tracks the CO2 emission of training.
"""
def __init__(self):
if not is_codecarbon_available():
raise RuntimeError(
"CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`."
)
import codecarbon
self._codecarbon = codecarbon
self.tracker = None
def on_init_end(self, args, state, control, **kwargs):
if self.tracker is None and state.is_local_process_zero:
# CodeCarbon will automatically handle environment variables for configuration
self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir)
def on_train_begin(self, args, state, control, model=None, **kwargs):
if self.tracker and state.is_local_process_zero:
self.tracker.start()
def on_train_end(self, args, state, control, **kwargs):
if self.tracker and state.is_local_process_zero:
self.tracker.stop()
class ClearMLCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/).
Environment:
- **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`):
ClearML project name.
- **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`):
ClearML task name.
- **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`):
Whether to log models as artifacts during training.
"""
def __init__(self):
if is_clearml_available():
import clearml
self._clearml = clearml
else:
raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.")
self._initialized = False
self._initialized_externally = False
self._clearml_task = None
self._log_model = os.getenv("CLEARML_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})
def setup(self, args, state, model, tokenizer, **kwargs):
if self._clearml is None:
return
if self._initialized:
return
if state.is_world_process_zero:
logger.info("Automatic ClearML logging enabled.")
if self._clearml_task is None:
# This might happen when running inside of a pipeline, where the task is already initialized
# from outside of Hugging Face
if self._clearml.Task.current_task():
self._clearml_task = self._clearml.Task.current_task()
self._initialized = True
self._initialized_externally = True
logger.info("External ClearML Task has been connected.")
else:
self._clearml_task = self._clearml.Task.init(
project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"),
task_name=os.getenv("CLEARML_TASK", "Trainer"),
auto_connect_frameworks={"tensorboard": False, "pytorch": False},
output_uri=True,
)
self._initialized = True
logger.info("ClearML Task has been initialized.")
self._clearml_task.connect(args, "Args")
if hasattr(model, "config") and model.config is not None:
self._clearml_task.connect(model.config, "Model Configuration")
def on_train_begin(self, args, state, control, model=None, tokenizer=None, **kwargs):
if self._clearml is None:
return
if state.is_hyper_param_search:
self._initialized = False
if not self._initialized:
self.setup(args, state, model, tokenizer, **kwargs)
def on_train_end(self, args, state, control, model=None, tokenizer=None, metrics=None, logs=None, **kwargs):
if self._clearml is None:
return
if self._clearml_task and state.is_world_process_zero and not self._initialized_externally:
# Close ClearML Task at the end end of training
self._clearml_task.close()
def on_log(self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs):
if self._clearml is None:
return
if not self._initialized:
self.setup(args, state, model, tokenizer, **kwargs)
if state.is_world_process_zero:
eval_prefix = "eval_"
eval_prefix_len = len(eval_prefix)
test_prefix = "test_"
test_prefix_len = len(test_prefix)
single_value_scalars = [
"train_runtime",
"train_samples_per_second",
"train_steps_per_second",
"train_loss",
"total_flos",
"epoch",
]
for k, v in logs.items():
if isinstance(v, (int, float)):
if k in single_value_scalars:
self._clearml_task.get_logger().report_single_value(name=k, value=v)
elif k.startswith(eval_prefix):
self._clearml_task.get_logger().report_scalar(
title=k[eval_prefix_len:], series="eval", value=v, iteration=state.global_step
)
elif k.startswith(test_prefix):
self._clearml_task.get_logger().report_scalar(
title=k[test_prefix_len:], series="test", value=v, iteration=state.global_step
)
else:
self._clearml_task.get_logger().report_scalar(
title=k, series="train", value=v, iteration=state.global_step
)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of ClearML logger's report_scalar() "
"is incorrect so we dropped this attribute."
)
def on_save(self, args, state, control, **kwargs):
if self._log_model and self._clearml_task and state.is_world_process_zero:
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.")
self._clearml_task.update_output_model(artifact_path, iteration=state.global_step, auto_delete_file=False)
class FlyteCallback(TrainerCallback):
"""A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/).
NOTE: This callback only works within a Flyte task.
Args:
save_log_history (`bool`, *optional*, defaults to `True`):
When set to True, the training logs are saved as a Flyte Deck.
sync_checkpoints (`bool`, *optional*, defaults to `True`):
When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an
interruption.
Example:
```python
# Note: This example skips over some setup steps for brevity.
from flytekit import current_context, task
@task
def train_hf_transformer():
cp = current_context().checkpoint
trainer = Trainer(..., callbacks=[FlyteCallback()])
output = trainer.train(resume_from_checkpoint=cp.restore())
```
"""
def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True):
super().__init__()
if not is_flytekit_available():
raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.")
if not is_flyte_deck_standard_available() or not is_pandas_available():
logger.warning(
"Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. "
"Run `pip install flytekitplugins-deck-standard pandas` to enable this feature."
)
save_log_history = False
from flytekit import current_context
self.cp = current_context().checkpoint
self.save_log_history = save_log_history
self.sync_checkpoints = sync_checkpoints
def on_save(self, args, state, control, **kwargs):
if self.sync_checkpoints and state.is_world_process_zero:
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.")
self.cp.save(artifact_path)
def on_train_end(self, args, state, control, **kwargs):
if self.save_log_history:
import pandas as pd
from flytekit import Deck
from flytekitplugins.deck.renderer import TableRenderer
log_history_df = pd.DataFrame(state.log_history)
Deck("Log History", TableRenderer().to_html(log_history_df))
class DVCLiveCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive).
Use the environment variables below in `setup` to configure the integration. To customize this callback beyond
those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).
Args:
live (`dvclive.Live`, *optional*, defaults to `None`):
Optional Live instance. If None, a new instance will be created using **kwargs.
log_model (Union[Literal["all"], bool], *optional*, defaults to `None`):
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`,
the final checkpoint is logged at the end of training. If set to `"all"`, the entire
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
"""
def __init__(
self,
live: Optional[Any] = None,
log_model: Optional[Union[Literal["all"], bool]] = None,
**kwargs,
):
if not is_dvclive_available():
raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.")
from dvclive import Live
self._initialized = False
self.live = None
if isinstance(live, Live):
self.live = live
elif live is not None:
raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live")
self._log_model = log_model
if self._log_model is None:
log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL", "FALSE")
if log_model_env.upper() in ENV_VARS_TRUE_VALUES:
self._log_model = True
elif log_model_env.lower() == "all":
self._log_model = "all"
def setup(self, args, state, model):
"""
Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see
[here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).
Environment:
- **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*):
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or
*1*, the final checkpoint is logged at the end of training. If set to `all`, the entire
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
"""
from dvclive import Live
self._initialized = True
if state.is_world_process_zero:
if not self.live:
self.live = Live()
self.live.log_params(args.to_dict())
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
from dvclive.plots import Metric
from dvclive.utils import standardize_metric_name
for key, value in logs.items():
if Metric.could_log(value):
self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{value}" of type {type(value)} for key "{key}" as a scalar. '
"This invocation of DVCLive's Live.log_metric() "
"is incorrect so we dropped this attribute."
)
self.live.next_step()
def on_save(self, args, state, control, **kwargs):
if self._log_model == "all" and self._initialized and state.is_world_process_zero:
self.live.log_artifact(args.output_dir)
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
from transformers.trainer import Trainer
if self._log_model is True:
fake_trainer = Trainer(args=args, model=kwargs.get("model"), tokenizer=kwargs.get("tokenizer"))
name = "best" if args.load_best_model_at_end else "last"
output_dir = os.path.join(args.output_dir, name)
fake_trainer.save_model(output_dir)
self.live.log_artifact(output_dir, name=name, type="model", copy=True)
self.live.end()
INTEGRATION_TO_CALLBACK = {
"azure_ml": AzureMLCallback,
"comet_ml": CometCallback,
"mlflow": MLflowCallback,
"neptune": NeptuneCallback,
"tensorboard": TensorBoardCallback,
"wandb": WandbCallback,
"codecarbon": CodeCarbonCallback,
"clearml": ClearMLCallback,
"dagshub": DagsHubCallback,
"flyte": FlyteCallback,
"dvclive": DVCLiveCallback,
}
def get_reporting_integration_callbacks(report_to):
for integration in report_to:
if integration not in INTEGRATION_TO_CALLBACK:
raise ValueError(
f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported."
)
return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]
| transformers/src/transformers/integrations/integration_utils.py/0 | {
"file_path": "transformers/src/transformers/integrations/integration_utils.py",
"repo_id": "transformers",
"token_count": 33795
} | 286 |
#include <stdio.h>
#include <assert.h>
#define MIN_VALUE (-1e38)
template <typename F>
__global__ void kernel_forward(
const int B, const int T, const int C, const F *__restrict__ const _w, const F *__restrict__ const _u,
const F *__restrict__ const _k, const F *__restrict__ const _v, F *__restrict__ const _y
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
F aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
template <typename F>
__global__ void kernel_forward_with_state(
const int B, const int T, const int C, const F *__restrict__ const _w, const F *__restrict__ const _u,
const F *__restrict__ const _k, const F *__restrict__ const _v, F *__restrict__ const _y, F *__restrict__ const _s
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset_s = _b * C * 3 + _c * 3;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
F *__restrict__ const s = _s + _offset_s;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
F aa = s[0], bb = s[1], pp = s[2];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
s[0] = aa;
s[1] = bb;
s[2] = pp;
}
template <typename F>
__global__ void kernel_backward(
const int B, const int T, const int C, const F *__restrict__ const _w, const F *__restrict__ const _u,
const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ const _y,
const F *__restrict__ const _gy, F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk,
F *__restrict__ const _gv
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
const F *__restrict__ const y = _y + _offset;
const F *__restrict__ const gy = _gy + _offset;
F *__restrict__ const gk = _gk + _offset;
F *__restrict__ const gv = _gv + _offset;
F q[Tmax], r[Tmax];
F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
const F qq = gy[ii] / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = gu;
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
const F qq = q[i];
const F rr = r[i];
F e1 = qq * exp(rr);
F e2 = exp(kk + pp);
gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
gv[ii] = e1 + e2 * aa;
const F ww = w + pp;
const F www = rr - u - kk;
const F p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_forward_with_state(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *s) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward_with_state<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, s);
}
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}
| transformers/src/transformers/kernels/rwkv/wkv_cuda.cu/0 | {
"file_path": "transformers/src/transformers/kernels/rwkv/wkv_cuda.cu",
"repo_id": "transformers",
"token_count": 3131
} | 287 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from .utils import ModelOutput
@dataclass
class BaseModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithNoAttention(ModelOutput):
"""
Base class for model's outputs, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, num_channels, height, width)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPooling(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPoolingAndNoAttention(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state after a pooling operation on the spatial dimensions.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, num_channels, height, width)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPast(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithCrossAttentions(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPoolingAndCrossAttentions(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPastAndCrossAttentions(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class MoECausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs as well as Mixture of Expert's router hidden
states terms, to train a MoE model.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
z_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
z_loss for the sparse modules.
aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
aux_loss for the sparse modules.
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Router logits of the encoder model, useful to compute the auxiliary loss and the z_loss for the sparse
modules.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
z_loss: torch.FloatTensor = None
aux_loss: torch.FloatTensor = None
router_logits: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class MoEModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
router_probs (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router probabilities that are computed by MoE routers, these terms are used to compute the auxiliary
loss and the z_loss for Mixture of Experts models.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
router_probs: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class MoeModelOutputWithPast(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary
loss for Mixture of Experts models.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
router_logits: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class MoeCausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) with mixture of experts outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
aux_loss for the sparse modules.
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary
loss for Mixture of Experts models.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
aux_loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
router_logits: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class MoEModelOutputWithPastAndCrossAttentions(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding) as well as
Mixture of Expert's router hidden states terms, to train a MoE model.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
router_probs (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router probabilities that are computed by MoE routers, these terms are used to compute the auxiliary
loss and the z_loss for Mixture of Experts models.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
router_probs: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class Seq2SeqModelOutput(ModelOutput):
"""
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
decoding.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class Seq2SeqMoEModelOutput(ModelOutput):
"""
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
decoding.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Router logits of the decoder model, useful to compute the auxiliary loss for Mixture of Experts models.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Router logits of the encoder model, useful to compute the auxiliary loss and the z_loss for the sparse
modules.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_router_logits: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_router_logits: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class CausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class CausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class CausalLMOutputWithCrossAttentions(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Cross attentions weights after the attention softmax, used to compute the weighted average in the
cross-attention heads.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `torch.FloatTensor` tuples of length `config.n_layers`, with each tuple containing the cached key,
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
setting. Only relevant if `config.is_decoder = True`.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class SequenceClassifierOutputWithPast(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class MaskedLMOutput(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class Seq2SeqLMOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class Seq2SeqMoEOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Router logits of the decoder model, useful to compute the auxiliary loss for Mixture of Experts models.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Router logits of the encoder model, useful to compute the auxiliary loss and z_loss for Mixture of Experts
models.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
encoder_z_loss: torch.FloatTensor = None
decoder_z_loss: torch.FloatTensor = None
encoder_aux_loss: torch.FloatTensor = None
decoder_aux_loss: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_router_logits: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_router_logits: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class NextSentencePredictorOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `next_sentence_label` is provided):
Next sequence prediction (classification) loss.
logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class SequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class Seq2SeqSequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence sentence classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class MultipleChoiceModelOutput(ModelOutput):
"""
Base class for outputs of multiple choice models.
Args:
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class TokenClassifierOutput(ModelOutput):
"""
Base class for outputs of token classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class QuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of question answering models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class Seq2SeqQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence question answering models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class SemanticSegmenterOutput(ModelOutput):
"""
Base class for outputs of semantic segmentation models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
Classification scores for each pixel.
<Tip warning={true}>
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
original image size as post-processing. You should always check your logits shape and resize as needed.
</Tip>
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, patch_size, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class ImageClassifierOutput(ModelOutput):
"""
Base class for outputs of image classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
(also called feature maps) of the model at the output of each stage.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class ImageClassifierOutputWithNoAttention(ModelOutput):
"""
Base class for outputs of image classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
called feature maps) of the model at the output of each stage.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class DepthEstimatorOutput(ModelOutput):
"""
Base class for outputs of depth estimation models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
predicted_depth (`torch.FloatTensor` of shape `(batch_size, height, width)`):
Predicted depth for each pixel.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, num_channels, height, width)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
predicted_depth: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class ImageSuperResolutionOutput(ModelOutput):
"""
Base class for outputs of image super resolution models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Reconstruction loss.
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed images, possibly upscaled.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
(also called feature maps) of the model at the output of each stage.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class Wav2Vec2BaseModelOutput(ModelOutput):
"""
Base class for models that have been trained with the Wav2Vec2 loss objective.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
extract_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, conv_dim[-1])`):
Sequence of extracted feature vectors of the last convolutional layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
extract_features: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class XVectorOutput(ModelOutput):
"""
Output type of [`Wav2Vec2ForXVector`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.xvector_output_dim)`):
Classification hidden states before AMSoftmax.
embeddings (`torch.FloatTensor` of shape `(batch_size, config.xvector_output_dim)`):
Utterance embeddings used for vector similarity-based retrieval.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
embeddings: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BackboneOutput(ModelOutput):
"""
Base class for outputs of backbones.
Args:
feature_maps (`tuple(torch.FloatTensor)` of shape `(batch_size, num_channels, height, width)`):
Feature maps of the stages.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, num_channels, height, width)`,
depending on the backbone.
Hidden-states of the model at the output of each stage plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Only applicable if the backbone uses attention.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
feature_maps: Tuple[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPoolingAndProjection(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
projection_state (`tuple(torch.FloatTensor)`, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` of shape `(batch_size,config.project_dim)`.
Text embeddings before the projection layer, used to mimic the last hidden state of the teacher encoder.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
projection_state: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class Seq2SeqSpectrogramOutput(ModelOutput):
"""
Base class for sequence-to-sequence spectrogram outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
spectrogram: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class Seq2SeqTSModelOutput(ModelOutput):
"""
Base class for time series model's encoder outputs that also contains pre-computed hidden states that can speed up
sequential decoding.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Shift values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to shift back to the original magnitude.
scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Scaling values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to rescale back to the original magnitude.
static_features (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
Static features of each time series' in a batch which are copied to the covariates at inference time.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
static_features: Optional[torch.FloatTensor] = None
@dataclass
class Seq2SeqTSPredictionOutput(ModelOutput):
"""
Base class for time series model's decoder outputs that also contain the loss as well as the parameters of the
chosen distribution.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when a `future_values` is provided):
Distributional loss.
params (`torch.FloatTensor` of shape `(batch_size, num_samples, num_params)`):
Parameters of the chosen distribution.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Shift values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to shift back to the original magnitude.
scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Scaling values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to rescale back to the original magnitude.
static_features (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
Static features of each time series' in a batch which are copied to the covariates at inference time.
"""
loss: Optional[torch.FloatTensor] = None
params: Optional[Tuple[torch.FloatTensor]] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
static_features: Optional[torch.FloatTensor] = None
@dataclass
class SampleTSPredictionOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length)` or `(batch_size, num_samples, prediction_length, input_size)`):
Sampled values from the chosen distribution.
"""
sequences: torch.FloatTensor = None
@dataclass
class MaskedImageModelingOutput(ModelOutput):
"""
Base class for outputs of masked image completion / in-painting models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Reconstruction loss.
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed / completed images.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or
when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
(also called feature maps) of the model at the output of each stage.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when
`config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@property
def logits(self):
warnings.warn(
"logits attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the reconstruction attribute to retrieve the final output instead.",
FutureWarning,
)
return self.reconstruction
| transformers/src/transformers/modeling_outputs.py/0 | {
"file_path": "transformers/src/transformers/modeling_outputs.py",
"repo_id": "transformers",
"token_count": 40604
} | 288 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ALIGN checkpoints from the original repository."""
import argparse
import os
import align
import numpy as np
import requests
import tensorflow as tf
import torch
from PIL import Image
from tokenizer import Tokenizer
from transformers import (
AlignConfig,
AlignModel,
AlignProcessor,
BertConfig,
BertTokenizer,
EfficientNetConfig,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def preprocess(image):
image = tf.image.resize(image, (346, 346))
image = tf.image.crop_to_bounding_box(image, (346 - 289) // 2, (346 - 289) // 2, 289, 289)
return image
def get_align_config():
vision_config = EfficientNetConfig.from_pretrained("google/efficientnet-b7")
vision_config.image_size = 289
vision_config.hidden_dim = 640
vision_config.id2label = {"0": "LABEL_0", "1": "LABEL_1"}
vision_config.label2id = {"LABEL_0": 0, "LABEL_1": 1}
vision_config.depthwise_padding = []
text_config = BertConfig()
config = AlignConfig.from_text_vision_configs(
text_config=text_config, vision_config=vision_config, projection_dim=640
)
return config
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
def get_processor():
image_processor = EfficientNetImageProcessor(
do_center_crop=True,
rescale_factor=1 / 127.5,
rescale_offset=True,
do_normalize=False,
include_top=False,
resample=Image.BILINEAR,
)
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
tokenizer.model_max_length = 64
processor = AlignProcessor(image_processor=image_processor, tokenizer=tokenizer)
return processor
# here we list all keys to be renamed (original name on the left, our name on the right)
def rename_keys(original_param_names):
# EfficientNet image encoder
block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")]
block_names = list(set(block_names))
block_names = sorted(block_names)
num_blocks = len(block_names)
block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))}
rename_keys = []
rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight"))
rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight"))
rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias"))
rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean"))
rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var"))
for b in block_names:
hf_b = block_name_mapping[b]
rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight"))
rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight"))
rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias"))
rename_keys.append(
(f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean")
)
rename_keys.append(
(f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var")
)
rename_keys.append(
(f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight")
)
rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight"))
rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias"))
rename_keys.append(
(f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean")
)
rename_keys.append(
(f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var")
)
rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight"))
rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias"))
rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight"))
rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias"))
rename_keys.append(
(f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight")
)
rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight"))
rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias"))
rename_keys.append(
(f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean")
)
rename_keys.append(
(f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var")
)
key_mapping = {}
for item in rename_keys:
if item[0] in original_param_names:
key_mapping[item[0]] = "vision_model." + item[1]
# BERT text encoder
rename_keys = []
old = "tf_bert_model/bert"
new = "text_model"
for i in range(12):
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/query/kernel:0",
f"{new}.encoder.layer.{i}.attention.self.query.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/query/bias:0",
f"{new}.encoder.layer.{i}.attention.self.query.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/key/kernel:0",
f"{new}.encoder.layer.{i}.attention.self.key.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/key/bias:0",
f"{new}.encoder.layer.{i}.attention.self.key.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/value/kernel:0",
f"{new}.encoder.layer.{i}.attention.self.value.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/value/bias:0",
f"{new}.encoder.layer.{i}.attention.self.value.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/dense/kernel:0",
f"{new}.encoder.layer.{i}.attention.output.dense.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/dense/bias:0",
f"{new}.encoder.layer.{i}.attention.output.dense.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/gamma:0",
f"{new}.encoder.layer.{i}.attention.output.LayerNorm.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/beta:0",
f"{new}.encoder.layer.{i}.attention.output.LayerNorm.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/intermediate/dense/kernel:0",
f"{new}.encoder.layer.{i}.intermediate.dense.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/intermediate/dense/bias:0",
f"{new}.encoder.layer.{i}.intermediate.dense.bias",
)
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/dense/kernel:0", f"{new}.encoder.layer.{i}.output.dense.weight")
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/dense/bias:0", f"{new}.encoder.layer.{i}.output.dense.bias")
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/LayerNorm/gamma:0", f"{new}.encoder.layer.{i}.output.LayerNorm.weight")
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/LayerNorm/beta:0", f"{new}.encoder.layer.{i}.output.LayerNorm.bias")
)
rename_keys.append((f"{old}/embeddings/word_embeddings/weight:0", f"{new}.embeddings.word_embeddings.weight"))
rename_keys.append(
(f"{old}/embeddings/position_embeddings/embeddings:0", f"{new}.embeddings.position_embeddings.weight")
)
rename_keys.append(
(f"{old}/embeddings/token_type_embeddings/embeddings:0", f"{new}.embeddings.token_type_embeddings.weight")
)
rename_keys.append((f"{old}/embeddings/LayerNorm/gamma:0", f"{new}.embeddings.LayerNorm.weight"))
rename_keys.append((f"{old}/embeddings/LayerNorm/beta:0", f"{new}.embeddings.LayerNorm.bias"))
rename_keys.append((f"{old}/pooler/dense/kernel:0", f"{new}.pooler.dense.weight"))
rename_keys.append((f"{old}/pooler/dense/bias:0", f"{new}.pooler.dense.bias"))
rename_keys.append(("dense/kernel:0", "text_projection.weight"))
rename_keys.append(("dense/bias:0", "text_projection.bias"))
rename_keys.append(("dense/bias:0", "text_projection.bias"))
rename_keys.append(("temperature:0", "temperature"))
for item in rename_keys:
if item[0] in original_param_names:
key_mapping[item[0]] = item[1]
return key_mapping
def replace_params(hf_params, tf_params, key_mapping):
list(hf_params.keys())
for key, value in tf_params.items():
if key not in key_mapping:
continue
hf_key = key_mapping[key]
if "_conv" in key and "kernel" in key:
new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1)
elif "embeddings" in key:
new_hf_value = torch.from_numpy(value)
elif "depthwise_kernel" in key:
new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1)
elif "kernel" in key:
new_hf_value = torch.from_numpy(np.transpose(value))
elif "temperature" in key:
new_hf_value = value
elif "bn/gamma" or "bn/beta" in key:
new_hf_value = torch.from_numpy(np.transpose(value)).squeeze()
else:
new_hf_value = torch.from_numpy(value)
# Replace HF parameters with original TF model parameters
hf_params[hf_key].copy_(new_hf_value)
@torch.no_grad()
def convert_align_checkpoint(checkpoint_path, pytorch_dump_folder_path, save_model, push_to_hub):
"""
Copy/paste/tweak model's weights to our ALIGN structure.
"""
# Load original model
seq_length = 64
tok = Tokenizer(seq_length)
original_model = align.Align("efficientnet-b7", "bert-base", 640, seq_length, tok.get_vocab_size())
original_model.compile()
original_model.load_weights(checkpoint_path)
tf_params = original_model.trainable_variables
tf_non_train_params = original_model.non_trainable_variables
tf_params = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
tf_params[param.name] = param.numpy()
tf_param_names = list(tf_params.keys())
# Load HuggingFace model
config = get_align_config()
hf_model = AlignModel(config).eval()
hf_params = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("Converting parameters...")
key_mapping = rename_keys(tf_param_names)
replace_params(hf_params, tf_params, key_mapping)
# Initialize processor
processor = get_processor()
inputs = processor(
images=prepare_img(), text="A picture of a cat", padding="max_length", max_length=64, return_tensors="pt"
)
# HF model inference
hf_model.eval()
with torch.no_grad():
outputs = hf_model(**inputs)
hf_image_features = outputs.image_embeds.detach().numpy()
hf_text_features = outputs.text_embeds.detach().numpy()
# Original model inference
original_model.trainable = False
tf_image_processor = EfficientNetImageProcessor(
do_center_crop=True,
do_rescale=False,
do_normalize=False,
include_top=False,
resample=Image.BILINEAR,
)
image = tf_image_processor(images=prepare_img(), return_tensors="tf", data_format="channels_last")["pixel_values"]
text = tok(tf.constant(["A picture of a cat"]))
image_features = original_model.image_encoder(image, training=False)
text_features = original_model.text_encoder(text, training=False)
image_features = tf.nn.l2_normalize(image_features, axis=-1)
text_features = tf.nn.l2_normalize(text_features, axis=-1)
# Check whether original and HF model outputs match -> np.allclose
if not np.allclose(image_features, hf_image_features, atol=1e-3):
raise ValueError("The predicted image features are not the same.")
if not np.allclose(text_features, hf_text_features, atol=1e-3):
raise ValueError("The predicted text features are not the same.")
print("Model outputs match!")
if save_model:
# Create folder to save model
if not os.path.isdir(pytorch_dump_folder_path):
os.mkdir(pytorch_dump_folder_path)
# Save converted model and image processor
hf_model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
# Push model and image processor to hub
print("Pushing converted ALIGN to the hub...")
processor.push_to_hub("align-base")
hf_model.push_to_hub("align-base")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_path",
default="./weights/model-weights",
type=str,
help="Path to the pretrained TF ALIGN checkpoint.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="hf_model",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--save_model", action="store_true", help="Save model to local")
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
args = parser.parse_args()
convert_align_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| transformers/src/transformers/models/align/convert_align_tf_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/align/convert_align_tf_to_hf.py",
"repo_id": "transformers",
"token_count": 7038
} | 289 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" AutoImageProcessor class."""
import importlib
import json
import os
import warnings
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
logger = logging.get_logger(__name__)
IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
[
("align", "EfficientNetImageProcessor"),
("beit", "BeitImageProcessor"),
("bit", "BitImageProcessor"),
("blip", "BlipImageProcessor"),
("blip-2", "BlipImageProcessor"),
("bridgetower", "BridgeTowerImageProcessor"),
("chinese_clip", "ChineseCLIPImageProcessor"),
("clip", "CLIPImageProcessor"),
("clipseg", "ViTImageProcessor"),
("conditional_detr", "ConditionalDetrImageProcessor"),
("convnext", "ConvNextImageProcessor"),
("convnextv2", "ConvNextImageProcessor"),
("cvt", "ConvNextImageProcessor"),
("data2vec-vision", "BeitImageProcessor"),
("deformable_detr", "DeformableDetrImageProcessor"),
("deit", "DeiTImageProcessor"),
("depth_anything", "DPTImageProcessor"),
("deta", "DetaImageProcessor"),
("detr", "DetrImageProcessor"),
("dinat", "ViTImageProcessor"),
("dinov2", "BitImageProcessor"),
("donut-swin", "DonutImageProcessor"),
("dpt", "DPTImageProcessor"),
("efficientformer", "EfficientFormerImageProcessor"),
("efficientnet", "EfficientNetImageProcessor"),
("flava", "FlavaImageProcessor"),
("focalnet", "BitImageProcessor"),
("fuyu", "FuyuImageProcessor"),
("git", "CLIPImageProcessor"),
("glpn", "GLPNImageProcessor"),
("groupvit", "CLIPImageProcessor"),
("idefics", "IdeficsImageProcessor"),
("imagegpt", "ImageGPTImageProcessor"),
("instructblip", "BlipImageProcessor"),
("kosmos-2", "CLIPImageProcessor"),
("layoutlmv2", "LayoutLMv2ImageProcessor"),
("layoutlmv3", "LayoutLMv3ImageProcessor"),
("levit", "LevitImageProcessor"),
("llava", "CLIPImageProcessor"),
("mask2former", "Mask2FormerImageProcessor"),
("maskformer", "MaskFormerImageProcessor"),
("mgp-str", "ViTImageProcessor"),
("mobilenet_v1", "MobileNetV1ImageProcessor"),
("mobilenet_v2", "MobileNetV2ImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevitv2", "MobileViTImageProcessor"),
("nat", "ViTImageProcessor"),
("nougat", "NougatImageProcessor"),
("oneformer", "OneFormerImageProcessor"),
("owlv2", "Owlv2ImageProcessor"),
("owlvit", "OwlViTImageProcessor"),
("perceiver", "PerceiverImageProcessor"),
("pix2struct", "Pix2StructImageProcessor"),
("poolformer", "PoolFormerImageProcessor"),
("pvt", "PvtImageProcessor"),
("regnet", "ConvNextImageProcessor"),
("resnet", "ConvNextImageProcessor"),
("sam", "SamImageProcessor"),
("segformer", "SegformerImageProcessor"),
("siglip", "SiglipImageProcessor"),
("swiftformer", "ViTImageProcessor"),
("swin", "ViTImageProcessor"),
("swin2sr", "Swin2SRImageProcessor"),
("swinv2", "ViTImageProcessor"),
("table-transformer", "DetrImageProcessor"),
("timesformer", "VideoMAEImageProcessor"),
("tvlt", "TvltImageProcessor"),
("tvp", "TvpImageProcessor"),
("upernet", "SegformerImageProcessor"),
("van", "ConvNextImageProcessor"),
("videomae", "VideoMAEImageProcessor"),
("vilt", "ViltImageProcessor"),
("vipllava", "CLIPImageProcessor"),
("vit", "ViTImageProcessor"),
("vit_hybrid", "ViTHybridImageProcessor"),
("vit_mae", "ViTImageProcessor"),
("vit_msn", "ViTImageProcessor"),
("vitmatte", "VitMatteImageProcessor"),
("xclip", "CLIPImageProcessor"),
("yolos", "YolosImageProcessor"),
]
)
IMAGE_PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def image_processor_class_from_name(class_name: str):
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(extractor, "__name__", None) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
def get_image_processor_config(
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: bool = False,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
**kwargs,
):
"""
Loads the image processor configuration from a pretrained model image processor configuration.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the image processor configuration from local files.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`Dict`: The configuration of the image processor.
Examples:
```python
# Download configuration from huggingface.co and cache.
image_processor_config = get_image_processor_config("bert-base-uncased")
# This model does not have a image processor config so the result will be an empty dict.
image_processor_config = get_image_processor_config("xlm-roberta-base")
# Save a pretrained image processor locally and you can reload its config
from transformers import AutoTokenizer
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
image_processor.save_pretrained("image-processor-test")
image_processor_config = get_image_processor_config("image-processor-test")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
resolved_config_file = get_file_from_repo(
pretrained_model_name_or_path,
IMAGE_PROCESSOR_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
)
if resolved_config_file is None:
logger.info(
"Could not locate the image processor configuration file, will try to use the model config instead."
)
return {}
with open(resolved_config_file, encoding="utf-8") as reader:
return json.load(reader)
class AutoImageProcessor:
r"""
This is a generic image processor class that will be instantiated as one of the image processor classes of the
library when created with the [`AutoImageProcessor.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoImageProcessor is designed to be instantiated "
"using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(IMAGE_PROCESSOR_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the image processor classes of the library from a pretrained model vocabulary.
The image processor class to instantiate is selected based on the `model_type` property of the config object
(either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a image processor file saved using the
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
`./my_model_directory/`.
- a path or url to a saved image processor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model image processor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the image processor files and override the cached versions if
they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final image processor object. If `True`, then this
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are image processor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Examples:
```python
>>> from transformers import AutoImageProcessor
>>> # Download image processor from huggingface.co and cache.
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*)
>>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs["_from_auto"] = True
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
image_processor_class = config_dict.get("image_processor_type", None)
image_processor_auto_map = None
if "AutoImageProcessor" in config_dict.get("auto_map", {}):
image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
feature_extractor_class = config_dict.pop("feature_extractor_type", None)
if feature_extractor_class is not None:
logger.warning(
"Could not find image processor class in the image processor config or the model config. Loading "
"based on pattern matching with the model's feature extractor configuration. Please open a "
"PR/issue to update `preprocessor_config.json` to use `image_processor_type` instead of "
"`feature_extractor_type`. This warning will be removed in v4.40."
)
image_processor_class = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor")
if "AutoFeatureExtractor" in config_dict.get("auto_map", {}):
feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"]
image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor")
logger.warning(
"Could not find image processor auto map in the image processor config or the model config. "
"Loading based on pattern matching with the model's feature extractor configuration. Please open a "
"PR/issue to update `preprocessor_config.json` to use `AutoImageProcessor` instead of "
"`AutoFeatureExtractor`. This warning will be removed in v4.40."
)
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
# It could be in `config.image_processor_type``
image_processor_class = getattr(config, "image_processor_type", None)
if hasattr(config, "auto_map") and "AutoImageProcessor" in config.auto_map:
image_processor_auto_map = config.auto_map["AutoImageProcessor"]
if image_processor_class is not None:
image_processor_class = image_processor_class_from_name(image_processor_class)
has_remote_code = image_processor_auto_map is not None
has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
image_processor_class = get_class_from_dynamic_module(
image_processor_auto_map, pretrained_model_name_or_path, **kwargs
)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(config_dict, **kwargs)
elif image_processor_class is not None:
return image_processor_class.from_dict(config_dict, **kwargs)
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(config) in IMAGE_PROCESSOR_MAPPING:
image_processor_class = IMAGE_PROCESSOR_MAPPING[type(config)]
return image_processor_class.from_dict(config_dict, **kwargs)
raise ValueError(
f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a "
f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following "
f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}"
)
@staticmethod
def register(config_class, image_processor_class, exist_ok=False):
"""
Register a new image processor for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
image_processor_class ([`ImageProcessingMixin`]): The image processor to register.
"""
IMAGE_PROCESSOR_MAPPING.register(config_class, image_processor_class, exist_ok=exist_ok)
| transformers/src/transformers/models/auto/image_processing_auto.py/0 | {
"file_path": "transformers/src/transformers/models/auto/image_processing_auto.py",
"repo_id": "transformers",
"token_count": 8645
} | 290 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
INIT_COMMON = [
# tf -> hf
("/", "."),
("layer_", "layers."),
("kernel", "weight"),
("beta", "bias"),
("gamma", "weight"),
("pegasus", "model"),
]
END_COMMON = [
(".output.dense", ".fc2"),
("intermediate.LayerNorm", "final_layer_norm"),
("intermediate.dense", "fc1"),
]
DECODER_PATTERNS = (
INIT_COMMON
+ [
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.out_proj"),
("attention.self", "self_attn"),
("attention.encdec.LayerNorm", "encoder_attn_layer_norm"),
("attention.encdec_output.dense", "encoder_attn.out_proj"),
("attention.encdec", "encoder_attn"),
("key", "k_proj"),
("value", "v_proj"),
("query", "q_proj"),
("decoder.LayerNorm", "decoder.layernorm_embedding"),
]
+ END_COMMON
)
REMAINING_PATTERNS = (
INIT_COMMON
+ [
("embeddings.word_embeddings", "shared.weight"),
("embeddings.position_embeddings", "embed_positions.weight"),
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.output"),
("attention.self", "self_attn.self"),
("encoder.LayerNorm", "encoder.layernorm_embedding"),
]
+ END_COMMON
)
KEYS_TO_IGNORE = [
"encdec/key/bias",
"encdec/query/bias",
"encdec/value/bias",
"self/key/bias",
"self/query/bias",
"self/value/bias",
"encdec_output/dense/bias",
"attention/output/dense/bias",
]
def rename_state_dict_key(k, patterns):
for tf_name, hf_name in patterns:
k = k.replace(tf_name, hf_name)
return k
def convert_bigbird_pegasus(tf_weights: dict, config_update: dict) -> BigBirdPegasusForConditionalGeneration:
cfg = BigBirdPegasusConfig(**config_update)
torch_model = BigBirdPegasusForConditionalGeneration(cfg)
state_dict = torch_model.state_dict()
mapping = {}
# separating decoder weights
decoder_weights = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder")}
remaining_weights = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder")}
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion"):
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
if any(conditions):
continue
patterns = DECODER_PATTERNS
new_k = rename_state_dict_key(k, patterns)
if new_k not in state_dict:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
v = v.T
mapping[new_k] = torch.from_numpy(v)
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion"):
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
if any(conditions):
continue
patterns = REMAINING_PATTERNS
new_k = rename_state_dict_key(k, patterns)
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
v = v.T
mapping[new_k] = torch.from_numpy(v)
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
mapping["model.encoder.embed_positions.weight"] = mapping["model.embed_positions.weight"]
mapping["model.decoder.embed_positions.weight"] = mapping.pop("model.embed_positions.weight")
missing, extra = torch_model.load_state_dict(mapping, strict=False)
unexpected_missing = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def get_tf_weights_as_numpy(path) -> Dict:
init_vars = tf.train.list_variables(path)
tf_weights = {}
ignore_name = ["global_step"]
for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"):
skip_key = any(pat in name for pat in ignore_name)
if skip_key:
continue
array = tf.train.load_variable(path, name)
tf_weights[name] = array
return tf_weights
def convert_bigbird_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str, config_update: dict):
tf_weights = get_tf_weights_as_numpy(ckpt_path)
torch_model = convert_bigbird_pegasus(tf_weights, config_update)
torch_model.save_pretrained(save_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()
config_update = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| transformers/src/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2618
} | 291 |
# coding=utf-8
# Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the BSD-3-clause license (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, device, nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
)
from ...modeling_utils import (
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...utils import logging
from .configuration_blip import BlipTextConfig
logger = logging.get_logger(__name__)
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52
class BlipTextEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.config = config
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
input_ids = input_ids.to(self.word_embeddings.weight.device)
inputs_embeds = self.word_embeddings(input_ids)
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97
class BlipTextSelfAttention(nn.Module):
def __init__(self, config, is_cross_attention):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
% (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
attention_scores = attention_scores + attention_mask.to(attention_scores.device)
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert -> BlipText
class BlipTextSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242
class BlipTextAttention(nn.Module):
def __init__(self, config, is_cross_attention=False):
super().__init__()
self.self = BlipTextSelfAttention(config, is_cross_attention)
self.output = BlipTextSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert -> BlipText
class BlipTextIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert -> BlipText
class BlipTextOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BlipTextLayer(nn.Module):
def __init__(self, config, layer_num):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BlipTextAttention(config)
self.layer_num = layer_num
if self.config.is_decoder:
self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder)
self.intermediate = BlipTextIntermediate(config)
self.output = BlipTextOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386
class BlipTextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.is_decoder else None
next_decoder_cache = () if use_cache else None
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText
class BlipTextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BlipText
class BlipTextPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BlipText
class BlipTextLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BlipTextPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BlipText
class BlipTextOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BlipTextLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548
class BlipTextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BlipTextConfig
base_model_prefix = "bert"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
class BlipTextModel(BlipTextPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
`encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BlipTextEmbeddings(config)
self.encoder = BlipTextEncoder(config)
self.pooler = BlipTextPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
device (`torch.device`):
The device of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
is_decoder: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = inputs_embeds.device
elif encoder_embeds is not None:
input_shape = encoder_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = encoder_embeds.device
else:
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length))).to(device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, device, is_decoder
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, list):
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
else:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if isinstance(encoder_attention_mask, list):
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if encoder_embeds is None:
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
else:
embedding_output = encoder_embeds
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811
class BlipTextLMHeadModel(BlipTextPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BlipTextModel(config, add_pooling_layer=False)
self.cls = BlipTextOnlyMLMHead(config)
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_logits: Optional[bool] = False,
is_decoder: Optional[bool] = True,
reduction: Optional[str] = "mean",
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
configured as a decoder.
encoder_attention_mask (`torch.FloatTensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores[:, :-1, :].contiguous()
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device)
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if reduction == "none":
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
"is_decoder": True,
}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| transformers/src/transformers/models/blip/modeling_blip_text.py/0 | {
"file_path": "transformers/src/transformers/models/blip/modeling_blip_text.py",
"repo_id": "transformers",
"token_count": 18707
} | 292 |
# coding=utf-8
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License=, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing=, software
# distributed under the License is distributed on an "AS IS" BASIS=,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BridgeTower model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json",
"BridgeTower/bridgetower-base-itm-mlm": (
"https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json"
),
}
class BridgeTowerVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a
configuration with the defaults will yield a similar configuration to that of the bridgetower-base
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in visual encoder model.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
image_size (`int`, *optional*, defaults to 288):
The size (resolution) of each image.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
stop_gradient (`bool`, *optional*, defaults to `False`):
Whether to stop gradient for training.
share_layernorm (`bool`, *optional*, defaults to `True`):
Whether LayerNorm layers are shared.
remove_last_layer (`bool`, *optional*, defaults to `False`):
Whether to remove the last layer from the vision encoder.
Example:
```python
>>> from transformers import BridgeTowerVisionConfig
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model
>>> configuration = BridgeTowerVisionConfig()
>>> # Accessing the configuration
>>> configuration
```"""
model_type = "bridgetower_vision_model"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_channels=3,
patch_size=16,
image_size=288,
initializer_factor=1,
layer_norm_eps=1e-05,
stop_gradient=False,
share_layernorm=True,
remove_last_layer=False,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_factor = initializer_factor
self.layer_norm_eps = layer_norm_eps
self.stop_gradient = stop_gradient
self.share_layernorm = share_layernorm
self.remove_last_layer = remove_last_layer
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "bridgetower":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class BridgeTowerTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here
are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that
of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the text part of the model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`BridgeTowerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 514):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids`.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import BridgeTowerTextConfig
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model
>>> configuration = BridgeTowerTextConfig()
>>> # Accessing the configuration
>>> configuration
```"""
model_type = "bridgetower_text_model"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
initializer_factor=1,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=514,
type_vocab_size=1,
layer_norm_eps=1e-05,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_factor = initializer_factor
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "bridgetower":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class BridgeTowerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a
BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the bridgetower-base
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`):
Whether cross modal transformer layers are shared.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
share_link_tower_layers (`bool`, *optional*, defaults to `False`):
Whether the bride/link tower layers are shared.
link_tower_type (`str`, *optional*, defaults to `"add"`):
Type of the bridge/link layer.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`):
Whether to init LayerNorm from the vision encoder.
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`].
Example:
```python
>>> from transformers import BridgeTowerModel, BridgeTowerConfig
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration
>>> configuration = BridgeTowerConfig()
>>> # Initializing a model from the BridgeTower/bridgetower-base style configuration
>>> model = BridgeTowerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bridgetower"
def __init__(
self,
share_cross_modal_transformer_layers=True,
hidden_act="gelu",
hidden_size=768,
initializer_factor=1,
layer_norm_eps=1e-05,
share_link_tower_layers=False,
link_tower_type="add",
num_attention_heads=12,
num_hidden_layers=6,
tie_word_embeddings=False,
init_layernorm_from_vision_encoder=False,
text_config=None,
vision_config=None,
**kwargs,
):
# TODO: remove this once the Hub files are updated.
_ = kwargs.pop("text_config_dict", None)
_ = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.initializer_factor = initializer_factor
self.layer_norm_eps = layer_norm_eps
self.share_link_tower_layers = share_link_tower_layers
self.link_tower_type = link_tower_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.tie_word_embeddings = tie_word_embeddings
self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.")
self.text_config = BridgeTowerTextConfig(**text_config)
self.vision_config = BridgeTowerVisionConfig(**vision_config)
@classmethod
def from_text_vision_configs(
cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs
):
r"""
Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns:
[`BridgeTowerConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
| transformers/src/transformers/models/bridgetower/configuration_bridgetower.py/0 | {
"file_path": "transformers/src/transformers/models/bridgetower/configuration_bridgetower.py",
"repo_id": "transformers",
"token_count": 6247
} | 293 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import re
from laion_clap import CLAP_Module
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
KEYS_TO_MODIFY_MAPPING = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
processor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def init_clap(checkpoint_path, model_type, enable_fusion=False):
model = CLAP_Module(
amodel=model_type,
enable_fusion=enable_fusion,
)
model.load_ckpt(checkpoint_path)
return model
def get_config_from_original(clap_model):
audio_config = {
"patch_embeds_hidden_size": clap_model.model.audio_branch.embed_dim,
"depths": clap_model.model.audio_branch.depths,
"hidden_size": clap_model.model.audio_projection[0].in_features,
}
text_config = {"hidden_size": clap_model.model.text_branch.pooler.dense.in_features}
return ClapConfig(audio_config=audio_config, text_config=text_config)
def rename_state_dict(state_dict):
model_state_dict = {}
sequential_layers_pattern = r".*sequential.(\d+).*"
text_projection_pattern = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
if re.match(sequential_layers_pattern, key):
# replace sequential layers with list
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.")
elif re.match(text_projection_pattern, key):
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
# Because in CLAP they use `nn.Sequential`...
transformers_projection_layer = 1 if projecton_layer == 0 else 2
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
if "audio" and "qkv" in key:
# split qkv into query key and value
mixed_qkv = value
qkv_dim = mixed_qkv.size(0) // 3
query_layer = mixed_qkv[:qkv_dim]
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
value_layer = mixed_qkv[qkv_dim * 2 :]
model_state_dict[key.replace("qkv", "query")] = query_layer
model_state_dict[key.replace("qkv", "key")] = key_layer
model_state_dict[key.replace("qkv", "value")] = value_layer
else:
model_state_dict[key] = value
return model_state_dict
def convert_clap_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, model_type, enable_fusion=False):
clap_model = init_clap(checkpoint_path, model_type, enable_fusion=enable_fusion)
clap_model.eval()
state_dict = clap_model.model.state_dict()
state_dict = rename_state_dict(state_dict)
transformers_config = get_config_from_original(clap_model)
transformers_config.audio_config.enable_fusion = enable_fusion
model = ClapModel(transformers_config)
# ignore the spectrogram embedding layer
model.load_state_dict(state_dict, strict=False)
model.save_pretrained(pytorch_dump_folder_path)
transformers_config.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
parser.add_argument("--model_type", default="HTSAT-tiny", type=str, help="Whether to enable fusion or not")
args = parser.parse_args()
convert_clap_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.model_type, args.enable_fusion
)
| transformers/src/transformers/models/clap/convert_clap_original_pytorch_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/clap/convert_clap_original_pytorch_to_hf.py",
"repo_id": "transformers",
"token_count": 2042
} | 294 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLIPSeg model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"CIDAS/clipseg-rd64": "https://huggingface.co/CIDAS/clipseg-rd64/resolve/main/config.json",
}
class CLIPSegTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`CLIPSegModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 77):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 49406):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 49407):
End of stream token id.
Example:
```python
>>> from transformers import CLIPSegTextConfig, CLIPSegTextModel
>>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegTextConfig()
>>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clipseg_text_model"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from CLIPSegConfig
if config_dict.get("model_type") == "clipseg":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPSegVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel
>>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegVisionConfig()
>>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clipseg_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from CLIPSegConfig
if config_dict.get("model_type") == "clipseg":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPSegConfig(PretrainedConfig):
r"""
[`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original CLIPSeg implementation.
extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
reduce_dim (`int`, *optional*, defaults to 64):
Dimensionality to reduce the CLIP vision embedding.
decoder_num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads in the decoder of CLIPSeg.
decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
decoder_intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
conditional_layer (`int`, *optional*, defaults to 0):
The layer to use of the Transformer encoder whose activations will be combined with the condition
embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
segmentation.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import CLIPSegConfig, CLIPSegModel
>>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegConfig()
>>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig
>>> # Initializing a CLIPSegText and CLIPSegVision configuration
>>> config_text = CLIPSegTextConfig()
>>> config_vision = CLIPSegVisionConfig()
>>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "clipseg"
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
extract_layers=[3, 6, 9],
reduce_dim=64,
decoder_num_attention_heads=4,
decoder_attention_dropout=0.0,
decoder_hidden_act="quick_gelu",
decoder_intermediate_size=2048,
conditional_layer=0,
use_complex_transposed_convolution=False,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
vision_config_dict = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The "
f'value `text_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_vision_config_dict["id2label"] = {
str(key): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. "
f'The value `vision_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.")
self.text_config = CLIPSegTextConfig(**text_config)
self.vision_config = CLIPSegVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.extract_layers = extract_layers
self.reduce_dim = reduce_dim
self.decoder_num_attention_heads = decoder_num_attention_heads
self.decoder_attention_dropout = decoder_attention_dropout
self.decoder_hidden_act = decoder_hidden_act
self.decoder_intermediate_size = decoder_intermediate_size
self.conditional_layer = conditional_layer
self.initializer_factor = 1.0
self.use_complex_transposed_convolution = use_complex_transposed_convolution
@classmethod
def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs):
r"""
Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
model configuration.
Returns:
[`CLIPSegConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
| transformers/src/transformers/models/clipseg/configuration_clipseg.py/0 | {
"file_path": "transformers/src/transformers/models/clipseg/configuration_clipseg.py",
"repo_id": "transformers",
"token_count": 8277
} | 295 |
# coding=utf-8
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CodeGen model configuration"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
logger = logging.get_logger(__name__)
CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class CodeGenConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a
CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CodeGen
[Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
[`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50400):
Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`CodeGenModel`].
n_positions (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_ctx (`int`, *optional*, defaults to 2048):
This attribute is used in `CodeGenModel.__init__` without any real effect.
n_embd (`int`, *optional*, defaults to 4096):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
rotary_dim (`int`, *optional*, defaults to 64):
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
n_inner (`int`, *optional*):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
bos_token_id (`int`, *optional*, defaults to 50256):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50256):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
model has a output word embedding layer.
Example:
```python
>>> from transformers import CodeGenConfig, CodeGenModel
>>> # Initializing a CodeGen 6B configuration
>>> configuration = CodeGenConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = CodeGenModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "codegen"
attribute_map = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50400,
n_positions=2048,
n_ctx=2048,
n_embd=4096,
n_layer=28,
n_head=16,
rotary_dim=64,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.rotary_dim = rotary_dim
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
)
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
class CodeGenOnnxConfig(OnnxConfigWithPast):
def __init__(
self,
config: PretrainedConfig,
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
if not getattr(self._config, "pad_token_id", None):
# TODO: how to do that better?
self._config.pad_token_id = 0
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
past_shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
| transformers/src/transformers/models/codegen/configuration_codegen.py/0 | {
"file_path": "transformers/src/transformers/models/codegen/configuration_codegen.py",
"repo_id": "transformers",
"token_count": 4500
} | 296 |
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_cpmant"] = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/cpmant/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/cpmant/__init__.py",
"repo_id": "transformers",
"token_count": 776
} | 297 |
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MMBT model."""
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from ....modeling_outputs import BaseModelOutputWithPooling, SequenceClassifierOutput
from ....modeling_utils import ModuleUtilsMixin
from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MMBTConfig"
class ModalEmbeddings(nn.Module):
"""Generic Modal Embeddings which takes in an encoder, and a transformer embedding."""
def __init__(self, config, encoder, embeddings):
super().__init__()
self.config = config
self.encoder = encoder
self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size)
self.position_embeddings = embeddings.position_embeddings
self.token_type_embeddings = embeddings.token_type_embeddings
self.word_embeddings = embeddings.word_embeddings
self.LayerNorm = embeddings.LayerNorm
self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
def forward(self, input_modal, start_token=None, end_token=None, position_ids=None, token_type_ids=None):
token_embeddings = self.proj_embeddings(self.encoder(input_modal))
seq_length = token_embeddings.size(1)
if start_token is not None:
start_token_embeds = self.word_embeddings(start_token)
seq_length += 1
token_embeddings = torch.cat([start_token_embeds.unsqueeze(1), token_embeddings], dim=1)
if end_token is not None:
end_token_embeds = self.word_embeddings(end_token)
seq_length += 1
token_embeddings = torch.cat([token_embeddings, end_token_embeds.unsqueeze(1)], dim=1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_modal.device)
position_ids = position_ids.unsqueeze(0).expand(input_modal.size(0), seq_length)
if token_type_ids is None:
token_type_ids = torch.zeros(
(input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device
)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = token_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
MMBT_START_DOCSTRING = r"""
MMBT model was proposed in [Supervised Multimodal Bitransformers for Classifying Images and
Text](https://github.com/facebookresearch/mmbt) by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
It's a supervised multimodal bitransformer model that fuses information from text and other image encoders, and
obtain state-of-the-art performance on various multimodal classification benchmark tasks.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MMBTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration.
transformer (`nn.Module`): A text transformer that is used by MMBT.
It should have embeddings, encoder, and pooler attributes.
encoder (`nn.Module`): Encoder for the second modality.
It should take in a batch of modal inputs and return k, n dimension embeddings.
"""
MMBT_INPUTS_DOCSTRING = r"""
Args:
input_modal (`torch.FloatTensor` of shape `(batch_size, ***)`):
The other modality data. It will be the shape that the encoder for that type expects. e.g. With an Image
Encoder, the shape would be (batch_size, channels, height, width)
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. It does not expect [CLS] token to be added as it's
appended to the end of other modality embeddings. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
modal_start_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Optional start token to be added to Other Modality Embedding. [CLS] Most commonly used for classification
tasks.
modal_end_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Optional end token to be added to Other Modality Embedding. [SEP] Most commonly used.
attention_mask (*optional*) `torch.FloatTensor` of shape `(batch_size, sequence_length)`:
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, sequence_length)`:
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
modal_token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, modal_sequence_length)`:
Segment token indices to indicate different portions of the non-text modality. The embeddings from these
tokens will be summed with the respective token embeddings for the non-text modality.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
modal_position_ids (`torch.LongTensor` of shape `(batch_size, modal_sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings for the non-text modality.
Selected in the range `[0, config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, embedding_dim)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MMBT Model outputting raw hidden-states without any specific head on top.",
MMBT_START_DOCSTRING,
)
class MMBTModel(nn.Module, ModuleUtilsMixin):
def __init__(self, config, transformer, encoder):
super().__init__()
self.config = config
self.transformer = transformer
self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings)
@add_start_docstrings_to_model_forward(MMBT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_modal,
input_ids=None,
modal_start_tokens=None,
modal_end_tokens=None,
attention_mask=None,
token_type_ids=None,
modal_token_type_ids=None,
position_ids=None,
modal_position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
Examples:
```python
# For example purposes. Not runnable.
transformer = BertModel.from_pretrained("bert-base-uncased")
encoder = ImageEncoder(args)
mmbt = MMBTModel(config, transformer, encoder)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_txt_shape = input_ids.size()
elif inputs_embeds is not None:
input_txt_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
modal_embeddings = self.modal_encoder(
input_modal,
start_token=modal_start_tokens,
end_token=modal_end_tokens,
position_ids=modal_position_ids,
token_type_ids=modal_token_type_ids,
)
input_modal_shape = modal_embeddings.size()[:-1]
if token_type_ids is None:
token_type_ids = torch.ones(input_txt_shape, dtype=torch.long, device=device)
txt_embeddings = self.transformer.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1)
input_shape = embedding_output.size()[:-1]
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
else:
attention_mask = torch.cat(
[torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask], dim=1
)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(input_shape, device=device)
else:
encoder_attention_mask = torch.cat(
[torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1
)
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
encoder_outputs = self.transformer.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.transformer.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
@add_start_docstrings(
"""
MMBT Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
""",
MMBT_START_DOCSTRING,
MMBT_INPUTS_DOCSTRING,
)
class MMBTForClassification(nn.Module):
r"""
**labels**: (*optional*) `torch.LongTensor` of shape `(batch_size,)`:
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns: *Tuple* comprising various elements depending on the configuration (config) and inputs: **loss**:
(*optional*, returned when `labels` is provided) `torch.FloatTensor` of shape `(1,)`: Classification (or
regression if config.num_labels==1) loss. **logits**:
`torch.FloatTensor` of shape `(batch_size, config.num_labels)` Classification (or regression if
config.num_labels==1) scores (before SoftMax).
**hidden_states**: (*optional*, returned when `output_hidden_states=True`) list of `torch.FloatTensor` (one for
the output of each layer + the output of the embeddings) of shape `(batch_size, sequence_length, hidden_size)`:
Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**:
(*optional*, returned when `output_attentions=True`) list of `torch.FloatTensor` (one for each layer) of shape
`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used
to compute the weighted average in the self-attention heads.
Examples:
```python
# For example purposes. Not runnable.
transformer = BertModel.from_pretrained("bert-base-uncased")
encoder = ImageEncoder(args)
model = MMBTForClassification(config, transformer, encoder)
outputs = model(input_modal, input_ids, labels=labels)
loss, logits = outputs[:2]
```"""
def __init__(self, config, transformer, encoder):
super().__init__()
self.num_labels = config.num_labels
self.mmbt = MMBTModel(config, transformer, encoder)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
def forward(
self,
input_modal,
input_ids=None,
modal_start_tokens=None,
modal_end_tokens=None,
attention_mask=None,
token_type_ids=None,
modal_token_type_ids=None,
position_ids=None,
modal_position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mmbt(
input_modal=input_modal,
input_ids=input_ids,
modal_start_tokens=modal_start_tokens,
modal_end_tokens=modal_end_tokens,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
modal_token_type_ids=modal_token_type_ids,
position_ids=position_ids,
modal_position_ids=modal_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/deprecated/mmbt/modeling_mmbt.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/mmbt/modeling_mmbt.py",
"repo_id": "transformers",
"token_count": 7654
} | 298 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Transformer XL configuration"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
logger = logging.get_logger(__name__)
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class TransfoXLConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is
used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL
[transfo-xl-wt103](https://huggingface.co/transfo-xl-wt103) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 267735):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`].
cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`):
Cutoffs for the adaptive softmax.
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the model's hidden states.
d_embed (`int`, *optional*, defaults to 1024):
Dimensionality of the embeddings
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
d_head (`int`, *optional*, defaults to 64):
Dimensionality of the model's heads.
d_inner (`int`, *optional*, defaults to 4096):
Inner dimension in FF
div_val (`int`, *optional*, defaults to 4):
Divident value for adapative input and softmax
pre_lnorm (`boolean`, *optional*, defaults to `False`):
Whether or not to apply LayerNorm to the input instead of the output in the blocks.
n_layer (`int`, *optional*, defaults to 18):
Number of hidden layers in the Transformer encoder.
mem_len (`int`, *optional*, defaults to 1600):
Length of the retained previous heads.
clamp_len (`int`, *optional*, defaults to 1000):
Use the same pos embeddings after clamp_len.
same_length (`boolean`, *optional*, defaults to `True`):
Whether or not to use the same attn length for all tokens
proj_share_all_but_first (`boolean`, *optional*, defaults to `True`):
True to share all but first projs, False not to share.
attn_type (`int`, *optional*, defaults to 0):
Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
sample_softmax (`int`, *optional*, defaults to -1):
Number of samples in the sampled softmax.
adaptive (`boolean`, *optional*, defaults to `True`):
Whether or not to use adaptive softmax.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
dropatt (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
untie_r (`boolean`, *optional*, defaults to `True`):
Whether ot not to untie relative position biases.
init (`str`, *optional*, defaults to `"normal"`):
Parameter initializer to use.
init_range (`float`, *optional*, defaults to 0.01):
Parameters initialized by U(-init_range, init_range).
proj_init_std (`float`, *optional*, defaults to 0.01):
Parameters initialized by N(0, init_std)
init_std (`float`, *optional*, defaults to 0.02):
Parameters initialized by N(0, init_std)
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers
eos_token_id (`int`, *optional*, defaults to 0):
End of stream token id.
Examples:
```python
>>> from transformers import TransfoXLConfig, TransfoXLModel
>>> # Initializing a Transformer XL configuration
>>> configuration = TransfoXLConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = TransfoXLModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "transfo-xl"
keys_to_ignore_at_inference = ["mems"]
attribute_map = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=267735,
cutoffs=[20000, 40000, 200000],
d_model=1024,
d_embed=1024,
n_head=16,
d_head=64,
d_inner=4096,
div_val=4,
pre_lnorm=False,
n_layer=18,
mem_len=1600,
clamp_len=1000,
same_length=True,
proj_share_all_but_first=True,
attn_type=0,
sample_softmax=-1,
adaptive=True,
dropout=0.1,
dropatt=0.0,
untie_r=True,
init="normal",
init_range=0.01,
proj_init_std=0.01,
init_std=0.02,
layer_norm_epsilon=1e-5,
eos_token_id=0,
**kwargs,
):
self.vocab_size = vocab_size
self.cutoffs = []
self.cutoffs.extend(cutoffs)
if proj_share_all_but_first:
self.tie_projs = [False] + [True] * len(self.cutoffs)
else:
self.tie_projs = [False] + [False] * len(self.cutoffs)
self.d_model = d_model
self.d_embed = d_embed
self.d_head = d_head
self.d_inner = d_inner
self.div_val = div_val
self.pre_lnorm = pre_lnorm
self.n_layer = n_layer
self.n_head = n_head
self.mem_len = mem_len
self.same_length = same_length
self.attn_type = attn_type
self.clamp_len = clamp_len
self.sample_softmax = sample_softmax
self.adaptive = adaptive
self.dropout = dropout
self.dropatt = dropatt
self.untie_r = untie_r
self.init = init
self.init_range = init_range
self.proj_init_std = proj_init_std
self.init_std = init_std
self.layer_norm_epsilon = layer_norm_epsilon
super().__init__(eos_token_id=eos_token_id, **kwargs)
@property
def max_position_embeddings(self):
# Message copied from Transformer-XL documentation
logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.")
return -1
@max_position_embeddings.setter
def max_position_embeddings(self, value):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"The model {self.model_type} is one of the few models that has no sequence length limit."
)
| transformers/src/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py",
"repo_id": "transformers",
"token_count": 3230
} | 299 |
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Dilated Neighborhood Attention Transformer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
OptionalDependencyNotAvailable,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_natten_available,
logging,
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_dinat import DinatConfig
if is_natten_available():
from natten.functional import natten2dav, natten2dqkrpb
else:
def natten2dqkrpb(*args, **kwargs):
raise OptionalDependencyNotAvailable()
def natten2dav(*args, **kwargs):
raise OptionalDependencyNotAvailable()
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DinatConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "shi-labs/dinat-mini-in1k-224"
_EXPECTED_OUTPUT_SHAPE = [1, 7, 7, 512]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "shi-labs/dinat-mini-in1k-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
DINAT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"shi-labs/dinat-mini-in1k-224",
# See all Dinat models at https://huggingface.co/models?filter=dinat
]
# drop_path and DinatDropPath are from the timm library.
@dataclass
# Copied from transformers.models.nat.modeling_nat.NatEncoderOutput with Nat->Dinat
class DinatEncoderOutput(ModelOutput):
"""
Dinat encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
# Copied from transformers.models.nat.modeling_nat.NatModelOutput with Nat->Dinat
class DinatModelOutput(ModelOutput):
"""
Dinat model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
# Copied from transformers.models.nat.modeling_nat.NatImageClassifierOutput with Nat->Dinat
class DinatImageClassifierOutput(ModelOutput):
"""
Dinat outputs for image classification.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
# Copied from transformers.models.nat.modeling_nat.NatEmbeddings with Nat->Dinat
class DinatEmbeddings(nn.Module):
"""
Construct the patch and position embeddings.
"""
def __init__(self, config):
super().__init__()
self.patch_embeddings = DinatPatchEmbeddings(config)
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]:
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.nat.modeling_nat.NatPatchEmbeddings with Nat->Dinat
class DinatPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
patch_size = config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
self.num_channels = num_channels
if patch_size == 4:
pass
else:
# TODO: Support arbitrary patch sizes.
raise ValueError("Dinat only supports patch size of 4 at the moment.")
self.projection = nn.Sequential(
nn.Conv2d(self.num_channels, hidden_size // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.Conv2d(hidden_size // 2, hidden_size, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
)
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> torch.Tensor:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
embeddings = embeddings.permute(0, 2, 3, 1)
return embeddings
# Copied from transformers.models.nat.modeling_nat.NatDownsampler with Nat->Dinat
class DinatDownsampler(nn.Module):
"""
Convolutional Downsampling Layer.
Args:
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.dim = dim
self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, input_feature: torch.Tensor) -> torch.Tensor:
input_feature = self.reduction(input_feature.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
input_feature = self.norm(input_feature)
return input_feature
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Dinat
class DinatDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class NeighborhoodAttention(nn.Module):
def __init__(self, config, dim, num_heads, kernel_size, dilation):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.kernel_size = kernel_size
self.dilation = dilation
# rpb is learnable relative positional biases; same concept is used Swin.
self.rpb = nn.Parameter(torch.zeros(num_heads, (2 * self.kernel_size - 1), (2 * self.kernel_size - 1)))
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttention.transpose_for_scores with Nat->Dinat
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 3, 1, 2, 4)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Apply the scale factor before computing attention weights. It's usually more efficient because
# attention weights are typically a bigger tensor compared to query.
# It gives identical results because scalars are commutable in matrix multiplication.
query_layer = query_layer / math.sqrt(self.attention_head_size)
# Compute NA between "query" and "key" to get the raw attention scores, and add relative positional biases.
attention_scores = natten2dqkrpb(query_layer, key_layer, self.rpb, self.kernel_size, self.dilation)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = natten2dav(attention_probs, value_layer, self.kernel_size, self.dilation)
context_layer = context_layer.permute(0, 2, 3, 1, 4).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionOutput
class NeighborhoodAttentionOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class NeighborhoodAttentionModule(nn.Module):
def __init__(self, config, dim, num_heads, kernel_size, dilation):
super().__init__()
self.self = NeighborhoodAttention(config, dim, num_heads, kernel_size, dilation)
self.output = NeighborhoodAttentionOutput(config, dim)
self.pruned_heads = set()
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.forward
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.nat.modeling_nat.NatIntermediate with Nat->Dinat
class DinatIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.nat.modeling_nat.NatOutput with Nat->Dinat
class DinatOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class DinatLayer(nn.Module):
def __init__(self, config, dim, num_heads, dilation, drop_path_rate=0.0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.kernel_size = config.kernel_size
self.dilation = dilation
self.window_size = self.kernel_size * self.dilation
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = NeighborhoodAttentionModule(
config, dim, num_heads, kernel_size=self.kernel_size, dilation=self.dilation
)
self.drop_path = DinatDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = DinatIntermediate(config, dim)
self.output = DinatOutput(config, dim)
self.layer_scale_parameters = (
nn.Parameter(config.layer_scale_init_value * torch.ones((2, dim)), requires_grad=True)
if config.layer_scale_init_value > 0
else None
)
def maybe_pad(self, hidden_states, height, width):
window_size = self.window_size
pad_values = (0, 0, 0, 0, 0, 0)
if height < window_size or width < window_size:
pad_l = pad_t = 0
pad_r = max(0, window_size - width)
pad_b = max(0, window_size - height)
pad_values = (0, 0, pad_l, pad_r, pad_t, pad_b)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, height, width, channels = hidden_states.size()
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
# pad hidden_states if they are smaller than kernel size x dilation
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
attention_outputs = self.attention(hidden_states, output_attentions=output_attentions)
attention_output = attention_outputs[0]
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_output = attention_output[:, :height, :width, :].contiguous()
if self.layer_scale_parameters is not None:
attention_output = self.layer_scale_parameters[0] * attention_output
hidden_states = shortcut + self.drop_path(attention_output)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.output(self.intermediate(layer_output))
if self.layer_scale_parameters is not None:
layer_output = self.layer_scale_parameters[1] * layer_output
layer_output = hidden_states + self.drop_path(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
class DinatStage(nn.Module):
def __init__(self, config, dim, depth, num_heads, dilations, drop_path_rate, downsample):
super().__init__()
self.config = config
self.dim = dim
self.layers = nn.ModuleList(
[
DinatLayer(
config=config,
dim=dim,
num_heads=num_heads,
dilation=dilations[i],
drop_path_rate=drop_path_rate[i],
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
# Copied from transformers.models.nat.modeling_nat.NatStage.forward
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
_, height, width, _ = hidden_states.size()
for i, layer_module in enumerate(self.layers):
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
hidden_states = self.downsample(hidden_states_before_downsampling)
stage_outputs = (hidden_states, hidden_states_before_downsampling)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
class DinatEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.num_levels = len(config.depths)
self.config = config
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
self.levels = nn.ModuleList(
[
DinatStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
dilations=config.dilations[i_layer],
drop_path_rate=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=DinatDownsampler if (i_layer < self.num_levels - 1) else None,
)
for i_layer in range(self.num_levels)
]
)
# Copied from transformers.models.nat.modeling_nat.NatEncoder.forward with Nat->Dinat
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, DinatEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.levels):
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
if output_hidden_states and output_hidden_states_before_downsampling:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states_before_downsampling.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[2:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return DinatEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
class DinatPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DinatConfig
base_model_prefix = "dinat"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DINAT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`DinatConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DINAT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.",
DINAT_START_DOCSTRING,
)
# Copied from transformers.models.nat.modeling_nat.NatModel with Nat->Dinat, NAT->DINAT
class DinatModel(DinatPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
requires_backends(self, ["natten"])
self.config = config
self.num_levels = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_levels - 1))
self.embeddings = DinatEmbeddings(config)
self.encoder = DinatEncoder(config)
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=DinatModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DinatModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.flatten(1, 2).transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return DinatModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
Dinat Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
DINAT_START_DOCSTRING,
)
class DinatForImageClassification(DinatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
requires_backends(self, ["natten"])
self.num_labels = config.num_labels
self.dinat = DinatModel(config)
# Classifier head
self.classifier = (
nn.Linear(self.dinat.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=DinatImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DinatImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.dinat(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DinatImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"NAT backbone, to be used with frameworks like DETR and MaskFormer.",
DINAT_START_DOCSTRING,
)
class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
requires_backends(self, ["natten"])
self.embeddings = DinatEmbeddings(config)
self.encoder = DinatEncoder(config)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = AutoBackbone.from_pretrained(
... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 512, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=True,
output_hidden_states_before_downsampling=True,
return_dict=True,
)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
batch_size, num_channels, height, width = hidden_state.shape
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
hidden_state = self.hidden_states_norms[stage](hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/dinat/modeling_dinat.py/0 | {
"file_path": "transformers/src/transformers/models/dinat/modeling_dinat.py",
"repo_id": "transformers",
"token_count": 17128
} | 300 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Donut checkpoints using the original `donut-python` library. URL: https://github.com/clovaai/donut"""
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def get_configs(model):
original_config = model.config
encoder_config = DonutSwinConfig(
image_size=original_config.input_size,
patch_size=4,
depths=original_config.encoder_layer,
num_heads=[4, 8, 16, 32],
window_size=original_config.window_size,
embed_dim=128,
)
decoder_config = MBartConfig(
is_decoder=True,
is_encoder_decoder=False,
add_cross_attention=True,
decoder_layers=original_config.decoder_layer,
max_position_embeddings=original_config.max_position_embeddings,
vocab_size=len(
model.decoder.tokenizer
), # several special tokens are added to the vocab of XLMRobertaTokenizer, see repo on the hub (added_tokens.json)
scale_embedding=True,
add_final_layer_norm=True,
)
return encoder_config, decoder_config
def rename_key(name):
if "encoder.model" in name:
name = name.replace("encoder.model", "encoder")
if "decoder.model" in name:
name = name.replace("decoder.model", "decoder")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.norm")
if name.startswith("encoder"):
if "layers" in name:
name = "encoder." + name
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name and "mask" not in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if name == "encoder.norm.weight":
name = "encoder.layernorm.weight"
if name == "encoder.norm.bias":
name = "encoder.layernorm.bias"
return name
def convert_state_dict(orig_state_dict, model):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[3])
block_num = int(key_split[5])
dim = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight"
] = val[:dim, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"
] = val[dim : dim * 2, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"
] = val[:dim]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"
] = val[dim : dim * 2]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"
] = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def convert_donut_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
# load original model
original_model = DonutModel.from_pretrained(model_name).eval()
# load HuggingFace model
encoder_config, decoder_config = get_configs(original_model)
encoder = DonutSwinModel(encoder_config)
decoder = MBartForCausalLM(decoder_config)
model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
model.eval()
state_dict = original_model.state_dict()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# verify results on scanned document
dataset = load_dataset("hf-internal-testing/example-documents")
image = dataset["test"][0]["image"].convert("RGB")
tokenizer = XLMRobertaTokenizerFast.from_pretrained(model_name, from_slow=True)
image_processor = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis, size=original_model.config.input_size[::-1]
)
processor = DonutProcessor(image_processor, tokenizer)
pixel_values = processor(image, return_tensors="pt").pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
question = "When is the coffee break?"
task_prompt = task_prompt.replace("{user_input}", question)
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
task_prompt = "<s_rvlcdip>"
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
task_prompt = "<s_cord>"
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
task_prompt = "s_cord-v2>"
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
task_prompt = "<s_zhtrainticket>"
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
task_prompt = "hello world"
else:
raise ValueError("Model name not supported")
prompt_tensors = original_model.decoder.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")[
"input_ids"
]
original_patch_embed = original_model.encoder.model.patch_embed(pixel_values)
patch_embeddings, _ = model.encoder.embeddings(pixel_values)
assert torch.allclose(original_patch_embed, patch_embeddings, atol=1e-3)
# verify encoder hidden states
original_last_hidden_state = original_model.encoder(pixel_values)
last_hidden_state = model.encoder(pixel_values).last_hidden_state
assert torch.allclose(original_last_hidden_state, last_hidden_state, atol=1e-2)
# verify decoder hidden states
original_logits = original_model(pixel_values, prompt_tensors, None).logits
logits = model(pixel_values, decoder_input_ids=prompt_tensors).logits
assert torch.allclose(original_logits, logits, atol=1e-3)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model.push_to_hub("nielsr/" + model_name.split("/")[-1], commit_message="Update model")
processor.push_to_hub("nielsr/" + model_name.split("/")[-1], commit_message="Update model")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="naver-clova-ix/donut-base-finetuned-docvqa",
required=False,
type=str,
help="Name of the original model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
required=False,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub.",
)
args = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| transformers/src/transformers/models/donut/convert_donut_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/donut/convert_donut_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4042
} | 301 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert DPT checkpoints from the original repository. URL: https://github.com/isl-org/DPT"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_dpt_config(checkpoint_url):
config = DPTConfig(embedding_type="hybrid")
if "large" in checkpoint_url:
config.hidden_size = 1024
config.intermediate_size = 4096
config.num_hidden_layers = 24
config.num_attention_heads = 16
config.backbone_out_indices = [5, 11, 17, 23]
config.neck_hidden_sizes = [256, 512, 1024, 1024]
expected_shape = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
config.hidden_size = 768
config.reassemble_factors = [1, 1, 1, 0.5]
config.neck_hidden_sizes = [256, 512, 768, 768]
config.num_labels = 150
config.patch_size = 16
expected_shape = (1, 384, 384)
config.use_batch_norm_in_fusion_residual = False
config.readout_type = "project"
if "ade" in checkpoint_url:
config.use_batch_norm_in_fusion_residual = True
config.hidden_size = 768
config.reassemble_stage = [1, 1, 1, 0.5]
config.num_labels = 150
config.patch_size = 16
repo_id = "huggingface/label-files"
filename = "ade20k-id2label.json"
id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
expected_shape = [1, 150, 480, 480]
return config, expected_shape
def remove_ignore_keys_(state_dict):
ignore_keys = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(k, None)
def rename_key(name):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
name = name.replace("pretrained.model", "dpt.encoder")
if "pretrained.model" in name:
name = name.replace("pretrained.model", "dpt.embeddings")
if "patch_embed" in name:
name = name.replace("patch_embed", "")
if "pos_embed" in name:
name = name.replace("pos_embed", "position_embeddings")
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "proj" in name and "project" not in name:
name = name.replace("proj", "projection")
if "blocks" in name:
name = name.replace("blocks", "layer")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if "norm1" in name and "backbone" not in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name and "backbone" not in name:
name = name.replace("norm2", "layernorm_after")
if "scratch.output_conv" in name:
name = name.replace("scratch.output_conv", "head")
if "scratch" in name:
name = name.replace("scratch", "neck")
if "layer1_rn" in name:
name = name.replace("layer1_rn", "convs.0")
if "layer2_rn" in name:
name = name.replace("layer2_rn", "convs.1")
if "layer3_rn" in name:
name = name.replace("layer3_rn", "convs.2")
if "layer4_rn" in name:
name = name.replace("layer4_rn", "convs.3")
if "refinenet" in name:
layer_idx = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4)}")
if "out_conv" in name:
name = name.replace("out_conv", "projection")
if "resConfUnit1" in name:
name = name.replace("resConfUnit1", "residual_layer1")
if "resConfUnit2" in name:
name = name.replace("resConfUnit2", "residual_layer2")
if "conv1" in name:
name = name.replace("conv1", "convolution1")
if "conv2" in name:
name = name.replace("conv2", "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
name = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
name = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
name = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
name = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
name = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
name = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
name = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
name = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
name = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
name = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
name = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
name = name.replace("pretrained", "dpt")
if "bn" in name:
name = name.replace("bn", "batch_norm")
if "head" in name:
name = name.replace("head", "head.head")
if "encoder.norm" in name:
name = name.replace("encoder.norm", "layernorm")
if "auxlayer" in name:
name = name.replace("auxlayer", "auxiliary_head.head")
if "backbone" in name:
name = name.replace("backbone", "backbone.bit.encoder")
if ".." in name:
name = name.replace("..", ".")
if "stem.conv" in name:
name = name.replace("stem.conv", "bit.embedder.convolution")
if "blocks" in name:
name = name.replace("blocks", "layers")
if "convolution" in name and "backbone" in name:
name = name.replace("convolution", "conv")
if "layer" in name and "backbone" in name:
name = name.replace("layer", "layers")
if "backbone.bit.encoder.bit" in name:
name = name.replace("backbone.bit.encoder.bit", "backbone.bit")
if "embedder.conv" in name:
name = name.replace("embedder.conv", "embedder.convolution")
if "backbone.bit.encoder.stem.norm" in name:
name = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm")
return name
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :]
state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-config.hidden_size :, :
]
state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_dpt_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub, model_name, show_prediction):
"""
Copy/paste/tweak model's weights to our DPT structure.
"""
# define DPT configuration based on URL
config, expected_shape = get_dpt_config(checkpoint_url)
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
state_dict = torch.load(checkpoint_url, map_location="cpu")
# remove certain keys
remove_ignore_keys_(state_dict)
# rename keys
for key in state_dict.copy().keys():
val = state_dict.pop(key)
state_dict[rename_key(key)] = val
# read in qkv matrices
read_in_q_k_v(state_dict, config)
# load HuggingFace model
model = DPTForSemanticSegmentation(config) if "ade" in checkpoint_url else DPTForDepthEstimation(config)
model.load_state_dict(state_dict)
model.eval()
# Check outputs on an image
size = 480 if "ade" in checkpoint_url else 384
image_processor = DPTImageProcessor(size=size)
image = prepare_img()
encoding = image_processor(image, return_tensors="pt")
# forward pass
outputs = model(**encoding).logits if "ade" in checkpoint_url else model(**encoding).predicted_depth
if show_prediction:
prediction = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1),
size=(image.size[1], image.size[0]),
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255).show()
if pytorch_dump_folder_path is not None:
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model.push_to_hub("ybelkada/dpt-hybrid-midas")
image_processor.push_to_hub("ybelkada/dpt-hybrid-midas")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
args = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| transformers/src/transformers/models/dpt/convert_dpt_hybrid_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/dpt/convert_dpt_hybrid_to_pytorch.py",
"repo_id": "transformers",
"token_count": 5467
} | 302 |
# coding=utf-8
# Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch EfficientNet model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_efficientnet import EfficientNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "EfficientNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/efficientnet-b7"
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/efficientnet-b7",
# See all EfficientNet models at https://huggingface.co/models?filter=efficientnet
]
EFFICIENTNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
EFFICIENTNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def round_filters(config: EfficientNetConfig, num_channels: int):
r"""
Round number of filters based on depth multiplier.
"""
divisor = config.depth_divisor
num_channels *= config.width_coefficient
new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_dim < 0.9 * num_channels:
new_dim += divisor
return int(new_dim)
def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
r"""
Utility function to get the tuple padding value for the depthwise convolution.
Args:
kernel_size (`int` or `tuple`):
Kernel size of the convolution layers.
adjust (`bool`, *optional*, defaults to `True`):
Adjusts padding value to apply to right and bottom sides of the input.
"""
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
if adjust:
return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
else:
return (correct[1], correct[1], correct[0], correct[0])
class EfficientNetEmbeddings(nn.Module):
r"""
A module that corresponds to the stem module of the original work.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.out_dim = round_filters(config, 32)
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
self.convolution = nn.Conv2d(
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
)
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
self.activation = ACT2FN[config.hidden_act]
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
features = self.padding(pixel_values)
features = self.convolution(features)
features = self.batchnorm(features)
features = self.activation(features)
return features
class EfficientNetDepthwiseConv2d(nn.Conv2d):
def __init__(
self,
in_channels,
depth_multiplier=1,
kernel_size=3,
stride=1,
padding=0,
dilation=1,
bias=True,
padding_mode="zeros",
):
out_channels = in_channels * depth_multiplier
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=bias,
padding_mode=padding_mode,
)
class EfficientNetExpansionLayer(nn.Module):
r"""
This corresponds to the expansion phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int):
super().__init__()
self.expand_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
self.expand_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Expand phase
hidden_states = self.expand_conv(hidden_states)
hidden_states = self.expand_bn(hidden_states)
hidden_states = self.expand_act(hidden_states)
return hidden_states
class EfficientNetDepthwiseLayer(nn.Module):
r"""
This corresponds to the depthwise convolution phase of each block in the original implementation.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
stride: int,
kernel_size: int,
adjust_padding: bool,
):
super().__init__()
self.stride = stride
conv_pad = "valid" if self.stride == 2 else "same"
padding = correct_pad(kernel_size, adjust=adjust_padding)
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
self.depthwise_conv = EfficientNetDepthwiseConv2d(
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
)
self.depthwise_norm = nn.BatchNorm2d(
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.depthwise_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Depthwise convolution
if self.stride == 2:
hidden_states = self.depthwise_conv_pad(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.depthwise_norm(hidden_states)
hidden_states = self.depthwise_act(hidden_states)
return hidden_states
class EfficientNetSqueezeExciteLayer(nn.Module):
r"""
This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False):
super().__init__()
self.dim = expand_dim if expand else in_dim
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
self.reduce = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim_se,
kernel_size=1,
padding="same",
)
self.expand = nn.Conv2d(
in_channels=self.dim_se,
out_channels=self.dim,
kernel_size=1,
padding="same",
)
self.act_reduce = ACT2FN[config.hidden_act]
self.act_expand = nn.Sigmoid()
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
inputs = hidden_states
hidden_states = self.squeeze(hidden_states)
hidden_states = self.reduce(hidden_states)
hidden_states = self.act_reduce(hidden_states)
hidden_states = self.expand(hidden_states)
hidden_states = self.act_expand(hidden_states)
hidden_states = torch.mul(inputs, hidden_states)
return hidden_states
class EfficientNetFinalBlockLayer(nn.Module):
r"""
This corresponds to the final phase of each block in the original implementation.
"""
def __init__(
self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
):
super().__init__()
self.apply_dropout = stride == 1 and not id_skip
self.project_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.project_bn = nn.BatchNorm2d(
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.dropout = nn.Dropout(p=drop_rate)
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
hidden_states = self.project_conv(hidden_states)
hidden_states = self.project_bn(hidden_states)
if self.apply_dropout:
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + embeddings
return hidden_states
class EfficientNetBlock(nn.Module):
r"""
This corresponds to the expansion and depthwise convolution phase of each block in the original implementation.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
in_dim (`int`):
Number of input channels.
out_dim (`int`):
Number of output channels.
stride (`int`):
Stride size to be used in convolution layers.
expand_ratio (`int`):
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
kernel_size (`int`):
Kernel size for the depthwise convolution layer.
drop_rate (`float`):
Dropout rate to be used in the final phase of each block.
id_skip (`bool`):
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
of each block. Set to `True` for the first block of each stage.
adjust_padding (`bool`):
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
operation, set to `True` for inputs with odd input sizes.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
out_dim: int,
stride: int,
expand_ratio: int,
kernel_size: int,
drop_rate: float,
id_skip: bool,
adjust_padding: bool,
):
super().__init__()
self.expand_ratio = expand_ratio
self.expand = True if self.expand_ratio != 1 else False
expand_in_dim = in_dim * expand_ratio
if self.expand:
self.expansion = EfficientNetExpansionLayer(
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
)
self.depthwise_conv = EfficientNetDepthwiseLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
stride=stride,
kernel_size=kernel_size,
adjust_padding=adjust_padding,
)
self.squeeze_excite = EfficientNetSqueezeExciteLayer(
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
)
self.projection = EfficientNetFinalBlockLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
out_dim=out_dim,
stride=stride,
drop_rate=drop_rate,
id_skip=id_skip,
)
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
embeddings = hidden_states
# Expansion and depthwise convolution phase
if self.expand_ratio != 1:
hidden_states = self.expansion(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
# Squeeze and excite phase
hidden_states = self.squeeze_excite(hidden_states)
hidden_states = self.projection(embeddings, hidden_states)
return hidden_states
class EfficientNetEncoder(nn.Module):
r"""
Forward propogates the embeddings through each EfficientNet block.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.config = config
self.depth_coefficient = config.depth_coefficient
def round_repeats(repeats):
# Round number of block repeats based on depth multiplier.
return int(math.ceil(self.depth_coefficient * repeats))
num_base_blocks = len(config.in_channels)
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
curr_block_num = 0
blocks = []
for i in range(num_base_blocks):
in_dim = round_filters(config, config.in_channels[i])
out_dim = round_filters(config, config.out_channels[i])
stride = config.strides[i]
kernel_size = config.kernel_sizes[i]
expand_ratio = config.expand_ratios[i]
for j in range(round_repeats(config.num_block_repeats[i])):
id_skip = True if j == 0 else False
stride = 1 if j > 0 else stride
in_dim = out_dim if j > 0 else in_dim
adjust_padding = False if curr_block_num in config.depthwise_padding else True
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
block = EfficientNetBlock(
config=config,
in_dim=in_dim,
out_dim=out_dim,
stride=stride,
kernel_size=kernel_size,
expand_ratio=expand_ratio,
drop_rate=drop_rate,
id_skip=id_skip,
adjust_padding=adjust_padding,
)
blocks.append(block)
curr_block_num += 1
self.blocks = nn.ModuleList(blocks)
self.top_conv = nn.Conv2d(
in_channels=out_dim,
out_channels=round_filters(config, 1280),
kernel_size=1,
padding="same",
bias=False,
)
self.top_bn = nn.BatchNorm2d(
num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.top_activation = ACT2FN[config.hidden_act]
def forward(
self,
hidden_states: torch.FloatTensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> BaseModelOutputWithNoAttention:
all_hidden_states = (hidden_states,) if output_hidden_states else None
for block in self.blocks:
hidden_states = block(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = self.top_conv(hidden_states)
hidden_states = self.top_bn(hidden_states)
hidden_states = self.top_activation(hidden_states)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
class EfficientNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientNetConfig
base_model_prefix = "efficientnet"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@add_start_docstrings(
"The bare EfficientNet model outputting raw features without any specific head on top.",
EFFICIENTNET_START_DOCSTRING,
)
class EfficientNetModel(EfficientNetPreTrainedModel):
def __init__(self, config: EfficientNetConfig):
super().__init__(config)
self.config = config
self.embeddings = EfficientNetEmbeddings(config)
self.encoder = EfficientNetEncoder(config)
# Final pooling layer
if config.pooling_type == "mean":
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
elif config.pooling_type == "max":
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
else:
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Apply pooling
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
# Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280)
pooled_output = pooled_output.reshape(pooled_output.shape[:2])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g.
for ImageNet.
""",
EFFICIENTNET_START_DOCSTRING,
)
class EfficientNetForImageClassification(EfficientNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.efficientnet = EfficientNetModel(config)
# Classifier head
self.dropout = nn.Dropout(p=config.dropout_rate)
self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
| transformers/src/transformers/models/efficientnet/modeling_efficientnet.py/0 | {
"file_path": "transformers/src/transformers/models/efficientnet/modeling_efficientnet.py",
"repo_id": "transformers",
"token_count": 10404
} | 303 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Classes to support Encoder-Decoder architectures"""
import gc
import inspect
import os
import tempfile
import warnings
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...configuration_utils import PretrainedConfig
from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM
from .configuration_encoder_decoder import EncoderDecoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "EncoderDecoderConfig"
DEPRECATION_WARNING = (
"Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
" encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
" fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the"
" labels, no need to pass them yourself anymore."
)
ENCODER_DECODER_START_DOCSTRING = r"""
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
generative task, like summarization.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
(see the examples for more information).
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ENCODER_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
"""
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
class EncoderDecoderModel(PreTrainedModel):
r"""
[`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one
of the base model classes of the library as encoder and another one as decoder when created with the
:meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
:meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
"""
config_class = EncoderDecoderConfig
base_model_prefix = "encoder_decoder"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
):
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
" `config.encoder.hidden_size`."
)
# initialize with config
super().__init__(config)
if encoder is None:
from ..auto.modeling_auto import AutoModel
encoder = AutoModel.from_config(config.encoder)
if decoder is None:
from ..auto.modeling_auto import AutoModelForCausalLM
decoder = AutoModelForCausalLM.from_config(config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
# encoder outputs might need to be projected to different dimension for decoder
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)
if self.encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
)
decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys())
if "encoder_hidden_states" not in decoder_signature:
raise ValueError(
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
)
# tie encoder, decoder weights if config set accordingly
self.tie_weights()
def tie_weights(self):
# tie encoder & decoder if needed
if self.config.tie_encoder_decoder:
# tie encoder and decoder base model
decoder_base_model_prefix = self.decoder.base_model_prefix
self._tie_encoder_decoder_weights(
self.encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix
)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Example:
```python
>>> from transformers import EncoderDecoderModel
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
```"""
from_tf = kwargs.pop("from_tf", False)
if from_tf:
from transformers import TFEncoderDecoderModel
# a workaround to load from tensorflow checkpoint
# Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get
# extended before saving those components. For example, The name of `_tf_model.encoder.vit` is
# `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The
# [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`,
# which should not occur when we want to save the components alone.
# There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
# https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
# (the change in `src/transformers/modeling_tf_utils.py`)
_tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
config = _tf_model.config
# Using `tf_model` instead
encoder = _tf_model.encoder.__class__(_tf_model.config.encoder)
decoder = _tf_model.decoder.__class__(_tf_model.config.decoder)
# Make sure models are built
encoder(encoder.dummy_inputs)
decoder(decoder.dummy_inputs)
# Get the variable correspondence between `_tf_model` and `encoder` and `decoder`
encoder_variables = {}
for v in encoder.trainable_variables + encoder.non_trainable_variables:
encoder_variables["/".join(v.name.split("/")[1:])] = v
decoder_variables = {}
for v in decoder.trainable_variables + decoder.non_trainable_variables:
decoder_variables["/".join(v.name.split("/")[1:])] = v
_encoder_variables = {}
for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables:
_encoder_variables["/".join(v.name.split("/")[2:])] = v
_decoder_variables = {}
for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables:
_decoder_variables["/".join(v.name.split("/")[2:])] = v
# assign weight values to `encoder` and `decoder` from `_tf_model`
for name, v in encoder_variables.items():
v.assign(_encoder_variables[name])
for name, v in decoder_variables.items():
v.assign(_decoder_variables[name])
tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder)
# Deal with `enc_to_dec_proj`
if hasattr(_tf_model, "enc_to_dec_proj"):
tf_model(tf_model.dummy_inputs)
tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel)
tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias)
with tempfile.TemporaryDirectory() as tmpdirname:
encoder_dir = os.path.join(tmpdirname, "encoder")
decoder_dir = os.path.join(tmpdirname, "decoder")
tf_model.encoder.save_pretrained(encoder_dir)
tf_model.decoder.save_pretrained(decoder_dir)
if hasattr(tf_model, "enc_to_dec_proj"):
enc_to_dec_proj_weight = torch.transpose(
torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0
)
enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy())
del _tf_model
del tf_model
gc.collect()
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True
)
# This is only for copying some specific attributes of this particular model.
model.config = config
if hasattr(model, "enc_to_dec_proj"):
model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous()
model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous()
return model
# At the moment fast initialization is not supported for composite models
if kwargs.get("_fast_init", False):
logger.warning(
"Fast initialization is currently not supported for EncoderDecoderModel. "
"Falling back to slow initialization..."
)
kwargs["_fast_init"] = False
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import EncoderDecoderModel
>>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2bert")
>>> # load fine-tuned model
>>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
```"""
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config)
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import EncoderDecoderModel, BertTokenizer
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
... "bert-base-uncased", "bert-base-uncased"
... ) # initialize Bert2Bert from pre-trained checkpoints
>>> # training
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
>>> model.config.pad_token_id = tokenizer.pad_token_id
>>> model.config.vocab_size = model.config.decoder.vocab_size
>>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids
>>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss, logits = outputs.loss, outputs.logits
>>> # save and load from pretrained
>>> model.save_pretrained("bert2bert")
>>> model = EncoderDecoderModel.from_pretrained("bert2bert")
>>> # generation
>>> generated = model.generate(input_ids)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.new_tensor(decoder_input_ids != self.config.pad_token_id)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Compute loss independent from decoder (as some shift the logits inside them)
loss = None
if labels is not None:
warnings.warn(DEPRECATION_WARNING, FutureWarning)
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
):
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
input_dict = {
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_input_ids": decoder_inputs["input_ids"],
"encoder_outputs": encoder_outputs,
"past_key_values": decoder_inputs["past_key_values"],
"use_cache": use_cache,
}
return input_dict
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
" model.decoder.resize_token_embeddings(...))"
)
def _reorder_cache(self, past_key_values, beam_idx):
# apply decoder cache reordering here
return self.decoder._reorder_cache(past_key_values, beam_idx)
| transformers/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py/0 | {
"file_path": "transformers/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py",
"repo_id": "transformers",
"token_count": 14818
} | 304 |
from .chunk_utils import chunk_layer
from .data_transforms import make_atom14_masks
from .feats import atom14_to_atom37, frames_and_literature_positions_to_atom14_pos, torsion_angles_to_frames
from .loss import compute_predicted_aligned_error, compute_tm
from .protein import Protein as OFProtein
from .protein import to_pdb
from .rigid_utils import Rigid, Rotation
from .tensor_utils import dict_multimap, flatten_final_dims, permute_final_dims
| transformers/src/transformers/models/esm/openfold_utils/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/esm/openfold_utils/__init__.py",
"repo_id": "transformers",
"token_count": 144
} | 305 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert FastSpeech2Conformer checkpoint."""
import argparse
import json
import re
from pathlib import Path
from tempfile import TemporaryDirectory
import torch
import yaml
from transformers import (
FastSpeech2ConformerConfig,
FastSpeech2ConformerModel,
FastSpeech2ConformerTokenizer,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger("transformers.models.FastSpeech2Conformer")
CONFIG_MAPPING = {
"adim": "hidden_size",
"aheads": "num_attention_heads",
"conformer_dec_kernel_size": "decoder_kernel_size",
"conformer_enc_kernel_size": "encoder_kernel_size",
"decoder_normalize_before": "decoder_normalize_before",
"dlayers": "decoder_layers",
"dunits": "decoder_linear_units",
"duration_predictor_chans": "duration_predictor_channels",
"duration_predictor_kernel_size": "duration_predictor_kernel_size",
"duration_predictor_layers": "duration_predictor_layers",
"elayers": "encoder_layers",
"encoder_normalize_before": "encoder_normalize_before",
"energy_embed_dropout": "energy_embed_dropout",
"energy_embed_kernel_size": "energy_embed_kernel_size",
"energy_predictor_chans": "energy_predictor_channels",
"energy_predictor_dropout": "energy_predictor_dropout",
"energy_predictor_kernel_size": "energy_predictor_kernel_size",
"energy_predictor_layers": "energy_predictor_layers",
"eunits": "encoder_linear_units",
"pitch_embed_dropout": "pitch_embed_dropout",
"pitch_embed_kernel_size": "pitch_embed_kernel_size",
"pitch_predictor_chans": "pitch_predictor_channels",
"pitch_predictor_dropout": "pitch_predictor_dropout",
"pitch_predictor_kernel_size": "pitch_predictor_kernel_size",
"pitch_predictor_layers": "pitch_predictor_layers",
"positionwise_conv_kernel_size": "positionwise_conv_kernel_size",
"postnet_chans": "speech_decoder_postnet_units",
"postnet_filts": "speech_decoder_postnet_kernel",
"postnet_layers": "speech_decoder_postnet_layers",
"reduction_factor": "reduction_factor",
"stop_gradient_from_energy_predictor": "stop_gradient_from_energy_predictor",
"stop_gradient_from_pitch_predictor": "stop_gradient_from_pitch_predictor",
"transformer_dec_attn_dropout_rate": "decoder_attention_dropout_rate",
"transformer_dec_dropout_rate": "decoder_dropout_rate",
"transformer_dec_positional_dropout_rate": "decoder_positional_dropout_rate",
"transformer_enc_attn_dropout_rate": "encoder_attention_dropout_rate",
"transformer_enc_dropout_rate": "encoder_dropout_rate",
"transformer_enc_positional_dropout_rate": "encoder_positional_dropout_rate",
"use_cnn_in_conformer": "use_cnn_in_conformer",
"use_macaron_style_in_conformer": "use_macaron_style_in_conformer",
"use_masking": "use_masking",
"use_weighted_masking": "use_weighted_masking",
"idim": "input_dim",
"odim": "num_mel_bins",
"spk_embed_dim": "speaker_embed_dim",
"langs": "num_languages",
"spks": "num_speakers",
}
def remap_model_yaml_config(yaml_config_path):
with Path(yaml_config_path).open("r", encoding="utf-8") as f:
args = yaml.safe_load(f)
args = argparse.Namespace(**args)
remapped_config = {}
model_params = args.tts_conf["text2mel_params"]
# espnet_config_key -> hf_config_key, any keys not included are ignored
for espnet_config_key, hf_config_key in CONFIG_MAPPING.items():
if espnet_config_key in model_params:
remapped_config[hf_config_key] = model_params[espnet_config_key]
return remapped_config, args.g2p, args.token_list
def convert_espnet_state_dict_to_hf(state_dict):
new_state_dict = {}
for key in state_dict:
if "tts.generator.text2mel." in key:
new_key = key.replace("tts.generator.text2mel.", "")
if "postnet" in key:
new_key = new_key.replace("postnet.postnet", "speech_decoder_postnet.layers")
new_key = new_key.replace(".0.weight", ".conv.weight")
new_key = new_key.replace(".1.weight", ".batch_norm.weight")
new_key = new_key.replace(".1.bias", ".batch_norm.bias")
new_key = new_key.replace(".1.running_mean", ".batch_norm.running_mean")
new_key = new_key.replace(".1.running_var", ".batch_norm.running_var")
new_key = new_key.replace(".1.num_batches_tracked", ".batch_norm.num_batches_tracked")
if "feat_out" in key:
if "weight" in key:
new_key = "speech_decoder_postnet.feat_out.weight"
if "bias" in key:
new_key = "speech_decoder_postnet.feat_out.bias"
if "encoder.embed.0.weight" in key:
new_key = new_key.replace("0.", "")
if "w_1" in key:
new_key = new_key.replace("w_1", "conv1")
if "w_2" in key:
new_key = new_key.replace("w_2", "conv2")
if "predictor.conv" in key:
new_key = new_key.replace(".conv", ".conv_layers")
pattern = r"(\d)\.(\d)"
replacement = (
r"\1.conv" if ("2.weight" not in new_key) and ("2.bias" not in new_key) else r"\1.layer_norm"
)
new_key = re.sub(pattern, replacement, new_key)
if "pitch_embed" in key or "energy_embed" in key:
new_key = new_key.replace("0", "conv")
if "encoders" in key:
new_key = new_key.replace("encoders", "conformer_layers")
new_key = new_key.replace("norm_final", "final_layer_norm")
new_key = new_key.replace("norm_mha", "self_attn_layer_norm")
new_key = new_key.replace("norm_ff_macaron", "ff_macaron_layer_norm")
new_key = new_key.replace("norm_ff", "ff_layer_norm")
new_key = new_key.replace("norm_conv", "conv_layer_norm")
if "lid_emb" in key:
new_key = new_key.replace("lid_emb", "language_id_embedding")
if "sid_emb" in key:
new_key = new_key.replace("sid_emb", "speaker_id_embedding")
new_state_dict[new_key] = state_dict[key]
return new_state_dict
@torch.no_grad()
def convert_FastSpeech2ConformerModel_checkpoint(
checkpoint_path,
yaml_config_path,
pytorch_dump_folder_path,
repo_id=None,
):
model_params, tokenizer_name, vocab = remap_model_yaml_config(yaml_config_path)
config = FastSpeech2ConformerConfig(**model_params)
# Prepare the model
model = FastSpeech2ConformerModel(config)
espnet_checkpoint = torch.load(checkpoint_path)
hf_compatible_state_dict = convert_espnet_state_dict_to_hf(espnet_checkpoint)
model.load_state_dict(hf_compatible_state_dict)
model.save_pretrained(pytorch_dump_folder_path)
# Prepare the tokenizer
with TemporaryDirectory() as tempdir:
vocab = {token: id for id, token in enumerate(vocab)}
vocab_file = Path(tempdir) / "vocab.json"
with open(vocab_file, "w") as f:
json.dump(vocab, f)
should_strip_spaces = "no_space" in tokenizer_name
tokenizer = FastSpeech2ConformerTokenizer(str(vocab_file), should_strip_spaces=should_strip_spaces)
tokenizer.save_pretrained(pytorch_dump_folder_path)
if repo_id:
print("Pushing to the hub...")
model.push_to_hub(repo_id)
tokenizer.push_to_hub(repo_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument(
"--yaml_config_path", required=True, default=None, type=str, help="Path to config.yaml of model to convert"
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
args = parser.parse_args()
convert_FastSpeech2ConformerModel_checkpoint(
args.checkpoint_path,
args.yaml_config_path,
args.pytorch_dump_folder_path,
args.push_to_hub,
)
| transformers/src/transformers/models/fastspeech2_conformer/convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/fastspeech2_conformer/convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3863
} | 306 |
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch FLAVA model."""
import collections
import math
from collections import OrderedDict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_flava import (
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/flava-full"
# Codebook docstring
_CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook"
_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig"
_CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig"
_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig"
_EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768]
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/flava-full",
# See all flava models at https://huggingface.co/models?filter=flava
]
FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST = ["facebook/flava-image-codebook"]
LOGIT_SCALE_CLAMP_MIN = 0
LOGIT_SCALE_CLAMP_MAX = 4.6052
FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig]
@dataclass
class FlavaModelOutput(ModelOutput):
"""
Output from FlavaModel containing embeddings and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
"""
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
class FlavaLosses(ModelOutput):
"""Class representing pretraining losses from FLAVA model
Args:
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
masked pairs in FLAVA.
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
data. This is calculated on unmasked images and texts.
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
Masked Multimodal Modeling loss's image component calculated on paired image-text data.
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
Masked Multimodal Modeling loss's text component calculated on paired image-text data.
"""
mim: Optional[torch.FloatTensor] = None
mlm: Optional[torch.FloatTensor] = None
itm: Optional[torch.FloatTensor] = None
global_contrastive: Optional[torch.FloatTensor] = None
mmm_image: Optional[torch.FloatTensor] = None
mmm_text: Optional[torch.FloatTensor] = None
def all_none(self) -> bool:
all_none = True
for v in self.values():
if v is not None:
all_none = False
break
return all_none
@dataclass
class FlavaForPreTrainingOutput(ModelOutput):
"""
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
Total loss calculated for this model.
loss_info (`FlavaLosses`):
Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
the keys.
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
to create masked images.
image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
The output of the [`FlavaTextModel`].
multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present):
The output of the [`FlavaMultimodalModel`].
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
returned when `bool_masked_pos` has some of the patches masked.
mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
the tokens masked.
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
output is returned when `bool_masked_pos` has some of the patches masked.
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
some of the tokens masked.
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity
scores. This is calculated on unmasked images and texts.
contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
texts.
"""
loss: Optional[torch.FloatTensor] = None
loss_info: FlavaLosses = None
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
image_masked_embeddings: Optional[torch.FloatTensor] = None
image_masked_output: Optional[BaseModelOutputWithPooling] = None
text_masked_embeddings: Optional[torch.FloatTensor] = None
text_masked_output: Optional[BaseModelOutputWithPooling] = None
multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
mim_logits: Optional[torch.FloatTensor] = None
mlm_logits: Optional[torch.FloatTensor] = None
itm_logits: Optional[torch.FloatTensor] = None
contrastive_logits_per_image: Optional[torch.FloatTensor] = None
contrastive_logits_per_text: Optional[torch.FloatTensor] = None
mmm_image_logits: Optional[torch.FloatTensor] = None
mmm_text_logits: Optional[torch.FloatTensor] = None
def to_tuple(self) -> Tuple[Any]:
transformer_outputs = [
"text_output",
"image_output",
"multimodal_output",
"text_masked_output",
"image_masked_output",
"multimodal_masked_output",
]
return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
class FlavaImageEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
super().__init__()
use_mask_token = use_mask_token or config.mask_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
self.patch_embeddings = PatchEmbeddings(
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.hidden_size,
)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174
"""
npatch = embeddings.shape[1] - 1
num_pos = self.position_embeddings.shape[1] - 1
if npatch == num_pos and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
num_h_patches = height // self.config.patch_size
num_w_patches = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2),
scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)),
mode="bicubic",
align_corners=False,
)
if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]:
raise ValueError(
f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})"
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# B X H X W = B X HW
if bool_masked_pos.dim() == 3:
bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
class PatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
image_size: int = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
num_channels: int = 3,
embed_dim: int = 768,
):
super().__init__()
if not isinstance(image_size, collections.abc.Iterable):
image_size = (image_size, image_size)
if not isinstance(patch_size, collections.abc.Iterable):
patch_size = (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
return x
class FlavaTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
):
input_shape = input_ids.size()
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class FlavaSelfAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class FlavaSelfOutput(nn.Module):
"""
The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
models), due to the layernorm applied before each block.
"""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class FlavaAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.attention = FlavaSelfAttention(config)
self.output = FlavaSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(
hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class FlavaIntermediate(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class FlavaOutput(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class FlavaLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = FlavaAttention(config)
self.intermediate = FlavaIntermediate(config)
self.output = FlavaOutput(config)
# TODO: Check fp32 layer norm possiblity
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
class FlavaEncoder(nn.Module):
def __init__(self, config: FlavaConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
class FlavaPooler(nn.Module):
def __init__(self, config: FlavaPossibleConfigs):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
FLAVA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`{config}`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FLAVA_INPUTS_DOCSTRING_COMMON = r"""
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`FlavaImageProcessor.__call__`] for details.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
"""
FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
"""
FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
FLAVA_MULTIMODAL_INPUTS_DOCSTRING = (
r"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
The concatenated hidden states of unimodal encoders.
"""
+ FLAVA_INPUTS_DOCSTRING_COMMON
)
FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r"""
Args:
skip_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
"""
FLAVA_MODEL_INPUTS_DOCSTRING = (
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ FLAVA_INPUTS_DOCSTRING_COMMON
+ FLAVA_MODEL_INPUTS_DOCSTRING_BASE
)
FLAVA_PRETRAINING_INPUTS_DOCSTRING = (
r"""
Args:
input_ids_masked (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
[`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
"""
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ r"""
image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
skip_unmasked_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
multimodal embeddings or outputs as of now.
mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
..., text_config.vocab_size - 1]`.
mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
generated automatically using the image codebook assigned to the model. By default, it uses
[`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
return_loss (`bool`, *optional*, default to None):
Whether to return calculated loss or not.
"""
+ FLAVA_INPUTS_DOCSTRING_COMMON
)
FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r"""
Parameters:
image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
be initialized using the image_codebook_config defined in the config first as the first parameter.
"""
class FlavaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlavaConfig
base_model_prefix = "flava"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@add_start_docstrings(
"The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"),
)
class FlavaImageModel(FlavaPreTrainedModel):
config_class = FlavaImageConfig
# This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.image_model"
main_input_name = "pixel_values"
def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaImageEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.patch_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
modality="vision",
expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"),
)
class FlavaTextModel(FlavaPreTrainedModel):
config_class = FlavaTextConfig
# This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.text_model"
def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaTextEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> PatchEmbeddings:
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=input_ids.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, input_ids.device
)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"),
)
class FlavaMultimodalModel(FlavaPreTrainedModel):
config_class = FlavaMultimodalConfig
# This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.multimodal_model"
main_input_name = "hidden_states"
def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.use_cls_token = self.config.use_cls_token
if self.use_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(
FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length, _ = hidden_states.size()
if self.use_cls_token:
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
seq_length += 1
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, (batch_size, seq_length), hidden_states.device
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaConfig"),
)
class FlavaModel(FlavaPreTrainedModel):
config_class = FlavaConfig
def __init__(self, config: FlavaConfig):
super().__init__(config)
if not isinstance(config.text_config, FlavaTextConfig):
raise ValueError(
"config.text_config is expected to be of type FlavaTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.image_config, FlavaImageConfig):
raise ValueError(
"config.image_config is expected to be of type FlavaImageConfig but is of type"
f" {type(config.image_config)}."
)
if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
raise ValueError(
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
+ f"is of type {type(config.multimodal_config)}."
)
text_config = config.text_config
image_config = config.image_config
multimodal_config = config.multimodal_config
self.projection_dim = config.projection_dim
self.text_hidden_size = text_config.hidden_size
self.image_hidden_size = image_config.hidden_size
self.mm_hidden_size = multimodal_config.hidden_size
self.text_model = FlavaTextModel(text_config)
self.image_model = FlavaImageModel(image_config)
self.multimodal_model = FlavaMultimodalModel(multimodal_config)
self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`FlavaTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
... )
>>> text_features = model.get_text_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[0] # last_hidden_state
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
def get_image_features(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`FlavaImageModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
image_outputs = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = image_outputs[0] # last_hidden_state
image_features = self.image_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(
FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_multimodal_encoder: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FlavaOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> image_embeddings = outputs.image_embeddings
>>> text_embeddings = outputs.text_embeddings
>>> multimodal_embeddings = outputs.multimodal_embeddings
>>> outputs.image_embeddings.shape
torch.Size([1, 197, 768])
>>> text_embeddings.shape
torch.Size([1, 7, 768])
>>> multimodal_embeddings.shape
torch.Size([1, 205, 768])
```
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if not output_hidden_states:
raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
image_embeddings = None
image_states = None
image_mm_projection = None
image_output = None
if pixel_values is not None:
image_output = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeddings, image_states = image_output[0], image_output[2]
# Note that these states don't use final layernorm in the transformer model
image_mm_projection = self.image_to_mm_projection(image_states[-1])
text_embeddings = None
text_states = None
text_mm_projection = None
text_output = None
if input_ids is not None:
text_output = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeddings, text_states = text_output[0], text_output[2]
# Note that these states don't use final layernorm in the transformer model
text_mm_projection = self.text_to_mm_projection(text_states[-1])
multimodal_embeddings = None
multimodal_output = None
if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
multimodal_output = self.multimodal_model(multimodal_input, return_dict=return_dict)
multimodal_embeddings = multimodal_output[0]
if not return_dict:
return (
image_embeddings,
image_output,
text_embeddings,
text_output,
multimodal_embeddings,
multimodal_output,
)
return FlavaModelOutput(
image_embeddings=image_embeddings,
image_output=image_output,
text_embeddings=text_embeddings,
text_output=text_output,
multimodal_embeddings=multimodal_embeddings,
multimodal_output=multimodal_output,
)
class FlavaImageCodebookResPath(nn.Module):
def __init__(self, in_size: int, out_size: int, **kwargs):
super().__init__()
hid_size = out_size // 4
path = OrderedDict()
path["relu_1"] = nn.ReLU()
path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
path["relu_2"] = nn.ReLU()
path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_3"] = nn.ReLU()
path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_4"] = nn.ReLU()
path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
self.path = nn.Sequential(path)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.path(x)
class FlavaImageCodebookBlock(nn.Module):
def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
super().__init__()
self.post_gain = 1 / (num_layers**2)
if in_size != out_size:
self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
else:
self.id_path = nn.Identity()
self.res_path = FlavaImageCodebookResPath(in_size, out_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.id_path(x) + self.post_gain * self.res_path(x)
class FlavaImageCodebookLayerGroup(nn.Module):
def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
super().__init__()
blocks = OrderedDict()
for i in range(num_blocks):
if i == 0:
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
else:
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
if use_pool:
blocks["pool"] = nn.MaxPool2d(kernel_size=2)
self.group = nn.Sequential(blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.group(x)
# Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42
@add_start_docstrings(
"""
The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
`get_codebook_indices` to get image tokens for an image.
""",
FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"),
)
class FlavaImageCodebook(FlavaPreTrainedModel):
base_model_prefix = ""
config_class = FlavaImageCodebookConfig
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def __init__(
self,
config: FlavaImageCodebookConfig,
**kwargs: Any,
):
super().__init__(config)
self.config = config
self.num_groups = config.num_groups
self.input_channels = config.input_channels
self.num_blocks_per_group = config.num_blocks_per_group
self.hidden_size = config.hidden_size
self.vocab_size = config.vocab_size
num_layers = self.num_groups * self.num_blocks_per_group
output_blocks = OrderedDict()
output_blocks["relu"] = nn.ReLU()
output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
blocks = OrderedDict()
blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
blocks["group_1"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
)
blocks["group_2"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
)
blocks["group_3"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
)
blocks["group_4"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
)
blocks["output"] = nn.Sequential(output_blocks)
self.blocks = nn.Sequential(blocks)
self.post_init()
if self.config.freeze:
for param in self.parameters():
param.requires_grad = False
def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model.get_codebook_indices(**inputs)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
z_logits = self.blocks(pixel_values)
return torch.argmax(z_logits, axis=1)
def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
z_logits = self.blocks(pixel_values)
return nn.Softmax(dim=1)(z_logits)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model(**inputs)
>>> print(outputs.shape)
(1, 196)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
if len(pixel_values.shape) != 4:
raise ValueError(f"input shape {pixel_values.shape} is not 4d")
if pixel_values.shape[1] != self.input_channels:
raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
return self.blocks(pixel_values)
class FlavaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FlavaMaskedPredictionHead(nn.Module):
def __init__(self, config, weight=None):
super().__init__()
self.config = config
self.transform = FlavaPredictionHeadTransform(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
if weight is not None:
self.decoder.weight = weight
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, x):
x = self.transform(x)
x = self.decoder(x)
return x
class FlavaITMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pooler = FlavaPooler(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, x):
x = self.pooler(x)
x = self.seq_relationship(x)
return x
class FlavaGlobalContrastiveHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.global_backprop_contrastive = config.global_backprop_contrastive
def forward(self, image_embeddings, text_embeddings, logit_scale):
temperature = torch.exp(logit_scale)
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
image_embeddings_all = [image_embeddings]
text_embeddings_all = [text_embeddings]
else:
local_batch_size = image_embeddings.size(0)
world_size = torch.distributed.get_world_size()
if self.global_backprop_contrastive:
# `torch.distributed.nn.functional.all_gather` does backprop on all active workers
# whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
else:
image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
torch.distributed.all_gather(image_embeddings_all, image_embeddings)
torch.distributed.all_gather(text_embeddings_all, text_embeddings)
labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
local_batch_size, device=image_embeddings.device
)
image_embeddings_all = torch.cat(image_embeddings_all)
text_embeddings_all = torch.cat(text_embeddings_all)
logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
return logits_per_image, logits_per_text, labels
@add_start_docstrings(
"""
The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
""",
FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA,
)
class FlavaForPreTraining(FlavaPreTrainedModel):
# Those are linked to xxx.bias
_tied_weights_keys = [
"mmm_text_head.decoder.bias",
"mmm_image_head.decoder.bias",
"mlm_head.decoder.bias",
"mim_head.decoder.bias",
]
def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
super().__init__(config)
self.flava = FlavaModel(config)
self.image_codebook = image_codebook
if self.image_codebook is None and config.init_codebook:
self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
# Levarage text and image encoder configs to create the masked
# head since it has the right vocab
self.mim_head = FlavaMaskedPredictionHead(config.image_config)
self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
self.itm_head = FlavaITMHead(config)
self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
self.image_vocab_size = config.image_config.vocab_size
self.text_vocab_size = config.text_config.vocab_size
self.mlm_weight = config.mlm_weight
self.mim_weight = config.mim_weight
self.global_contrastive_weight = config.global_contrastive_weight
self.ce_ignore_index = config.ce_ignore_index
self.itm_weight = config.itm_weight
self.mmm_image_weight = config.mmm_image_weight
self.mmm_text_weight = config.mmm_text_weight
self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
self.post_init()
def _resize_to_2d(self, x: torch.Tensor):
if x.dim() > 2:
x = x.view(x.size(0), -1)
return x
@add_start_docstrings_to_model_forward(
FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
)
@replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_ids_masked: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
codebook_pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_unmasked_multimodal_encoder: bool = None,
mlm_labels: Optional[torch.Tensor] = None,
mim_labels: Optional[torch.Tensor] = None,
itm_labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
return_loss: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
"""
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import FlavaForPreTraining, AutoProcessor
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> text = ["a photo of a cat"]
>>> inputs = processor(
... images=[image],
... text=text,
... return_masks=True,
... return_codebook_pixels=True,
... padding=True,
... max_length=77,
... return_tensors="pt",
... )
>>> output = model(**inputs)
```
Return:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return_loss = return_loss if return_loss is not None else self.config.return_loss
skip_unmasked_multimodal_encoder = (
skip_unmasked_multimodal_encoder
if skip_unmasked_multimodal_encoder is not None
else self.skip_unmasked_multimodal_encoder
)
if input_ids_masked is None and input_ids is not None:
logger.warning(
"`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
" `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
" you are doing inference on unmasked text..."
)
input_ids_masked = input_ids
flava_output = self.flava(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
image_attention_mask=image_attention_mask,
# Don't need unmasked multimodal embedding for anything so skip it
# NOTE: ITM uses masked version
skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
# Pass true to have deterministic outputs
return_dict=True,
)
flava_masked_output = self.flava(
input_ids=input_ids_masked,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
image_attention_mask=image_attention_mask,
bool_masked_pos=bool_masked_pos,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pos_mask = None
image_embeddings = flava_output.image_embeddings
text_embeddings = flava_output.text_embeddings
image_masked_embeddings = flava_masked_output.image_embeddings
text_masked_embeddings = flava_masked_output.text_embeddings
multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
itm_logits = logits_per_image = logits_per_text = None
# Calculate mim_labels if necessary from the image_codebook
if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
if mim_labels is None and return_loss:
if self.image_codebook is None:
raise RuntimeError(
"`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
" have been passed. Reinstantiate the model with `init_codebook` set to True or "
"pass in your custom `mim_labels`"
)
if codebook_pixel_values is None:
raise ValueError(
"`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
"Call `AutoProcessor` with `return_codebook_pixels` set to True"
)
mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
# Unimodal MIM Loss
# If multimodal embeddings are present, we will calculate MMM loss
if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_image = image_masked_embeddings
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mim_logits = self.mim_head(sequence_for_image)
if return_loss:
mim_loss = nn.functional.cross_entropy(
mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mim_loss *= self.mim_weight
else:
mim_logits = self.mim_head(sequence_for_image)
# Unimodal MLM Loss
if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_text = text_masked_embeddings
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mlm_logits = self.mlm_head(sequence_for_text)
if return_loss:
mlm_loss = nn.functional.cross_entropy(
mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mlm_loss *= self.mlm_weight
else:
mlm_logits = self.mlm_head(sequence_for_text)
# ITM Loss
if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
itm_logits = self.itm_head(multimodal_masked_embeddings)
if itm_labels is not None:
pos_pairs = itm_labels.ne(0)
pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
if return_loss:
itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
itm_loss *= self.itm_weight
if multimodal_masked_embeddings is not None:
multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
if mlm_labels is not None:
mlm_labels = mlm_labels[pos_mask]
if mim_labels is not None:
mim_labels = mim_labels[pos_mask]
bool_masked_pos = bool_masked_pos[pos_mask]
# MMM Image Loss
if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
sequence_for_image = multimodal_masked_embeddings
end_index = image_masked_embeddings.size(1) - 1
sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mmm_image_logits = self.mmm_image_head(sequence_for_image)
if return_loss:
mmm_image_loss = nn.functional.cross_entropy(
mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mmm_image_loss *= self.mmm_image_weight
else:
mmm_image_logits = self.mmm_image_head(sequence_for_image)
# MMM Text Loss
if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
sequence_for_text = multimodal_masked_embeddings
sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mmm_text_logits = self.mmm_text_head(sequence_for_text)
if return_loss:
mmm_text_loss = nn.functional.cross_entropy(
mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mmm_text_loss *= self.mmm_text_weight
else:
mmm_text_logits = self.mmm_text_head(sequence_for_text)
# Global Contrastive Loss
if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
text_embedding = nn.functional.normalize(text_embedding, dim=-1)
image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
image_embedding = nn.functional.normalize(image_embedding, dim=-1)
self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
image_embedding, text_embedding, self.flava.logit_scale
)
# Apply ITM negative mask if any
if pos_mask is not None:
logits_per_image = logits_per_image[pos_mask]
logits_per_text = logits_per_text[pos_mask]
gc_labels = gc_labels[pos_mask]
if return_loss:
gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
gc_loss = (gc_loss_image + gc_loss_text) / 2
gc_loss *= self.global_contrastive_weight
flava_losses = FlavaLosses(
mim=mim_loss,
mlm=mlm_loss,
itm=itm_loss,
global_contrastive=gc_loss,
mmm_image=mmm_image_loss,
mmm_text=mmm_text_loss,
)
if return_loss and not flava_losses.all_none():
total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
if not return_dict:
output = (
image_embeddings,
flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
text_embeddings,
flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
flava_output.multimodal_embeddings,
flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
image_masked_embeddings,
flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
text_masked_embeddings,
flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
multimodal_masked_embeddings,
flava_masked_output.multimodal_output.to_tuple()
if flava_masked_output.multimodal_output is not None
else None,
mim_logits,
mlm_logits,
itm_logits,
logits_per_image,
logits_per_image,
mmm_image_logits,
mmm_text_logits,
)
if return_loss and not flava_losses.all_none():
output = (
total_loss,
flava_losses,
) + output
# Filter None as transformer by default won't handle it
return tuple(x for x in output if x is None)
return FlavaForPreTrainingOutput(
loss=total_loss,
loss_info=flava_losses,
image_embeddings=image_embeddings,
image_output=flava_output.image_output,
text_embeddings=text_embeddings,
text_output=flava_output.text_output,
multimodal_embeddings=flava_output.multimodal_embeddings,
multimodal_output=flava_output.multimodal_output,
image_masked_embeddings=image_masked_embeddings,
image_masked_output=flava_masked_output.image_output,
text_masked_embeddings=text_masked_embeddings,
text_masked_output=flava_masked_output.text_output,
multimodal_masked_embeddings=multimodal_masked_embeddings,
multimodal_masked_output=flava_masked_output.multimodal_output,
mim_logits=mim_logits,
mlm_logits=mlm_logits,
itm_logits=itm_logits,
contrastive_logits_per_image=logits_per_image,
contrastive_logits_per_text=logits_per_text,
mmm_image_logits=mmm_image_logits,
mmm_text_logits=mmm_text_logits,
)
| transformers/src/transformers/models/flava/modeling_flava.py/0 | {
"file_path": "transformers/src/transformers/models/flava/modeling_flava.py",
"repo_id": "transformers",
"token_count": 41498
} | 307 |
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FSMT."""
import json
import os
import re
import unicodedata
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"src_vocab_file": "vocab-src.json",
"tgt_vocab_file": "vocab-tgt.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"src_vocab_file": {
"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-src.json"
},
"tgt_vocab_file": {
"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-tgt.json"
},
"merges_file": {"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/merges.txt"},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"stas/tiny-wmt19-en-de": 1024}
PRETRAINED_INIT_CONFIGURATION = {
"stas/tiny-wmt19-en-de": {
"langs": ["en", "de"],
"model_max_length": 1024,
"special_tokens_map_file": None,
"full_tokenizer_file": None,
}
}
def get_pairs(word):
"""
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def replace_unicode_punct(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
"""
text = text.replace(",", ",")
text = re.sub(r"。\s*", ". ", text)
text = text.replace("、", ",")
text = text.replace("”", '"')
text = text.replace("“", '"')
text = text.replace("∶", ":")
text = text.replace(":", ":")
text = text.replace("?", "?")
text = text.replace("《", '"')
text = text.replace("》", '"')
text = text.replace(")", ")")
text = text.replace("!", "!")
text = text.replace("(", "(")
text = text.replace(";", ";")
text = text.replace("1", "1")
text = text.replace("」", '"')
text = text.replace("「", '"')
text = text.replace("0", "0")
text = text.replace("3", "3")
text = text.replace("2", "2")
text = text.replace("5", "5")
text = text.replace("6", "6")
text = text.replace("9", "9")
text = text.replace("7", "7")
text = text.replace("8", "8")
text = text.replace("4", "4")
text = re.sub(r".\s*", ". ", text)
text = text.replace("~", "~")
text = text.replace("’", "'")
text = text.replace("…", "...")
text = text.replace("━", "-")
text = text.replace("〈", "<")
text = text.replace("〉", ">")
text = text.replace("【", "[")
text = text.replace("】", "]")
text = text.replace("%", "%")
return text
def remove_non_printing_char(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
"""
output = []
for char in text:
cat = unicodedata.category(char)
if cat.startswith("C"):
continue
output.append(char)
return "".join(output)
# Porting notes:
# this one is modeled after XLMTokenizer
#
# added:
# - src_vocab_file,
# - tgt_vocab_file,
# - langs,
class FSMTTokenizer(PreTrainedTokenizer):
"""
Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
- Moses preprocessing and tokenization.
- Normalizing all inputs text.
- The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like
"__classify__") to a vocabulary.
- The argument `langs` defines a pair of languages.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
langs (`List[str]`, *optional*):
A list of two languages to translate from and to, for instance `["en", "ru"]`.
src_vocab_file (`str`, *optional*):
File containing the vocabulary for the source language.
tgt_vocab_file (`st`, *optional*):
File containing the vocabulary for the target language.
merges_file (`str`, *optional*):
File containing the merges.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
langs=None,
src_vocab_file=None,
tgt_vocab_file=None,
merges_file=None,
do_lower_case=False,
unk_token="<unk>",
bos_token="<s>",
sep_token="</s>",
pad_token="<pad>",
**kwargs,
):
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
self.src_vocab_file = src_vocab_file
self.tgt_vocab_file = tgt_vocab_file
self.merges_file = merges_file
self.do_lower_case = do_lower_case
# cache of sm.MosesPunctNormalizer instance
self.cache_moses_punct_normalizer = {}
# cache of sm.MosesTokenizer instance
self.cache_moses_tokenizer = {}
self.cache_moses_detokenizer = {}
if langs and len(langs) == 2:
self.src_lang, self.tgt_lang = langs
else:
raise ValueError(
f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. "
"Usually that means that tokenizer can't find a mapping for the given model path "
"in PRETRAINED_VOCAB_FILES_MAP, and other maps of this tokenizer."
)
with open(src_vocab_file, encoding="utf-8") as src_vocab_handle:
self.encoder = json.load(src_vocab_handle)
with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle:
tgt_vocab = json.load(tgt_vocab_handle)
self.decoder = {v: k for k, v in tgt_vocab.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
langs=langs,
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
bos_token=bos_token,
sep_token=sep_token,
pad_token=pad_token,
**kwargs,
)
# hack override
def get_vocab(self) -> Dict[str, int]:
return self.get_src_vocab()
# hack override
@property
def vocab_size(self) -> int:
return self.src_vocab_size
def moses_punct_norm(self, text, lang):
if lang not in self.cache_moses_punct_normalizer:
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
self.cache_moses_punct_normalizer[lang] = punct_normalizer
return self.cache_moses_punct_normalizer[lang].normalize(text)
def moses_tokenize(self, text, lang):
if lang not in self.cache_moses_tokenizer:
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
self.cache_moses_tokenizer[lang] = moses_tokenizer
return self.cache_moses_tokenizer[lang].tokenize(
text, aggressive_dash_splits=True, return_str=False, escape=True
)
def moses_detokenize(self, tokens, lang):
if lang not in self.cache_moses_detokenizer:
moses_detokenizer = self.sm.MosesDetokenizer(lang=lang)
self.cache_moses_detokenizer[lang] = moses_detokenizer
return self.cache_moses_detokenizer[lang].detokenize(tokens)
def moses_pipeline(self, text, lang):
text = replace_unicode_punct(text)
text = self.moses_punct_norm(text, lang)
text = remove_non_printing_char(text)
return text
@property
def src_vocab_size(self):
return len(self.encoder)
@property
def tgt_vocab_size(self):
return len(self.decoder)
def get_src_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self):
return dict(self.decoder, **self.added_tokens_decoder)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + "</w>",)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n </w>":
word = "\n</w>"
self.cache[token] = word
return word
def _tokenize(self, text, lang="en", bypass_tokenizer=False):
"""
Tokenize a string given language code using Moses.
Details of tokenization:
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
- Install with `pip install sacremoses`
Args:
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported
languages. However, we don't enforce it.
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
(bool). If True, we only apply BPE.
Returns:
List of tokens.
"""
# ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en
# if lang != self.src_lang:
# raise ValueError(f"Expected lang={self.src_lang}, but got {lang}")
lang = self.src_lang
if self.do_lower_case:
text = text.lower()
if bypass_tokenizer:
text = text.split()
else:
text = self.moses_pipeline(text, lang=lang)
text = self.moses_tokenize(text, lang=lang)
split_tokens = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# remove BPE
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens]
tokens = "".join(tokens).split()
# detokenize
text = self.moses_detokenize(tokens, self.tgt_lang)
return text
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A FAIRSEQ Transformer sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
# no bos used in fairseq
if token_ids_1 is None:
return token_ids_0 + sep
return token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# no bos used in fairseq
if token_ids_1 is not None:
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ
Transformer sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An
FAIRSEQ_TRANSFORMER sequence pair mask has the following format:
"""
sep = [self.sep_token_id]
# no bos used in fairseq
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
src_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"]
)
tgt_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"]
)
merges_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(src_vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
with open(tgt_vocab_file, "w", encoding="utf-8") as f:
tgt_vocab = {v: k for k, v in self.decoder.items()}
f.write(json.dumps(tgt_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merges_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return src_vocab_file, tgt_vocab_file, merges_file
def __getstate__(self):
state = self.__dict__.copy()
state["sm"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
| transformers/src/transformers/models/fsmt/tokenization_fsmt.py/0 | {
"file_path": "transformers/src/transformers/models/fsmt/tokenization_fsmt.py",
"repo_id": "transformers",
"token_count": 9142
} | 308 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert GIT checkpoints from the original repository.
URL: https://github.com/microsoft/GenerativeImage2Text/tree/main"""
import argparse
from pathlib import Path
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
AutoTokenizer,
CLIPImageProcessor,
GitConfig,
GitForCausalLM,
GitProcessor,
GitVisionConfig,
VideoMAEImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_git_config(model_name):
if "base" in model_name and "vqa" in model_name:
image_size = 480
elif "large" in model_name and "vqa" in model_name:
image_size = 420
else:
image_size = 224
vision_config = GitVisionConfig(image_size=image_size)
if "large" in model_name:
vision_config.patch_size = 14
vision_config.hidden_size = 1024
vision_config.intermediate_size = 4096
vision_config.num_hidden_layers = 24
vision_config.num_attention_heads = 16
is_video = "vatex" in model_name or "msrvtt" in model_name
num_image_with_embedding = 6 if is_video else None
config = GitConfig(vision_config=vision_config.to_dict(), num_image_with_embedding=num_image_with_embedding)
return config, image_size, is_video
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, prefix=""):
rename_keys = []
# image encoder
# ftm: off
rename_keys.append(
(f"{prefix}image_encoder.class_embedding", "git.image_encoder.vision_model.embeddings.class_embedding")
)
rename_keys.append(
(
f"{prefix}image_encoder.positional_embedding",
"git.image_encoder.vision_model.embeddings.position_embedding.weight",
)
)
rename_keys.append(
(f"{prefix}image_encoder.conv1.weight", "git.image_encoder.vision_model.embeddings.patch_embedding.weight")
)
rename_keys.append((f"{prefix}image_encoder.ln_pre.weight", "git.image_encoder.vision_model.pre_layrnorm.weight"))
rename_keys.append((f"{prefix}image_encoder.ln_pre.bias", "git.image_encoder.vision_model.pre_layrnorm.bias"))
rename_keys.append(
(f"{prefix}image_encoder.ln_post.weight", "git.image_encoder.vision_model.post_layernorm.weight")
)
rename_keys.append((f"{prefix}image_encoder.ln_post.bias", "git.image_encoder.vision_model.post_layernorm.bias"))
# fmt: on
rename_keys.append((f"{prefix}image_encoder.proj", "git.image_encoder.visual_projection.weight"))
# fmt: off
for i in range(config.vision_config.num_hidden_layers):
# image encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.bias"))
# fmt: on
# text decoder
# fmt: off
rename_keys.append((f"{prefix}textual.embedding.words.weight", "git.embeddings.word_embeddings.weight"))
rename_keys.append((f"{prefix}textual.embedding.positions.weight", "git.embeddings.position_embeddings.weight"))
rename_keys.append((f"{prefix}textual.visual_projection.0.weight", "git.visual_projection.visual_projection.0.weight"))
rename_keys.append((f"{prefix}textual.visual_projection.0.bias", "git.visual_projection.visual_projection.0.bias"))
rename_keys.append((f"{prefix}textual.visual_projection.1.weight", "git.visual_projection.visual_projection.1.weight"))
rename_keys.append((f"{prefix}textual.visual_projection.1.bias", "git.visual_projection.visual_projection.1.bias"))
rename_keys.append((f"{prefix}textual.embedding.layer_norm.weight", "git.embeddings.LayerNorm.weight"))
rename_keys.append((f"{prefix}textual.embedding.layer_norm.bias", "git.embeddings.LayerNorm.bias"))
rename_keys.append((f"{prefix}textual.output.weight", "output.weight"))
rename_keys.append((f"{prefix}textual.output.bias", "output.bias"))
for i in range(config.num_hidden_layers):
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.weight", f"git.encoder.layer.{i}.attention.self.query.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.bias", f"git.encoder.layer.{i}.attention.self.query.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.weight", f"git.encoder.layer.{i}.attention.self.key.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.bias", f"git.encoder.layer.{i}.attention.self.key.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.weight", f"git.encoder.layer.{i}.attention.self.value.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.bias", f"git.encoder.layer.{i}.attention.self.value.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.weight", f"git.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.bias", f"git.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.weight", f"git.encoder.layer.{i}.attention.output.LayerNorm.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.bias", f"git.encoder.layer.{i}.attention.output.LayerNorm.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.weight", f"git.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.bias", f"git.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.weight", f"git.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.bias", f"git.encoder.layer.{i}.output.dense.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.weight", f"git.encoder.layer.{i}.output.LayerNorm.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.bias", f"git.encoder.layer.{i}.output.LayerNorm.bias"))
# fmt: on
if config.num_image_with_embedding is not None:
rename_keys.append(("img_temperal_embedding.0", "git.img_temperal_embedding.0"))
rename_keys.append(("img_temperal_embedding.1", "git.img_temperal_embedding.1"))
rename_keys.append(("img_temperal_embedding.2", "git.img_temperal_embedding.2"))
rename_keys.append(("img_temperal_embedding.3", "git.img_temperal_embedding.3"))
rename_keys.append(("img_temperal_embedding.4", "git.img_temperal_embedding.4"))
rename_keys.append(("img_temperal_embedding.5", "git.img_temperal_embedding.5"))
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val.T if "image_encoder.visual_projection" in new else val
# we split up the matrix of each CLIP encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, prefix=""):
dim = config.vision_config.hidden_size
for i in range(config.vision_config.num_hidden_layers):
# read in weights + bias of input projection layer (in the original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[
:dim, :
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:dim]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[
dim : dim * 2, :
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[
dim : dim * 2
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[
-dim:, :
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-dim:]
# We will verify our results on an image
def prepare_img(model_name):
if "textvqa" in model_name:
filepath = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
image = Image.open(filepath).convert("RGB")
else:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
def prepare_video():
from decord import VideoReader, cpu
# set seed for reproducability
np.random.seed(0)
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
"""
Sample a given number of frame indices from the video.
Args:
clip_len (`int`): Total number of frames to sample.
frame_sample_rate (`int`): Sample every n-th frame.
seg_len (`int`): Maximum allowed index of sample's last frame.
Returns:
indices (`List[int]`): List of sampled frame indices
"""
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
# video clip consists of 300 frames (10 seconds at 30 FPS)
file_path = hf_hub_download(repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset")
videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0))
# sample 6 frames
videoreader.seek(0)
indices = sample_frame_indices(clip_len=6, frame_sample_rate=4, seg_len=len(videoreader))
video = videoreader.get_batch(indices).asnumpy()
return video
@torch.no_grad()
def convert_git_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our GIT structure.
"""
model_name_to_url = {
"git-base": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE/snapshot/model.pt",
"git-base-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_COCO/snapshot/model.pt",
"git-base-textcaps": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTCAPS/snapshot/model.pt",
"git-base-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VQAv2/snapshot/model.pt",
"git-base-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTVQA/snapshot/model.pt", # todo
"git-base-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VATEX/snapshot/model.pt",
"git-base-msrvtt-qa": (
"https://publicgit.blob.core.windows.net/data/output/GIT_BASE_MSRVTT_QA/snapshot/model.pt"
),
"git-large": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE/snapshot/model.pt",
"git-large-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_COCO/snapshot/model.pt",
"git-large-textcaps": (
"https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTCAPS/snapshot/model.pt"
),
"git-large-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VQAv2/snapshot/model.pt",
"git-large-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTVQA/snapshot/model.pt",
"git-large-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VATEX/snapshot/model.pt",
"git-large-msrvtt-qa": (
"https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_MSRVTT_QA/snapshot/model.pt"
),
"git-large-r": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R/snapshot/model.pt",
"git-large-r-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_COCO/snapshot/model.pt",
"git-large-r-textcaps": (
"https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_TEXTCAPS/snapshot/model.pt"
),
}
model_name_to_path = {
"git-large": "/Users/nielsrogge/Documents/GIT/git_large_model.pt",
"git-large-coco": "/Users/nielsrogge/Documents/GIT/git_large_coco_model.pt",
"git-large-textcaps": "/Users/nielsrogge/Documents/GIT/git_large_textcaps_model.pt",
"git-large-vqav2": "/Users/nielsrogge/Documents/GIT/git_large_vqav2_model.pt",
"git-large-textvqa": "/Users/nielsrogge/Documents/GIT/git_large_textvqa_model.pt",
}
# define GIT configuration based on model name
config, image_size, is_video = get_git_config(model_name)
if "large" in model_name and not is_video and "large-r" not in model_name:
# large checkpoints take way too long to download
checkpoint_path = model_name_to_path[model_name]
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
else:
checkpoint_url = model_name_to_url[model_name]
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", file_name=model_name)[
"model"
]
# rename keys
prefix = "module." if model_name == "git-base" else ""
rename_keys = create_rename_keys(config, prefix=prefix)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, prefix=prefix)
# load HuggingFace model
model = GitForCausalLM(config)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
model.eval()
print("Missing keys:", missing_keys)
print("Unexpected keys:", unexpected_keys)
assert missing_keys == ["git.embeddings.position_ids", "git.image_encoder.vision_model.embeddings.position_ids"]
assert unexpected_keys == ["git.image_encoder.visual_projection.weight"]
# verify results
image_processor = (
VideoMAEImageProcessor(
size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size}
)
if is_video
else CLIPImageProcessor(
size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size}
)
)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", model_input_names=["input_ids", "attention_mask"])
processor = GitProcessor(tokenizer=tokenizer, image_processor=image_processor)
if is_video:
video = prepare_video()
pixel_values = processor(images=list(video), return_tensors="pt").pixel_values
else:
image = prepare_img(model_name)
image_transforms = Compose(
[
Resize(image_size, interpolation=Image.BICUBIC),
CenterCrop(image_size),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
original_pixel_values = image_transforms(image).unsqueeze(0)
pixel_values = processor(images=image, return_tensors="pt").pixel_values
assert torch.allclose(pixel_values, original_pixel_values)
input_ids = torch.tensor([[101]])
outputs = model(input_ids, pixel_values=pixel_values)
logits = outputs.logits
print("Logits:", logits[0, -1, :3])
if model_name == "git-base":
expected_slice_logits = torch.tensor([-1.2832, -1.2835, -1.2840])
elif model_name == "git-base-coco":
expected_slice_logits = torch.tensor([-0.9925, -0.9930, -0.9935])
elif model_name == "git-base-textcaps":
expected_slice_logits = torch.tensor([-1.2980, -1.2983, -1.2985])
elif model_name == "git-base-vqav2":
expected_slice_logits = torch.tensor([-0.8570, -0.8568, -0.8561])
elif model_name == "git-base-textvqa":
expected_slice_logits = torch.tensor([-1.4085, -1.4083, -1.4082])
elif model_name == "git-base-vatex":
expected_slice_logits = torch.tensor([-1.3451, -1.3447, -1.3447])
elif model_name == "git-base-msrvtt-qa":
expected_slice_logits = torch.tensor([-0.8554, -0.8550, -0.8540])
elif model_name == "git-large":
expected_slice_logits = torch.tensor([-1.1708, -1.1707, -1.1705])
elif model_name == "git-large-coco":
expected_slice_logits = torch.tensor([-1.0425, -1.0423, -1.0422])
elif model_name == "git-large-textcaps":
expected_slice_logits = torch.tensor([-1.2705, -1.2708, -1.2706])
elif model_name == "git-large-vqav2":
expected_slice_logits = torch.tensor([-0.7042, -0.7043, -0.7043])
elif model_name == "git-large-textvqa":
expected_slice_logits = torch.tensor([-0.8590, -0.8592, -0.8590])
elif model_name == "git-large-vatex":
expected_slice_logits = torch.tensor([-1.0113, -1.0114, -1.0113])
elif model_name == "git-large-msrvtt-qa":
expected_slice_logits = torch.tensor([0.0130, 0.0134, 0.0131])
elif model_name == "git-large-r":
expected_slice_logits = torch.tensor([-1.1283, -1.1285, -1.1286])
elif model_name == "git-large-r-coco":
expected_slice_logits = torch.tensor([-0.9641, -0.9641, -0.9641])
elif model_name == "git-large-r-textcaps":
expected_slice_logits = torch.tensor([-1.1121, -1.1120, -1.1124])
assert torch.allclose(logits[0, -1, :3], expected_slice_logits, atol=1e-4)
print("Looks ok!")
prompt = ""
if "textvqa" in model_name:
prompt = "what does the front of the bus say at the top?"
elif "msrvtt-qa" in model_name:
prompt = "what does the woman eat?"
elif "vqa" in model_name:
prompt = "what are the cats doing?"
input_ids = tokenizer(prompt, add_special_tokens=False).input_ids
input_ids = [processor.tokenizer.cls_token_id] + input_ids
input_ids = torch.tensor(input_ids).unsqueeze(0)
print("Generating caption...")
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
if pytorch_dump_folder_path is not None:
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub...")
model.push_to_hub(f"microsoft/{model_name}")
processor.push_to_hub(f"microsoft/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="git-base",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the hub.",
)
args = parser.parse_args()
convert_git_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| transformers/src/transformers/models/git/convert_git_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/git/convert_git_to_pytorch.py",
"repo_id": "transformers",
"token_count": 9474
} | 309 |
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"gpt2": 1024,
"gpt2-medium": 1024,
"gpt2-large": 1024,
"gpt2-xl": 1024,
"distilgpt2": 1024,
}
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class GPT2Tokenizer(PreTrainedTokenizer):
"""
Construct a GPT-2 tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import GPT2Tokenizer
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
pad_token (`str`, *optional*):
The token used for padding, for example when batching sequences of different lengths.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial beginning of sentence token to the input. This allows to treat the leading
word just as any other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
pad_token=None,
add_prefix_space=False,
add_bos_token=False,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
self.add_bos_token = add_bos_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
super().__init__(
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is None:
return output
return output + bos_token_ids + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if not self.add_bos_token:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0))
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if is_split_into_words or add_prefix_space:
text = " " + text
return (text, kwargs)
@property
def default_chat_template(self):
"""
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
| transformers/src/transformers/models/gpt2/tokenization_gpt2.py/0 | {
"file_path": "transformers/src/transformers/models/gpt2/tokenization_gpt2.py",
"repo_id": "transformers",
"token_count": 6610
} | 310 |
# coding=utf-8
# Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GPTNeoX Japanese model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json",
}
class GPTNeoXJapaneseConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoXModelJapanese`]. It is used to instantiate
a GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the GPTNeoXJapanese
[abeja/gpt-neox-japanese-2.7b](https://huggingface.co/abeja/gpt-neox-japanese-2.7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. Default configs is set as 2.7B model
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the GPTNeoXJapanese model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`GPTNeoXJapanese`].
hidden_size (`int`, *optional*, defaults to 2560):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_multiple_size (`int`, *optional*, defaults to 4):
Dimension of the "intermediate" layer in the Transformer encoder is calculated by hidden_size *
intermediate_multiple_size.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler.
rotary_pct (`float`, *optional*, defaults to 1.00):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the hidden layer.
Example:
```python
>>> from transformers import GPTNeoXJapaneseConfig, GPTNeoXJapaneseModel
>>> # Initializing a GPTNeoXJapanese gpt-neox-japanese-2.7b style configuration
>>> configuration = GPTNeoXJapaneseConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-japanese-2.7b style configuration
>>> model = GPTNeoXJapaneseModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gpt_neox_japanese"
def __init__(
self,
vocab_size=32000,
hidden_size=2560,
num_hidden_layers=32,
num_attention_heads=32,
intermediate_multiple_size=4,
hidden_act="gelu",
rotary_pct=1.00,
rotary_emb_base=10000,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=31996,
eos_token_id=31999,
attention_dropout=0.1,
hidden_dropout=0.0,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_multiple_size = intermediate_multiple_size
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
| transformers/src/transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py/0 | {
"file_path": "transformers/src/transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py",
"repo_id": "transformers",
"token_count": 2151
} | 311 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_graphormer"] = [
"GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"GraphormerForGraphClassification",
"GraphormerModel",
"GraphormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/graphormer/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/graphormer/__init__.py",
"repo_id": "transformers",
"token_count": 677
} | 312 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Hubert checkpoint."""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
MAPPING = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def set_recursively(hf_pointer, key, value, full_name, weight_type):
for attribute in key.split("."):
hf_pointer = getattr(hf_pointer, attribute)
if weight_type is not None:
hf_shape = getattr(hf_pointer, weight_type).shape
else:
hf_shape = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
hf_pointer.weight.data = value
elif weight_type == "weight_g":
hf_pointer.weight_g.data = value
elif weight_type == "weight_v":
hf_pointer.weight_v.data = value
elif weight_type == "bias":
hf_pointer.bias.data = value
else:
hf_pointer.data = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.")
def recursively_load_weights(fairseq_model, hf_model, is_finetuned):
unused_weights = []
fairseq_dict = fairseq_model.state_dict()
feature_extractor = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
is_used = False
if "conv_layers" in name:
load_conv_layer(
name,
value,
feature_extractor,
unused_weights,
hf_model.config.feat_extract_norm == "group",
)
is_used = True
else:
for key, mapped_key in MAPPING.items():
mapped_key = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key
if key in name or (key.split("w2v_model.")[-1] == name.split(".")[0] and not is_finetuned):
is_used = True
if "*" in mapped_key:
layer_index = name.split(key)[0].split(".")[-2]
mapped_key = mapped_key.replace("*", layer_index)
if "weight_g" in name:
weight_type = "weight_g"
elif "weight_v" in name:
weight_type = "weight_v"
elif "weight" in name:
weight_type = "weight"
elif "bias" in name:
weight_type = "bias"
else:
weight_type = None
set_recursively(hf_model, mapped_key, value, name, weight_type)
continue
if not is_used:
unused_weights.append(name)
logger.warning(f"Unused weights: {unused_weights}")
def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm):
name = full_name.split("conv_layers.")[-1]
items = name.split(".")
layer_id = int(items[0])
type_id = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.bias.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.weight.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
else:
unused_weights.append(full_name)
@torch.no_grad()
def convert_hubert_checkpoint(
checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True
):
"""
Copy/paste/tweak model's weights to transformers design.
"""
if config_path is not None:
config = HubertConfig.from_pretrained(config_path)
else:
config = HubertConfig()
if is_finetuned:
if dict_path:
target_dict = Dictionary.load(dict_path)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
config.bos_token_id = target_dict.pad_index
config.pad_token_id = target_dict.bos_index
config.eos_token_id = target_dict.eos_index
config.vocab_size = len(target_dict.symbols)
vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json")
if not os.path.isdir(pytorch_dump_folder_path):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path))
return
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
with open(vocab_path, "w", encoding="utf-8") as vocab_handle:
json.dump(target_dict.indices, vocab_handle)
tokenizer = Wav2Vec2CTCTokenizer(
vocab_path,
unk_token=target_dict.unk_word,
pad_token=target_dict.pad_word,
bos_token=target_dict.bos_word,
eos_token=target_dict.eos_word,
word_delimiter_token="|",
do_lower_case=False,
)
return_attention_mask = True if config.feat_extract_norm == "layer" else False
feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1,
sampling_rate=16000,
padding_value=0,
do_normalize=True,
return_attention_mask=return_attention_mask,
)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.save_pretrained(pytorch_dump_folder_path)
hf_wav2vec = HubertForCTC(config)
else:
hf_wav2vec = HubertModel(config)
if is_finetuned:
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}
)
else:
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
model = model[0].eval()
recursively_load_weights(model, hf_wav2vec, is_finetuned)
hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
args = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| transformers/src/transformers/models/hubert/convert_hubert_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/hubert/convert_hubert_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4728
} | 313 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI ImageGPT configuration"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
logger = logging.get_logger(__name__)
IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"openai/imagegpt-small": "",
"openai/imagegpt-medium": "",
"openai/imagegpt-large": "",
}
class ImageGPTConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`ImageGPTModel`] or a [`TFImageGPTModel`]. It is
used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT
[openai/imagegpt-small](https://huggingface.co/openai/imagegpt-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 512):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ImageGPTModel`] or [`TFImageGPTModel`].
n_positions (`int`, *optional*, defaults to 32*32):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 512):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"quick_gelu"`):
Activation function (can be one of the activation functions defined in src/transformers/activations.py).
Defaults to "quick_gelu".
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
dot-product/softmax to float() when training with mixed precision.
Example:
```python
>>> from transformers import ImageGPTConfig, ImageGPTModel
>>> # Initializing a ImageGPT configuration
>>> configuration = ImageGPTConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = ImageGPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "imagegpt"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=512 + 1, # add one for start of sentence (sos) token
n_positions=32 * 32,
n_embd=512,
n_layer=24,
n_head=8,
n_inner=None,
activation_function="quick_gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
tie_word_embeddings=False,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
self.reorder_and_upcast_attn = reorder_and_upcast_attn
self.tie_word_embeddings = tie_word_embeddings
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class ImageGPTOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
]
)
def generate_dummy_inputs(
self,
preprocessor: "FeatureExtractionMixin",
batch_size: int = 1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional["TensorType"] = None,
num_channels: int = 3,
image_width: int = 32,
image_height: int = 32,
) -> Mapping[str, Any]:
"""
Generate inputs to provide to the ONNX exporter for the specific framework
Args:
preprocessor ([`PreTrainedTokenizerBase`] or [`FeatureExtractionMixin`]):
The preprocessor associated with this model configuration.
batch_size (`int`, *optional*, defaults to -1):
The batch size to export the model for (-1 means dynamic axis).
num_choices (`int`, *optional*, defaults to -1):
The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
seq_length (`int`, *optional*, defaults to -1):
The sequence length to export the model for (-1 means dynamic axis).
is_pair (`bool`, *optional*, defaults to `False`):
Indicate if the input is a pair (sentence 1, sentence 2)
framework (`TensorType`, *optional*, defaults to `None`):
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
num_channels (`int`, *optional*, defaults to 3):
The number of channels of the generated images.
image_width (`int`, *optional*, defaults to 40):
The width of the generated images.
image_height (`int`, *optional*, defaults to 40):
The height of the generated images.
Returns:
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
"""
input_image = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
inputs = dict(preprocessor(images=input_image, return_tensors=framework))
return inputs
| transformers/src/transformers/models/imagegpt/configuration_imagegpt.py/0 | {
"file_path": "transformers/src/transformers/models/imagegpt/configuration_imagegpt.py",
"repo_id": "transformers",
"token_count": 3490
} | 314 |
# coding=utf-8
# Copyright 2022 The OpenAI Team Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Jukebox model."""
import math
import os
from typing import List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import LayerNorm as FusedLayerNorm
from ...activations import ACT2FN
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, logging
from ...utils.logging import tqdm
from .configuration_jukebox import ATTENTION_PATTERNS, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig
logger = logging.get_logger(__name__)
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openai/jukebox-1b-lyrics",
"openai/jukebox-5b-lyrics",
# See all Jukebox models at https://huggingface.co/models?filter=jukebox
]
def filter_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
"""
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits (`torch.Tensor`):
logits distribution shape (vocabulary size)
top_k (`int`, *optional*, defaults to 0):
When `top_k >0` keep only top key tokens with highest probability (top-k filtering).
top_p (`int`, *optional*, defaults to 0):
When `top_p>0.0` keep the top tokens with cumulative probability >= `top_p` (nucleus filtering).
"""
logits = logits.clone()
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k, dim=-1)[0][..., -1:]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# indices_to_remove = sorted_indices[sorted_indices_to_remove]
indices_to_remove = torch.zeros_like(logits, dtype=torch.bool).scatter_(
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
)
logits[indices_to_remove] = filter_value
return logits
def get_relevant_lyric_tokens(full_tokens, max_n_lyric_tokens, total_length, offset, duration):
"""
Extract only the relevant tokens based on the character position. A total of `max_n_lyric_tokens` tokens will be
returned. If the provided token sequence is smaller, it will be padded, otherwise, only characters ranging from the
midpoint - `max_n_lyric_tokens//2` to the midpoint + `max_n_lyric_tokens//2` will be returned. This *focuses* on
the most relevant tokens (in time) for the sequence.
Args:
full_tokens (`List[int]`):
List containing the token ids of the entire lyrics.
total_length (`int`):
Total expected length of the music (not all of it is generated, see duration), in samples.
offset (`int`):
Starting sample in the music. If the offset is greater than 0, the lyrics will be shifted take that into
account
duration (`int`):
Expected duration of the generated music, in samples. The duration has to be smaller than the total length,
which represent the overall length of the signal,
"""
full_tokens = full_tokens[0]
if len(full_tokens) < max_n_lyric_tokens:
tokens = torch.cat(
[torch.zeros(max_n_lyric_tokens - len(full_tokens), dtype=torch.long).to(full_tokens.device), full_tokens]
)
indices = [-1] * (max_n_lyric_tokens - len(full_tokens)) + list(range(0, len(full_tokens)))
else:
midpoint = int(len(full_tokens) * (offset + duration / 2.0) / total_length)
midpoint = min(max(midpoint, max_n_lyric_tokens // 2), len(full_tokens) - max_n_lyric_tokens // 2)
tokens = full_tokens[midpoint - max_n_lyric_tokens // 2 : midpoint + max_n_lyric_tokens // 2]
indices = list(range(midpoint - max_n_lyric_tokens // 2, midpoint + max_n_lyric_tokens // 2))
return tokens.unsqueeze(dim=0), indices
# Break total_length into hops/windows of size n_ctx separated by hop_length
def get_starts(total_length, n_ctx, hop_length):
starts = []
for start in range(0, total_length - n_ctx + hop_length, hop_length):
if start + n_ctx >= total_length:
# Last hop could be smaller, we make it n_ctx to maximise context
start = total_length - n_ctx
starts.append(start)
return starts
def get_alignment(music_tokens, labels, prior, config):
level = prior.levels - 1 # Top level used
n_ctx = prior.n_ctx
tokens = music_tokens[level]
batch_size, total_length = tokens.shape[0], tokens.shape[1]
if total_length < n_ctx:
padding_length = n_ctx - total_length
tokens = torch.cat(
[tokens, torch.zeros(batch_size, n_ctx - total_length, dtype=tokens.dtype, device=tokens.device)], dim=1
)
total_length = tokens.shape[1]
else:
padding_length = 0
hop_length = int(config.hop_fraction[-level - 1] * prior.n_ctx)
alignment_head, alignment_layer = config.prior_alignment_head[0], config.prior_alignment_layer[0]
attn_layers = {alignment_layer}
alignment_hops = {}
indices_hops = {}
for start in tqdm(get_starts(total_length, n_ctx, hop_length), desc="Computing lyric to music alignment "):
end = start + n_ctx
# set metadata offset, sample_length and lyrics tokens
metadata, indices_hop = prior.get_metadata(labels, start, config.sample_length, get_indices=True, offset=0)
tokens_bs = torch.chunk(tokens, batch_size, dim=0)
metadata_bs = torch.chunk(metadata, batch_size, dim=0)
w_hops = []
for tokens_i, metadata_i in zip(tokens_bs, metadata_bs):
w_hop = prior.forward_tokens(tokens_i[:, start:end], [], metadata_i, get_attn_weights=attn_layers)
w_hops.append(w_hop[0][:, alignment_head])
del w_hop
weights = torch.cat(w_hops, dim=0)
del w_hops
alignment_hop = weights.float().cpu().numpy()
del weights
# alignment_hop has shape (bs, n_ctx, nb_relevant_lyric_tokens)
# indices_hop is a list of len=bs, each entry of len hps.nb_relevant_lyric_tokens
indices_hops[start] = indices_hop
alignment_hops[start] = alignment_hop
# Combine attn for each hop into attn for full range
# Use indices to place them into correct place for corresponding source tokens
alignments = []
for item in range(batch_size):
# Note each item has different length lyrics
full_tokens = labels[0, 3:]
alignment = np.zeros((total_length, len(full_tokens) + 1))
for start in reversed(get_starts(total_length, n_ctx, hop_length)):
end = start + n_ctx
alignment_hop = alignment_hops[start][item]
indices = indices_hops[start][item]
alignment[start:end, indices] = alignment_hop
alignment = alignment[: total_length - padding_length, :-1] # remove token padding, and last lyric index
alignments.append(alignment)
return alignments
def save_temp_audio(fname, lvl, metas, aud):
aud = torch.clamp(aud, -1, 1).cpu().numpy()
for i in list(range(aud.shape[0])):
if metas is not None:
artists, genres, lyrics = list(metas)[i].values()
path = f"{fname}/lvl_{lvl}-{artists}-{genres}-{lyrics[:5]}-{i}"
np.save(path, aud[i])
else:
np.save(f"{fname}/lvl_{lvl}-sample-{i}", aud[i])
def get_mask(mask, query_length, key_value_length, blocks, spread, device, sample, sample_t):
# returns a mask of shape 1 x 1 x query_length x key_value_length or None if masking is not needed.
if mask is None or query_length == 1:
return None
offset = sample_t - query_length if sample else max(key_value_length - query_length, 0)
if mask == "autoregressive":
# Masked dense
mask = torch.ones(query_length, key_value_length, device=device).tril(offset)
elif mask == "summary":
# Masked summary
mask = torch.ones(query_length, query_length, device=device).tril()
mask = torch.ones(query_length, query_length, device=device).tril()
mask = mask.view(query_length, blocks, query_length // blocks)[:, :-1, -key_value_length // blocks :]
mask = (
torch.nn.functional.pad(
mask,
(0, 0, 1, 0),
value=1,
)
.contiguous()
.view(query_length, key_value_length)
)
elif mask == "prime":
mask = torch.ones(query_length, key_value_length, device=device).tril(offset)
return mask.view(1, 1, query_length, key_value_length)
class JukeboxConv1D(nn.Module):
def __init__(self, input_width, output_width):
super().__init__()
self.input_width = input_width
self.output_width = output_width
weight = torch.empty(input_width, output_width)
bias = torch.zeros(output_width)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
def forward(self, hidden_states):
size_out = (*hidden_states.size()[:-1], self.output_width)
hidden_states = torch.addmm(
self.bias.type_as(hidden_states),
hidden_states.view(-1, hidden_states.size(-1)),
self.weight.type_as(hidden_states),
)
hidden_states = hidden_states.view(*size_out)
return hidden_states
class JukeboxResConv1DBlock(nn.Module):
def __init__(self, config, conv_width, depth=1, res_scale=1.0):
super().__init__()
hidden_dim = config.res_convolution_multiplier * conv_width
dilation = config.res_dilation_growth_rate**depth
padding = dilation
self.res_scale = res_scale
self.activation = nn.ReLU()
self.conv1d_1 = nn.Conv1d(conv_width, hidden_dim, 3, 1, padding, dilation)
self.conv1d_2 = nn.Conv1d(hidden_dim, conv_width, 1, 1, 0)
def forward(self, hidden_states):
residuals = hidden_states
hidden_states = self.activation(hidden_states)
hidden_states = self.conv1d_1(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.conv1d_2(hidden_states)
return residuals + self.res_scale * hidden_states
class JukeboxResnet1D(nn.Module):
def __init__(self, config, conv_width, n_depth, reverse_dilation=False):
super().__init__()
self.dilation_cycle = config.res_dilation_cycle
res_scale = 1.0 if not config.conv_res_scale else 1.0 / math.sqrt(n_depth)
blocks = []
for depth in range(n_depth):
block_depth = depth if self.dilation_cycle is None else depth % self.dilation_cycle
blocks.append(JukeboxResConv1DBlock(config, conv_width, block_depth, res_scale))
if reverse_dilation:
blocks = blocks[::-1]
self.resnet_block = nn.ModuleList(blocks)
def forward(self, hidden_states):
for block in self.resnet_block:
hidden_states = block(hidden_states)
return hidden_states
class JukeboxEncoderConvBlock(nn.Module):
def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t):
super().__init__()
blocks = []
filter_t = stride_t * 2
pad_t = stride_t // 2
if down_t > 0:
for i in range(down_t):
blocks.append(nn.Conv1d(embed_dim if i == 0 else hidden_dim, hidden_dim, filter_t, stride_t, pad_t))
blocks.append(JukeboxResnet1D(config, hidden_dim, depth))
self.proj_out = nn.Conv1d(hidden_dim, config.embed_dim, 3, 1, 1)
self.downsample_block = nn.ModuleList(blocks)
def forward(self, hidden_states):
for block in self.downsample_block:
hidden_states = block(hidden_states)
hidden_states = self.proj_out(hidden_states)
return hidden_states
class JukeboxEncoder(nn.Module):
def __init__(self, config, width, depth, levels, downs_t, strides_t):
super().__init__()
self.levels = levels
self.level_blocks = nn.ModuleList()
iterator = zip(list(range(self.levels)), downs_t, strides_t)
for i, down_t, stride_t in iterator:
self.level_blocks.append(
JukeboxEncoderConvBlock(
config, config.conv_input_shape if i == 0 else config.embed_dim, width, depth, down_t, stride_t
)
)
def forward(self, hidden_states):
all_hidden_states = []
# 64, 32, ...
for level in range(self.levels):
level_block = self.level_blocks[level]
hidden_states = level_block(hidden_states)
all_hidden_states.append(hidden_states)
return all_hidden_states
class JukeboxDecoderConvBock(nn.Module):
def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t, reverse_dilation=True):
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
super().__init__()
blocks = []
if down_t > 0:
filter_t = stride_t * 2
pad_t = stride_t // 2
self.proj_in = nn.Conv1d(embed_dim, hidden_dim, 3, 1, 1)
for i in range(down_t):
blocks.append(JukeboxResnet1D(config, hidden_dim, depth, reverse_dilation))
blocks.append(
nn.ConvTranspose1d(
hidden_dim, hidden_dim if i < down_t - 1 else embed_dim, filter_t, stride_t, pad_t
)
)
self.upsample_block = nn.ModuleList(blocks)
def forward(self, hidden_states):
hidden_states = self.proj_in(hidden_states)
for block in self.upsample_block:
hidden_states = block(hidden_states)
return hidden_states
class JukeboxDecoder(nn.Module):
def __init__(self, config, hidden_dim, depth, levels, downs_t, strides_t):
super().__init__()
self.levels = levels
self.level_blocks = nn.ModuleList()
for level, down_t, stride_t in zip(list(range(self.levels)), downs_t, strides_t):
self.level_blocks.append(
JukeboxDecoderConvBock(config, config.embed_dim, hidden_dim, depth, down_t, stride_t)
)
self.out = nn.Conv1d(config.embed_dim, config.conv_input_shape, 3, 1, 1)
def forward(self, hidden_states, all_levels=True):
hidden_state = hidden_states[-1]
# 32, 64 ...
for level in reversed(range(self.levels)):
level_block = self.level_blocks[level]
hidden_state = level_block(hidden_state)
if level != 0 and all_levels:
hidden_state = hidden_state + hidden_states[level - 1]
hidden_state = self.out(hidden_state)
return hidden_state
class JukeboxBottleneckBlock(nn.Module):
def __init__(self, config: JukeboxVQVAEConfig):
super().__init__()
self.nb_discrete_codes = config.nb_discrete_codes
self.codebook_width = config.embed_dim
self.mu = config.lmu
self.threshold = 1.0
self.init = False
self.codebook_sum = None
self.codebook_elem = None
self.register_buffer("codebook", torch.zeros(self.nb_discrete_codes, self.codebook_width))
def _tile(self, hidden_states):
dim, embed_width = hidden_states.shape
if dim < self.nb_discrete_codes:
n_repeats = (self.nb_discrete_codes + dim - 1) // dim
std = 0.01 / np.sqrt(embed_width)
hidden_states = hidden_states.repeat(n_repeats, 1)
hidden_states = hidden_states + torch.randn_like(hidden_states) * std
return hidden_states
def init_codebook(self, hidden_states):
nb_discrete_codes = self.nb_discrete_codes
self.init = True
codes = self._tile(hidden_states)
self.codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes]
self.codebook_sum = self.codebook
self.codebook_elem = torch.ones(nb_discrete_codes, device=self.codebook.device)
def update_codebook(self, hidden_states, latent_states):
mu, codebook_width, nb_discrete_codes = self.mu, self.codebook_width, self.nb_discrete_codes
with torch.no_grad():
# Calculate new centres
# nb_discrete_codes, batch_size * seq_length
latent_states_onehot = torch.zeros(nb_discrete_codes, hidden_states.shape[0], device=hidden_states.device)
latent_states_onehot.scatter_(0, latent_states.view(1, hidden_states.shape[0]), 1)
_codebook_sum = torch.matmul(latent_states_onehot, hidden_states)
_codebook_elem = latent_states_onehot.sum(dim=-1) # nb_discrete_codes
codes = self._tile(hidden_states)
_random_codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes]
# Update centres
old_codebook = self.codebook
self.codebook_sum = mu * self.codebook_sum + (1.0 - mu) * _codebook_sum
self.codebook_elem = mu * self.codebook_elem + (1.0 - mu) * _codebook_elem # nb_discrete_codes
usage = (self.codebook_elem.view(nb_discrete_codes, 1) >= self.threshold).float()
norm_code = self.codebook_sum.view(nb_discrete_codes, codebook_width) / self.codebook_elem.view(
nb_discrete_codes, 1
)
self.codebook = usage * (norm_code) + (1 - usage) * _random_codebook
_codebook_prob = _codebook_elem / torch.sum(_codebook_elem) # prob of each bin
entropy = -torch.sum(_codebook_prob * torch.log(_codebook_prob + 1e-8)) # entropy ie how diverse
used_curr = (_codebook_elem >= self.threshold).sum()
usage = torch.sum(usage)
dk = torch.norm(self.codebook - old_codebook) / np.sqrt(np.prod(old_codebook.shape))
return {"entropy": entropy, "used_curr": used_curr, "usage": usage, "dk": dk}
def preprocess(self, hidden_states):
hidden_states = hidden_states.permute(0, 2, 1).contiguous()
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
if hidden_states.shape[-1] == self.codebook_width:
prenorm = torch.norm(hidden_states - torch.mean(hidden_states)) / np.sqrt(np.prod(hidden_states.shape))
elif hidden_states.shape[-1] == 2 * self.codebook_width:
x1, x2 = hidden_states[..., : self.codebook_width], hidden_states[..., self.codebook_width :]
prenorm = (torch.norm(x1 - torch.mean(x1)) / np.sqrt(np.prod(x1.shape))) + (
torch.norm(x2 - torch.mean(x2)) / np.sqrt(np.prod(x2.shape))
)
# Normalise
hidden_states = x1 + x2
return hidden_states, prenorm
def postprocess(self, latent_states, dequantised_states, x_shape):
batch_size, time = x_shape
dequantised_states = dequantised_states.view(batch_size, time, -1).permute(0, 2, 1).contiguous()
latent_states = latent_states.view(batch_size, time)
return latent_states, dequantised_states
def quantise(self, latent_states):
# Calculate latent code latent_states
codebook_weights = self.codebook.t()
distance = (
torch.sum(latent_states**2, dim=-1, keepdim=True)
- 2 * torch.matmul(latent_states, codebook_weights)
+ torch.sum(codebook_weights**2, dim=0, keepdim=True)
) # (batch_size * latent_states , codebook_weights)
min_distance, music_tokens = torch.min(distance, dim=-1)
fit = torch.mean(min_distance)
return music_tokens, fit
def dequantise(self, music_tokens):
dequantised_states = F.embedding(music_tokens, self.codebook)
return dequantised_states
def encode(self, latent_states):
samples, _, seq_len = latent_states.shape
# Preprocess.
latent_states, _ = self.preprocess(latent_states)
# Quantise
music_tokens, _ = self.quantise(latent_states)
# Postprocess.
music_tokens = music_tokens.view(samples, seq_len)
return music_tokens
def decode(self, music_tokens):
samples, seq_len = music_tokens.shape
# Dequantise
dequantised_states = self.dequantise(music_tokens)
# Postprocess
dequantised_states = (
dequantised_states.view(samples, seq_len, self.codebook_width).permute(0, 2, 1).contiguous()
)
return dequantised_states
def forward(self, hidden_states, update_codebook=True):
samples, _, seq_len = hidden_states.shape
# Preprocess
hidden_states, prenorm = self.preprocess(hidden_states)
# Init codebook if not inited
if update_codebook and not self.init:
self.init_codebook(hidden_states)
# Quantise and dequantise through bottleneck
music_tokens, fit = self.quantise(hidden_states)
dequantised_states = self.dequantise(music_tokens)
# Update embeddings
if update_codebook:
update_metrics = self.update_codebook(hidden_states, music_tokens)
else:
update_metrics = {}
# Loss
commit_loss = torch.norm(dequantised_states.detach() - hidden_states) ** 2 / np.prod(hidden_states.shape)
# Passthrough
dequantised_states = hidden_states + (dequantised_states - hidden_states).detach()
# Postprocess
music_tokens, dequantised_states = self.postprocess(music_tokens, dequantised_states, (samples, seq_len))
return music_tokens, dequantised_states, commit_loss, dict(fit=fit, pn=prenorm, **update_metrics)
class JukeboxBottleneck(nn.Module):
def __init__(self, config, levels):
super().__init__()
self.levels = levels
self.level_blocks = nn.ModuleList()
for level in range(self.levels):
self.level_blocks.append(JukeboxBottleneckBlock(config))
def encode(self, raw_audio):
music_tokens = [
level_block.encode(hidden_states) for (level_block, hidden_states) in zip(self.level_blocks, raw_audio)
]
return music_tokens
def decode(self, music_tokens, start_level=0, end_level=None):
if end_level is None:
end_level = self.levels
quantised_audio = [
level_block.decode(z) for (level_block, z) in zip(self.level_blocks[start_level:end_level], music_tokens)
]
return quantised_audio
def forward(self, input_audio):
music_tokens, quantised_states, commit_losses, metrics = [], [], [], []
for level in range(self.levels):
level_block = self.level_blocks[-level - 1]
hidden_states = input_audio[level]
sampled_tokens, quantised_state, commit_loss, metric = level_block(
hidden_states, update_codebook=self.training
)
music_tokens.append(sampled_tokens)
if not self.training:
# Be extra paranoid and make sure the encoder weights can't
# change from straight-through estimator
quantised_state = quantised_state.detach()
quantised_states.append(quantised_state)
commit_losses.append(commit_loss)
if self.training:
metrics.append(metric)
return music_tokens, quantised_states, commit_losses, metrics
JUKEBOX_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config (`JukeboxConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"""The Hierarchical VQ-VAE model used in Jukebox. This model follows the Hierarchical VQVAE paper from [Will Williams, Sam
Ringer, Tom Ash, John Hughes, David MacLeod, Jamie Dougherty](https://arxiv.org/abs/2002.08111).
""",
JUKEBOX_START_DOCSTRING,
)
class JukeboxVQVAE(PreTrainedModel):
config_class = JukeboxVQVAEConfig
base_model_prefix = "vqvae"
def _init_weights(self, module):
if isinstance(module, nn.Embedding): # embed_tokens
module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale)
elif isinstance(module, JukeboxConv1D):
if self.config.zero_out:
module.weight.data.zero_()
else:
module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale)
elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out:
module.conv1d_2.weight.data.zero_()
module.conv1d_2.bias.data.zero_()
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def __init__(self, config: JukeboxVQVAEConfig):
super().__init__(config)
downs_t = config.res_downs_t
strides_t = config.res_strides_t
if not config.sample_length:
downsamples = [stride**down for stride, down in zip(strides_t, downs_t)]
top_raw_to_tokens = np.prod(downsamples)
config.sample_length = (
config.sample_length_in_seconds * config.sampling_rate // top_raw_to_tokens
) * top_raw_to_tokens
config.sample_length = config.sample_length.astype(int)
self.nb_discrete_codes = config.nb_discrete_codes
self.commit = config.commit
self.sample_length = config.sample_length
self.downsamples = [stride**down for stride, down in zip(strides_t, downs_t)]
self.hop_lengths = np.cumprod(self.downsamples)
self.levels = levels = config.levels
self.music_tokens_shapes = [
(int(self.sample_length // self.hop_lengths[-level - 1])) for level in range(levels)
]
self.multipliers = config.multipliers if config.multipliers is not None else [1] * levels
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
for level in range(levels):
width = config.res_conv_width * self.multipliers[level]
depth = config.res_conv_depth * self.multipliers[level]
self.encoders.append(
JukeboxEncoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1])
)
self.decoders.append(
JukeboxDecoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1])
)
self.bottleneck = JukeboxBottleneck(config, levels)
def _decode(self, music_tokens, start_level=0, end_level=None):
# Decode
if end_level is None:
end_level = self.levels
latent_states = self.bottleneck.decode(music_tokens, start_level=start_level, end_level=end_level)
# Use only lowest level
decoder, dequantised_state = self.decoders[start_level], latent_states[0:1]
dequantised_state = decoder(dequantised_state, all_levels=False)
dequantised_state = dequantised_state.permute(0, 2, 1)
return dequantised_state
def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1) -> torch.Tensor:
"""
Transforms the input `music_tokens` to their `raw_audio` representation.
Args:
music_tokens (`torch.LongTensor`):
Tensor of music tokens which will be decoded to raw audio by using the codebook. Each music token
should be an index to a corresponding `code` vector in the codebook.
start_level (`int`, *optional*):
Level at which the decoding process will start. Default to 0.
end_level (`int`, *optional*):
Level at which the decoding process will start. Default to None.
bs_chunks (int, *optional*):
Number of chunks to process at the same time.
"""
token_chunks = [torch.chunk(token, bs_chunks, dim=0) for token in music_tokens]
dequantised_states = []
for i in range(bs_chunks):
music_tokens_i = [chunks[i] for chunks in token_chunks]
dequantised_state = self._decode(music_tokens_i, start_level=start_level, end_level=end_level)
dequantised_states.append(dequantised_state)
return torch.cat(dequantised_states, dim=0)
def _encode(self, raw_audio, start_level=0, end_level=None):
# Encode
if end_level is None:
end_level = self.levels
input_audio = raw_audio.permute(0, 2, 1).float()
latent_states = []
for level in range(self.levels):
encoder = self.encoders[level]
latent_state = encoder(input_audio)
latent_states.append(latent_state[-1])
music_tokens = self.bottleneck.encode(latent_states)
return music_tokens[start_level:end_level]
def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1):
"""
Transforms the `input_audio` to a discrete representation made out of `music_tokens`.
Args:
input_audio (`torch.Tensor`):
Raw audio which will be encoded to its discrete representation using the codebook. The closest `code`
form the codebook will be computed for each sequence of samples.
start_level (`int`, *optional*, defaults to 0):
Level at which the encoding process will start. Default to 0.
end_level (`int`, *optional*):
Level at which the encoding process will start. Default to None.
bs_chunks (int, *optional*, defaults to 1):
Number of chunks of raw audio to process at the same time.
"""
audio_chunks = torch.chunk(input_audio, bs_chunks, dim=0)
music_tokens_list = []
for chunk_i in audio_chunks:
music_tokens_i = self._encode(chunk_i, start_level=start_level, end_level=end_level)
music_tokens_list.append(music_tokens_i)
music_tokens = [torch.cat(music_tokens_level, dim=0) for music_tokens_level in zip(*music_tokens_list)]
return music_tokens
def sample(self, n_samples):
music_tokens = [
torch.randint(0, self.nb_discrete_codes, size=(n_samples, *music_tokens_shape), device="cpu")
for music_tokens_shape in self.music_tokens_shapes
]
return self.decode(music_tokens)
def forward(self, raw_audio: torch.FloatTensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass of the VQ-VAE, encodes the `raw_audio` to latent states, which are then decoded for each level.
The commit loss, which ensure that the encoder's computed embeddings are close to the codebook vectors, is
computed.
Args:
raw_audio (`torch.FloatTensor`):
Audio input which will be encoded and decoded.
Returns:
`Tuple[torch.Tensor, torch.Tensor]`
Example:
```python
>>> from transformers import JukeboxVQVAE, set_seed
>>> import torch
>>> model = JukeboxVQVAE.from_pretrained("openai/jukebox-1b-lyrics").eval()
>>> set_seed(0)
>>> zs = [torch.randint(100, (4, 1))]
>>> model.decode(zs).shape
torch.Size([4, 8, 1])
```
"""
# Encode/Decode
input_audio = raw_audio.permute(0, 2, 1).float()
latent_states = []
for level in range(self.levels):
encoder = self.encoders[level]
latent_state = encoder(input_audio)
latent_states.append(latent_state[-1])
_, music_tokens, commit_losses, _ = self.bottleneck(latent_states)
dequantised_states = []
for level in range(self.levels):
decoder = self.decoders[level]
dequantised_state = decoder(music_tokens[level : level + 1], all_levels=False)
dequantised_states.append(dequantised_state.permute(0, 2, 1))
commit_loss = sum(commit_losses)
loss = self.commit * commit_loss
return dequantised_states, loss
class JukeboxMLP(nn.Module):
def __init__(self, config):
# a single channel is always used in original code
super().__init__()
embed_dim = config.hidden_size
hidden_dim = int(config.mlp_multiplier * embed_dim)
self.c_fc = JukeboxConv1D(embed_dim, hidden_dim)
self.c_proj = JukeboxConv1D(hidden_dim, embed_dim)
self.act = ACT2FN[config.act_fn]
self.dropout = nn.Dropout(config.resid_dropout)
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class JukeboxLayerNorm(FusedLayerNorm):
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
super().__init__(normalized_shape, eps=eps, elementwise_affine=elementwise_affine)
self.width = np.prod(normalized_shape)
self.max_numel = 65535 * self.width
def forward(self, input):
if input.numel() > self.max_numel:
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps).type_as(input)
else:
return super().forward(input).type_as(input)
class JukeboxAttention(nn.Module):
def __init__(self, config, n_ctx, attn_func="dense_attn"):
super().__init__()
self.embed_dim = config.hidden_size
self.n_heads = config.n_heads
self.dropout = config.attn_dropout
hidden_dim = int(config.attention_multiplier * self.embed_dim)
self.head_dim = hidden_dim // config.n_heads
self.n_ctx = n_ctx
self.hidden_dim = hidden_dim
self.scale = self.head_dim**-0.25
self.mask = config.mask
if attn_func == "cross_attention":
self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim)
self.c_enc_kv = JukeboxConv1D(self.embed_dim, hidden_dim * 2)
else:
self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim * 3)
self.c_proj = JukeboxConv1D(hidden_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_dropout)
self.resid_dropout = nn.Dropout(config.resid_dropout)
# Sequence of length seq_len is factored as [blocks, seq_len // blocks]
self.attn_func = attn_func
if attn_func == "cross_attention":
self.qkv = self.decode_qkv
elif attn_func == "prime_attn":
self.qkv = self.prime_qkv
else:
self.qkv = self.factored_qkv
ATTENTION_MAP = {
"dense_attn": (self.dense_attn, "autoregressive"),
"block_attn": (self.block_attn, "autoregressive"),
"transpose_block_attn": (self.transpose_block_attn, "autoregressive"),
"prev_block_attn": (self.prev_block_attn, None),
"summary_attn": (self.summary_attn, "summary"),
"summary_spread_attn": (self.summary_spread_attn, "summary"),
"cross_attention": (self.dense_attn, None),
"prime_attn": (self.prime_attn, "prime"),
}
self.attn, self.attn_mask = ATTENTION_MAP[attn_func]
self.blocks = config.blocks
self.spread = config.spread
if self.blocks is not None:
self.block_ctx = self.n_ctx // self.blocks
self.sample_t = 0
self.cache = {}
self.encoder_len = config.nb_relevant_lyric_tokens # length of the encoder input ids
self.record_attn = False
def _attn(self, query_states, key_states, value_states, sample):
scale = self.scale
if self.training:
attention_weight = torch.matmul(query_states * scale, key_states * scale)
else:
attention_weight = torch.matmul(query_states, key_states)
attention_weight.mul_(scale * scale)
attn_weight_type = attention_weight.dtype
attention_weight = attention_weight.float()
if self.mask:
# Generate appropriate mask to mask out all positions before current
# Might take up lot of memory for dense, so can cache it
mask = get_mask(
self.attn_mask,
query_states.size(-2),
key_states.size(-1),
self.blocks,
self.spread,
attention_weight.device,
sample,
self.sample_t,
)
if mask is not None:
attention_weight = attention_weight * mask + -1e9 * (1 - mask)
attention_prob = F.softmax(attention_weight, dim=-1).type(attn_weight_type)
if self.record_attn:
self.attention_prob = attention_prob
if self.attn_func == "prime_attn":
# only keep music queries and lyrics keys/values
self.attention_prob = self.attention_prob[:, :, self.encoder_len :, : self.encoder_len]
attention_prob = self.attn_dropout(attention_prob)
context_states = torch.matmul(attention_prob, value_states)
return context_states
def merge_heads(self, hidden_states):
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
new_hidden_states_shape = (*hidden_states.size()[:-2], hidden_states.size(-2) * hidden_states.size(-1))
return hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, hidden_states, is_key=False):
new_hidden_states_shape = (
*hidden_states.size()[:-1],
self.n_heads,
hidden_states.size(-1) // self.n_heads,
)
hidden_states = hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct split_states
if is_key:
return hidden_states.permute(0, 2, 3, 1)
else:
return hidden_states.permute(0, 2, 1, 3)
def dense_attn(self, query, key, value, sample):
query = self.split_heads(query)
key = self.split_heads(key, is_key=True)
value = self.split_heads(value)
context_states = self._attn(query, key, value, sample)
context_states = self.merge_heads(context_states)
return context_states
def block_attn(self, query, key, value, sample):
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
query_length = query.shape[1]
query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim)
if query_length < seq_len:
seq_len = query_length
key = key[:, -seq_len:].contiguous()
value = value[:, -seq_len:].contiguous()
key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def transpose_block_attn(self, query, key, value, sample):
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
block_len = (seq_len - 1) % block_ctx
key = key[:, block_len::block_ctx, :]
value = value[:, block_len::block_ctx, :]
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
query_length = query.shape[1]
query = query.view(batch_size, query_length // block_ctx, block_ctx, embed_dim)
query = query.transpose(1, 2).contiguous()
query = query.view(batch_size * block_ctx, query_length // block_ctx, embed_dim)
key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)
key = key.transpose(1, 2).contiguous()
key = key.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim)
value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)
value = value.transpose(1, 2).contiguous()
value = value.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim)
block_attn = self.dense_attn(query, key, value, sample)
block_attn = block_attn.view(batch_size, block_ctx, query_length // block_ctx, embed_dim)
block_attn = block_attn.transpose(1, 2).contiguous()
block_attn = block_attn.view(batch_size, query_length, embed_dim)
return block_attn
def prev_block_attn(self, query, key, value, sample):
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
block = (seq_len - 1) // block_ctx
prev_l = (block - 1) * block_ctx
if block > 0:
key = key[:, prev_l : prev_l + block_ctx, :]
value = value[:, prev_l : prev_l + block_ctx, :]
else:
key = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype)
value = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype)
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
query_length = query.shape[1]
query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim)
key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :]
key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0))
key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :]
value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0))
value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
if query_length < seq_len:
nb_query_blocks = query_length // block_ctx
nb_key_blocks = seq_len // block_ctx
seq_len = query_length
key = key.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:]
key = key.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim)
value = value.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:]
value = value.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim)
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def summary_attn(self, query, key, value, sample):
blocks = self.blocks
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
key = key[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :]
key = torch.nn.functional.pad(key, (0, 0, 1, 0))
value = value[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :]
value = torch.nn.functional.pad(value, (0, 0, 1, 0))
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :]
key = torch.nn.functional.pad(key, (0, 0, 1, 0)) # batch_size, blocks, embed_dim
value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :]
value = torch.nn.functional.pad(value, (0, 0, 1, 0)) # batch_size, blocks, embed_dim
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def summary_spread_attn(self, query, key, value, sample):
blocks = self.blocks
spread = self.spread
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
raise NotImplementedError
else:
key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :]
key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0)).contiguous()
key = key.view(batch_size, blocks * spread, embed_dim)
value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :]
value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0)).contiguous()
value = value.view(batch_size, blocks * spread, embed_dim)
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def prime_attn(self, query, key, value, sample):
encoder_len = self._encoder_len
key = key[:, :encoder_len]
value = value[:, :encoder_len]
return self.dense_attn(query, key, value, sample)
def factored_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
if last_encoder_hidden_states is not None:
raise TypeError("last_encoder_hidden_states should be None")
query, key, value = hidden_states.chunk(3, dim=2)
if sample:
self.sample_t += curr_ctx
key, value = self._append_cache(key, value)
l_cache = self._suff_cache_len()
if self._cache_len() > l_cache:
self._slice_cache(-l_cache)
if curr_ctx > 1:
if self.attn_func != "dense_attn":
query = self._pad_to_block_ctx(query, query=True)
key = self._pad_to_block_ctx(key)
value = self._pad_to_block_ctx(value)
sample = False
else:
key = self.cache["key"]
value = self.cache["value"]
return query, key, value, sample
def prime_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
if last_encoder_hidden_states is not None:
raise TypeError("last_encoder_hidden_states should be None")
query, key, value = hidden_states.chunk(3, dim=2)
if sample:
if self._cache_len() < self._encoder_len:
self._append_cache(key, value)
if self._cache_len() > self._encoder_len:
self._slice_cache(0, self._encoder_len)
key, value = self.cache["key"], self.cache["value"]
self.sample_t += curr_ctx
return query, key, value, sample
def decode_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
query = hidden_states
if sample:
if self.sample_t == 0:
self.cache["key"], self.cache["value"] = self.c_enc_kv(
last_encoder_hidden_states.type_as(hidden_states)
).chunk(2, dim=2)
key, value = self.cache["key"], self.cache["value"]
self.sample_t += curr_ctx
else:
key, value = self.c_enc_kv(last_encoder_hidden_states.type_as(hidden_states)).chunk(2, dim=2)
return query, key, value, sample
def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
hidden_states = self.c_attn(hidden_states)
query, key, value, sample = self.qkv(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample
)
attention_scores = self.attn(query, key, value, sample)
if attention_scores.shape[1] != curr_ctx:
offset = self._offset(curr_ctx)
attention_scores = attention_scores[:, offset : offset + curr_ctx, :].contiguous()
attention_scores = self.c_proj(attention_scores)
return self.resid_dropout(attention_scores)
@property
def _encoder_len(self):
encoder_len = self.encoder_len
encoder_blocks = (encoder_len // self.blocks) + 1
return encoder_blocks * self.blocks
def _offset(self, curr_ctx):
if self.attn_func == "dense_attn":
return 0
return (self.sample_t - curr_ctx) % self.block_ctx
def _pad_to_block_ctx(self, hidden_states, query=False):
seq_len = hidden_states.shape[1]
offset = self._offset(seq_len) if query else 0
n_blocks = (seq_len + offset + self.block_ctx - 1) // self.block_ctx
pad = n_blocks * self.block_ctx - seq_len - offset
if pad == 0 and offset == 0:
return hidden_states
else:
return F.pad(hidden_states, (0, 0, offset, pad))
def _cache_len(self):
return 0 if "key" not in self.cache else self.cache["key"].shape[1]
def _suff_cache_len(self):
"""
Precondition:
key and value are appended with the current context and self.sample_t reflects the 1-indexed sample
location in the context.
"""
previous_block_length = (self.sample_t - 1) % self.block_ctx + 1 + self.block_ctx
REQUIRED_CACHE_LEN = {
"dense_attn": self.sample_t,
"block_attn": (self.sample_t - 1) % self.block_ctx + 1,
"transpose_block_attn": self.sample_t,
"prev_block_attn": self.sample_t if self.sample_t <= self.block_ctx else previous_block_length,
"cross_attn": self.encoder_len,
"prime_attn": min(self.sample_t, self._encoder_len),
}
return REQUIRED_CACHE_LEN[self.attn_func]
def _slice_cache(self, start, end=None):
self.cache["key"] = self.cache["key"][:, start:end]
self.cache["value"] = self.cache["value"][:, start:end]
def _append_cache(self, key, value):
if "key" not in self.cache:
self.cache["key"] = key
self.cache["value"] = value
else:
old_key, old_value = key, value
key = torch.cat([self.cache["key"], old_key], dim=1)
value = torch.cat([self.cache["value"], old_value], dim=1)
del self.cache["key"]
del self.cache["value"]
del old_key
del old_value
self.cache["key"] = key
self.cache["value"] = value
return self.cache["key"], self.cache["value"]
def del_cache(self):
self.sample_t = 0
if "key" in self.cache:
del self.cache["key"]
if "value" in self.cache:
del self.cache["value"]
self.cache = {}
class JukeboxBlock(nn.Module):
def __init__(self, config, n_ctx, attn_func="dense_attn"):
super().__init__()
self.width = config.hidden_size
self.attn = JukeboxAttention(config, n_ctx, attn_func=attn_func)
self.layer_norm_0 = JukeboxLayerNorm(config.hidden_size)
self.mlp = JukeboxMLP(config)
self.layer_norm_1 = JukeboxLayerNorm(config.hidden_size)
self.res_scale = 1.0 / config.num_layers if config.attn_res_scale else 1.0
self.attn_func = attn_func
def forward(self, hidden_states, last_encoder_hidden_states, sample=False):
residuals = hidden_states
hidden_states = self.layer_norm_0(hidden_states)
hidden_states = self.attn(hidden_states, last_encoder_hidden_states, sample)
output_states = self.layer_norm_1(residuals + hidden_states)
output_states = self.mlp(output_states)
if self.res_scale == 1.0:
output = residuals + hidden_states + output_states
else:
output = residuals + self.res_scale * (hidden_states + output_states)
return output
class JukeboxLayerStack(nn.Module):
def __init__(self, config, n_ctx):
super().__init__()
self.n_ctx = n_ctx
self.width = config.hidden_size
self.num_layers = config.num_layers
self.blocks = config.blocks
self.attention_pattern = config.attention_pattern
if self.blocks is not None:
self.block_ctx = n_ctx // self.blocks
self.encoder_len = config.nb_relevant_lyric_tokens
self.n_heads = config.n_heads
# Orders of attn_func
attention_pattern = ATTENTION_PATTERNS[self.attention_pattern]
self._attn_mods = nn.ModuleList()
for depth in range(self.num_layers):
self._attn_mods.append(JukeboxBlock(config, n_ctx, attn_func=attention_pattern(depth)))
self.saved_attn_weights = []
def set_record_attn(self, record_attn):
"""
Makes forward prop dump self-attention softmaxes to self.saved_attn_weights.
Args:
record_attn (`Union[bool,set]`):
Either a set of layer indices indicating which layers to store, or a boolean value indicating Whether
to dump all.
"""
def _should_record_attn(layer_idx):
if isinstance(record_attn, bool):
return record_attn
return layer_idx in record_attn
for i, layer in enumerate(self._attn_mods):
layer.attn.record_attn = _should_record_attn(i)
if not record_attn:
self.saved_attn_weights = []
def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False):
# Blocks
for i, attn_layer in enumerate(self._attn_mods):
if attn_layer.attn_func == "cross_attention": # attend to the lyrics
hidden_states = attn_layer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample
)
else:
hidden_states = attn_layer(hidden_states, last_encoder_hidden_states=None, sample=sample)
if attn_layer.attn.record_attn:
self.saved_attn_weights.append(attn_layer.attn.c_attn.weight)
return hidden_states
def del_cache(self):
for attn_layer in self._attn_mods:
attn_layer.attn.del_cache()
class JukeboxPositionalEmbedding(nn.Module):
def __init__(self, embed_dim, width):
super().__init__()
self.pos_emb = nn.Parameter(torch.empty((embed_dim, width)))
def forward(self):
pos_emb = self.pos_emb
return pos_emb
class JukeboxConditionalAutoregressive(nn.Module):
def __init__(
self,
config,
n_ctx=None,
embed_dim=None,
audio_conditioning=False,
metadata_conditioning=False,
is_encoder=False,
):
"""
Autoregressive model on either lyric tokens or music tokens, or both. The attention pattern should be properly
set fro each configuration.
Args:
config (`JukeboxPriorConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does
not load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
n_ctx (`int`, *optional*):
Number of tokens or lyrics tokens provided in a single pass.
embed_dim (`int`, *optional*):
Either equals to the dimension of the codebook, or the sum of n_vocab (lyrics) and codeboook dimension,
if the model combines lyrics and music tokens, or simply n_vocab if the model is a seperate encoder
audio_conditioning (`bool`, *optional*, defaults to `False`):
Whether or not the prior supports conditionning on audio.
metadata_conditioning (`bool`, *optional*, defaults to `False`):
Whether or not the prior supports conditionning on artitst, genres, lyrics and timing.
is_encoder (`bool`, *optional*, defaults to `False`):
Whether the model is an encoder only model.
"""
super().__init__()
self.width = config.hidden_size
self.num_layers = config.num_layers
self.n_ctx = n_ctx if n_ctx is not None else config.n_ctx
self.embed_dim = embed_dim if embed_dim is not None else config.music_vocab_size
self.embed_tokens = nn.Embedding(self.embed_dim, config.hidden_size)
self.embed_tokens_dropout = nn.Dropout(config.emb_dropout)
self.metadata_conditioning = metadata_conditioning
self.audio_conditioning = audio_conditioning
if not metadata_conditioning:
self.start_token = nn.Parameter(torch.empty((1, config.hidden_size)))
self.pos_emb = JukeboxPositionalEmbedding(self.n_ctx, config.hidden_size)
self.pos_emb_dropout = nn.Dropout(config.emb_dropout)
self.transformer = JukeboxLayerStack(config, n_ctx=self.n_ctx)
self.is_encoder = is_encoder
self.encoder_len = config.nb_relevant_lyric_tokens
if config.merged_decoder:
# Merged piped model uses this setup
self.add_cond_after_transformer = False
self.share_embed_tokens_fc_proj_out = False
else:
self.add_cond_after_transformer = True
self.share_embed_tokens_fc_proj_out = True
if not is_encoder:
self.fc_proj_out = nn.Linear(config.hidden_size, self.embed_dim, bias=False)
if self.share_embed_tokens_fc_proj_out:
self.fc_proj_out.weight = self.embed_tokens.weight
self.loss = torch.nn.CrossEntropyLoss()
def forward(
self,
tokens,
audio_conditioning=None,
metadata_conditioning=None,
last_encoder_hidden_states=None,
get_preds=False,
get_acts=False,
get_sep_loss=False,
):
"""
Args:
tokens (`torch.tensor`):
Can represent music tokens, lyrics tokens or both, depending on the configuration.
"""
# Preprocess.
batch_size = tokens.shape[0]
with torch.no_grad():
tokens = tokens.view(batch_size, -1).long()
if not self.audio_conditioning:
audio_conditioning = torch.zeros(
(batch_size, 1, self.width),
device=tokens.device,
dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype,
)
target = tokens # Target
hidden_states = self.embed_tokens(tokens)
# Shift by 1, and fill in start token
hidden_states = torch.cat((hidden_states[:, -1:], hidden_states[:, :-1]), dim=1)
if self.metadata_conditioning:
hidden_states[:, 0] = metadata_conditioning.view(batch_size, self.width)
else:
hidden_states[:, 0] = self.start_token
hidden_states = (
self.embed_tokens_dropout(hidden_states) + self.pos_emb_dropout(self.pos_emb()) + audio_conditioning
) # Pos emb and dropout
hidden_states = self.transformer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states
) # Transformer
if self.add_cond_after_transformer: # Piped doesnt add x_cond
hidden_states = hidden_states + audio_conditioning
activations = hidden_states
if self.is_encoder:
return hidden_states
hidden_states = self.fc_proj_out(hidden_states) # Predictions
loss_fn = nn.CrossEntropyLoss()
if get_sep_loss:
lyric_hidden_states = hidden_states[:, : self.encoder_len].reshape(-1, self.embed_dim)
token_hidden_states = hidden_states[:, self.encoder_len :].reshape(-1, self.embed_dim)
lyric_loss = loss_fn(lyric_hidden_states, target[:, : self.encoder_len].reshape(-1)) / np.log(2.0)
music_token_loss = loss_fn(token_hidden_states, target[:, self.encoder_len :].reshape(-1)) / np.log(2.0)
loss = (lyric_loss, music_token_loss) # Note order! Lyric is first
else:
loss = loss_fn(hidden_states.view(-1, self.embed_dim), target.view(-1)) / np.log(2.0) # Loss
if get_preds:
return loss, hidden_states
elif get_acts:
return loss, activations
else:
return loss, None
def get_emb(self, sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning):
if sample_t == 0:
hidden_states = torch.empty(n_samples, 1, self.width, dtype=self.embed_tokens.weight.dtype).to(
self.embed_tokens.weight.device
)
if self.metadata_conditioning:
hidden_states[:, 0] = metadata_conditioning.view(n_samples, self.width)
else:
hidden_states[:, 0] = self.start_token
else:
hidden_states = self.embed_tokens(tokens)
if audio_conditioning.shape == (n_samples, self.n_ctx, self.width):
cond = audio_conditioning[:, sample_t : sample_t + 1, :]
else:
cond = audio_conditioning
# Pos emb, dropout is identity at eval time
hidden_states = hidden_states + self.pos_emb()[sample_t : sample_t + 1] + cond
return hidden_states, cond
def sample(
self,
n_samples,
audio_conditioning=None,
metadata_conditioning=None,
last_encoder_hidden_states=None,
temp=1.0,
top_k=0,
top_p=0.0,
get_preds=False,
sample_tokens=None,
):
if sample_tokens is None:
sample_tokens = self.n_ctx
if not self.audio_conditioning:
audio_conditioning = torch.zeros(
(n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype
).to(self.fc_proj_out.device)
with torch.no_grad():
sampled_tokens = []
tokens = None
if get_preds:
preds = []
iter = tqdm(range(0, sample_tokens), leave=False)
for sample_t in iter:
iter.set_description(f"Ancestral sampling {sample_tokens} music tokens", refresh=True)
hidden_states, cond = self.get_emb(
sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning
)
hidden_states = self.transformer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True
)
if self.add_cond_after_transformer:
hidden_states = hidden_states + cond
hidden_states = self.fc_proj_out(hidden_states) # Predictions
if get_preds:
preds.append(hidden_states.clone())
# Adjust logits
hidden_states = hidden_states / temp
hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p)
# Sample and replace hidden_states
tokens = torch.distributions.Categorical(logits=hidden_states).sample()
sampled_tokens.append(tokens.clone())
del tokens
self.transformer.del_cache()
tokens = torch.cat(sampled_tokens, dim=1)
if get_preds:
preds = torch.cat(preds, dim=1)
if get_preds:
return tokens, preds
else:
return tokens
def split_chunks(self, length, chunk_size):
n_passes = (length + chunk_size - 1) // chunk_size
chunk_sizes = [*[chunk_size] * (n_passes - 1), (length - 1) % chunk_size + 1]
return chunk_sizes
def primed_sample(
self,
n_samples,
lyric_and_music_tokens,
audio_conditioning=None,
metadata_conditioning=None,
last_encoder_hidden_states=None,
temp=1.0,
top_k=0,
top_p=0.0,
get_preds=False,
chunk_size=None,
sample_tokens=None,
):
if sample_tokens is None:
sample_tokens = self.n_ctx
# Preprocess.
batch_size = lyric_and_music_tokens.shape[0]
with torch.no_grad():
lyric_and_music_tokens = lyric_and_music_tokens.view(batch_size, -1).long()
sampled_audio = torch.split(lyric_and_music_tokens, 1, dim=1)
sampled_audio = list(sampled_audio)
if not self.audio_conditioning:
audio_conditioning = torch.zeros(
(n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype
).to(lyric_and_music_tokens.device)
with torch.no_grad():
if get_preds:
preds = []
# Fill up key/value cache for past context by runing forward pass.
# We do so in chunks instead of doing the whole past in one forward pass to reduce max memory usage.
if chunk_size is None:
chunk_size = len(sampled_audio)
chunk_sizes = self.split_chunks(len(sampled_audio), chunk_size)
x_primes = []
start = 0
token = None
for current_chunk_size in tqdm(chunk_sizes, desc="Preparing past key value", leave=False):
sampled_audio_prime, conds_prime = [], []
for sample_t in range(start, start + current_chunk_size):
x_prime, cond_prime = self.get_emb(
sample_t, n_samples, token, audio_conditioning, metadata_conditioning
)
token = sampled_audio[sample_t]
sampled_audio_prime.append(x_prime)
conds_prime.append(cond_prime)
start = start + current_chunk_size
x_prime, cond_prime = torch.cat(sampled_audio_prime, dim=1), torch.cat(conds_prime, dim=1)
del sampled_audio_prime
del conds_prime
if not get_preds:
del cond_prime
x_prime = self.transformer(x_prime, last_encoder_hidden_states=last_encoder_hidden_states, sample=True)
if get_preds:
if self.add_cond_after_transformer:
x_prime = x_prime + cond_prime
del cond_prime
x_primes.append(x_prime)
else:
del x_prime
if get_preds:
x_prime = torch.cat(x_primes, dim=1)
x_prime = self.fc_proj_out(x_prime) # Predictions
preds.append(x_prime)
# the input of the encoder and decoder can be merged into (lyrics, music tokens)
input_tokens = sampled_audio[-1]
itererator = tqdm(
range(len(sampled_audio), sample_tokens),
desc=f"Sampling {len(range(len(sampled_audio), sample_tokens))} music tokens",
leave=False,
)
for sample_t in itererator:
hidden_states, cond = self.get_emb(
sample_t, n_samples, input_tokens, audio_conditioning, metadata_conditioning
)
hidden_states = self.transformer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True
)
if self.add_cond_after_transformer:
hidden_states = hidden_states + cond
hidden_states = self.fc_proj_out(hidden_states) # Predictions
if get_preds:
preds.append(hidden_states)
# Adjust logits
hidden_states = hidden_states / temp
hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p)
# only music tokens are sampled
music_tokens = torch.distributions.Categorical(logits=hidden_states).sample()
sampled_audio.append(music_tokens.clone())
input_tokens = music_tokens
del input_tokens, music_tokens
self.transformer.del_cache()
music_tokens = torch.cat(sampled_audio, dim=1)
if get_preds:
preds = torch.cat(preds, dim=1)
if get_preds:
return music_tokens, preds
else:
return music_tokens
class JukeboxMusicTokenConditioner(nn.Module):
"""
The `JukeboxMusicTokenConditioner` takes music tokens as an input (coresponding to the codes of the VQVAE's
codebook) and upsamples it using a single layer of decoder convolution block (the same is used in the VQVAE).
"""
def __init__(self, config, level):
super().__init__()
self.embed_tokens = nn.Embedding(config.music_vocab_size, config.hidden_size)
config.embed_dim = config.music_vocab_size # setting correct argument for the `JukeboxDecoder`
self.upsampler = JukeboxDecoderConvBock(
config,
config.hidden_size,
config.res_conv_width,
config.res_conv_depth,
config.res_downs_t[level],
config.res_strides_t[level],
reverse_dilation=False,
)
self.layer_norm = JukeboxLayerNorm(config.hidden_size)
def forward(self, music_tokens, raw_audio_conditionning=None):
"""
Args:
music_tokens (`torch.LongTensor`):
Music tokens form the uper level in range(nb_discrete_codes)
raw_audio_conditionning (`torch.LongTensor`, *optional*):
Audio used when primed sampling, raw audio information that conditions the generation
"""
if raw_audio_conditionning is None:
raw_audio_conditionning = 0.0
# Embed music_tokens
music_tokens = music_tokens.long()
hidden_states = self.embed_tokens(music_tokens)
hidden_states = hidden_states + raw_audio_conditionning
# Run conditioner
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.upsampler(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.layer_norm(hidden_states)
return hidden_states
class JukeboxRangeEmbedding(nn.Module):
"""
The `JukeboxRangeEmbedding` interpolate the given [pos_start, pos_end] to obtain an equivalent of time positional
embedding of length `n_ctx`.
Binning process : For each pos in position tensor, find its bin [start,end) mapped to [0,1,...,bins-1] [start,end)
-> [0,1) -> [0, bins) -> floor -> [0,...,bins-1] NOTE: Open ended interval on right, so start <= pos < end, not <=
end
"""
def __init__(self, n_time, embed_dim, range, out_width, clamp=False):
super().__init__()
self.n_time = n_time
self.embed_dim = embed_dim
self.emb = nn.Embedding(embed_dim, out_width)
self.pos_min, self.pos_max = range
self.clamp = clamp
def forward(self, pos_start, pos_end=None):
# Check if [pos_start,pos_end] in [pos_min, pos_max)
if not len(pos_start.shape) == 2:
raise TypeError(f"Expected shape with 2 dims, got {pos_start.shape}")
if not (self.pos_min <= pos_start).all() and (pos_start < self.pos_max).all():
raise TypeError(f"Range is [{self.pos_min},{self.pos_max}), got {pos_start}")
pos_start = pos_start.float()
if pos_end is not None:
if self.clamp:
pos_end = pos_end.clamp(self.pos_min, self.pos_max)
pos_end = pos_end.float()
# Interpolate so that [pos_start, ..., pos_end] <-> position tensor of length n_ctx
n_time = self.n_time
if n_time != 1:
interpolation = (
torch.arange(0, n_time, dtype=torch.float, device=pos_start.device).view(1, n_time) / n_time
)
position = pos_start + (pos_end - pos_start) * interpolation
else:
position = pos_start
# Bin each value to bins_
# [0,1) -> [0,1..,embed_dim) -> [0,1...,embed_dim-1
normalised_position = (position - self.pos_min) / (self.pos_max - self.pos_min)
bins_ = (self.embed_dim * normalised_position).floor().long().detach()
return self.emb(bins_)
class JukeboxLabelConditioner(nn.Module):
def __init__(self, config, include_time_signal):
super().__init__()
embed_dim = config.hidden_size
timing_dims = config.timing_dims
sampling_rate = config.sampling_rate
nb_genres, nb_artists = config.metadata_dims
music_tokens_shape = config.n_ctx
self.max_nb_genres = config.max_nb_genres
self.bow_genre_emb = nn.Embedding(nb_genres, embed_dim)
self.artist_emb = nn.Embedding(nb_artists, embed_dim)
self.include_time_signal = include_time_signal
if self.include_time_signal:
total_length_range = (config.min_duration * sampling_rate, config.max_duration * sampling_rate)
absolute_pos_range = (0.0, config.max_duration * sampling_rate)
relative_pos_range = (0.0, 1.0)
self.total_length_emb = JukeboxRangeEmbedding(1, timing_dims, total_length_range, embed_dim)
self.absolute_pos_emb = JukeboxRangeEmbedding(
music_tokens_shape, timing_dims, absolute_pos_range, embed_dim
)
self.relative_pos_emb = JukeboxRangeEmbedding(
music_tokens_shape, timing_dims, relative_pos_range, embed_dim, clamp=True
)
def forward(self, metadata):
total_length = metadata[:, 0:1]
offset = metadata[:, 1:2]
length = metadata[:, 2:3]
artist = metadata[:, 3:4]
genre = metadata[:, 4:]
# Start embedding of length 1
artist_emb = self.artist_emb(artist)
# Empty genre slots are denoted by -1. We mask these out.
mask = (genre >= 0).float().unsqueeze(2)
genre_emb = (self.bow_genre_emb(genre.clamp(0)) * mask).sum(dim=1, keepdim=True)
start_emb = genre_emb + artist_emb
# Pos embedding of length n_ctx
if self.include_time_signal:
start, end = offset, offset + length
total_length = total_length.float()
start = start.float()
end = end.float()
pos_emb = (
self.total_length_emb(total_length)
+ self.absolute_pos_emb(start, end)
+ self.relative_pos_emb(start / total_length, end / total_length)
)
else:
pos_emb = None
return start_emb, pos_emb
class JukeboxPrior(PreTrainedModel):
"""
The JukeboxPrior class, which is a wrapper around the various conditioning and the transformer. JukeboxPrior can be
seen as language models trained on music. They model the next `music token` prediction task. If a (lyric) `encoderù
is defined, it also models the `next character` prediction on the lyrics. Can be conditionned on timing, artist,
genre, lyrics and codes from lower-levels Priors.
Args:
config (`JukeboxPriorConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
level (`int`, *optional*):
Current level of the Prior. Should be in range `[0,nb_priors]`.
nb_priors (`int`, *optional*, defaults to 3):
Total number of priors.
vqvae_encoder (`Callable`, *optional*):
Encoding method of the VQVAE encoder used in the forward pass of the model. Passing functions instead of
the vqvae module to avoid getting the parameters.
vqvae_decoder (`Callable`, *optional*):
Decoding method of the VQVAE decoder used in the forward pass of the model. Passing functions instead of
the vqvae module to avoid getting the parameters.
"""
config_class = JukeboxPriorConfig
def _init_weights(self, module):
init_scale = self.config.init_scale
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02 * init_scale)
elif isinstance(module, JukeboxConv1D):
if self.config.zero_out:
module.weight.data.zero_()
else:
module.weight.data.normal_(mean=0.0, std=0.02 * init_scale)
elif isinstance(module, JukeboxPositionalEmbedding):
module.pos_emb.data.normal_(mean=0.0, std=0.01 * init_scale)
elif isinstance(module, JukeboxRangeEmbedding):
module.emb.weight.data.normal_(mean=0.0, std=0.01 * init_scale)
elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "lm_head"):
module.lm_head.weight.data.normal_(mean=0.0, std=0.02 * init_scale)
elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "start_token"):
module.start_token.data.normal_(mean=0.0, std=0.01 * init_scale)
elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out:
module.conv1d_2.weigth.data.zero_()
module.conv1d_2.bias.data.zero_()
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def __init__(self, config: JukeboxPriorConfig, level=None, nb_priors=3, vqvae_encoder=None, vqvae_decoder=None):
super().__init__(config)
# Passing functions instead of the vqvae module to avoid getting params, only used in the
# forward loop
self.vqvae_encoder = vqvae_encoder
self.vqvae_decoder = vqvae_decoder
self.levels = nb_priors
self.level = level if level is not None else config.level
self.base_model_prefix = f"priors.{self.level}"
self.n_ctx = config.n_ctx
self.lyric_conditioning = config.nb_relevant_lyric_tokens > 0
self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens
self.encoder_loss_fraction = config.encoder_loss_fraction
# Audio conditioning : conditioning on music tokens (either from audio or from previous levels or both)
self.audio_conditioning = self.level != 0
self.cond_level = self.level - 1
if self.audio_conditioning:
self.conditioner_blocks = JukeboxMusicTokenConditioner(config, self.level)
# metadata conditioning : contioning on timing, genres, and artist
self.metadata_conditioning = config.metadata_conditioning
if self.metadata_conditioning:
self.metadata_embedding = JukeboxLabelConditioner(config, include_time_signal=not self.audio_conditioning)
# define encoder-decoder or encoder and decoder
self.is_encoder_decoder = config.is_encoder_decoder
if config.is_encoder_decoder:
# encoder-decoder transformer
self.input_shapes = [config.nb_relevant_lyric_tokens, config.n_ctx]
self.embed_dim_shift = [0, config.lyric_vocab_size]
self.width = config.hidden_size
self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens
self.prior = JukeboxConditionalAutoregressive(
config,
n_ctx=config.nb_relevant_lyric_tokens + config.n_ctx,
embed_dim=config.lyric_vocab_size + config.music_vocab_size,
audio_conditioning=(self.audio_conditioning or self.metadata_conditioning),
metadata_conditioning=True,
)
else:
# Separate encoder-decoder transformer
encoder_config = config.encoder_config
if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning:
self.lyric_acts_width = encoder_config.hidden_size
self.encoder_width = config.hidden_size
self.encoder_dim = config.lyric_vocab_size
self.encoder = JukeboxConditionalAutoregressive(
encoder_config,
n_ctx=self.nb_relevant_lyric_tokens,
embed_dim=self.encoder_dim,
audio_conditioning=False,
metadata_conditioning=False,
is_encoder=True,
)
self.encoder.proj_in = JukeboxConv1D(encoder_config.hidden_size, config.hidden_size)
self.encoder.final_layer_norm = JukeboxLayerNorm(config.hidden_size)
self.encoder.lm_head = nn.Linear(config.hidden_size, config.lyric_vocab_size, bias=False)
else:
self.nb_relevant_lyric_tokens = 0
# decoder model on the tokens
self.prior = JukeboxConditionalAutoregressive(
config,
audio_conditioning=(self.audio_conditioning or self.metadata_conditioning),
metadata_conditioning=self.metadata_conditioning,
)
self.next_token_prediction_loss_dims = config.n_ctx
self.total_loss_dims = self.nb_relevant_lyric_tokens + self.next_token_prediction_loss_dims
self.downsamples = [stride**down for stride, down in zip(config.res_strides_t, config.res_downs_t)]
self.cond_downsample = self.downsamples[self.level] if self.level != 0 else None
self.raw_to_tokens = np.prod(self.downsamples[: nb_priors - self.level])
self.sample_length = self.n_ctx * self.raw_to_tokens
logger.info(
f"Level:{self.level}, Cond downsample:{self.cond_downsample}, Raw to tokens:{self.raw_to_tokens}, Sample"
f" length:{self.sample_length}"
)
def get_metadata(self, labels, start, total_length, offset, get_indices=False):
metadata = labels.clone()
metadata[:, 0] = total_length
# Set sample_length to match this level
metadata[:, 2] = int(self.sample_length)
# Set offset
metadata[:, 1:2] = int(offset * self.raw_to_tokens) + int(start * self.raw_to_tokens)
# here since metadata has the full token_list, we just need to selected the ones that are relevant
# Set lyric tokens
metadata, indices = self.set_metadata_lyric_tokens(metadata)
if get_indices:
return metadata, indices
else:
return metadata
def set_metadata_lyric_tokens(self, labels):
"""
Processes the full labels to only retreive the relevant lyric tokens and keep the metadata conditioning tokens.
"""
if self.nb_relevant_lyric_tokens > 0:
tokens_list = torch.zeros(
(labels.shape[0], self.nb_relevant_lyric_tokens), dtype=torch.long, device=labels.device
)
indices_list = [] # whats the index of each current character in original array
for idx in range(labels.shape[0]):
full_tokens = labels.clone()[:, 4 + self.metadata_embedding.max_nb_genres :]
total_length, offset, duration = labels[idx, 0], labels[idx, 1], labels[idx, 2]
tokens, indices = get_relevant_lyric_tokens(
full_tokens, self.nb_relevant_lyric_tokens, total_length, offset, duration
)
tokens_list[idx, :] = tokens
indices_list.append(indices)
return (
torch.cat((labels[:, : 4 + self.metadata_embedding.max_nb_genres], tokens_list), dim=-1),
indices_list,
)
else:
return labels, None
def get_music_tokens_conds(self, music_tokens, start, end):
"""
Extracts current level's conditioning music tokens.
"""
if self.level != 0:
music_tokens_cond = music_tokens[self.level - 1]
music_tokens = music_tokens_cond[:, start // self.cond_downsample : end // self.cond_downsample]
missing_cond_len = self.n_ctx // self.cond_downsample - music_tokens_cond[-1].shape[-1]
if missing_cond_len > 0:
init_cond = torch.zeros(1, missing_cond_len).to(music_tokens_cond.device)
music_tokens_cond = torch.cat((music_tokens_cond, init_cond), dim=-1).long()
music_tokens_conds = [music_tokens_cond]
else:
music_tokens_conds = None
return music_tokens_conds
def prior_preprocess(self, tokens, conds):
"""
Shifts the input tokens to account for the dictionary merge. The embed_dim_shift give by how much the music
tokens should be shifted by. It is equal to `lyric_vocab_size`.
"""
batch_size = tokens[0].shape[0]
for i in range(len(tokens)):
tokens[i] = (tokens[i] + int(self.embed_dim_shift[i])).view(batch_size, -1)
for i in range(len(conds)):
if conds[i] is None:
conds[i] = torch.zeros(
(batch_size, self.input_shapes[i], self.width), dtype=tokens[0].dtype, device=tokens[0].device
)
return torch.cat(tokens, dim=1), torch.cat(conds, dim=1)
def prior_postprocess(self, tokens):
"""
Shifts back the input tokens if the model uses an encoder decoder architecture. As the embedding layer is
shared, `prior_embed_dim_shift` shifts the music token ids by `lyric_vocab_size`. Only returns the music
tokens.
"""
batch_size = tokens.shape[0]
dims = (self.input_shapes[0], tokens.shape[1] - self.input_shapes[0])
tokens = list(torch.split(tokens, dims, dim=1))
# Some of the input tokens might be shifted to take into account the voccabulary fusion
for i in range(len(tokens)):
bins_shift = int(self.embed_dim_shift[i])
tokens[i] = (tokens[i] - bins_shift).view(batch_size, -1)
tokens[i] = torch.clamp(tokens[i], min=0)
# If not masking loss, model may have generated lyric/midi tokens which are now shifted <0 by bin_shift
return tokens[-1]
def embed_tokens(self, music_tokens_conds):
"""
Embeds the upper level music tokens and upsamples them to provide as audio conditioning.
"""
music_tokens_conds = music_tokens_conds[: self.cond_level + 1]
audio_conditioning = None
for music_tokens_cond, conditioner_block in reversed(list(zip(music_tokens_conds, [self.conditioner_blocks]))):
audio_conditioning = conditioner_block(music_tokens_cond, audio_conditioning)
return audio_conditioning
def encode(self, hidden_states, start_level=None, end_level=None, bs_chunks=1):
"""
Encodes the hidden states (raw audio) using the VQVAE's encoder. Returns latent_states.
"""
if start_level is None:
start_level = self.level
if end_level is None:
end_level = self.levels
# Get latents
with torch.no_grad():
latent_states = self.vqvae_encoder(
hidden_states, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks
)
return latent_states
def decode(self, music_tokens, start_level=None, end_level=None, bs_chunks=1):
"""
Usamples the sequence of codebook vectors to a raw audio.
"""
if start_level is None:
start_level = self.level
if end_level is None:
end_level = self.levels
with torch.no_grad():
output = self.vqvae_decoder(
music_tokens, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks
)
return output
def get_cond(self, music_tokens_conds, metadata):
"""
Converts the input tokens to input_embeddings. Splits the lyrics form the rest of the metadata. Lyric tokens
can be None.
"""
if metadata is not None:
n_labels = metadata.shape[1] - self.nb_relevant_lyric_tokens
metadata, lyric_tokens = metadata[:, :n_labels], metadata[:, n_labels:]
else:
metadata, lyric_tokens = None, None
metadata_conditioning, metadata_pos = (
self.metadata_embedding(metadata) if self.metadata_conditioning else (None, None)
)
audio_conditioning = self.embed_tokens(music_tokens_conds) if self.audio_conditioning else metadata_pos
return audio_conditioning, metadata_conditioning, lyric_tokens
def sample(
self,
n_samples,
music_tokens=None,
music_tokens_conds=None,
metadata=None,
temp=1.0,
top_k=0,
top_p=0.0,
chunk_size=None,
sample_tokens=None,
):
"""
Ancestral/Prime sampling a window of tokens using the provided conditioning and metadatas.
Args:
n_samples (`int`):
Number of samples to generate.
music_tokens (`List[torch.LongTensor]`, *optional*):
Previously gemerated tokens at the current level. Used as context for the generation.
music_tokens_conds (`List[torch.FloatTensor]`, *optional*):
Upper-level music tokens generated by the previous prior model. Is `None` if the generation is not
conditionned on the upper-level tokens.
metadata (`List[torch.LongTensor]`, *optional*):
List containing the metatdata tensor with the artist, genre and the lyric tokens.
temp (`float`, *optional*, defaults to 1.0):
Sampling temperature.
top_k (`int`, *optional*, defaults to 0):
Top k probabilities used for filtering.
top_p (`float`, *optional*, defaults to 0.0):
Top p probabilities used for filtering.
chunk_size (`int`, *optional*):
Size of the chunks used to prepare the cache of the transformer.
sample_tokens (`int`, *optional*):
Number of tokens to sample.
"""
no_past_context = music_tokens is None or music_tokens.shape[1] == 0
name = {True: "Ancestral", False: "Primed"}[no_past_context]
logger.info(f"{name} sampling {n_samples} samples with temp={temp}, top_k={top_k}, top_p={top_p}")
with torch.no_grad():
# Currently audio_conditioning only uses immediately above layer
audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata)
if self.is_encoder_decoder:
if no_past_context: # the prime_sample function will be used with music_tokens set to None
lyric_and_music_tokens, audio_conditioning = self.prior_preprocess(
[lyric_tokens], [None, audio_conditioning]
)
else:
lyric_and_music_tokens, audio_conditioning = self.prior_preprocess(
[lyric_tokens, music_tokens], [None, audio_conditioning]
)
if sample_tokens is not None:
sample_tokens += self.nb_relevant_lyric_tokens
music_tokens = self.prior.primed_sample(
n_samples,
lyric_and_music_tokens,
audio_conditioning,
metadata_conditioning,
temp=temp,
top_k=top_k,
top_p=top_p,
chunk_size=chunk_size,
sample_tokens=sample_tokens,
)
music_tokens = self.prior_postprocess(music_tokens)
else:
last_encoder_hidden_states = self.get_encoder_states(lyric_tokens, sample=True)
if no_past_context:
music_tokens = self.prior.sample(
n_samples,
audio_conditioning,
metadata_conditioning,
last_encoder_hidden_states,
temp=temp,
top_k=top_k,
top_p=top_p,
sample_tokens=sample_tokens,
)
else:
music_tokens = self.prior.primed_sample(
n_samples,
music_tokens,
audio_conditioning,
metadata_conditioning,
last_encoder_hidden_states,
temp=temp,
top_k=top_k,
top_p=top_p,
chunk_size=chunk_size,
sample_tokens=sample_tokens,
)
return music_tokens
def get_encoder_states(self, lyric_tokens, sample=False):
"""
Retreive the last hidden_states of the lyric encoder that will be attended to by the decoder. Forwards through
the lyric encoder.
"""
if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning:
if sample:
self.encoder = self.encoder.to(lyric_tokens.device)
lyric_acts = self.encoder(lyric_tokens, None, None, None)
lyric_acts = self.encoder.proj_in(lyric_acts)
last_encoder_hidden_states = self.encoder.final_layer_norm(lyric_acts)
else:
last_encoder_hidden_states = None
return last_encoder_hidden_states
def get_encoder_loss(self, last_encoder_hidden_states, target_lyrics):
"""
Computes the loss for the lyric encoder: next lyric token prediction.
"""
if self.lyric_conditioning:
last_encoder_hidden_states = self.encoder.lm_head(last_encoder_hidden_states)
encoder_loss = nn.functional.cross_entropy(
last_encoder_hidden_states.view(-1, self.encoder_dim), target_lyrics.view(-1)
) / np.log(2.0)
else:
encoder_loss = torch.tensor(0.0, device=last_encoder_hidden_states.device)
return encoder_loss
def forward_tokens(
self, music_tokens, music_tokens_conds=[], metadata=None, get_preds=False, get_attn_weights=False
):
"""
Applies a forward pass using the conditioning tokens. Different from the classic forward as it does not use the
vqvae's encoding layers.
"""
if get_attn_weights:
self.prior.transformer.set_record_attn(get_attn_weights)
audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata)
if self.is_encoder_decoder: # the preprocess returns the full tokens (Lyrics and Music tokens), shifted
tokens, audio_conditioning = self.prior_preprocess(
[lyric_tokens, music_tokens], [None, audio_conditioning]
)
(encoder_loss, next_token_prediction_loss), preds = self.prior(
tokens, audio_conditioning, metadata_conditioning, get_sep_loss=True, get_preds=get_preds
)
else:
last_encoder_hidden_states = self.get_encoder_states(lyric_tokens)
encoder_loss = self.get_encoder_loss(last_encoder_hidden_states, lyric_tokens)
next_token_prediction_loss, preds = self.prior(
music_tokens,
audio_conditioning,
metadata_conditioning,
last_encoder_hidden_states,
get_preds=get_preds,
)
loss = self.encoder_loss_fraction * encoder_loss * self.nb_relevant_lyric_tokens / self.total_loss_dims
loss += next_token_prediction_loss * self.next_token_prediction_loss_dims / self.total_loss_dims
metrics = {
"bpd": next_token_prediction_loss.clone().detach(),
"encoder_loss": encoder_loss.clone().detach(),
"next_token_prediction_loss": next_token_prediction_loss.clone().detach(),
}
if get_preds:
metrics["preds"] = preds.clone().detach()
if get_attn_weights:
saved_attn_weights = self.prior.transformer.saved_attn_weights
self.prior.transformer.set_record_attn(False)
return saved_attn_weights
else:
return loss, metrics
def forward(
self,
hidden_states: torch.Tensor,
metadata: Optional[List[torch.LongTensor]],
decode: Optional[bool] = False,
get_preds: Optional[bool] = False,
) -> List[torch.Tensor]:
"""
Encode the hidden states using the `vqvae` encoder, and then predicts the next token in the `forward_tokens`
function. The loss is the sum of the `encoder` loss and the `decoder` loss.
Args:
hidden_states (`torch.Tensor`):
Hidden states which should be raw audio
metadata (`List[torch.LongTensor]`, *optional*):
List containing the metadata conditioning tensorwith the lyric and the metadata tokens.
decode (`bool`, *optional*, defaults to `False`):
Whether or not to decode the encoded to tokens.
get_preds (`bool`, *optional*, defaults to `False`):
Whether or not to return the actual predicitons of the model.
"""
batch_size = hidden_states.shape[0]
music_tokens, *music_tokens_conds = self.encode(hidden_states, bs_chunks=batch_size)
loss, metrics = self.forward_tokens(
music_tokens=music_tokens,
music_tokens_conds=music_tokens_conds,
metadata=metadata,
get_preds=get_preds,
)
if decode:
dequantised_states = self.decode([music_tokens, *music_tokens_conds])
else:
dequantised_states = None
return dequantised_states, loss, metrics
class JukeboxPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = JukeboxConfig
base_model_prefix = "jukebox"
supports_gradient_checkpointing = False
def _init_weights(self, module):
if isinstance(module, JukeboxPrior) or isinstance(module, JukeboxVQVAE):
module.apply(module._init_weights)
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
JUKEBOX_SAMPLING_INPUT_DOCSTRING = r"""
labels (`List[torch.LongTensor]` of length `n_sample`, and shape `(self.levels, self.config.max_nb_genre + lyric_sequence_length)` :
List of metadata such as `artist_id`, `genre_id` and the full list of lyric tokens which are used to
condition the generation.
sampling_kwargs (`Dict[Any]`):
Various additional sampling arguments that are used by the `_sample` function. A detail list of the
arguments can bee seen in the [`_sample`] function documentation.
"""
@add_start_docstrings(
"""The bare JUKEBOX Model used for music generation. 4 sampling techniques are supported : `primed_sample`, `upsample`,
`continue_sample` and `ancestral_sample`. It does not have a `forward` method as the training is not end to end. If
you want to fine-tune the model, it is recommended to use the `JukeboxPrior` class and train each prior
individually.
""",
JUKEBOX_START_DOCSTRING,
)
class JukeboxModel(JukeboxPreTrainedModel):
_no_split_modules = ["JukeboxBlock"]
def __init__(self, config):
super().__init__(config)
vqvae_config = config.vqvae_config
self.vqvae = JukeboxVQVAE(vqvae_config)
self.set_shared_params(config)
self.priors = nn.ModuleList(
[JukeboxPrior(config.prior_configs[level], level) for level in range(config.nb_priors)]
)
def set_shared_params(self, model_config):
"""
Initialises the parameters that are shared. This has to be done here because the list of `JukeboxPriorConfig`
is nest, and is thus unreachable in the `from_dict` function
"""
for config in model_config.prior_configs:
config.sampling_rate = model_config.sampling_rate
config.timing_dims = model_config.timing_dims
config.min_duration = model_config.min_duration
config.max_duration = model_config.max_duration
config.max_nb_genres = model_config.max_nb_genres
config.metadata_conditioning = model_config.metadata_conditioning
def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1):
return self.vqvae.decode(music_tokens, start_level, end_level, bs_chunks)
def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1):
return self.vqvae.encode(input_audio, start_level, end_level, bs_chunks)
def split_batch(self, obj, n_samples, split_size):
n_passes = (n_samples + split_size - 1) // split_size
if isinstance(obj, torch.Tensor):
return torch.split(obj, split_size, dim=0)
elif isinstance(obj, list):
return list(zip(*[torch.split(item, split_size, dim=0) for item in obj]))
elif obj is None:
return [None] * n_passes
else:
raise TypeError("Unknown input type")
# Sample a partial window of length<n_ctx with tokens_to_sample new tokens on level=level
def sample_partial_window(
self, music_tokens, labels, offset, sampling_kwargs, level, tokens_to_sample, max_batch_size
):
prior = self.priors[level]
sampled_tokens = music_tokens[level]
n_ctx = prior.n_ctx
nb_sampled_tokens = sampled_tokens.shape[1]
if nb_sampled_tokens < n_ctx - tokens_to_sample:
sampling_kwargs["sample_tokens"] = nb_sampled_tokens + tokens_to_sample
start = 0
else:
sampling_kwargs["sample_tokens"] = n_ctx
start = nb_sampled_tokens - n_ctx + tokens_to_sample
return self.sample_single_window(music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size)
# Sample a single window of length=n_ctx at position=start on level=level
def sample_single_window(self, music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size):
prior = self.priors[level]
n_samples = music_tokens[0].shape[0]
n_ctx = prior.n_ctx
end = start + n_ctx
# get music_tokens already sampled at current level
previous_sampled_tokens = music_tokens[level][:, start:end]
sample_tokens = sampling_kwargs.get("sample_tokens", None)
if "sample_tokens" in sampling_kwargs:
sample_tokens = end - start
conditioning_tokens = previous_sampled_tokens.shape[1]
new_tokens = sample_tokens - previous_sampled_tokens.shape[1]
logger.info(
f"Sampling {sample_tokens} tokens for [{start},{start+sample_tokens}]. Conditioning on"
f" {conditioning_tokens} tokens"
)
if new_tokens <= 0:
# Nothing new to sample
return music_tokens
# get music_tokens_conds from level above
music_tokens_conds = prior.get_music_tokens_conds(music_tokens, start, end)
# if there are no levels above should return None!
# set metadata offset, sample_length and lyrics tokens
metadata = prior.get_metadata(labels, start, self.total_length, offset)
music_tokens_list = self.split_batch(previous_sampled_tokens, n_samples, max_batch_size)
music_tokens_conds_list = self.split_batch(music_tokens_conds, n_samples, max_batch_size)
metadata_list = self.split_batch(metadata, n_samples, max_batch_size)
tokens = []
iterator = tqdm(zip(music_tokens_list, music_tokens_conds_list, metadata_list), leave=False)
for music_tokens_i, music_tokens_conds_i, metadata_i in iterator:
name = ["Ancestral", "Primed"][music_tokens_i.shape[1] == 0]
iterator.set_description(
f"[prior level {level}] {name} Sampling {sample_tokens} tokens out of"
f" {self.total_length//prior.raw_to_tokens}",
refresh=True,
)
tokens_i = prior.sample(
n_samples=music_tokens_i.shape[0],
music_tokens=music_tokens_i,
music_tokens_conds=music_tokens_conds_i,
metadata=metadata_i,
**sampling_kwargs,
)
tokens.append(tokens_i)
sampled_tokens = torch.cat(tokens, dim=0)
# Update music_tokens with new sample
music_tokens_new = sampled_tokens[:, -new_tokens:]
music_tokens[level] = torch.cat([music_tokens[level], music_tokens_new], dim=1)
return music_tokens
# Sample total_length tokens at level=level with hop_length=hop_length
def sample_level(
self, music_tokens, labels, offset, sampling_kwargs, level, total_length, hop_length, max_batch_size
):
if total_length >= self.priors[level].n_ctx:
iterator = get_starts(total_length, self.priors[level].n_ctx, hop_length)
for start in iterator:
music_tokens = self.sample_single_window(
music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size
)
else:
music_tokens = self.sample_partial_window(
music_tokens, labels, offset, sampling_kwargs, level, total_length, max_batch_size
)
return music_tokens
@torch.no_grad()
def _sample(
self,
music_tokens,
labels,
sample_levels,
metas=None,
chunk_size=32,
sampling_temperature=0.98,
lower_batch_size=16,
max_batch_size=16,
sample_length_in_seconds=24,
compute_alignments=False,
sample_tokens=None,
offset=0,
save_results=True,
sample_length=None,
) -> List[torch.LongTensor]:
"""
Core sampling function used to generate music tokens. Iterates over the provided list of levels, while saving
the generated raw audio at each step.
Args:
music_tokens (`List[torch.LongTensor]`):
A sequence of music tokens of length `self.levels` which will be used as context to continue the
sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain
level.
labels (`List[torch.LongTensor]`):
List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre +
lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens
which are used to condition the generation.
sample_levels (`List[int]`):
List of the desired levels at which the sampling will be done. A level is equivalent to the index of
the prior in the list of priors
metas (`List[Any]`, *optional*):
Metadatas used to generate the `labels`
chunk_size (`int`, *optional*, defaults to 32):
Size of a chunk of audio, used to fill up the memory in chuncks to prevent OOM erros. Bigger chunks
means faster memory filling but more consumption.
sampling_temperature (`float`, *optional*, defaults to 0.98):
Temperature used to ajust the randomness of the sampling.
lower_batch_size (`int`, *optional*, defaults to 16):
Maximum batch size for the lower level priors
max_batch_size (`int`, *optional*, defaults to 16):
Maximum batch size for the top level priors
sample_length_in_seconds (`int`, *optional*, defaults to 24):
Desired length of the generation in seconds
compute_alignments (`bool`, *optional*, defaults to `False`):
Whether or not to compute the alignment between the lyrics and the audio using the top_prior
sample_tokens (`int`, *optional*):
Precise number of tokens that should be sampled at each level. This is mostly useful for running dummy
experiments
offset (`int`, *optional*, defaults to 0):
Audio offset used as conditioning, corresponds to the starting sample in the music. If the offset is
greater than 0, the lyrics will be shifted take that intoaccount
save_results (`bool`, *optional*, defaults to `True`):
Whether or not to save the intermediate results. If `True`, will generate a folder named with the start
time.
sample_length (`int`, *optional*):
Desired length of the generation in samples.
Returns: torch.Tensor
Example:
```python
>>> from transformers import AutoTokenizer, JukeboxModel, set_seed
>>> import torch
>>> metas = dict(artist="Zac Brown Band", genres="Country", lyrics="I met a traveller from an antique land")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics")
>>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval()
>>> labels = tokenizer(**metas)["input_ids"]
>>> set_seed(0)
>>> zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)]
>>> zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False)
>>> zs[0]
tensor([[1853, 1369, 1150, 1869, 1379, 1789, 519, 710, 1306, 1100, 1229, 519,
353, 1306, 1379, 1053, 519, 653, 1631, 1467, 1229, 1229, 10, 1647,
1254, 1229, 1306, 1528, 1789, 216, 1631, 1434, 653, 475, 1150, 1528,
1804, 541, 1804, 1434]])
```
"""
top_prior = self.priors[0]
if sample_length is not None:
total_length = sample_length
else:
total_length = (
int(sample_length_in_seconds * self.config.sampling_rate) // top_prior.raw_to_tokens
) * top_prior.raw_to_tokens
if sample_levels is None:
sample_levels = range(len(self.priors))
# total length of the signal, might be bit different from the actual generated length
self.total_length = total_length
for level in sample_levels:
sampling_kwargs = {
"temp": 0.99 if level == len(self.priors) - 1 else sampling_temperature,
"chunk_size": chunk_size,
"sample_tokens": sample_tokens,
}
# Set correct total_length, hop_length, labels and sampling_kwargs for level
total_token_to_sample = total_length // self.priors[level].raw_to_tokens
hop_length = int(self.config.hop_fraction[level] * self.priors[level].n_ctx)
max_batch_size = lower_batch_size if level != sample_levels else max_batch_size
music_tokens = self.sample_level(
music_tokens,
labels[level],
offset,
sampling_kwargs,
level,
total_token_to_sample,
hop_length,
max_batch_size,
)
if save_results:
self.vqvae.to(music_tokens[level].device)
# Decode sample
with torch.no_grad():
start_level = len(self.priors) - level - 1 # vqvae levels are reversed
raw_audio = self.vqvae.decode(
music_tokens[: level + 1], start_level=start_level, bs_chunks=music_tokens[level].shape[0]
)
logdir = f"jukebox/level_{level}"
if not os.path.exists(logdir):
os.makedirs(logdir)
save_temp_audio(logdir, level, metas=metas, aud=raw_audio.float())
if compute_alignments and self.priors[0] is not None and self.priors[0].nb_relevant_lyric_tokens > 0:
with torch.no_grad():
alignments = get_alignment(music_tokens, labels[0], self.priors[0], self.config)
torch.save({"alignments": alignments}, f"{logdir}/lyric_alignments.pt")
return music_tokens
@add_start_docstrings(
"""
Generates music tokens based on the provided `labels. Will start at the desired prior level and automatically
upsample the sequence. If you want to create the audio, you should call `model.decode(tokens)`, which will use
the VQ-VAE decoder to convert the music tokens to raw audio.
Args:
labels (`List[torch.LongTensor]`) :
List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre +
lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens
which are used to condition the generation.
n_samples (`int`, *optional*, default to 1) :
Number of samples to be generated in parallel.
""",
)
def ancestral_sample(self, labels, n_samples=1, **sampling_kwargs) -> List[torch.LongTensor]:
"""
Example:
```python
>>> from transformers import AutoTokenizer, JukeboxModel, set_seed
>>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval()
>>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics")
>>> lyrics = "Hey, are you awake? Can you talk to me?"
>>> artist = "Zac Brown Band"
>>> genre = "Country"
>>> metas = tokenizer(artist=artist, genres=genre, lyrics=lyrics)
>>> set_seed(0)
>>> music_tokens = model.ancestral_sample(metas.input_ids, sample_length=400)
>>> with torch.no_grad():
... model.decode(music_tokens)[:, :10].squeeze(-1)
tensor([[-0.0219, -0.0679, -0.1050, -0.1203, -0.1271, -0.0936, -0.0396, -0.0405,
-0.0818, -0.0697]])
```
"""
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors))))
music_tokens = [
torch.zeros(n_samples, 0, dtype=torch.long, device=labels[0].device) for _ in range(len(self.priors))
]
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens
@add_start_docstrings(
"""Generates a continuation of the previously generated tokens.
Args:
music_tokens (`List[torch.LongTensor]` of length `self.levels` ) :
A sequence of music tokens which will be used as context to continue the sampling process. Should have
`self.levels` tensors, each corresponding to the generation at a certain level.
""",
JUKEBOX_SAMPLING_INPUT_DOCSTRING,
)
def continue_sample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]:
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors))))
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens
@add_start_docstrings(
"""Upsamples a sequence of music tokens using the prior at level `level`.
Args:
music_tokens (`List[torch.LongTensor]` of length `self.levels` ) :
A sequence of music tokens which will be used as context to continue the sampling process. Should have
`self.levels` tensors, each corresponding to the generation at a certain level.
""",
JUKEBOX_SAMPLING_INPUT_DOCSTRING,
)
def upsample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]:
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors) - 1)))
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens
@add_start_docstrings(
"""Generate a raw audio conditioned on the provided `raw_audio` which is used as conditioning at each of the
generation levels. The audio is encoded to music tokens using the 3 levels of the VQ-VAE. These tokens are
used: as conditioning for each level, which means that no ancestral sampling is required.
Args:
raw_audio (`List[torch.Tensor]` of length `n_samples` ) :
A list of raw audio that will be used as conditioning information for each samples that will be
generated.
""",
JUKEBOX_SAMPLING_INPUT_DOCSTRING,
)
def primed_sample(self, raw_audio, labels, **sampling_kwargs) -> List[torch.LongTensor]:
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors))))
self.vqvae.to(raw_audio.device).float()
with torch.no_grad():
music_tokens = self.vqvae.encode(
raw_audio, start_level=0, end_level=len(self.priors), bs_chunks=raw_audio.shape[0]
)
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens
| transformers/src/transformers/models/jukebox/modeling_jukebox.py/0 | {
"file_path": "transformers/src/transformers/models/jukebox/modeling_jukebox.py",
"repo_id": "transformers",
"token_count": 54661
} | 315 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for LayoutLMv2."""
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
logger = logging.get_logger(__name__)
def normalize_box(box, width, height):
return [
int(1000 * (box[0] / width)),
int(1000 * (box[1] / height)),
int(1000 * (box[2] / width)),
int(1000 * (box[3] / height)),
]
def apply_tesseract(
image: np.ndarray,
lang: Optional[str],
tesseract_config: Optional[str] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes."""
tesseract_config = tesseract_config if tesseract_config is not None else ""
# apply OCR
pil_image = to_pil_image(image, input_data_format=input_data_format)
image_width, image_height = pil_image.size
data = pytesseract.image_to_data(pil_image, lang=lang, output_type="dict", config=tesseract_config)
words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"]
# filter empty words and corresponding coordinates
irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()]
words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices]
left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices]
top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices]
width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices]
height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
actual_boxes = []
for x, y, w, h in zip(left, top, width, height):
actual_box = [x, y, x + w, y + h]
actual_boxes.append(actual_box)
# finally, normalize the bounding boxes
normalized_boxes = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(box, image_width, image_height))
assert len(words) == len(normalized_boxes), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class LayoutLMv2ImageProcessor(BaseImageProcessor):
r"""
Constructs a LayoutLMv2 image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to `(size["height"], size["width"])`. Can be
overridden by `do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
apply_ocr (`bool`, *optional*, defaults to `True`):
Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. Can be overridden by
`apply_ocr` in `preprocess`.
ocr_lang (`str`, *optional*):
The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
used. Can be overridden by `ocr_lang` in `preprocess`.
tesseract_config (`str`, *optional*, defaults to `""`):
Any additional custom configuration flags that are forwarded to the `config` parameter when calling
Tesseract. For example: '--psm 6'. Can be overridden by `tesseract_config` in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
apply_ocr: bool = True,
ocr_lang: Optional[str] = None,
tesseract_config: Optional[str] = "",
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.apply_ocr = apply_ocr
self.ocr_lang = ocr_lang
self.tesseract_config = tesseract_config
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
apply_ocr: bool = None,
ocr_lang: Optional[str] = None,
tesseract_config: Optional[str] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Desired size of the output image after resizing.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PIL.Image` resampling
filter. Only has an effect if `do_resize` is set to `True`.
apply_ocr (`bool`, *optional*, defaults to `self.apply_ocr`):
Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes.
ocr_lang (`str`, *optional*, defaults to `self.ocr_lang`):
The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
used.
tesseract_config (`str`, *optional*, defaults to `self.tesseract_config`):
Any additional custom configuration flags that are forwarded to the `config` parameter when calling
Tesseract.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
apply_ocr = apply_ocr if apply_ocr is not None else self.apply_ocr
ocr_lang = ocr_lang if ocr_lang is not None else self.ocr_lang
tesseract_config = tesseract_config if tesseract_config is not None else self.tesseract_config
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if apply_ocr:
requires_backends(self, "pytesseract")
words_batch = []
boxes_batch = []
for image in images:
words, boxes = apply_tesseract(image, ocr_lang, tesseract_config, input_data_format=input_data_format)
words_batch.append(words)
boxes_batch.append(boxes)
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
# flip color channels from RGB to BGR (as Detectron2 requires this)
images = [flip_channel_order(image, input_data_format=input_data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
if apply_ocr:
data["words"] = words_batch
data["boxes"] = boxes_batch
return data
| transformers/src/transformers/models/layoutlmv2/image_processing_layoutlmv2.py/0 | {
"file_path": "transformers/src/transformers/models/layoutlmv2/image_processing_layoutlmv2.py",
"repo_id": "transformers",
"token_count": 5516
} | 316 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for LayoutXLM model."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import (
BatchEncoding,
EncodedInput,
PreTokenizedInput,
TextInput,
TextInputPair,
TruncationStrategy,
)
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
from ..xlm_roberta.tokenization_xlm_roberta import (
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES,
PRETRAINED_VOCAB_FILES_MAP,
SPIECE_UNDERLINE,
VOCAB_FILES_NAMES,
)
logger = logging.get_logger(__name__)
LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r"""
add_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to encode the sequences with the special tokens relative to their model.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
stride (`int`, *optional*, defaults to 0):
If set to a number along with `max_length`, the overflowing tokens returned when
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_token_type_ids (`bool`, *optional*):
Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are token type IDs?](../glossary#token-type-ids)
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
of returning overflowing tokens.
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
Whether or not to return special tokens mask information.
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
Whether or not to return `(char_start, char_end)` for each token.
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
Python's tokenizer, this method will raise `NotImplementedError`.
return_length (`bool`, *optional*, defaults to `False`):
Whether or not to return the lengths of the encoded inputs.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
**kwargs: passed to the `self.tokenize()` method
Return:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
[What are input IDs?](../glossary#input-ids)
- **bbox** -- List of bounding boxes to be fed to a model.
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
if *"token_type_ids"* is in `self.model_input_names`).
[What are token type IDs?](../glossary#token-type-ids)
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
[What are attention masks?](../glossary#attention-mask)
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
`return_overflowing_tokens=True`).
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
`return_overflowing_tokens=True`).
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
- **length** -- The length of the inputs (when `return_length=True`).
"""
class LayoutXLMTokenizer(PreTrainedTokenizer):
"""
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [CLS] token.
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
The bounding box to use for the special [SEP] token.
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [PAD] token.
pad_token_label (`int`, *optional*, defaults to -100):
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
CrossEntropyLoss.
only_label_first_subword (`bool`, *optional*, defaults to `True`):
Whether or not to only label the first subword, in case word labels are provided.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
cls_token_box=[0, 0, 0, 0],
sep_token_box=[1000, 1000, 1000, 1000],
pad_token_box=[0, 0, 0, 0],
pad_token_label=-100,
only_label_first_subword=True,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
# additional properties
self.cls_token_box = cls_token_box
self.sep_token_box = sep_token_box
self.pad_token_box = pad_token_box
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
cls_token_box=cls_token_box,
sep_token_box=sep_token_box,
pad_token_box=pad_token_box,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLM-RoBERTa sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with word-level normalized bounding boxes and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
boxes (`List[List[int]]`, `List[List[List[int]]]`):
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
word_labels (`List[int]`, `List[List[int]]`, *optional*):
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = words
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"words must of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be words
if not isinstance(text, (list, tuple)):
raise ValueError(
"Words must of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
words = text if text_pair is None else text_pair
if boxes is None:
raise ValueError("You must provide corresponding bounding boxes")
if is_batched:
if len(words) != len(boxes):
raise ValueError("You must provide words and boxes for an equal amount of examples")
for words_example, boxes_example in zip(words, boxes):
if len(words_example) != len(boxes_example):
raise ValueError("You must provide as many words as there are bounding boxes")
else:
if len(words) != len(boxes):
raise ValueError("You must provide as many words as there are bounding boxes")
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
batch_outputs = self._batch_prepare_for_model(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_text_or_text_pairs,
is_pair: bool = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens
Args:
batch_ids_pairs: list of tokenized input ids or input ids pairs
"""
batch_outputs = {}
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
batch_text_or_text_pair, boxes_example = example
outputs = self.prepare_for_model(
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
batch_text_or_text_pair[1] if is_pair else None,
boxes_example,
word_labels=word_labels[idx] if word_labels is not None else None,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterward
return_attention_mask=False, # we pad in batch afterward
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
return self.prepare_for_model(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
def prepare_for_model(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
(with user defined stride) for overflowing tokens.
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
labeled with -100, such that they will be ignored by the loss function.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
tokens = []
pair_tokens = []
token_boxes = []
pair_token_boxes = []
labels = []
if text_pair is None:
if word_labels is None:
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
for word, box in zip(text, boxes):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
token_boxes.extend([box] * len(word_tokens))
else:
# CASE 2: token classification (training)
for word, box, label in zip(text, boxes, word_labels):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
token_boxes.extend([box] * len(word_tokens))
if self.only_label_first_subword:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
else:
labels.extend([label] * len(word_tokens))
else:
# CASE 3: document visual question answering (inference)
# text = question
# text_pair = words
tokens = self.tokenize(text)
token_boxes = [self.pad_token_box for _ in range(len(tokens))] + [self.sep_token_box]
for word, box in zip(text_pair, boxes):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
pair_tokens.extend(word_tokens)
pair_token_boxes.extend([box] * len(word_tokens))
# Create ids + pair_ids
ids = self.convert_tokens_to_ids(tokens)
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
# Compute the total size of the returned encodings
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
# Truncation: Handle max sequence length
overflowing_tokens = []
overflowing_token_boxes = []
overflowing_labels = []
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
(
ids,
token_boxes,
pair_ids,
pair_token_boxes,
labels,
overflowing_tokens,
overflowing_token_boxes,
overflowing_labels,
) = self.truncate_sequences(
ids,
token_boxes,
pair_ids=pair_ids,
pair_token_boxes=pair_token_boxes,
labels=labels,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_token_type_ids and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
encoded_inputs["overflowing_labels"] = overflowing_labels
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Add special tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
if pair_token_boxes:
pair_token_boxes = pair_token_boxes + [self.sep_token_box]
if labels:
labels = [self.pad_token_label] + labels + [self.pad_token_label]
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
# Build output dictionary
encoded_inputs["input_ids"] = sequence
encoded_inputs["bbox"] = token_boxes + pair_token_boxes
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
if labels:
encoded_inputs["labels"] = labels
# Check lengths
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
# Padding
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding_strategy.value,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
def truncate_sequences(
self,
ids: List[int],
token_boxes: List[List[int]],
pair_ids: Optional[List[int]] = None,
pair_token_boxes: Optional[List[List[int]]] = None,
labels: Optional[List[int]] = None,
num_tokens_to_remove: int = 0,
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
stride: int = 0,
) -> Tuple[List[int], List[int], List[int]]:
"""
Truncates a sequence pair in-place following the strategy.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
token_boxes (`List[List[int]]`):
Bounding boxes of the first sequence.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
pair_token_boxes (`List[List[int]]`, *optional*):
Bounding boxes of the second sequence.
labels (`List[int]`, *optional*):
Labels of the first sequence (for token classification tasks).
num_tokens_to_remove (`int`, *optional*, defaults to 0):
Number of tokens to remove using the truncation strategy.
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
The strategy to follow for truncation. Can be:
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
than the model maximum admissible input size).
stride (`int`, *optional*, defaults to 0):
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
sequence returned. The value of this argument defines the number of additional tokens.
Returns:
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
overflowing tokens.
"""
if num_tokens_to_remove <= 0:
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
if not isinstance(truncation_strategy, TruncationStrategy):
truncation_strategy = TruncationStrategy(truncation_strategy)
overflowing_tokens = []
overflowing_token_boxes = []
overflowing_labels = []
if truncation_strategy == TruncationStrategy.LONGEST_FIRST:
for _ in range(num_tokens_to_remove):
if pair_ids is None or len(ids) > len(pair_ids):
if not overflowing_tokens:
window_len = min(len(ids), stride + 1)
else:
window_len = 1
overflowing_tokens.extend(ids[-window_len:])
overflowing_token_boxes.extend(token_boxes[-window_len:])
overflowing_labels.extend(labels[-window_len:])
ids = ids[:-1]
token_boxes = token_boxes[:-1]
labels = labels[:-1]
else:
if not overflowing_tokens:
window_len = min(len(pair_ids), stride + 1)
else:
window_len = 1
overflowing_tokens.extend(pair_ids[-window_len:])
overflowing_token_boxes.extend(pair_token_boxes[-window_len:])
pair_ids = pair_ids[:-1]
pair_token_boxes = pair_token_boxes[:-1]
elif truncation_strategy == TruncationStrategy.ONLY_FIRST:
if len(ids) > num_tokens_to_remove:
window_len = min(len(ids), stride + num_tokens_to_remove)
overflowing_tokens = ids[-window_len:]
overflowing_token_boxes = token_boxes[-window_len:]
overflowing_labels = labels[-window_len:]
ids = ids[:-num_tokens_to_remove]
token_boxes = token_boxes[:-num_tokens_to_remove]
labels = labels[:-num_tokens_to_remove]
else:
logger.error(
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the first sequence has a length {len(ids)}. "
f"Please select another truncation strategy than {truncation_strategy}, "
"for instance 'longest_first' or 'only_second'."
)
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
if len(pair_ids) > num_tokens_to_remove:
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
overflowing_tokens = pair_ids[-window_len:]
overflowing_token_boxes = pair_token_boxes[-window_len:]
pair_ids = pair_ids[:-num_tokens_to_remove]
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
else:
logger.error(
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the second sequence has a length {len(pair_ids)}. "
f"Please select another truncation strategy than {truncation_strategy}, "
"for instance 'longest_first' or 'only_first'."
)
return (
ids,
token_boxes,
pair_ids,
pair_token_boxes,
labels,
overflowing_tokens,
overflowing_token_boxes,
overflowing_labels,
)
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
| transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm.py/0 | {
"file_path": "transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm.py",
"repo_id": "transformers",
"token_count": 26109
} | 317 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LiLT model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_lilt import LiltConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LiltConfig"
LILT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"SCUT-DLVCLab/lilt-roberta-en-base",
# See all LiLT models at https://huggingface.co/models?filter=lilt
]
class LiltTextEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to(
input_ids.device
)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings, position_ids
def create_position_ids_from_input_ids(self, input_ids, padding_idx):
"""
Args:
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask
return incremental_indices.long() + padding_idx
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
Args:
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class LiltLayoutEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
# we divide the hidden_size by 6 here as there are 6 different layout embeddings,
# namely left_position, upper_position, right_position, lower_position, height, width
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
self.padding_idx = config.pad_token_id
self.box_position_embeddings = nn.Embedding(
config.max_position_embeddings,
config.hidden_size // config.channel_shrink_ratio,
padding_idx=self.padding_idx,
)
self.box_linear_embeddings = nn.Linear(
in_features=config.hidden_size, out_features=config.hidden_size // config.channel_shrink_ratio
)
self.LayerNorm = nn.LayerNorm(config.hidden_size // config.channel_shrink_ratio, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, bbox=None, position_ids=None):
try:
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
except IndexError as e:
raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
spatial_position_embeddings = torch.cat(
[
left_position_embeddings,
upper_position_embeddings,
right_position_embeddings,
lower_position_embeddings,
h_position_embeddings,
w_position_embeddings,
],
dim=-1,
)
spatial_position_embeddings = self.box_linear_embeddings(spatial_position_embeddings)
box_position_embeddings = self.box_position_embeddings(position_ids)
spatial_position_embeddings = spatial_position_embeddings + box_position_embeddings
spatial_position_embeddings = self.LayerNorm(spatial_position_embeddings)
spatial_position_embeddings = self.dropout(spatial_position_embeddings)
return spatial_position_embeddings
class LiltSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.layout_query = nn.Linear(
config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
)
self.layout_key = nn.Linear(
config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
)
self.layout_value = nn.Linear(
config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.channel_shrink_ratio = config.channel_shrink_ratio
def transpose_for_scores(self, x, r=1):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size // r)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
layout_inputs,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
layout_value_layer = self.transpose_for_scores(self.layout_value(layout_inputs), r=self.channel_shrink_ratio)
layout_key_layer = self.transpose_for_scores(self.layout_key(layout_inputs), r=self.channel_shrink_ratio)
layout_query_layer = self.transpose_for_scores(self.layout_query(layout_inputs), r=self.channel_shrink_ratio)
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
layout_attention_scores = torch.matmul(layout_query_layer, layout_key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
tmp_attention_scores = attention_scores / math.sqrt(self.attention_head_size)
tmp_layout_attention_scores = layout_attention_scores / math.sqrt(
self.attention_head_size // self.channel_shrink_ratio
)
attention_scores = tmp_attention_scores + tmp_layout_attention_scores
layout_attention_scores = tmp_layout_attention_scores + tmp_attention_scores
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
layout_attention_scores = layout_attention_scores + attention_mask
# Normalize the attention scores to probabilities.
layout_attention_probs = nn.Softmax(dim=-1)(layout_attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
layout_attention_probs = self.dropout(layout_attention_probs)
# Mask heads if we want to
if head_mask is not None:
layout_attention_probs = layout_attention_probs * head_mask
layout_context_layer = torch.matmul(layout_attention_probs, layout_value_layer)
layout_context_layer = layout_context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = layout_context_layer.size()[:-2] + (self.all_head_size // self.channel_shrink_ratio,)
layout_context_layer = layout_context_layer.view(*new_context_layer_shape)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (
((context_layer, layout_context_layer), attention_probs)
if output_attentions
else ((context_layer, layout_context_layer),)
)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class LiltSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LiltAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = LiltSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = LiltSelfOutput(config)
self.pruned_heads = set()
ori_hidden_size = config.hidden_size
config.hidden_size = config.hidden_size // config.channel_shrink_ratio
self.layout_output = LiltSelfOutput(config)
config.hidden_size = ori_hidden_size
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
layout_inputs: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
layout_inputs,
attention_mask,
head_mask,
output_attentions,
)
attention_output = self.output(self_outputs[0][0], hidden_states)
layout_attention_output = self.layout_output(self_outputs[0][1], layout_inputs)
outputs = ((attention_output, layout_attention_output),) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class LiltIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class LiltOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LiltLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = LiltAttention(config)
self.intermediate = LiltIntermediate(config)
self.output = LiltOutput(config)
ori_hidden_size = config.hidden_size
ori_intermediate_size = config.intermediate_size
config.hidden_size = config.hidden_size // config.channel_shrink_ratio
config.intermediate_size = config.intermediate_size // config.channel_shrink_ratio
self.layout_intermediate = LiltIntermediate(config)
self.layout_output = LiltOutput(config)
config.hidden_size = ori_hidden_size
config.intermediate_size = ori_intermediate_size
def forward(
self,
hidden_states: torch.Tensor,
layout_inputs: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_attention_outputs = self.attention(
hidden_states,
layout_inputs,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0][0]
layout_attention_output = self_attention_outputs[0][1]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
layout_layer_output = apply_chunking_to_forward(
self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output
)
outputs = ((layer_output, layout_layer_output),) + outputs
return outputs
# Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
def layout_feed_forward_chunk(self, attention_output):
intermediate_output = self.layout_intermediate(attention_output)
layer_output = self.layout_output(intermediate_output, attention_output)
return layer_output
class LiltEncoder(nn.Module):
# Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Lilt
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([LiltLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
layout_inputs: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layout_inputs,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
layout_inputs,
attention_mask,
layer_head_mask,
output_attentions,
)
hidden_states = layer_outputs[0][0]
layout_inputs = layer_outputs[0][1]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class LiltPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class LiltPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LiltConfig
base_model_prefix = "lilt"
supports_gradient_checkpointing = True
_no_split_modules = []
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
LILT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LiltConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LILT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
Bounding boxes of each input sequence tokens. Selected in the range `[0,
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare LiLT Model transformer outputting raw hidden-states without any specific head on top.",
LILT_START_DOCSTRING,
)
class LiltModel(LiltPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = LiltTextEmbeddings(config)
self.layout_embeddings = LiltLayoutEmbeddings(config)
self.encoder = LiltEncoder(config)
self.pooler = LiltPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]
>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
>>> outputs = model(**encoding)
>>> last_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if bbox is None:
bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device)
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output, position_ids = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
layout_embedding_output = self.layout_embeddings(bbox=bbox, position_ids=position_ids)
encoder_outputs = self.encoder(
embedding_output,
layout_embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
LiLT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
LILT_START_DOCSTRING,
)
class LiltForSequenceClassification(LiltPreTrainedModel):
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Lilt, roberta->lilt
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.lilt = LiltModel(config, add_pooling_layer=False)
self.classifier = LiltClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]
>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
>>> outputs = model(**encoding)
>>> predicted_class_idx = outputs.logits.argmax(-1).item()
>>> predicted_class = model.config.id2label[predicted_class_idx]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.lilt(
input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Lilt Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
LILT_START_DOCSTRING,
)
class LiltForTokenClassification(LiltPreTrainedModel):
# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Lilt, roberta->lilt
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.lilt = LiltModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForTokenClassification
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]
>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
>>> outputs = model(**encoding)
>>> predicted_class_indices = outputs.logits.argmax(-1)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.lilt(
input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Lilt
class LiltClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
Lilt Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
LILT_START_DOCSTRING,
)
class LiltForQuestionAnswering(LiltPreTrainedModel):
# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Lilt, roberta->lilt
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.lilt = LiltModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]
>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
>>> outputs = model(**encoding)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predicted_answer = tokenizer.decode(predict_answer_tokens)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.lilt(
input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/lilt/modeling_lilt.py/0 | {
"file_path": "transformers/src/transformers/models/lilt/modeling_lilt.py",
"repo_id": "transformers",
"token_count": 22248
} | 318 |
# coding=utf-8
# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Longformer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, gelu
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_longformer import LongformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096"
_CONFIG_FOR_DOC = "LongformerConfig"
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"allenai/longformer-base-4096",
"allenai/longformer-large-4096",
"allenai/longformer-large-4096-finetuned-triviaqa",
"allenai/longformer-base-4096-extra.pos.embd.only",
"allenai/longformer-large-4096-extra.pos.embd.only",
# See all Longformer models at https://huggingface.co/models?filter=longformer
]
@dataclass
class LongformerBaseModelOutput(ModelOutput):
"""
Base class for Longformer's outputs, with potential hidden states, local and global attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: torch.FloatTensor
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LongformerBaseModelOutputWithPooling(ModelOutput):
"""
Base class for Longformer's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) further processed by a
Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence
prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: torch.FloatTensor
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LongformerMaskedLMOutput(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LongformerQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of question answering Longformer models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LongformerSequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LongformerMultipleChoiceModelOutput(ModelOutput):
"""
Base class for outputs of multiple choice Longformer models.
Args:
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LongformerTokenClassifierOutput(ModelOutput):
"""
Base class for outputs of token classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
def _get_question_end_index(input_ids, sep_token_id):
"""
Computes the index of the first occurrence of `sep_token_id`.
"""
sep_token_indices = (input_ids == sep_token_id).nonzero()
batch_size = input_ids.shape[0]
assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions"
assert sep_token_indices.shape[0] == 3 * batch_size, (
f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You"
" might also consider to set `global_attention_mask` manually in the forward function to avoid this error."
)
return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1]
def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True):
"""
Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is
True` else after `sep_token_id`.
"""
question_end_index = _get_question_end_index(input_ids, sep_token_id)
question_end_index = question_end_index.unsqueeze(dim=1) # size: batch_size x 1
# bool attention mask with True in locations of global attention
attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device)
if before_sep_token is True:
attention_mask = (attention_mask.expand_as(input_ids) < question_end_index).to(torch.bool)
else:
# last token is separation token and should not be counted and in the middle are two separation tokens
attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.bool) * (
attention_mask.expand_as(input_ids) < input_ids.shape[-1]
).to(torch.bool)
return attention_mask
def create_position_ids_from_input_ids(input_ids, padding_idx):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
return incremental_indices.long() + padding_idx
class LongformerEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor inputs_embeds:
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class LongformerSelfAttention(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_heads = config.num_attention_heads
self.head_dim = int(config.hidden_size / config.num_attention_heads)
self.embed_dim = config.hidden_size
self.query = nn.Linear(config.hidden_size, self.embed_dim)
self.key = nn.Linear(config.hidden_size, self.embed_dim)
self.value = nn.Linear(config.hidden_size, self.embed_dim)
# separate projection layers for tokens with global attention
self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
self.value_global = nn.Linear(config.hidden_size, self.embed_dim)
self.dropout = config.attention_probs_dropout_prob
self.layer_id = layer_id
attention_window = config.attention_window[self.layer_id]
assert (
attention_window % 2 == 0
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
assert (
attention_window > 0
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
self.one_sided_attn_window_size = attention_window // 2
self.config = config
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
is_index_masked=None,
is_index_global_attn=None,
is_global_attn=None,
output_attentions=False,
):
"""
[`LongformerSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to
*attention_window* happens in [`LongformerModel.forward`] to avoid redoing the padding on each layer.
The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to:
- -10000: no attention
- 0: local attention
- +10000: global attention
"""
hidden_states = hidden_states.transpose(0, 1)
# project hidden states
query_vectors = self.query(hidden_states)
key_vectors = self.key(hidden_states)
value_vectors = self.value(hidden_states)
seq_len, batch_size, embed_dim = hidden_states.size()
assert (
embed_dim == self.embed_dim
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
# normalize query
query_vectors /= math.sqrt(self.head_dim)
query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
attn_scores = self._sliding_chunks_query_key_matmul(
query_vectors, key_vectors, self.one_sided_attn_window_size
)
# values to pad for attention probs
remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None]
# cast to fp32/fp16 then replace 1's with -inf
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(
remove_from_windowed_attention_mask, torch.finfo(query_vectors.dtype).min
)
# diagonal mask with zeros everywhere and -inf inplace of padding
diagonal_mask = self._sliding_chunks_query_key_matmul(
float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size
)
# pad local attention probs
attn_scores += diagonal_mask
assert list(attn_scores.size()) == [
batch_size,
seq_len,
self.num_heads,
self.one_sided_attn_window_size * 2 + 1,
], (
f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads},"
f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}"
)
# compute local attention probs from global attention keys and contact over window dim
if is_global_attn:
# compute global attn indices required through out forward fn
(
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
) = self._get_global_attn_indices(is_index_global_attn)
# calculate global attn probs from global key
global_key_attn_scores = self._concat_with_global_key_attn_probs(
query_vectors=query_vectors,
key_vectors=key_vectors,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
)
# concat to local_attn_probs
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1)
# free memory
del global_key_attn_scores
attn_probs = nn.functional.softmax(
attn_scores, dim=-1, dtype=torch.float32
) # use fp32 for numerical stability
if layer_head_mask is not None:
assert layer_head_mask.size() == (
self.num_heads,
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
attn_probs = torch.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0)
attn_probs = attn_probs.type_as(attn_scores)
# free memory
del attn_scores
# apply dropout
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
# compute local attention output with global attention value and add
if is_global_attn:
# compute sum of global and local attn
attn_output = self._compute_attn_output_with_global_indices(
value_vectors=value_vectors,
attn_probs=attn_probs,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
)
else:
# compute local attn only
attn_output = self._sliding_chunks_matmul_attn_probs_value(
attn_probs, value_vectors, self.one_sided_attn_window_size
)
assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous()
# compute value for global attention and overwrite to attention output
# TODO: remove the redundant computation
if is_global_attn:
global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
hidden_states=hidden_states,
max_num_global_attn_indices=max_num_global_attn_indices,
layer_head_mask=layer_head_mask,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
is_index_masked=is_index_masked,
)
# get only non zero global attn output
nonzero_global_attn_output = global_attn_output[
is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
]
# overwrite values with global attention
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
len(is_local_index_global_attn_nonzero[0]), -1
)
# The attention weights for tokens with global attention are
# just filler values, they were never used to compute the output.
# Fill with 0 now, the correct values are in 'global_attn_probs'.
attn_probs[is_index_global_attn_nonzero] = 0
outputs = (attn_output.transpose(0, 1),)
if output_attentions:
outputs += (attn_probs,)
return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs
@staticmethod
def _pad_and_transpose_last_two_dims(hidden_states_padded, padding):
"""pads rows and then flips rows and columns"""
hidden_states_padded = nn.functional.pad(
hidden_states_padded, padding
) # padding value is not important because it will be overwritten
hidden_states_padded = hidden_states_padded.view(
*hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2)
)
return hidden_states_padded
@staticmethod
def _pad_and_diagonalize(chunked_hidden_states):
"""
shift every row 1 step right, converting columns into diagonals.
Example:
```python
chunked_hidden_states: [
0.4983,
2.6918,
-0.0071,
1.0492,
-1.8348,
0.7672,
0.2986,
0.0285,
-0.7584,
0.4206,
-0.0405,
0.1599,
2.0514,
-1.1600,
0.5372,
0.2629,
]
window_overlap = num_rows = 4
```
(pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206,
-0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
"""
total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size()
chunked_hidden_states = nn.functional.pad(
chunked_hidden_states, (0, window_overlap + 1)
) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
chunked_hidden_states = chunked_hidden_states.view(
total_num_heads, num_chunks, -1
) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap
chunked_hidden_states = chunked_hidden_states[
:, :, :-window_overlap
] # total_num_heads x num_chunks x window_overlap*window_overlap
chunked_hidden_states = chunked_hidden_states.view(
total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim
)
chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
return chunked_hidden_states
@staticmethod
def _chunk(hidden_states, window_overlap, onnx_export: bool = False):
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
if not onnx_export:
# non-overlapping chunks of size = 2w
hidden_states = hidden_states.view(
hidden_states.size(0),
torch.div(hidden_states.size(1), (window_overlap * 2), rounding_mode="trunc"),
window_overlap * 2,
hidden_states.size(2),
)
# use `as_strided` to make the chunks overlap with an overlap size = window_overlap
chunk_size = list(hidden_states.size())
chunk_size[1] = chunk_size[1] * 2 - 1
chunk_stride = list(hidden_states.stride())
chunk_stride[1] = chunk_stride[1] // 2
return hidden_states.as_strided(size=chunk_size, stride=chunk_stride)
# When exporting to ONNX, use this separate logic
# have to use slow implementation since as_strided, unfold and 2d-tensor indexing aren't supported (yet) in ONNX export
# TODO replace this with
# > return hidden_states.unfold(dimension=1, size=window_overlap * 2, step=window_overlap).transpose(2, 3)
# once `unfold` is supported
# the case hidden_states.size(1) == window_overlap * 2 can also simply return hidden_states.unsqueeze(1), but that's control flow
chunk_size = [
hidden_states.size(0),
torch.div(hidden_states.size(1), window_overlap, rounding_mode="trunc") - 1,
window_overlap * 2,
hidden_states.size(2),
]
overlapping_chunks = torch.empty(chunk_size, device=hidden_states.device)
for chunk in range(chunk_size[1]):
overlapping_chunks[:, chunk, :, :] = hidden_states[
:, chunk * window_overlap : chunk * window_overlap + 2 * window_overlap, :
]
return overlapping_chunks
@staticmethod
def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor:
beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0])
beginning_mask = beginning_mask_2d[None, :, None, :]
ending_mask = beginning_mask.flip(dims=(1, 3))
beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1]
beginning_mask = beginning_mask.expand(beginning_input.size())
input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] = torch.full_like(
beginning_input, -float("inf")
).where(beginning_mask.bool(), beginning_input)
ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :]
ending_mask = ending_mask.expand(ending_input.size())
input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] = torch.full_like(
ending_input, -float("inf")
).where(ending_mask.bool(), ending_input)
def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int):
"""
Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an
overlap of size window_overlap
"""
batch_size, seq_len, num_heads, head_dim = query.size()
assert (
seq_len % (window_overlap * 2) == 0
), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
assert query.size() == key.size()
chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
query = query.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
key = key.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
query = self._chunk(query, window_overlap, getattr(self.config, "onnx_export", False))
key = self._chunk(key, window_overlap, getattr(self.config, "onnx_export", False))
# matrix multiplication
# bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
diagonal_chunked_attention_scores = torch.einsum("bcxd,bcyd->bcxy", (query, key)) # multiply
# convert diagonals into columns
diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(
diagonal_chunked_attention_scores, padding=(0, 0, 0, 1)
)
# allocate space for the overall attention matrix where the chunks are combined. The last dimension
# has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
# window_overlap previous words). The following column is attention score from each word to itself, then
# followed by window_overlap columns for the upper triangle.
diagonal_attention_scores = diagonal_chunked_attention_scores.new_zeros(
(batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1)
)
# copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
# - copying the main diagonal and the upper triangle
diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[
:, :, :window_overlap, : window_overlap + 1
]
diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[
:, -1, window_overlap:, : window_overlap + 1
]
# - copying the lower triangle
diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[
:, :, -(window_overlap + 1) : -1, window_overlap + 1 :
]
diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[
:, 0, : window_overlap - 1, 1 - window_overlap :
]
# separate batch_size and num_heads dimensions again
diagonal_attention_scores = diagonal_attention_scores.view(
batch_size, num_heads, seq_len, 2 * window_overlap + 1
).transpose(2, 1)
self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
return diagonal_attention_scores
def _sliding_chunks_matmul_attn_probs_value(
self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int
):
"""
Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
same shape as `attn_probs`
"""
batch_size, seq_len, num_heads, head_dim = value.size()
assert seq_len % (window_overlap * 2) == 0
assert attn_probs.size()[:3] == value.size()[:3]
assert attn_probs.size(3) == 2 * window_overlap + 1
chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap
chunked_attn_probs = attn_probs.transpose(1, 2).reshape(
batch_size * num_heads,
torch.div(seq_len, window_overlap, rounding_mode="trunc"),
window_overlap,
2 * window_overlap + 1,
)
# group batch_size and num_heads dimensions into one
value = value.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
# pad seq_len with w at the beginning of the sequence and another window overlap at the end
padded_value = nn.functional.pad(value, (0, 0, window_overlap, window_overlap), value=-1)
# chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim)
chunked_value_stride = padded_value.stride()
chunked_value_stride = (
chunked_value_stride[0],
window_overlap * chunked_value_stride[1],
chunked_value_stride[1],
chunked_value_stride[2],
)
chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride)
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)
context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value))
return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
@staticmethod
def _get_global_attn_indices(is_index_global_attn):
"""compute global attn indices required throughout forward pass"""
# helper variable
num_global_attn_indices = is_index_global_attn.long().sum(dim=1)
# max number of global attn indices in batch
max_num_global_attn_indices = num_global_attn_indices.max()
# indices of global attn
is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True)
# helper variable
is_local_index_global_attn = torch.arange(
max_num_global_attn_indices, device=is_index_global_attn.device
) < num_global_attn_indices.unsqueeze(dim=-1)
# location of the non-padding values within global attention indices
is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True)
# location of the padding values within global attention indices
is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True)
return (
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
)
def _concat_with_global_key_attn_probs(
self,
key_vectors,
query_vectors,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
):
batch_size = key_vectors.shape[0]
# create only global key vectors
key_vectors_only_global = key_vectors.new_zeros(
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim
)
key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero]
# (batch_size, seq_len, num_heads, max_num_global_attn_indices)
attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global))
# need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets
attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3)
attn_probs_from_global_key[
is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, :
] = torch.finfo(attn_probs_from_global_key.dtype).min
attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3)
return attn_probs_from_global_key
def _compute_attn_output_with_global_indices(
self,
value_vectors,
attn_probs,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
):
batch_size = attn_probs.shape[0]
# cut local attn probs to global only
attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices)
# get value vectors for global only
value_vectors_only_global = value_vectors.new_zeros(
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim
)
value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero]
# use `matmul` because `einsum` crashes sometimes with fp16
# attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
# compute attn output only global
attn_output_only_global = torch.matmul(
attn_probs_only_global.transpose(1, 2).clone(), value_vectors_only_global.transpose(1, 2).clone()
).transpose(1, 2)
# reshape attn probs
attn_probs_without_global = attn_probs.narrow(
-1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices
).contiguous()
# compute attn output with global
attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value(
attn_probs_without_global, value_vectors, self.one_sided_attn_window_size
)
return attn_output_only_global + attn_output_without_global
def _compute_global_attn_output_from_hidden(
self,
hidden_states,
max_num_global_attn_indices,
layer_head_mask,
is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
is_index_masked,
):
seq_len, batch_size = hidden_states.shape[:2]
# prepare global hidden states
global_attn_hidden_states = hidden_states.new_zeros(max_num_global_attn_indices, batch_size, self.embed_dim)
global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[
is_index_global_attn_nonzero[::-1]
]
# global key, query, value
global_query_vectors_only_global = self.query_global(global_attn_hidden_states)
global_key_vectors = self.key_global(hidden_states)
global_value_vectors = self.value_global(hidden_states)
# normalize
global_query_vectors_only_global /= math.sqrt(self.head_dim)
# reshape
global_query_vectors_only_global = (
global_query_vectors_only_global.contiguous()
.view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim)
.transpose(0, 1)
) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim)
global_key_vectors = (
global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
) # batch_size * self.num_heads, seq_len, head_dim)
global_value_vectors = (
global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
) # batch_size * self.num_heads, seq_len, head_dim)
# compute attn scores
global_attn_scores = torch.bmm(global_query_vectors_only_global, global_key_vectors.transpose(1, 2))
assert list(global_attn_scores.size()) == [
batch_size * self.num_heads,
max_num_global_attn_indices,
seq_len,
], (
"global_attn_scores have the wrong size. Size should be"
f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is"
f" {global_attn_scores.size()}."
)
global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
# need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets
global_attn_scores = global_attn_scores.transpose(1, 2)
global_attn_scores[
is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, :
] = torch.finfo(global_attn_scores.dtype).min
global_attn_scores = global_attn_scores.transpose(1, 2)
global_attn_scores = global_attn_scores.masked_fill(
is_index_masked[:, None, None, :],
torch.finfo(global_attn_scores.dtype).min,
)
global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)
# compute global attn probs
global_attn_probs_float = nn.functional.softmax(
global_attn_scores, dim=-1, dtype=torch.float32
) # use fp32 for numerical stability
# apply layer head masking
if layer_head_mask is not None:
assert layer_head_mask.size() == (
self.num_heads,
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view(
batch_size, self.num_heads, max_num_global_attn_indices, seq_len
)
global_attn_probs_float = global_attn_probs_float.view(
batch_size * self.num_heads, max_num_global_attn_indices, seq_len
)
global_attn_probs = nn.functional.dropout(
global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training
)
# global attn output
global_attn_output = torch.bmm(global_attn_probs, global_value_vectors)
assert list(global_attn_output.size()) == [
batch_size * self.num_heads,
max_num_global_attn_indices,
self.head_dim,
], (
"global_attn_output tensor has the wrong size. Size should be"
f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is"
f" {global_attn_output.size()}."
)
global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
global_attn_output = global_attn_output.view(
batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim
)
return global_attn_output, global_attn_probs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class LongformerSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LongformerAttention(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.self = LongformerSelfAttention(config, layer_id)
self.output = LongformerSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
is_index_masked=None,
is_index_global_attn=None,
is_global_attn=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
)
attn_output = self.output(self_outputs[0], hidden_states)
outputs = (attn_output,) + self_outputs[1:]
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class LongformerIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class LongformerOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LongformerLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.attention = LongformerAttention(config, layer_id)
self.intermediate = LongformerIntermediate(config)
self.output = LongformerOutput(config)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
is_index_masked=None,
is_index_global_attn=None,
is_global_attn=None,
output_attentions=False,
):
self_attn_outputs = self.attention(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
)
attn_output = self_attn_outputs[0]
outputs = self_attn_outputs[1:]
layer_output = apply_chunking_to_forward(
self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output
)
outputs = (layer_output,) + outputs
return outputs
def ff_chunk(self, attn_output):
intermediate_output = self.intermediate(attn_output)
layer_output = self.output(intermediate_output, attn_output)
return layer_output
class LongformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
padding_len=0,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
is_index_masked = attention_mask < 0
is_index_global_attn = attention_mask > 0
# Record `is_global_attn == True` to enable ONNX export
is_global_attn = is_index_global_attn.flatten().any().item()
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None # All local attentions.
all_global_attentions = () if (output_attentions and is_global_attn) else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layer)
), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}."
for idx, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
is_index_masked,
is_index_global_attn,
is_global_attn,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
# bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
all_attentions = all_attentions + (layer_outputs[1].transpose(1, 2),)
if is_global_attn:
# bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
all_global_attentions = all_global_attentions + (layer_outputs[2].transpose(2, 3),)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# undo padding if necessary
# unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1)
hidden_states = hidden_states[:, : hidden_states.shape[1] - padding_len]
if output_hidden_states:
all_hidden_states = tuple([state[:, : state.shape[1] - padding_len] for state in all_hidden_states])
if output_attentions:
all_attentions = tuple([state[:, :, : state.shape[2] - padding_len, :] for state in all_attentions])
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None
)
return LongformerBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
global_attentions=all_global_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class LongformerPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Longformer
class LongformerLMHead(nn.Module):
"""Longformer Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
class LongformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongformerConfig
base_model_prefix = "longformer"
supports_gradient_checkpointing = True
_no_split_modules = ["LongformerSelfAttention"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
LONGFORMER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LongformerConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LONGFORMER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
global_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to decide the attention given on each token, local attention or global attention. Tokens with global
attention attends to all other tokens, and all other tokens attend to them. This is important for
task-specific finetuning because it makes the model more flexible at representing the task. For example,
for classification, the <s> token should be given global attention. For QA, all question tokens should also
have global attention. Please refer to the [Longformer paper](https://arxiv.org/abs/2004.05150) for more
details. Mask values selected in `[0, 1]`:
- 0 for local attention (a sliding window attention),
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Longformer Model outputting raw hidden-states without any specific head on top.",
LONGFORMER_START_DOCSTRING,
)
class LongformerModel(LongformerPreTrainedModel):
"""
This class copied code from [`RobertaModel`] and overwrote standard self-attention with longformer self-attention
to provide the ability to process long sequences following the self-attention approach described in [Longformer:
the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and Arman Cohan.
Longformer self-attention combines a local (sliding window) and global attention to extend to long documents
without the O(n^2) increase in memory and compute.
The self-attention module `LongformerSelfAttention` implemented here supports the combination of local and global
attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated
attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future
release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA
kernel to be memory and compute efficient.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
if isinstance(config.attention_window, int):
assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
assert config.attention_window > 0, "`config.attention_window` has to be positive"
config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer
else:
assert len(config.attention_window) == config.num_hidden_layers, (
"`len(config.attention_window)` should equal `config.num_hidden_layers`. "
f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
)
self.embeddings = LongformerEmbeddings(config)
self.encoder = LongformerEncoder(config)
self.pooler = LongformerPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def _pad_to_window_size(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: torch.Tensor,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
pad_token_id: int,
):
"""A helper function to pad tokens and mask to work with implementation of Longformer self-attention."""
# padding
attention_window = (
self.config.attention_window
if isinstance(self.config.attention_window, int)
else max(self.config.attention_window)
)
assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
batch_size, seq_len = input_shape[:2]
padding_len = (attention_window - seq_len % attention_window) % attention_window
# this path should be recorded in the ONNX export, it is fine with padding_len == 0 as well
if padding_len > 0:
logger.warning_once(
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
f"`config.attention_window`: {attention_window}"
)
if input_ids is not None:
input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id)
if position_ids is not None:
# pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings
position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id)
if inputs_embeds is not None:
input_ids_padding = inputs_embeds.new_full(
(batch_size, padding_len),
self.config.pad_token_id,
dtype=torch.long,
)
inputs_embeds_padding = self.embeddings(input_ids_padding)
inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2)
attention_mask = nn.functional.pad(
attention_mask, (0, padding_len), value=0
) # no attention on the padding tokens
token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0
return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds
def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor):
# longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
# (global_attention_mask + 1) => 1 for local attention, 2 for global attention
# => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
if attention_mask is not None:
attention_mask = attention_mask * (global_attention_mask + 1)
else:
# simply use `global_attention_mask` as `attention_mask`
# if no `attention_mask` is given
attention_mask = global_attention_mask + 1
return attention_mask
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerBaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import LongformerModel, AutoTokenizer
>>> model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
>>> SAMPLE_TEXT = " ".join(["Hello world! "] * 1000) # long input document
>>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1
>>> attention_mask = torch.ones(
... input_ids.shape, dtype=torch.long, device=input_ids.device
... ) # initialize to local attention
>>> global_attention_mask = torch.zeros(
... input_ids.shape, dtype=torch.long, device=input_ids.device
... ) # initialize to global attention to be deactivated for all tokens
>>> global_attention_mask[
... :,
... [
... 1,
... 4,
... 21,
... ],
... ] = 1 # Set global attention to random tokens for the sake of this example
>>> # Usually, set global attention based on the task. For example,
>>> # classification: the <s> token
>>> # QA: question tokens
>>> # LM: potentially on the beginning of sentences and paragraphs
>>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)
>>> sequence_output = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# merge `global_attention_mask` and `attention_mask`
if global_attention_mask is not None:
attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)
padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
pad_token_id=self.config.pad_token_id,
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)[
:, 0, 0, :
]
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
padding_len=padding_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return LongformerBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
global_attentions=encoder_outputs.global_attentions,
)
@add_start_docstrings("""Longformer Model with a `language modeling` head on top.""", LONGFORMER_START_DOCSTRING)
class LongformerForMaskedLM(LongformerPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder"]
def __init__(self, config):
super().__init__(config)
self.longformer = LongformerModel(config, add_pooling_layer=False)
self.lm_head = LongformerLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerMaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
Returns:
Mask filling example:
```python
>>> from transformers import AutoTokenizer, LongformerForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
>>> model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
```
Let's try a very long input.
```python
>>> TXT = (
... "My friends are <mask> but they eat too many carbs."
... + " That's why I decide not to eat with them." * 300
... )
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['healthy', 'skinny', 'thin', 'good', 'vegetarian']
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.longformer(
input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(prediction_scores.device)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return LongformerMaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
@add_start_docstrings(
"""
Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
LONGFORMER_START_DOCSTRING,
)
class LongformerForSequenceClassification(LongformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.longformer = LongformerModel(config, add_pooling_layer=False)
self.classifier = LongformerClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="jpwahle/longformer-base-plagiarism-detection",
output_type=LongformerSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'ORIGINAL'",
expected_loss=5.44,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if global_attention_mask is None:
logger.warning_once("Initializing global attention on CLS token...")
global_attention_mask = torch.zeros_like(input_ids)
# global attention on cls token
global_attention_mask[:, 0] = 1
outputs = self.longformer(
input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return LongformerSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
class LongformerClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, hidden_states, **kwargs):
hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
output = self.out_proj(hidden_states)
return output
@add_start_docstrings(
"""
Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD /
TriviaQA (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
LONGFORMER_START_DOCSTRING,
)
class LongformerForQuestionAnswering(LongformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.longformer = LongformerModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LongformerForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
>>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> encoding = tokenizer(question, text, return_tensors="pt")
>>> input_ids = encoding["input_ids"]
>>> # default is local attention everywhere
>>> # the forward method will automatically set global attention on question tokens
>>> attention_mask = encoding["attention_mask"]
>>> outputs = model(input_ids, attention_mask=attention_mask)
>>> start_logits = outputs.start_logits
>>> end_logits = outputs.end_logits
>>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
>>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1]
>>> answer = tokenizer.decode(
... tokenizer.convert_tokens_to_ids(answer_tokens)
... ) # remove space prepending space token
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if global_attention_mask is None:
if input_ids is None:
logger.warning(
"It is not possible to automatically generate the `global_attention_mask` because input_ids is"
" None. Please make sure that it is correctly set."
)
else:
# set global attention on question tokens automatically
global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id)
outputs = self.longformer(
input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return LongformerQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
@add_start_docstrings(
"""
Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
LONGFORMER_START_DOCSTRING,
)
class LongformerForTokenClassification(LongformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.longformer = LongformerModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="brad1141/Longformer-finetuned-norm",
output_type=LongformerTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=(
"['Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence',"
" 'Evidence', 'Evidence', 'Evidence', 'Evidence']"
),
expected_loss=0.63,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerTokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.longformer(
input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return LongformerTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
@add_start_docstrings(
"""
Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
LONGFORMER_START_DOCSTRING,
)
class LongformerForMultipleChoice(LongformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.longformer = LongformerModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LongformerMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerMultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# set global attention on question tokens
if global_attention_mask is None and input_ids is not None:
logger.warning_once("Initializing global attention on multiple choice...")
# put global attention on all tokens after `config.sep_token_id`
global_attention_mask = torch.stack(
[
_compute_global_attention_mask(input_ids[:, i], self.config.sep_token_id, before_sep_token=False)
for i in range(num_choices)
],
dim=1,
)
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_global_attention_mask = (
global_attention_mask.view(-1, global_attention_mask.size(-1))
if global_attention_mask is not None
else None
)
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.longformer(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
global_attention_mask=flat_global_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(reshaped_logits.device)
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return LongformerMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
| transformers/src/transformers/models/longformer/modeling_longformer.py/0 | {
"file_path": "transformers/src/transformers/models/longformer/modeling_longformer.py",
"repo_id": "transformers",
"token_count": 47033
} | 319 |
# coding=utf-8
# Copyright 2023 Alibaba Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MGP-STR model."""
import collections.abc
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mgp_str import MgpstrConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "MgpstrConfig"
_TOKENIZER_FOR_DOC = "MgpstrTokenizer"
# Base docstring
_CHECKPOINT_FOR_DOC = "alibaba-damo/mgp-str-base"
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST = [
"alibaba-damo/mgp-str-base",
# See all MGP-STR models at https://huggingface.co/models?filter=mgp-str
]
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Mgpstr
class MgpstrDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
@dataclass
class MgpstrModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
logits (`tuple(torch.FloatTensor)` of shape `(batch_size, config.num_character_labels)`):
Tuple of `torch.FloatTensor` (one for the output of character of shape `(batch_size,
config.max_token_length, config.num_character_labels)`, + one for the output of bpe of shape `(batch_size,
config.max_token_length, config.num_bpe_labels)`, + one for the output of wordpiece of shape `(batch_size,
config.max_token_length, config.num_wordpiece_labels)`) .
Classification scores (before SoftMax) of character, bpe and wordpiece.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, config.max_token_length,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
a3_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_a3_attentions=True` is passed or when `config.output_a3_attentions=True`):
Tuple of `torch.FloatTensor` (one for the attention of character, + one for the attention of bpe`, + one
for the attention of wordpiece) of shape `(batch_size, config.max_token_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: Tuple[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
a3_attentions: Optional[Tuple[torch.FloatTensor]] = None
class MgpstrEmbeddings(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(self, config: MgpstrConfig):
super().__init__()
image_size = (
config.image_size
if isinstance(config.image_size, collections.abc.Iterable)
else (config.image_size, config.image_size)
)
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
self.image_size = image_size
self.patch_size = patch_size
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.num_tokens = 2 if config.distilled else 1
self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size)
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + self.num_tokens, config.hidden_size))
self.pos_drop = nn.Dropout(p=config.drop_rate)
def forward(self, pixel_values):
batch_size, channel, height, width = pixel_values.shape
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
patch_embeddings = self.proj(pixel_values)
patch_embeddings = patch_embeddings.flatten(2).transpose(1, 2) # BCHW -> BNC
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embedding_output = torch.cat((cls_tokens, patch_embeddings), dim=1)
embedding_output = embedding_output + self.pos_embed
embedding_output = self.pos_drop(embedding_output)
return embedding_output
class MgpstrMlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(self, config: MgpstrConfig, hidden_features):
super().__init__()
hidden_features = hidden_features or config.hidden_size
self.fc1 = nn.Linear(config.hidden_size, hidden_features)
self.act = nn.GELU()
self.fc2 = nn.Linear(hidden_features, config.hidden_size)
self.drop = nn.Dropout(config.drop_rate)
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.drop(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.drop(hidden_states)
return hidden_states
class MgpstrAttention(nn.Module):
def __init__(self, config: MgpstrConfig):
super().__init__()
self.num_heads = config.num_attention_heads
head_dim = config.hidden_size // config.num_attention_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attn_drop_rate)
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
self.proj_drop = nn.Dropout(config.drop_rate)
def forward(self, hidden_states):
batch_size, num, channel = hidden_states.shape
qkv = (
self.qkv(hidden_states)
.reshape(batch_size, num, 3, self.num_heads, channel // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
query, key, value = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attention_probs = (query @ key.transpose(-2, -1)) * self.scale
attention_probs = attention_probs.softmax(dim=-1)
attention_probs = self.attn_drop(attention_probs)
context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, num, channel)
context_layer = self.proj(context_layer)
context_layer = self.proj_drop(context_layer)
return (context_layer, attention_probs)
class MgpstrLayer(nn.Module):
def __init__(self, config: MgpstrConfig, drop_path=None):
super().__init__()
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attn = MgpstrAttention(config)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = MgpstrDropPath(drop_path) if drop_path is not None else nn.Identity()
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
mlp_hidden_dim = int(config.hidden_size * config.mlp_ratio)
self.mlp = MgpstrMlp(config, mlp_hidden_dim)
def forward(self, hidden_states):
self_attention_outputs = self.attn(self.norm1(hidden_states))
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1]
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# second residual connection is done here
layer_output = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states)))
outputs = (layer_output, outputs)
return outputs
class MgpstrEncoder(nn.Module):
def __init__(self, config: MgpstrConfig):
super().__init__()
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.blocks = nn.Sequential(
*[MgpstrLayer(config=config, drop_path=dpr[i]) for i in range(config.num_hidden_layers)]
)
def forward(self, hidden_states, output_attentions=False, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for _, blk in enumerate(self.blocks):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = blk(hidden_states)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class MgpstrA3Module(nn.Module):
def __init__(self, config: MgpstrConfig):
super().__init__()
self.token_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.tokenLearner = nn.Sequential(
nn.Conv2d(config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False),
nn.Conv2d(config.hidden_size, config.max_token_length, kernel_size=(1, 1), stride=1, bias=False),
)
self.feat = nn.Conv2d(
config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.token_norm(hidden_states)
hidden_states = hidden_states.transpose(1, 2).unsqueeze(-1)
selected = self.tokenLearner(hidden_states)
selected = selected.flatten(2)
attentions = F.softmax(selected, dim=-1)
feat = self.feat(hidden_states)
feat = feat.flatten(2).transpose(1, 2)
feat = torch.einsum("...si,...id->...sd", attentions, feat)
a3_out = self.norm(feat)
return (a3_out, attentions)
class MgpstrPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MgpstrConfig
base_model_prefix = "mgp_str"
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, MgpstrEmbeddings):
nn.init.trunc_normal_(module.pos_embed, mean=0.0, std=self.config.initializer_range)
nn.init.trunc_normal_(module.cls_token, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MGP_STR_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MgpstrConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MGP_STR_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MGP-STR Model transformer outputting raw hidden-states without any specific head on top.",
MGP_STR_START_DOCSTRING,
)
class MgpstrModel(MgpstrPreTrainedModel):
def __init__(self, config: MgpstrConfig):
super().__init__(config)
self.config = config
self.embeddings = MgpstrEmbeddings(config)
self.encoder = MgpstrEncoder(config)
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.proj
@add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return encoder_outputs
return BaseModelOutput(
last_hidden_state=encoder_outputs.last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
MGP-STR Model transformer with three classification heads on top (three A^3 modules and three linear layer on top
of the transformer encoder output) for scene text recognition (STR) .
""",
MGP_STR_START_DOCSTRING,
)
class MgpstrForSceneTextRecognition(MgpstrPreTrainedModel):
config_class = MgpstrConfig
main_input_name = "pixel_values"
def __init__(self, config: MgpstrConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mgp_str = MgpstrModel(config)
self.char_a3_module = MgpstrA3Module(config)
self.bpe_a3_module = MgpstrA3Module(config)
self.wp_a3_module = MgpstrA3Module(config)
self.char_head = nn.Linear(config.hidden_size, config.num_character_labels)
self.bpe_head = nn.Linear(config.hidden_size, config.num_bpe_labels)
self.wp_head = nn.Linear(config.hidden_size, config.num_wordpiece_labels)
@add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MgpstrModelOutput, config_class=MgpstrConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_a3_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], MgpstrModelOutput]:
r"""
output_a3_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of a3 modules. See `a3_attentions` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... MgpstrProcessor,
... MgpstrForSceneTextRecognition,
... )
>>> import requests
>>> from PIL import Image
>>> # load image from the IIIT-5k dataset
>>> url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> processor = MgpstrProcessor.from_pretrained("alibaba-damo/mgp-str-base")
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> model = MgpstrForSceneTextRecognition.from_pretrained("alibaba-damo/mgp-str-base")
>>> # inference
>>> outputs = model(pixel_values)
>>> out_strs = processor.batch_decode(outputs.logits)
>>> out_strs["generated_text"]
'["ticket"]'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mgp_outputs = self.mgp_str(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = mgp_outputs[0]
char_a3_out, char_attention = self.char_a3_module(sequence_output)
bpe_a3_out, bpe_attention = self.bpe_a3_module(sequence_output)
wp_a3_out, wp_attention = self.wp_a3_module(sequence_output)
char_logits = self.char_head(char_a3_out)
bpe_logits = self.bpe_head(bpe_a3_out)
wp_logits = self.wp_head(wp_a3_out)
all_a3_attentions = (char_attention, bpe_attention, wp_attention) if output_a3_attentions else None
all_logits = (char_logits, bpe_logits, wp_logits)
if not return_dict:
outputs = (all_logits, all_a3_attentions) + mgp_outputs[1:]
return tuple(output for output in outputs if output is not None)
return MgpstrModelOutput(
logits=all_logits,
hidden_states=mgp_outputs.hidden_states,
attentions=mgp_outputs.attentions,
a3_attentions=all_a3_attentions,
)
| transformers/src/transformers/models/mgp_str/modeling_mgp_str.py/0 | {
"file_path": "transformers/src/transformers/models/mgp_str/modeling_mgp_str.py",
"repo_id": "transformers",
"token_count": 9057
} | 320 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MobileBERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json"
}
class MobileBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It
is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT
[google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 512):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or
[`TFMobileBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
The ID of the token in the word embedding to use as padding.
embedding_size (`int`, *optional*, defaults to 128):
The dimension of the word embedding vectors.
trigram_input (`bool`, *optional*, defaults to `True`):
Use a convolution of trigram as input.
use_bottleneck (`bool`, *optional*, defaults to `True`):
Whether to use bottleneck in BERT.
intra_bottleneck_size (`int`, *optional*, defaults to 128):
Size of bottleneck layer output.
use_bottleneck_attention (`bool`, *optional*, defaults to `False`):
Whether to use attention inputs from the bottleneck transformation.
key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`):
Whether to use the same linear transformation for query&key in the bottleneck.
num_feedforward_networks (`int`, *optional*, defaults to 4):
Number of FFNs in a block.
normalization_type (`str`, *optional*, defaults to `"no_norm"`):
The normalization type in MobileBERT.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import MobileBertConfig, MobileBertModel
>>> # Initializing a MobileBERT configuration
>>> configuration = MobileBertConfig()
>>> # Initializing a model (with random weights) from the configuration above
>>> model = MobileBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained
checkpoints.
"""
pretrained_config_archive_map = MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type = "mobilebert"
def __init__(
self,
vocab_size=30522,
hidden_size=512,
num_hidden_layers=24,
num_attention_heads=4,
intermediate_size=512,
hidden_act="relu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
embedding_size=128,
trigram_input=True,
use_bottleneck=True,
intra_bottleneck_size=128,
use_bottleneck_attention=False,
key_query_shared_bottleneck=True,
num_feedforward_networks=4,
normalization_type="no_norm",
classifier_activation=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.embedding_size = embedding_size
self.trigram_input = trigram_input
self.use_bottleneck = use_bottleneck
self.intra_bottleneck_size = intra_bottleneck_size
self.use_bottleneck_attention = use_bottleneck_attention
self.key_query_shared_bottleneck = key_query_shared_bottleneck
self.num_feedforward_networks = num_feedforward_networks
self.normalization_type = normalization_type
self.classifier_activation = classifier_activation
if self.use_bottleneck:
self.true_hidden_size = intra_bottleneck_size
else:
self.true_hidden_size = hidden_size
self.classifier_dropout = classifier_dropout
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Bert->MobileBert
class MobileBertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
| transformers/src/transformers/models/mobilebert/configuration_mobilebert.py/0 | {
"file_path": "transformers/src/transformers/models/mobilebert/configuration_mobilebert.py",
"repo_id": "transformers",
"token_count": 3255
} | 321 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 MPNet model."""
from __future__ import annotations
import math
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPooling,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_mpnet import MPNetConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
_CONFIG_FOR_DOC = "MPNetConfig"
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/mpnet-base",
]
class TFMPNetPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MPNetConfig
base_model_prefix = "mpnet"
class TFMPNetEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.padding_idx = 1
self.config = config
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
def create_position_ids_from_input_ids(self, input_ids):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
input_ids: tf.Tensor
Returns: tf.Tensor
"""
mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
incremental_indices = tf.math.cumsum(mask, axis=1) * mask
return incremental_indices + self.padding_idx
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids)
else:
position_ids = tf.expand_dims(
tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
final_embeddings = inputs_embeds + position_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->MPNet
class TFMPNetPooler(keras.layers.Layer):
def __init__(self, config: MPNetConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFMPNetSelfAttention(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads}"
)
self.num_attention_heads = config.num_attention_heads
assert config.hidden_size % config.num_attention_heads == 0
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.q = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="q"
)
self.k = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="k"
)
self.v = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="v"
)
self.o = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="o"
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, x, batch_size):
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
batch_size = shape_list(hidden_states)[0]
q = self.q(hidden_states)
k = self.k(hidden_states)
v = self.v(hidden_states)
q = self.transpose_for_scores(q, batch_size)
k = self.transpose_for_scores(k, batch_size)
v = self.transpose_for_scores(v, batch_size)
attention_scores = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(shape_list(k)[-1], attention_scores.dtype)
attention_scores = attention_scores / tf.math.sqrt(dk)
# Apply relative position embedding (precomputed in MPNetEncoder) if provided.
if position_bias is not None:
attention_scores += position_bias
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = stable_softmax(attention_scores, axis=-1)
attention_probs = self.dropout(attention_probs, training=training)
if head_mask is not None:
attention_probs = attention_probs * head_mask
c = tf.matmul(attention_probs, v)
c = tf.transpose(c, perm=[0, 2, 1, 3])
c = tf.reshape(c, (batch_size, -1, self.all_head_size))
o = self.o(c)
outputs = (o, attention_probs) if output_attentions else (o,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q", None) is not None:
with tf.name_scope(self.q.name):
self.q.build([None, None, self.config.hidden_size])
if getattr(self, "k", None) is not None:
with tf.name_scope(self.k.name):
self.k.build([None, None, self.config.hidden_size])
if getattr(self, "v", None) is not None:
with tf.name_scope(self.v.name):
self.v.build([None, None, self.config.hidden_size])
if getattr(self, "o", None) is not None:
with tf.name_scope(self.o.name):
self.o.build([None, None, self.config.hidden_size])
class TFMPNetAttention(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.attn = TFMPNetSelfAttention(config, name="attn")
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def prune_heads(self, heads):
raise NotImplementedError
def call(self, input_tensor, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
self_outputs = self.attn(
input_tensor, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
)
attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + input_tensor)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->MPNet
class TFMPNetIntermediate(keras.layers.Layer):
def __init__(self, config: MPNetConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->MPNet
class TFMPNetOutput(keras.layers.Layer):
def __init__(self, config: MPNetConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFMPNetLayer(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.attention = TFMPNetAttention(config, name="attention")
self.intermediate = TFMPNetIntermediate(config, name="intermediate")
self.out = TFMPNetOutput(config, name="output")
def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
self_attention_outputs = self.attention(
hidden_states, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.out(intermediate_output, attention_output, training=training)
outputs = (layer_output,) + outputs # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "out", None) is not None:
with tf.name_scope(self.out.name):
self.out.build(None)
class TFMPNetEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.n_heads = config.num_attention_heads
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.initializer_range = config.initializer_range
self.layer = [TFMPNetLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
self.relative_attention_num_buckets = config.relative_attention_num_buckets
def build(self, input_shape=None):
if self.built:
return
self.built = True
with tf.name_scope("relative_attention_bias"):
self.relative_attention_bias = self.add_weight(
name="embeddings",
shape=[self.relative_attention_num_buckets, self.n_heads],
initializer=get_initializer(self.initializer_range),
)
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
def call(
self,
hidden_states,
attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=False,
):
position_bias = self.compute_position_bias(hidden_states)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask,
head_mask[i],
output_attentions,
position_bias=position_bias,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
@staticmethod
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
ret = 0
n = -relative_position
num_buckets //= 2
ret += tf.cast(tf.math.less(n, 0), dtype=relative_position.dtype) * num_buckets
n = tf.math.abs(n)
# now n is in the range [0, inf)
max_exact = num_buckets // 2
is_small = tf.math.less(n, max_exact)
val_if_large = max_exact + tf.cast(
tf.math.log(n / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact),
dtype=relative_position.dtype,
)
val_if_large = tf.math.minimum(val_if_large, num_buckets - 1)
ret += tf.where(is_small, n, val_if_large)
return ret
def compute_position_bias(self, x, position_ids=None):
"""Compute binned relative position bias"""
input_shape = shape_list(x)
qlen, klen = input_shape[1], input_shape[1]
if position_ids is not None:
context_position = position_ids[:, :, None]
memory_position = position_ids[:, None, :]
else:
context_position = tf.range(qlen)[:, None]
memory_position = tf.range(klen)[None, :]
relative_position = memory_position - context_position # shape (qlen, klen)
rp_bucket = self._relative_position_bucket(
relative_position,
num_buckets=self.relative_attention_num_buckets,
)
values = tf.gather(self.relative_attention_bias, rp_bucket) # shape (qlen, klen, num_heads)
values = tf.expand_dims(tf.transpose(values, [2, 0, 1]), axis=0) # shape (1, num_heads, qlen, klen)
return values
@keras_serializable
class TFMPNetMainLayer(keras.layers.Layer):
config_class = MPNetConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.initializer_range = config.initializer_range
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.encoder = TFMPNetEncoder(config, name="encoder")
self.pooler = TFMPNetPooler(config, name="pooler")
# The embeddings must be the last declaration in order to follow the weights order
self.embeddings = TFMPNetEmbeddings(config, name="embeddings")
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
embedding_output = self.embeddings(
input_ids,
position_ids,
inputs_embeds,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
encoder_outputs = self.encoder(
embedding_output,
extended_attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
MPNET_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MPNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
MPNET_START_DOCSTRING,
)
class TFMPNetModel(TFMPNetPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.mpnet(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
class TFMPNetLMHead(keras.layers.Layer):
"""MPNet head for masked and permuted language modeling"""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.act = get_tf_activation("gelu")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, value):
self.decoder.weight = value
self.decoder.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.layer_norm(hidden_states)
# project back to size of vocabulary with bias
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
@add_start_docstrings("""MPNet Model with a `language modeling` head on top.""", MPNET_START_DOCSTRING)
class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.lm_head = TFMPNetLMHead(config, self.mpnet.embeddings, name="lm_head")
def get_lm_head(self):
return self.lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
class TFMPNetClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.out_proj = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
)
self.config = config
def call(self, features, training=False):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, training=training)
x = self.dense(x)
x = self.dropout(x, training=training)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassificationLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.classifier = TFMPNetClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.mpnet(
flat_input_ids,
flat_attention_mask,
flat_position_ids,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificationLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.mpnet(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForQuestionAnswering(TFMPNetPreTrainedModel, TFQuestionAnsweringLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: tf.Tensor | None = None,
end_positions: tf.Tensor | None = None,
training: bool = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions, "end_position": end_positions}
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
| transformers/src/transformers/models/mpnet/modeling_tf_mpnet.py/0 | {
"file_path": "transformers/src/transformers/models/mpnet/modeling_tf_mpnet.py",
"repo_id": "transformers",
"token_count": 23834
} | 322 |
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MusicGen model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/musicgen-small": "https://huggingface.co/facebook/musicgen-small/resolve/main/config.json",
# See all Musicgen models at https://huggingface.co/models?filter=musicgen
}
class MusicgenDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MusicgenDecoder`]. It is used to instantiate a
MusicGen decoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MusicGen
[facebook/musicgen-small](https://huggingface.co/facebook/musicgen-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 2048):
Vocabulary size of the MusicgenDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MusicgenDecoder`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of decoder layers.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer block.
ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_factor (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(hidden_size).
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models)
num_codebooks (`int`, *optional*, defaults to 4):
The number of parallel codebooks forwarded to the model.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether input and output word embeddings should be tied.
audio_channels (`int`, *optional*, defaults to 1
Number of channels in the audio data. Either 1 for mono or 2 for stereo. Stereo models generate a separate
audio stream for the left/right output channels. Mono models generate a single audio stream output.
"""
model_type = "musicgen_decoder"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2048,
max_position_embeddings=2048,
num_hidden_layers=24,
ffn_dim=4096,
num_attention_heads=16,
layerdrop=0.0,
use_cache=True,
activation_function="gelu",
hidden_size=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
initializer_factor=0.02,
scale_embedding=False,
num_codebooks=4,
audio_channels=1,
pad_token_id=2048,
bos_token_id=2048,
eos_token_id=None,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.ffn_dim = ffn_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.initializer_factor = initializer_factor
self.layerdrop = layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.num_codebooks = num_codebooks
if audio_channels not in [1, 2]:
raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.")
self.audio_channels = audio_channels
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MusicgenConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MusicgenModel`]. It is used to instantiate a
MusicGen model according to the specified arguments, defining the text encoder, audio encoder and MusicGen decoder
configs.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the text encoder config.
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
the decoder config.
Example:
```python
>>> from transformers import (
... MusicgenConfig,
... MusicgenDecoderConfig,
... T5Config,
... EncodecConfig,
... MusicgenForConditionalGeneration,
... )
>>> # Initializing text encoder, audio encoder, and decoder model configurations
>>> text_encoder_config = T5Config()
>>> audio_encoder_config = EncodecConfig()
>>> decoder_config = MusicgenDecoderConfig()
>>> configuration = MusicgenConfig.from_sub_models_config(
... text_encoder_config, audio_encoder_config, decoder_config
... )
>>> # Initializing a MusicgenForConditionalGeneration (with random weights) from the facebook/musicgen-small style configuration
>>> model = MusicgenForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> config_text_encoder = model.config.text_encoder
>>> config_audio_encoder = model.config.audio_encoder
>>> config_decoder = model.config.decoder
>>> # Saving the model, including its configuration
>>> model.save_pretrained("musicgen-model")
>>> # loading model and config from pretrained folder
>>> musicgen_config = MusicgenConfig.from_pretrained("musicgen-model")
>>> model = MusicgenForConditionalGeneration.from_pretrained("musicgen-model", config=musicgen_config)
```"""
model_type = "musicgen"
is_composition = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
text_encoder_config = kwargs.pop("text_encoder")
text_encoder_model_type = text_encoder_config.pop("model_type")
audio_encoder_config = kwargs.pop("audio_encoder")
audio_encoder_model_type = audio_encoder_config.pop("model_type")
decoder_config = kwargs.pop("decoder")
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
self.decoder = MusicgenDecoderConfig(**decoder_config)
self.is_encoder_decoder = True
@classmethod
def from_sub_models_config(
cls,
text_encoder_config: PretrainedConfig,
audio_encoder_config: PretrainedConfig,
decoder_config: MusicgenDecoderConfig,
**kwargs,
):
r"""
Instantiate a [`MusicgenConfig`] (or a derived class) from text encoder, audio encoder and decoder
configurations.
Returns:
[`MusicgenConfig`]: An instance of a configuration object
"""
return cls(
text_encoder=text_encoder_config.to_dict(),
audio_encoder=audio_encoder_config.to_dict(),
decoder=decoder_config.to_dict(),
**kwargs,
)
@property
# This is a property because you might want to change the codec model on the fly
def sampling_rate(self):
return self.audio_encoder.sampling_rate
| transformers/src/transformers/models/musicgen/configuration_musicgen.py/0 | {
"file_path": "transformers/src/transformers/models/musicgen/configuration_musicgen.py",
"repo_id": "transformers",
"token_count": 4065
} | 323 |
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OneFormer model configuration"""
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"shi-labs/oneformer_ade20k_swin_tiny": (
"https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny/blob/main/config.json"
),
# See all OneFormer models at https://huggingface.co/models?filter=oneformer
}
class OneFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OneFormerModel`]. It is used to instantiate a
OneFormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the OneFormer
[shi-labs/oneformer_ade20k_swin_tiny](https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny) architecture
trained on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`PretrainedConfig`, *optional*, defaults to `SwinConfig`):
The configuration of the backbone model.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
ignore_value (`int`, *optional*, defaults to 255):
Values to be ignored in GT label while calculating loss.
num_queries (`int`, *optional*, defaults to 150):
Number of object queries.
no_object_weight (`float`, *optional*, defaults to 0.1):
Weight for no-object class predictions.
class_weight (`float`, *optional*, defaults to 2.0):
Weight for Classification CE loss.
mask_weight (`float`, *optional*, defaults to 5.0):
Weight for binary CE loss.
dice_weight (`float`, *optional*, defaults to 5.0):
Weight for dice loss.
contrastive_weight (`float`, *optional*, defaults to 0.5):
Weight for contrastive loss.
contrastive_temperature (`float`, *optional*, defaults to 0.07):
Initial value for scaling the contrastive logits.
train_num_points (`int`, *optional*, defaults to 12544):
Number of points to sample while calculating losses on mask predictions.
oversample_ratio (`float`, *optional*, defaults to 3.0):
Ratio to decide how many points to oversample.
importance_sample_ratio (`float`, *optional*, defaults to 0.75):
Ratio of points that are sampled via importance sampling.
init_std (`float`, *optional*, defaults to 0.02):
Standard deviation for normal intialization.
init_xavier_std (`float`, *optional*, defaults to 1.0):
Standard deviation for xavier uniform initialization.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
Epsilon for layer normalization.
is_training (`bool`, *optional*, defaults to `False`):
Whether to run in training or inference mode.
use_auxiliary_loss (`bool`, *optional*, defaults to `True`):
Whether to calculate loss using intermediate predictions from transformer decoder.
output_auxiliary_logits (`bool`, *optional*, defaults to `True`):
Whether to return intermediate predictions from transformer decoder.
strides (`list`, *optional*, defaults to `[4, 8, 16, 32]`):
List containing the strides for feature maps in the encoder.
task_seq_len (`int`, *optional*, defaults to 77):
Sequence length for tokenizing text list input.
text_encoder_width (`int`, *optional*, defaults to 256):
Hidden size for text encoder.
text_encoder_context_length (`int`, *optional*, defaults to 77):
Input sequence length for text encoder.
text_encoder_num_layers (`int`, *optional*, defaults to 6):
Number of layers for transformer in text encoder.
text_encoder_vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size for tokenizer.
text_encoder_proj_layers (`int`, *optional*, defaults to 2):
Number of layers in MLP for project text queries.
text_encoder_n_ctx (`int`, *optional*, defaults to 16):
Number of learnable text context queries.
conv_dim (`int`, *optional*, defaults to 256):
Feature map dimension to map outputs from the backbone.
mask_dim (`int`, *optional*, defaults to 256):
Dimension for feature maps in pixel decoder.
hidden_dim (`int`, *optional*, defaults to 256):
Dimension for hidden states in transformer decoder.
encoder_feedforward_dim (`int`, *optional*, defaults to 1024):
Dimension for FFN layer in pixel decoder.
norm (`str`, *optional*, defaults to `"GN"`):
Type of normalization.
encoder_layers (`int`, *optional*, defaults to 6):
Number of layers in pixel decoder.
decoder_layers (`int`, *optional*, defaults to 10):
Number of layers in transformer decoder.
use_task_norm (`bool`, *optional*, defaults to `True`):
Whether to normalize the task token.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads in transformer layers in the pixel and transformer decoders.
dropout (`float`, *optional*, defaults to 0.1):
Dropout probability for pixel and transformer decoders.
dim_feedforward (`int`, *optional*, defaults to 2048):
Dimension for FFN layer in transformer decoder.
pre_norm (`bool`, *optional*, defaults to `False`):
Whether to normalize hidden states before attention layers in transformer decoder.
enforce_input_proj (`bool`, *optional*, defaults to `False`):
Whether to project hidden states in transformer decoder.
query_dec_layers (`int`, *optional*, defaults to 2):
Number of layers in query transformer.
common_stride (`int`, *optional*, defaults to 4):
Common stride used for features in pixel decoder.
Examples:
```python
>>> from transformers import OneFormerConfig, OneFormerModel
>>> # Initializing a OneFormer shi-labs/oneformer_ade20k_swin_tiny configuration
>>> configuration = OneFormerConfig()
>>> # Initializing a model (with random weights) from the shi-labs/oneformer_ade20k_swin_tiny style configuration
>>> model = OneFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "oneformer"
attribute_map = {"hidden_size": "hidden_dim"}
def __init__(
self,
backbone_config: Optional[Dict] = None,
backbone: Optional[str] = None,
use_pretrained_backbone: bool = False,
use_timm_backbone: bool = False,
ignore_value: int = 255,
num_queries: int = 150,
no_object_weight: int = 0.1,
class_weight: float = 2.0,
mask_weight: float = 5.0,
dice_weight: float = 5.0,
contrastive_weight: float = 0.5,
contrastive_temperature: float = 0.07,
train_num_points: int = 12544,
oversample_ratio: float = 3.0,
importance_sample_ratio: float = 0.75,
init_std: float = 0.02,
init_xavier_std: float = 1.0,
layer_norm_eps: float = 1e-05,
is_training: bool = False,
use_auxiliary_loss: bool = True,
output_auxiliary_logits: bool = True,
strides: Optional[list] = [4, 8, 16, 32],
task_seq_len: int = 77,
text_encoder_width: int = 256,
text_encoder_context_length: int = 77,
text_encoder_num_layers: int = 6,
text_encoder_vocab_size: int = 49408,
text_encoder_proj_layers: int = 2,
text_encoder_n_ctx: int = 16,
conv_dim: int = 256,
mask_dim: int = 256,
hidden_dim: int = 256,
encoder_feedforward_dim: int = 1024,
norm: str = "GN",
encoder_layers: int = 6,
decoder_layers: int = 10,
use_task_norm: bool = True,
num_attention_heads: int = 8,
dropout: float = 0.1,
dim_feedforward: int = 2048,
pre_norm: bool = False,
enforce_input_proj: bool = False,
query_dec_layers: int = 2,
common_stride: int = 4,
**kwargs,
):
if use_pretrained_backbone:
raise ValueError("Pretrained backbones are not supported yet.")
if backbone_config is not None and backbone is not None:
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is unset. Initializing the config with the default `Swin` backbone.")
backbone_config = CONFIG_MAPPING["swin"](
image_size=224,
in_channels=3,
patch_size=4,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
drop_path_rate=0.3,
use_absolute_embeddings=False,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.ignore_value = ignore_value
self.num_queries = num_queries
self.no_object_weight = no_object_weight
self.class_weight = class_weight
self.mask_weight = mask_weight
self.dice_weight = dice_weight
self.contrastive_weight = contrastive_weight
self.contrastive_temperature = contrastive_temperature
self.train_num_points = train_num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.layer_norm_eps = layer_norm_eps
self.is_training = is_training
self.use_auxiliary_loss = use_auxiliary_loss
self.output_auxiliary_logits = output_auxiliary_logits
self.strides = strides
self.task_seq_len = task_seq_len
self.text_encoder_width = text_encoder_width
self.text_encoder_context_length = text_encoder_context_length
self.text_encoder_num_layers = text_encoder_num_layers
self.text_encoder_vocab_size = text_encoder_vocab_size
self.text_encoder_proj_layers = text_encoder_proj_layers
self.text_encoder_n_ctx = text_encoder_n_ctx
self.conv_dim = conv_dim
self.mask_dim = mask_dim
self.hidden_dim = hidden_dim
self.encoder_feedforward_dim = encoder_feedforward_dim
self.norm = norm
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.use_task_norm = use_task_norm
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.dim_feedforward = dim_feedforward
self.pre_norm = pre_norm
self.enforce_input_proj = enforce_input_proj
self.query_dec_layers = query_dec_layers
self.common_stride = common_stride
self.num_hidden_layers = decoder_layers
super().__init__(**kwargs)
| transformers/src/transformers/models/oneformer/configuration_oneformer.py/0 | {
"file_path": "transformers/src/transformers/models/oneformer/configuration_oneformer.py",
"repo_id": "transformers",
"token_count": 5285
} | 324 |
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OPT model."""
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_opt import OPTConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
_SEQ_CLASS_EXPECTED_LOSS = 1.71
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
OPT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/opt-125m",
"facebook/opt-350m",
"facebook/opt-1.3b",
"facebook/opt-2.7b",
"facebook/opt-6.7b",
"facebook/opt-13b",
"facebook/opt-30b",
# See all OPT models at https://huggingface.co/models?filter=opt
]
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class OPTLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = attention_mask.long()
# create positions depending on attention_mask
positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: OPTConfig,
is_decoder: bool = False,
**kwargs,
):
super().__init__()
self.config = config
def _handle_deprecated_argument(config_arg_name, config, fn_arg_name, kwargs):
"""
If a the deprecated argument `fn_arg_name` is passed, raise a deprecation
warning and return that value, otherwise take the equivalent config.config_arg_name
"""
val = None
if fn_arg_name in kwargs:
logging.warning(
"Passing in {} to {self.__class__.__name__} is deprecated and won't be supported from v4.38."
" Please set it in the config instead"
)
val = kwargs.pop(fn_arg_name)
else:
val = getattr(config, config_arg_name)
return val
self.embed_dim = _handle_deprecated_argument("hidden_size", config, "embed_dim", kwargs)
self.num_heads = _handle_deprecated_argument("num_attention_heads", config, "num_heads", kwargs)
self.dropout = _handle_deprecated_argument("attention_dropout", config, "dropout", kwargs)
self.enable_bias = _handle_deprecated_argument("enable_bias", config, "bias", kwargs)
self.head_dim = self.embed_dim // self.num_heads
self.is_causal = True
if (self.head_dim * self.num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
if attn_weights.dtype == torch.float16:
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
else:
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class OptFlashAttention2(OPTAttention):
"""
OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched.
The only required change would be on the forward pass where it needs to correctly call the public API of flash
attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, _, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_length = query_states.shape[1]
tgt_len = key_states.shape[-2]
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
query_states = query_states.view(bsz, query_length, self.num_heads, self.head_dim)
key_states = key_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
value_states = value_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
attn_dropout = self.dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states, key_states, value_states, attention_mask, query_length, dropout=attn_dropout
)
attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
attn_output = self.out_proj(attn_weights_reshaped)
if not output_attentions:
attn_weights_reshaped = None
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
OPT_ATTENTION_CLASSES = {
"eager": OPTAttention,
"flash_attention_2": OptFlashAttention2,
}
class OPTDecoderLayer(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True)
self.do_layer_norm_before = config.do_layer_norm_before
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine
)
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias)
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = (residual + hidden_states).view(hidden_states_shape)
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
OPT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OPTConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class OPTPreTrainedModel(PreTrainedModel):
config_class = OPTConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OPTDecoderLayer"]
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class OPTDecoder(OPTPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]
Args:
config: OPTConfig
"""
def __init__(self, config: OPTConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values_length + seq_length
# embed positions
if self._use_flash_attention_2:
# 2d mask is passed through the layers
causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
attention_mask = (
torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if attention_mask is None
else attention_mask
)
else:
# 4d mask is passed through the layers
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
elif attention_mask.shape[1] != mask_seq_length:
raise ValueError(
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
f"{mask_seq_length} (sum of the lengths of current and past inputs)"
)
causal_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class OPTModel(OPTPreTrainedModel):
def __init__(self, config: OPTConfig):
super().__init__(config)
self.decoder = OPTDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPast(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
class OPTForCausalLM(OPTPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = OPTModel(config)
# the lm_head weight is automatically tied to the embed tokens weight
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OPTForCausalLM
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0]).contiguous()
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings(
"""
The OPT Model transformer with a sequence classification head on top (linear layer).
[`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
OPT_START_DOCSTRING,
)
class OPTForSequenceClassification(OPTPreTrainedModel):
def __init__(self, config: OPTConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.model = OPTModel(config)
self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
@add_start_docstrings(
"""
The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
OPT_START_DOCSTRING,
)
class OPTForQuestionAnswering(OPTPreTrainedModel):
def __init__(self, config: OPTConfig):
super().__init__(config)
self.model = OPTModel(config)
self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OPTForQuestionAnswering
>>> import torch
>>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> # note: we are loading a OPTForQuestionAnswering from the hub here,
>>> # so the head will be randomly initialized, hence the predictions will be random
>>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> answer_offset = len(tokenizer(question)[0])
>>> predict_answer_tokens = inputs.input_ids[
... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
... ]
>>> predicted = tokenizer.decode(predict_answer_tokens)
>>> predicted
' a nice puppet'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
| transformers/src/transformers/models/opt/modeling_opt.py/0 | {
"file_path": "transformers/src/transformers/models/opt/modeling_opt.py",
"repo_id": "transformers",
"token_count": 29790
} | 325 |