text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# coding=utf-8 # Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PatchTSMixer model configuration""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "ibm/patchtsmixer-etth1-pretrain": "https://huggingface.co/ibm/patchtsmixer-etth1-pretrain/resolve/main/config.json", } class PatchTSMixerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PatchTSMixerModel`]. It is used to instantiate a PatchTSMixer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PatchTSMixer [ibm/patchtsmixer-etth1-pretrain](https://huggingface.co/ibm/patchtsmixer-etth1-pretrain) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: context_length (`int`, *optional*, defaults to 32): The context/history length for the input sequence. patch_length (`int`, *optional*, defaults to 8): The patch length for the input sequence. num_input_channels (`int`, *optional*, defaults to 1): Number of input variates. For Univariate, set it to 1. patch_stride (`int`, *optional*, defaults to 8): Determines the overlap between two consecutive patches. Set it to patch_length (or greater), if we want non-overlapping patches. num_parallel_samples (`int`, *optional*, defaults to 100): The number of samples to generate in parallel for probabilistic forecast. d_model (`int`, *optional*, defaults to 8): Hidden dimension of the model. Recommended to set it as a multiple of patch_length (i.e. 2-5X of patch_length). Larger value indicates more complex model. expansion_factor (`int`, *optional*, defaults to 2): Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model. num_layers (`int`, *optional*, defaults to 3): Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model. dropout (`float`, *optional*, defaults to 0.2): The dropout probability the `PatchTSMixer` backbone. Recommended range is 0.2-0.7 mode (`str`, *optional*, defaults to `"common_channel"`): Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In "common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In "mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred approach when channel correlations are very important to model) gated_attn (`bool`, *optional*, defaults to `True`): Enable Gated Attention. norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`): Normalization layer (BatchNorm or LayerNorm). self_attn (`bool`, *optional*, defaults to `False`): Enable Tiny self attention across patches. This can be enabled when the output of Vanilla PatchTSMixer with gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling across patches. self_attn_heads (`int`, *optional*, defaults to 1): Number of self-attention heads. Works only when `self_attn` is set to `True`. use_positional_encoding (`bool`, *optional*, defaults to `False`): Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is set to `True`. positional_encoding_type (`str`, *optional*, defaults to `"sincos"`): Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when `use_positional_encoding` is set to `True` scaling (`string` or `bool`, *optional*, defaults to `"std"`): Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the scaler is set to "mean". loss (`string`, *optional*, defaults to `"mse"`): The loss function for the model corresponding to the `distribution_output` head. For parametric distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared error "mse". init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated normal weight initialization distribution. post_init (`bool`, *optional*, defaults to `False`): Whether to use custom weight initialization from `transformers` library, or the default initialization in `PyTorch`. Setting it to `False` performs `PyTorch` weight initialization. norm_eps (`float`, *optional*, defaults to 1e-05): A value added to the denominator for numerical stability of normalization. mask_type (`str`, *optional*, defaults to `"random"`): Type of masking to use for Masked Pretraining mode. Allowed values are "random", "forecast". In Random masking, points are masked randomly. In Forecast masking, points are masked towards the end. random_mask_ratio (`float`, *optional*, defaults to 0.5): Masking ratio to use when `mask_type` is `random`. Higher value indicates more masking. num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`): Number of patches to be masked at the end of each batch sample. If it is an integer, all the samples in the batch will have the same number of masked patches. If it is a list, samples in the batch will be randomly masked by numbers defined in the list. This argument is only used for forecast pretraining. mask_value (`float`, *optional*, defaults to `0.0`): Mask value to use. masked_loss (`bool`, *optional*, defaults to `True`): Whether to compute pretraining loss only at the masked portions, or on the entire output. channel_consistent_masking (`bool`, *optional*, defaults to `True`): When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary across channels. unmasked_channel_indices (`list`, *optional*): Channels that are not masked during pretraining. head_dropout (`float`, *optional*, defaults to 0.2): The dropout probability the `PatchTSMixer` head. distribution_output (`string`, *optional*, defaults to `"student_t"`): The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or "negative_binomial". prediction_length (`int`, *optional*, defaults to 16): Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon. prediction_channel_indices (`list`, *optional*): List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all channels and we explicitly filter the channels in prediction and target before loss computation. num_targets (`int`, *optional*, defaults to 3): Number of targets (dimensionality of the regressed variable) for a regression task. output_range (`list`, *optional*): Output range to restrict for the regression task. Defaults to None. head_aggregation (`str`, *optional*, defaults to `"max_pool"`): Aggregation mode to enable for classification or regression task. Allowed values are `None`, "use_last", "max_pool", "avg_pool". Example: ```python >>> from transformers import PatchTSMixerConfig, PatchTSMixerModel >>> # Initializing a default PatchTSMixer configuration >>> configuration = PatchTSMixerConfig() >>> # Randomly initializing a model (with random weights) from the configuration >>> model = PatchTSMixerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "patchtsmixer" attribute_map = { "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self, # Time series specific configuration context_length: int = 32, patch_length: int = 8, num_input_channels: int = 1, patch_stride: int = 8, num_parallel_samples: int = 100, # General model configuration d_model: int = 8, expansion_factor: int = 2, num_layers: int = 3, dropout: float = 0.2, mode: str = "common_channel", gated_attn: bool = True, norm_mlp: str = "LayerNorm", self_attn: bool = False, self_attn_heads: int = 1, use_positional_encoding: bool = False, positional_encoding_type: str = "sincos", scaling: Optional[Union[str, bool]] = "std", loss: str = "mse", init_std: float = 0.02, post_init: bool = False, norm_eps: float = 1e-5, # Pretrain model configuration mask_type: str = "random", random_mask_ratio: float = 0.5, num_forecast_mask_patches: Optional[Union[List[int], int]] = [2], mask_value: int = 0, masked_loss: bool = True, channel_consistent_masking: bool = True, unmasked_channel_indices: Optional[List[int]] = None, # General head configuration head_dropout: float = 0.2, distribution_output: str = "student_t", # Prediction head configuration prediction_length: int = 16, prediction_channel_indices: list = None, # Classification/Regression configuration num_targets: int = 3, output_range: list = None, head_aggregation: str = "max_pool", **kwargs, ): self.num_input_channels = num_input_channels self.context_length = context_length self.patch_length = patch_length self.patch_stride = patch_stride self.d_model = d_model self.expansion_factor = expansion_factor self.num_layers = num_layers self.dropout = dropout self.mode = mode self.gated_attn = gated_attn self.norm_mlp = norm_mlp self.scaling = scaling self.head_dropout = head_dropout self.num_patches = (max(context_length, patch_length) - patch_length) // patch_stride + 1 self.mask_type = mask_type self.random_mask_ratio = random_mask_ratio self.num_forecast_mask_patches = num_forecast_mask_patches self.mask_value = mask_value self.channel_consistent_masking = channel_consistent_masking self.masked_loss = masked_loss self.patch_last = True self.use_positional_encoding = use_positional_encoding self.positional_encoding_type = positional_encoding_type self.prediction_length = prediction_length self.prediction_channel_indices = prediction_channel_indices self.num_targets = num_targets self.output_range = output_range self.head_aggregation = head_aggregation self.self_attn = self_attn self.self_attn_heads = self_attn_heads self.init_std = init_std self.post_init = post_init self.distribution_output = distribution_output self.loss = loss self.num_parallel_samples = num_parallel_samples self.unmasked_channel_indices = unmasked_channel_indices self.norm_eps = norm_eps super().__init__(**kwargs)
transformers/src/transformers/models/patchtsmixer/configuration_patchtsmixer.py/0
{ "file_path": "transformers/src/transformers/models/patchtsmixer/configuration_patchtsmixer.py", "repo_id": "transformers", "token_count": 4710 }
326
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_perceiver"] = ["PerceiverFeatureExtractor"] _import_structure["image_processing_perceiver"] = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_perceiver"] = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/perceiver/__init__.py/0
{ "file_path": "transformers/src/transformers/models/perceiver/__init__.py", "repo_id": "transformers", "token_count": 1222 }
327
# coding=utf-8 # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for PhoBERT""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class PhobertTokenizer(PreTrainedTokenizer): """ Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. bos_token (`st`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): self.vocab_file = vocab_file self.merges_file = merges_file self.encoder = {} self.encoder[str(bos_token)] = 0 self.encoder[str(pad_token)] = 1 self.encoder[str(eos_token)] = 2 self.encoder[str(unk_token)] = 3 self.add_from_file(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:-1]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A PhoBERT sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): copyfile(self.merges_file, out_merge_file) return out_vocab_file, out_merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far) def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(f, "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return lines = f.readlines() for lineTmp in lines: line = lineTmp.strip() idx = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") word = line[:idx] self.encoder[word] = len(self.encoder)
transformers/src/transformers/models/phobert/tokenization_phobert.py/0
{ "file_path": "transformers/src/transformers/models/phobert/tokenization_phobert.py", "repo_id": "transformers", "token_count": 6273 }
328
# coding=utf-8 # Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, # Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Pvt checkpoints from the original library.""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import PvtConfig, PvtForImageClassification, PvtImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] for i in range(config.num_encoder_blocks): # Remane embedings' paramters rename_keys.append((f"pos_embed{i + 1}", f"pvt.encoder.patch_embeddings.{i}.position_embeddings")) rename_keys.append((f"patch_embed{i + 1}.proj.weight", f"pvt.encoder.patch_embeddings.{i}.projection.weight")) rename_keys.append((f"patch_embed{i + 1}.proj.bias", f"pvt.encoder.patch_embeddings.{i}.projection.bias")) rename_keys.append((f"patch_embed{i + 1}.norm.weight", f"pvt.encoder.patch_embeddings.{i}.layer_norm.weight")) rename_keys.append((f"patch_embed{i + 1}.norm.bias", f"pvt.encoder.patch_embeddings.{i}.layer_norm.bias")) for j in range(config.depths[i]): # Rename blocks' parameters rename_keys.append( (f"block{i + 1}.{j}.attn.q.weight", f"pvt.encoder.block.{i}.{j}.attention.self.query.weight") ) rename_keys.append( (f"block{i + 1}.{j}.attn.q.bias", f"pvt.encoder.block.{i}.{j}.attention.self.query.bias") ) rename_keys.append( (f"block{i + 1}.{j}.attn.kv.weight", f"pvt.encoder.block.{i}.{j}.attention.self.kv.weight") ) rename_keys.append((f"block{i + 1}.{j}.attn.kv.bias", f"pvt.encoder.block.{i}.{j}.attention.self.kv.bias")) if config.sequence_reduction_ratios[i] > 1: rename_keys.append( ( f"block{i + 1}.{j}.attn.norm.weight", f"pvt.encoder.block.{i}.{j}.attention.self.layer_norm.weight", ) ) rename_keys.append( (f"block{i + 1}.{j}.attn.norm.bias", f"pvt.encoder.block.{i}.{j}.attention.self.layer_norm.bias") ) rename_keys.append( ( f"block{i + 1}.{j}.attn.sr.weight", f"pvt.encoder.block.{i}.{j}.attention.self.sequence_reduction.weight", ) ) rename_keys.append( ( f"block{i + 1}.{j}.attn.sr.bias", f"pvt.encoder.block.{i}.{j}.attention.self.sequence_reduction.bias", ) ) rename_keys.append( (f"block{i + 1}.{j}.attn.proj.weight", f"pvt.encoder.block.{i}.{j}.attention.output.dense.weight") ) rename_keys.append( (f"block{i + 1}.{j}.attn.proj.bias", f"pvt.encoder.block.{i}.{j}.attention.output.dense.bias") ) rename_keys.append((f"block{i + 1}.{j}.norm1.weight", f"pvt.encoder.block.{i}.{j}.layer_norm_1.weight")) rename_keys.append((f"block{i + 1}.{j}.norm1.bias", f"pvt.encoder.block.{i}.{j}.layer_norm_1.bias")) rename_keys.append((f"block{i + 1}.{j}.norm2.weight", f"pvt.encoder.block.{i}.{j}.layer_norm_2.weight")) rename_keys.append((f"block{i + 1}.{j}.norm2.bias", f"pvt.encoder.block.{i}.{j}.layer_norm_2.bias")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc1.weight", f"pvt.encoder.block.{i}.{j}.mlp.dense1.weight")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc1.bias", f"pvt.encoder.block.{i}.{j}.mlp.dense1.bias")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc2.weight", f"pvt.encoder.block.{i}.{j}.mlp.dense2.weight")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc2.bias", f"pvt.encoder.block.{i}.{j}.mlp.dense2.bias")) # Rename cls token rename_keys.extend( [ ("cls_token", "pvt.encoder.patch_embeddings.3.cls_token"), ] ) # Rename norm layer and classifier layer rename_keys.extend( [ ("norm.weight", "pvt.encoder.layer_norm.weight"), ("norm.bias", "pvt.encoder.layer_norm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_k_v(state_dict, config): # for each of the encoder blocks: for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) kv_weight = state_dict.pop(f"pvt.encoder.block.{i}.{j}.attention.self.kv.weight") kv_bias = state_dict.pop(f"pvt.encoder.block.{i}.{j}.attention.self.kv.bias") # next, add keys and values (in that order) to the state dict state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[: config.hidden_sizes[i], :] state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]] state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[ config.hidden_sizes[i] :, : ] state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[config.hidden_sizes[i] :] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_pvt_checkpoint(pvt_size, pvt_checkpoint, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our PVT structure. """ # define default Pvt configuration if pvt_size == "tiny": config_path = "Zetatech/pvt-tiny-224" elif pvt_size == "small": config_path = "Zetatech/pvt-small-224" elif pvt_size == "medium": config_path = "Zetatech/pvt-medium-224" elif pvt_size == "large": config_path = "Zetatech/pvt-large-224" else: raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given") config = PvtConfig(name_or_path=config_path) # load original model from https://github.com/whai362/PVT state_dict = torch.load(pvt_checkpoint, map_location="cpu") rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_k_v(state_dict, config) # load HuggingFace model model = PvtForImageClassification(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by PVTFeatureExtractor image_processor = PvtImageProcessor(size=config.image_size) encoding = image_processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) logits = outputs.logits.detach().cpu() if pvt_size == "tiny": expected_slice_logits = torch.tensor([-1.4192, -1.9158, -0.9702]) elif pvt_size == "small": expected_slice_logits = torch.tensor([0.4353, -0.1960, -0.2373]) elif pvt_size == "medium": expected_slice_logits = torch.tensor([-0.2914, -0.2231, 0.0321]) elif pvt_size == "large": expected_slice_logits = torch.tensor([0.3740, -0.7739, -0.4214]) else: raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given") assert torch.allclose(logits[0, :3], expected_slice_logits, atol=1e-4) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model pytorch_model.bin to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pvt_size", default="tiny", type=str, help="Size of the PVT pretrained model you'd like to convert.", ) parser.add_argument( "--pvt_checkpoint", default="pvt_tiny.pth", type=str, help="Checkpoint of the PVT pretrained model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_pvt_checkpoint(args.pvt_size, args.pvt_checkpoint, args.pytorch_dump_folder_path)
transformers/src/transformers/models/pvt/convert_pvt_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/pvt/convert_pvt_to_pytorch.py", "repo_id": "transformers", "token_count": 4511 }
329
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RAG.""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig logger = logging.get_logger(__name__) class RagTokenizer: def __init__(self, question_encoder, generator): self.question_encoder = question_encoder self.generator = generator self.current_tokenizer = self.question_encoder def save_pretrained(self, save_directory): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer") generator_path = os.path.join(save_directory, "generator_tokenizer") self.question_encoder.save_pretrained(question_encoder_path) self.generator.save_pretrained(generator_path) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer config = kwargs.pop("config", None) if config is None: config = RagConfig.from_pretrained(pretrained_model_name_or_path) question_encoder = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer" ) generator = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer" ) return cls(question_encoder=question_encoder, generator=generator) def __call__(self, *args, **kwargs): return self.current_tokenizer(*args, **kwargs) def batch_decode(self, *args, **kwargs): return self.generator.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.generator.decode(*args, **kwargs) def _switch_to_input_mode(self): self.current_tokenizer = self.question_encoder def _switch_to_target_mode(self): self.current_tokenizer = self.generator def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = None, truncation: bool = True, **kwargs, ) -> BatchEncoding: warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details", FutureWarning, ) if max_length is None: max_length = self.current_tokenizer.model_max_length model_inputs = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = self.current_tokenizer.model_max_length labels = self( text_target=tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, ) model_inputs["labels"] = labels["input_ids"] return model_inputs
transformers/src/transformers/models/rag/tokenization_rag.py/0
{ "file_path": "transformers/src/transformers/models/rag/tokenization_rag.py", "repo_id": "transformers", "token_count": 1854 }
330
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert RegNet checkpoints from timm and vissl.""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetY32gf, RegNetY64gf, RegNetY128gf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger() @dataclass class Tracker: module: nn.Module traced: List[nn.Module] = field(default_factory=list) handles: list = field(default_factory=list) def _forward_hook(self, m, inputs: Tensor, outputs: Tensor): has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) if has_not_submodules: self.traced.append(m) def __call__(self, x: Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(x) [x.remove() for x in self.handles] return self @property def parametrized(self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class ModuleTransfer: src: nn.Module dest: nn.Module verbose: int = 1 src_skip: List = field(default_factory=list) dest_skip: List = field(default_factory=list) raise_if_mismatch: bool = True def __call__(self, x: Tensor): """ Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the hood we tracked all the operations in both modules. """ dest_traced = Tracker(self.dest)(x).parametrized src_traced = Tracker(self.src)(x).parametrized src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced)) dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced)) if len(dest_traced) != len(src_traced) and self.raise_if_mismatch: raise Exception( f"Numbers of operations are different. Source module has {len(src_traced)} operations while" f" destination module has {len(dest_traced)}." ) for dest_m, src_m in zip(dest_traced, src_traced): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") class FakeRegNetVisslWrapper(nn.Module): """ Fake wrapper for RegNet that mimics what vissl does without the need to pass a config file. """ def __init__(self, model: nn.Module): super().__init__() feature_blocks: List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), f"Unexpected layer name {k}" block_index = len(feature_blocks) + 1 feature_blocks.append((f"res{block_index}", v)) self._feature_blocks = nn.ModuleDict(feature_blocks) def forward(self, x: Tensor): return get_trunk_forward_outputs( x, out_feat_keys=None, feature_blocks=self._feature_blocks, ) class NameToFromModelFuncMap(dict): """ A Dictionary with some additional logic to return a function that creates the correct original model. """ def convert_name_to_timm(self, x: str) -> str: x_split = x.split("-") return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__(self, x: str) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: x = self.convert_name_to_timm(x) val = partial(lambda: (timm.create_model(x, pretrained=True).eval(), None)) else: val = super().__getitem__(x) return val class NameToOurModelFuncMap(dict): """ A Dictionary with some additional logic to return the correct hugging face RegNet class reference. """ def __getitem__(self, x: str) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: val = RegNetModel else: val = RegNetForImageClassification return val def manually_copy_vissl_head(from_state_dict, to_state_dict, keys: List[Tuple[str, str]]): for from_key, to_key in keys: to_state_dict[to_key] = from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}") return to_state_dict def convert_weight_and_push( name: str, from_model_func: Callable[[], nn.Module], our_model_func: Callable[[], nn.Module], config: RegNetConfig, save_directory: Path, push_to_hub: bool = True, ): print(f"Converting {name}...") with torch.no_grad(): from_model, from_state_dict = from_model_func() our_model = our_model_func(config).eval() module_transfer = ModuleTransfer(src=from_model, dest=our_model, raise_if_mismatch=False) x = torch.randn((1, 3, 224, 224)) module_transfer(x) if from_state_dict is not None: keys = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: keys = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] to_state_dict = manually_copy_vissl_head(from_state_dict, our_model.state_dict(), keys) our_model.load_state_dict(to_state_dict) our_outputs = our_model(x, output_hidden_states=True) our_output = ( our_outputs.logits if isinstance(our_model, RegNetForImageClassification) else our_outputs.last_hidden_state ) from_output = from_model(x) from_output = from_output[-1] if isinstance(from_output, list) else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: our_output = our_outputs.hidden_states[-1] assert torch.allclose(from_output, our_output), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=True, ) size = 224 if "seer" not in name else 384 # we can use the convnext one image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=size) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=True, ) print(f"Pushed {name}") def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True): filename = "imagenet-1k-id2label.json" num_labels = 1000 expected_shape = (1, num_labels) repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} ImageNetPreTrainedConfig = partial(RegNetConfig, num_labels=num_labels, id2label=id2label, label2id=label2id) names_to_config = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } names_to_ours_model_map = NameToOurModelFuncMap() names_to_from_model_map = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(checkpoint_url: str, model_func: Callable[[], nn.Module]) -> Tuple[nn.Module, Dict]: files = torch.hub.load_state_dict_from_url(checkpoint_url, model_dir=str(save_directory), map_location="cpu") model = model_func() # check if we have a head, if yes add it model_state_dict = files["classy_state_dict"]["base_model"]["model"] state_dict = model_state_dict["trunk"] model.load_state_dict(state_dict) return model.eval(), model_state_dict["heads"] # pretrained names_to_from_model_map["regnet-y-320-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetY32gf()), ) names_to_from_model_map["regnet-y-640-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetY64gf()), ) names_to_from_model_map["regnet-y-1280-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetY128gf()), ) names_to_from_model_map["regnet-y-10b-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52)) ), ) # IN1K finetuned names_to_from_model_map["regnet-y-320-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetY32gf()), ) names_to_from_model_map["regnet-y-640-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetY64gf()), ) names_to_from_model_map["regnet-y-1280-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetY128gf()), ) names_to_from_model_map["regnet-y-10b-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52)) ), ) if model_name: convert_weight_and_push( model_name, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], save_directory, push_to_hub, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( model_name, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], config, save_directory, push_to_hub, ) return config, expected_shape if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) args = parser.parse_args() pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
transformers/src/transformers/models/regnet/convert_regnet_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/regnet/convert_regnet_to_pytorch.py", "repo_id": "transformers", "token_count": 8486 }
331
# coding=utf-8 # Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow ResNet model.""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACT2FN from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFImageClassifierOutputWithNoAttention, ) from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_resnet import ResNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ResNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/resnet-50" _EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50" _IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat" TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class TFResNetConvLayer(keras.layers.Layer): def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu", **kwargs, ) -> None: super().__init__(**kwargs) self.pad_value = kernel_size // 2 self.conv = keras.layers.Conv2D( out_channels, kernel_size=kernel_size, strides=stride, padding="valid", use_bias=False, name="convolution" ) # Use same default momentum and epsilon as PyTorch equivalent self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization") self.activation = ACT2FN[activation] if activation is not None else keras.layers.Activation("linear") self.in_channels = in_channels self.out_channels = out_channels def convolution(self, hidden_state: tf.Tensor) -> tf.Tensor: # Pad to match that done in the PyTorch Conv2D model height_pad = width_pad = (self.pad_value, self.pad_value) hidden_state = tf.pad(hidden_state, [(0, 0), height_pad, width_pad, (0, 0)]) hidden_state = self.conv(hidden_state) return hidden_state def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state, training=training) hidden_state = self.activation(hidden_state) return hidden_state def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, None, self.in_channels]) if getattr(self, "normalization", None) is not None: with tf.name_scope(self.normalization.name): self.normalization.build([None, None, None, self.out_channels]) class TFResNetEmbeddings(keras.layers.Layer): """ ResNet Embeddings (stem) composed of a single aggressive convolution. """ def __init__(self, config: ResNetConfig, **kwargs) -> None: super().__init__(**kwargs) self.embedder = TFResNetConvLayer( config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act, name="embedder", ) self.pooler = keras.layers.MaxPool2D(pool_size=3, strides=2, padding="valid", name="pooler") self.num_channels = config.num_channels def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: _, _, _, num_channels = shape_list(pixel_values) if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) hidden_state = pixel_values hidden_state = self.embedder(hidden_state) hidden_state = tf.pad(hidden_state, [[0, 0], [1, 1], [1, 1], [0, 0]]) hidden_state = self.pooler(hidden_state) return hidden_state def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embedder", None) is not None: with tf.name_scope(self.embedder.name): self.embedder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFResNetShortCut(keras.layers.Layer): """ ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ def __init__(self, in_channels: int, out_channels: int, stride: int = 2, **kwargs) -> None: super().__init__(**kwargs) self.convolution = keras.layers.Conv2D( out_channels, kernel_size=1, strides=stride, use_bias=False, name="convolution" ) # Use same default momentum and epsilon as PyTorch equivalent self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization") self.in_channels = in_channels self.out_channels = out_channels def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = x hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state, training=training) return hidden_state def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convolution", None) is not None: with tf.name_scope(self.convolution.name): self.convolution.build([None, None, None, self.in_channels]) if getattr(self, "normalization", None) is not None: with tf.name_scope(self.normalization.name): self.normalization.build([None, None, None, self.out_channels]) class TFResNetBasicLayer(keras.layers.Layer): """ A classic ResNet's residual layer composed by two `3x3` convolutions. """ def __init__( self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu", **kwargs ) -> None: super().__init__(**kwargs) should_apply_shortcut = in_channels != out_channels or stride != 1 self.conv1 = TFResNetConvLayer(in_channels, out_channels, stride=stride, name="layer.0") self.conv2 = TFResNetConvLayer(out_channels, out_channels, activation=None, name="layer.1") self.shortcut = ( TFResNetShortCut(in_channels, out_channels, stride=stride, name="shortcut") if should_apply_shortcut else keras.layers.Activation("linear", name="shortcut") ) self.activation = ACT2FN[activation] def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: residual = hidden_state hidden_state = self.conv1(hidden_state, training=training) hidden_state = self.conv2(hidden_state, training=training) residual = self.shortcut(residual, training=training) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv1", None) is not None: with tf.name_scope(self.conv1.name): self.conv1.build(None) if getattr(self, "conv2", None) is not None: with tf.name_scope(self.conv2.name): self.conv2.build(None) if getattr(self, "shortcut", None) is not None: with tf.name_scope(self.shortcut.name): self.shortcut.build(None) class TFResNetBottleNeckLayer(keras.layers.Layer): """ A classic ResNet's bottleneck layer composed by three `3x3` convolutions. The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3` convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. """ def __init__( self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu", reduction: int = 4, **kwargs, ) -> None: super().__init__(**kwargs) should_apply_shortcut = in_channels != out_channels or stride != 1 reduces_channels = out_channels // reduction self.conv0 = TFResNetConvLayer(in_channels, reduces_channels, kernel_size=1, name="layer.0") self.conv1 = TFResNetConvLayer(reduces_channels, reduces_channels, stride=stride, name="layer.1") self.conv2 = TFResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None, name="layer.2") self.shortcut = ( TFResNetShortCut(in_channels, out_channels, stride=stride, name="shortcut") if should_apply_shortcut else keras.layers.Activation("linear", name="shortcut") ) self.activation = ACT2FN[activation] def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: residual = hidden_state hidden_state = self.conv0(hidden_state, training=training) hidden_state = self.conv1(hidden_state, training=training) hidden_state = self.conv2(hidden_state, training=training) residual = self.shortcut(residual, training=training) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv0", None) is not None: with tf.name_scope(self.conv0.name): self.conv0.build(None) if getattr(self, "conv1", None) is not None: with tf.name_scope(self.conv1.name): self.conv1.build(None) if getattr(self, "conv2", None) is not None: with tf.name_scope(self.conv2.name): self.conv2.build(None) if getattr(self, "shortcut", None) is not None: with tf.name_scope(self.shortcut.name): self.shortcut.build(None) class TFResNetStage(keras.layers.Layer): """ A ResNet stage composed of stacked layers. """ def __init__( self, config: ResNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, **kwargs ) -> None: super().__init__(**kwargs) layer = TFResNetBottleNeckLayer if config.layer_type == "bottleneck" else TFResNetBasicLayer layers = [layer(in_channels, out_channels, stride=stride, activation=config.hidden_act, name="layers.0")] layers += [ layer(out_channels, out_channels, activation=config.hidden_act, name=f"layers.{i + 1}") for i in range(depth - 1) ] self.stage_layers = layers def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: for layer in self.stage_layers: hidden_state = layer(hidden_state, training=training) return hidden_state def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "stage_layers", None) is not None: for layer in self.stage_layers: with tf.name_scope(layer.name): layer.build(None) class TFResNetEncoder(keras.layers.Layer): def __init__(self, config: ResNetConfig, **kwargs) -> None: super().__init__(**kwargs) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages = [ TFResNetStage( config, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], name="stages.0", ) ] for i, (in_channels, out_channels, depth) in enumerate( zip(config.hidden_sizes, config.hidden_sizes[1:], config.depths[1:]) ): self.stages.append(TFResNetStage(config, in_channels, out_channels, depth=depth, name=f"stages.{i + 1}")) def call( self, hidden_state: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> TFBaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state,) hidden_state = stage_module(hidden_state, training=training) if output_hidden_states: hidden_states = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "stages", None) is not None: for layer in self.stages: with tf.name_scope(layer.name): layer.build(None) class TFResNetPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ResNetConfig base_model_prefix = "resnet" main_input_name = "pixel_values" @property def input_signature(self): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.float32)} RESNET_START_DOCSTRING = r""" This model is a TensorFlow [keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ RESNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @keras_serializable class TFResNetMainLayer(keras.layers.Layer): config_class = ResNetConfig def __init__(self, config: ResNetConfig, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.embedder = TFResNetEmbeddings(config, name="embedder") self.encoder = TFResNetEncoder(config, name="encoder") self.pooler = keras.layers.GlobalAveragePooling2D(keepdims=True) @unpack_inputs def call( self, pixel_values: tf.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # TF 2.0 image layers can't use NCHW format when running on CPU. # We transpose to NHWC format and then transpose back after the full forward pass. # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) pixel_values = tf.transpose(pixel_values, perm=[0, 2, 3, 1]) embedding_output = self.embedder(pixel_values, training=training) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) # Transpose all the outputs to the NCHW format # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) last_hidden_state = tf.transpose(last_hidden_state, (0, 3, 1, 2)) pooled_output = tf.transpose(pooled_output, (0, 3, 1, 2)) hidden_states = () for hidden_state in encoder_outputs[1:]: hidden_states = hidden_states + tuple(tf.transpose(h, (0, 3, 1, 2)) for h in hidden_state) if not return_dict: return (last_hidden_state, pooled_output) + hidden_states hidden_states = hidden_states if output_hidden_states else None return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embedder", None) is not None: with tf.name_scope(self.embedder.name): self.embedder.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top.", RESNET_START_DOCSTRING, ) class TFResNetModel(TFResNetPreTrainedModel): def __init__(self, config: ResNetConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.resnet = TFResNetMainLayer(config=config, name="resnet") @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) @unpack_inputs def call( self, pixel_values: tf.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict resnet_outputs = self.resnet( pixel_values=pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return resnet_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "resnet", None) is not None: with tf.name_scope(self.resnet.name): self.resnet.build(None) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, RESNET_START_DOCSTRING, ) class TFResNetForImageClassification(TFResNetPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: ResNetConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.num_labels = config.num_labels self.resnet = TFResNetMainLayer(config, name="resnet") # classification head self.classifier_layer = ( keras.layers.Dense(config.num_labels, name="classifier.1") if config.num_labels > 0 else keras.layers.Activation("linear", name="classifier.1") ) self.config = config def classifier(self, x: tf.Tensor) -> tf.Tensor: x = keras.layers.Flatten()(x) logits = self.classifier_layer(x) return logits @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) @unpack_inputs def call( self, pixel_values: tf.Tensor = None, labels: tf.Tensor = None, output_hidden_states: bool = None, return_dict: bool = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFImageClassifierOutputWithNoAttention]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.resnet( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "resnet", None) is not None: with tf.name_scope(self.resnet.name): self.resnet.build(None) if getattr(self, "classifier_layer", None) is not None: with tf.name_scope(self.classifier_layer.name): self.classifier_layer.build([None, None, self.config.hidden_sizes[-1]])
transformers/src/transformers/models/resnet/modeling_tf_resnet.py/0
{ "file_path": "transformers/src/transformers/models/resnet/modeling_tf_resnet.py", "repo_id": "transformers", "token_count": 10058 }
332
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_sam": [ "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP", "SamConfig", "SamMaskDecoderConfig", "SamPromptEncoderConfig", "SamVisionConfig", ], "processing_sam": ["SamProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_sam"] = [ "SAM_PRETRAINED_MODEL_ARCHIVE_LIST", "SamModel", "SamPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_sam"] = [ "TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSamModel", "TFSamPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_sam"] = ["SamImageProcessor"] if TYPE_CHECKING: from .configuration_sam import ( SAM_PRETRAINED_CONFIG_ARCHIVE_MAP, SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig, ) from .processing_sam import SamProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sam import SAM_PRETRAINED_MODEL_ARCHIVE_LIST, SamModel, SamPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_sam import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST, TFSamModel, TFSamPreTrainedModel try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_sam import SamImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/sam/__init__.py/0
{ "file_path": "transformers/src/transformers/models/sam/__init__.py", "repo_id": "transformers", "token_count": 1152 }
333
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech2Text model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class Speech2TextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Speech2TextModel`]. It is used to instantiate a Speech2Text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Speech2Text [facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 10000): Vocabulary size of the Speech2Text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Speech2TextModel`] encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. encoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. decoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether the model should return the last key/values attentions (not used by all models). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is set up as an encoder-decoder architecture for sequence-to-sequence tasks. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. d_model (`int`, *optional*, defaults to 256): Dimensionality of the layers and the pooler layer. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. decoder_start_token_id (`int`, *optional*, defaults to 2): The initial token ID of the decoder when decoding sequences. scale_embedding (`bool`, *optional*, defaults to `True`): Whether the embeddings are scaled by the square root of `d_model`. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning-of-sequence token. eos_token_id (`int`, *optional*, defaults to 2): The id of the end-of-sequence token. max_source_positions (`int`, *optional*, defaults to 6000): The maximum sequence length of log-mel filter-bank features that this model might ever be used with. max_target_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). num_conv_layers (`int`, *optional*, defaults to 2): Number of 1D convolutional layers in the conv module. conv_kernel_sizes (`Tuple[int]`, *optional*, defaults to `(5, 5)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the conv module. The length of `conv_kernel_sizes` has to match `num_conv_layers`. conv_channels (`int`, *optional*, defaults to 1024): An integer defining the number of output channels of each convolution layers except the final one in the conv module. input_feat_per_channel (`int`, *optional*, defaults to 80): An integer specifying the size of feature vector. This is also the dimensions of log-mel filter-bank features. input_channels (`int`, *optional*, defaults to 1): An integer specifying number of input channels of the input feature vector. Example: ```python >>> from transformers import Speech2TextConfig, Speech2TextModel >>> # Initializing a Speech2Text s2t_transformer_s style configuration >>> configuration = Speech2TextConfig() >>> # Initializing a model (with random weights) from the s2t_transformer_s style configuration >>> model = Speech2TextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "speech_to_text" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=10000, encoder_layers=12, encoder_ffn_dim=2048, encoder_attention_heads=4, decoder_layers=6, decoder_ffn_dim=2048, decoder_attention_heads=4, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="relu", d_model=256, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, scale_embedding=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, max_source_positions=6000, max_target_positions=1024, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=1024, input_feat_per_channel=80, input_channels=1, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = list(conv_kernel_sizes) self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, )
transformers/src/transformers/models/speech_to_text/configuration_speech_to_text.py/0
{ "file_path": "transformers/src/transformers/models/speech_to_text/configuration_speech_to_text.py", "repo_id": "transformers", "token_count": 3953 }
334
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for SpeechT5.""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging logger = logging.get_logger(__name__) class SpeechT5FeatureExtractor(SequenceFeatureExtractor): r""" Constructs a SpeechT5 feature extractor. This class can pre-process a raw speech signal by (optionally) normalizing to zero-mean unit-variance, for use by the SpeechT5 speech encoder prenet. This class can also extract log-mel filter bank features from raw speech, for use by the SpeechT5 speech decoder prenet. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: feature_size (`int`, *optional*, defaults to 1): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance for some models. num_mel_bins (`int`, *optional*, defaults to 80): The number of mel-frequency bins in the extracted spectrogram features. hop_length (`int`, *optional*, defaults to 16): Number of ms between windows. Otherwise referred to as "shift" in many papers. win_length (`int`, *optional*, defaults to 64): Number of ms per window. win_function (`str`, *optional*, defaults to `"hann_window"`): Name for the window function used for windowing, must be accessible via `torch.{win_function}` frame_signal_scale (`float`, *optional*, defaults to 1.0): Constant multiplied in creating the frames before applying DFT. This argument is deprecated. fmin (`float`, *optional*, defaults to 80): Minimum mel frequency in Hz. fmax (`float`, *optional*, defaults to 7600): Maximum mel frequency in Hz. mel_floor (`float`, *optional*, defaults to 1e-10): Minimum value of mel frequency banks. reduction_factor (`int`, *optional*, defaults to 2): Spectrogram length reduction factor. This argument is deprecated. return_attention_mask (`bool`, *optional*, defaults to `True`): Whether or not [`~SpeechT5FeatureExtractor.__call__`] should return `attention_mask`. """ model_input_names = ["input_values", "attention_mask"] def __init__( self, feature_size: int = 1, sampling_rate: int = 16000, padding_value: float = 0.0, do_normalize: bool = False, num_mel_bins: int = 80, hop_length: int = 16, win_length: int = 64, win_function: str = "hann_window", frame_signal_scale: float = 1.0, fmin: float = 80, fmax: float = 7600, mel_floor: float = 1e-10, reduction_factor: int = 2, return_attention_mask: bool = True, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.do_normalize = do_normalize self.return_attention_mask = return_attention_mask self.num_mel_bins = num_mel_bins self.hop_length = hop_length self.win_length = win_length self.win_function = win_function self.frame_signal_scale = frame_signal_scale self.fmin = fmin self.fmax = fmax self.mel_floor = mel_floor self.reduction_factor = reduction_factor self.sample_size = win_length * sampling_rate // 1000 self.sample_stride = hop_length * sampling_rate // 1000 self.n_fft = optimal_fft_length(self.sample_size) self.n_freqs = (self.n_fft // 2) + 1 self.window = window_function(window_length=self.sample_size, name=self.win_function, periodic=True) self.mel_filters = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.num_mel_bins, min_frequency=self.fmin, max_frequency=self.fmax, sampling_rate=self.sampling_rate, norm="slaney", mel_scale="slaney", ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers", FutureWarning, ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers", FutureWarning, ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def _extract_mel_features( self, one_waveform: np.ndarray, ) -> np.ndarray: """ Extracts log-mel filterbank features for one waveform array (unbatched). """ log_mel_spec = spectrogram( one_waveform, window=self.window, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, mel_filters=self.mel_filters, mel_floor=self.mel_floor, log_mel="log10", ) return log_mel_spec.T def __call__( self, audio: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, audio_target: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Pass in a value for `audio` to extract waveform features. Pass in a value for `audio_target` to extract log-mel spectrogram features. Args: audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. This outputs waveform features. Must be mono channel audio, not stereo, i.e. single float per timestep. audio_target (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): The sequence or batch of sequences to be processed as targets. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. This outputs log-mel spectrogram features. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `audio` or `audio_target` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. """ if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values.") if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: inputs = self._process_audio( audio, False, padding, max_length, truncation, pad_to_multiple_of, return_attention_mask, return_tensors, **kwargs, ) else: inputs = None if audio_target is not None: inputs_target = self._process_audio( audio_target, True, padding, max_length, truncation, pad_to_multiple_of, return_attention_mask, return_tensors, **kwargs, ) if inputs is None: return inputs_target else: inputs["labels"] = inputs_target["input_values"] decoder_attention_mask = inputs_target.get("attention_mask") if decoder_attention_mask is not None: inputs["decoder_attention_mask"] = decoder_attention_mask return inputs def _process_audio( self, speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], is_target: bool = False, padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: is_batched_numpy = isinstance(speech, np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(speech, (list, tuple)) and (isinstance(speech[0], (np.ndarray, tuple, list))) ) if is_batched: speech = [np.asarray(speech, dtype=np.float32) for speech in speech] elif not is_batched and not isinstance(speech, np.ndarray): speech = np.asarray(speech, dtype=np.float32) elif isinstance(speech, np.ndarray) and speech.dtype is np.dtype(np.float64): speech = speech.astype(np.float32) # always return batch if not is_batched: speech = [speech] # needed to make pad() work on spectrogram inputs feature_size_hack = self.feature_size # convert into correct format for padding if is_target: features = [self._extract_mel_features(waveform) for waveform in speech] encoded_inputs = BatchFeature({"input_values": features}) self.feature_size = self.num_mel_bins else: encoded_inputs = BatchFeature({"input_values": speech}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, **kwargs, ) self.feature_size = feature_size_hack # convert input values to correct format input_values = padded_inputs["input_values"] if not isinstance(input_values[0], np.ndarray): padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values] elif ( not isinstance(input_values, np.ndarray) and isinstance(input_values[0], np.ndarray) and input_values[0].dtype is np.dtype(np.float64) ): padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values] elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64): padded_inputs["input_values"] = input_values.astype(np.float32) # convert attention_mask to correct format attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: attention_mask = ( attention_mask if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD else None ) padded_inputs["input_values"] = self.zero_mean_unit_var_norm( padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs def to_dict(self) -> Dict[str, Any]: output = super().to_dict() # Don't serialize these as they are derived from the other properties. names = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
transformers/src/transformers/models/speecht5/feature_extraction_speecht5.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/feature_extraction_speecht5.py", "repo_id": "transformers", "token_count": 7605 }
335
# coding=utf-8 # Copyright 2023 MBZUAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SwiftFormer model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "MBZUAI/swiftformer-xs": "https://huggingface.co/MBZUAI/swiftformer-xs/resolve/main/config.json", } class SwiftFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SwiftFormerModel`]. It is used to instantiate an SwiftFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SwiftFormer [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels depths (`List[int]`, *optional*, defaults to `[3, 3, 6, 4]`): Depth of each stage embed_dims (`List[int]`, *optional*, defaults to `[48, 56, 112, 220]`): The embedding dimension at each stage mlp_ratio (`int`, *optional*, defaults to 4): Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input. downsamples (`List[bool]`, *optional*, defaults to `[True, True, True, True]`): Whether or not to downsample inputs between two stages. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (string). `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. down_patch_size (`int`, *optional*, defaults to 3): The size of patches in downsampling layers. down_stride (`int`, *optional*, defaults to 2): The stride of convolution kernels in downsampling layers. down_pad (`int`, *optional*, defaults to 1): Padding in downsampling layers. drop_path_rate (`float`, *optional*, defaults to 0.0): Rate at which to increase dropout probability in DropPath. use_layer_scale (`bool`, *optional*, defaults to `True`): Whether to scale outputs from token mixers. layer_scale_init_value (`float`, *optional*, defaults to 1e-05): Factor by which outputs from token mixers are scaled. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch normalization layers. Example: ```python >>> from transformers import SwiftFormerConfig, SwiftFormerModel >>> # Initializing a SwiftFormer swiftformer-base-patch16-224 style configuration >>> configuration = SwiftFormerConfig() >>> # Initializing a model (with random weights) from the swiftformer-base-patch16-224 style configuration >>> model = SwiftFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "swiftformer" def __init__( self, num_channels=3, depths=[3, 3, 6, 4], embed_dims=[48, 56, 112, 220], mlp_ratio=4, downsamples=[True, True, True, True], hidden_act="gelu", down_patch_size=3, down_stride=2, down_pad=1, drop_path_rate=0.0, use_layer_scale=True, layer_scale_init_value=1e-5, batch_norm_eps=1e-5, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.depths = depths self.embed_dims = embed_dims self.mlp_ratio = mlp_ratio self.downsamples = downsamples self.hidden_act = hidden_act self.down_patch_size = down_patch_size self.down_stride = down_stride self.down_pad = down_pad self.drop_path_rate = drop_path_rate self.use_layer_scale = use_layer_scale self.layer_scale_init_value = layer_scale_init_value self.batch_norm_eps = batch_norm_eps class SwiftFormerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
transformers/src/transformers/models/swiftformer/configuration_swiftformer.py/0
{ "file_path": "transformers/src/transformers/models/swiftformer/configuration_swiftformer.py", "repo_id": "transformers", "token_count": 2037 }
336
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Swinv2 checkpoints from the timm library.""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, Swinv2Config, Swinv2ForImageClassification def get_swinv2_config(swinv2_name): config = Swinv2Config() name_split = swinv2_name.split("_") model_size = name_split[1] if "to" in name_split[3]: img_size = int(name_split[3][-3:]) else: img_size = int(name_split[3]) if "to" in name_split[2]: window_size = int(name_split[2][-2:]) else: window_size = int(name_split[2][6:]) if model_size == "tiny": embed_dim = 96 depths = (2, 2, 6, 2) num_heads = (3, 6, 12, 24) elif model_size == "small": embed_dim = 96 depths = (2, 2, 18, 2) num_heads = (3, 6, 12, 24) elif model_size == "base": embed_dim = 128 depths = (2, 2, 18, 2) num_heads = (4, 8, 16, 32) else: embed_dim = 192 depths = (2, 2, 18, 2) num_heads = (6, 12, 24, 48) if "to" in swinv2_name: config.pretrained_window_sizes = (12, 12, 12, 6) if ("22k" in swinv2_name) and ("to" not in swinv2_name): num_classes = 21841 repo_id = "huggingface/label-files" filename = "imagenet-22k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} else: num_classes = 1000 repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.image_size = img_size config.num_labels = num_classes config.embed_dim = embed_dim config.depths = depths config.num_heads = num_heads config.window_size = window_size return config def rename_key(name): if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "embeddings.norm") if "layers" in name: name = "encoder." + name if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "q_bias" in name: name = name.replace("q_bias", "query.bias") if "k_bias" in name: name = name.replace("k_bias", "key.bias") if "v_bias" in name: name = name.replace("v_bias", "value.bias") if "cpb_mlp" in name: name = name.replace("cpb_mlp", "continuous_position_bias_mlp") if name == "norm.weight": name = "layernorm.weight" if name == "norm.bias": name = "layernorm.bias" if "head" in name: name = name.replace("head", "classifier") else: name = "swinv2." + name return name def convert_state_dict(orig_state_dict, model): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "mask" in key: continue elif "qkv" in key: key_split = key.split(".") layer_num = int(key_split[1]) block_num = int(key_split[3]) dim = model.swinv2.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: orig_state_dict[ f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight" ] = val[:dim, :] orig_state_dict[ f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight" ] = val[dim : dim * 2, :] orig_state_dict[ f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight" ] = val[-dim:, :] else: orig_state_dict[ f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias" ] = val[:dim] orig_state_dict[f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"] = val[ dim : dim * 2 ] orig_state_dict[ f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias" ] = val[-dim:] else: orig_state_dict[rename_key(key)] = val return orig_state_dict def convert_swinv2_checkpoint(swinv2_name, pytorch_dump_folder_path): timm_model = timm.create_model(swinv2_name, pretrained=True) timm_model.eval() config = get_swinv2_config(swinv2_name) model = Swinv2ForImageClassification(config) model.eval() new_state_dict = convert_state_dict(timm_model.state_dict(), model) model.load_state_dict(new_state_dict) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image_processor = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinv2_name.replace("_", "-"))) image = Image.open(requests.get(url, stream=True).raw) inputs = image_processor(images=image, return_tensors="pt") timm_outs = timm_model(inputs["pixel_values"]) hf_outs = model(**inputs).logits assert torch.allclose(timm_outs, hf_outs, atol=1e-3) print(f"Saving model {swinv2_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) model.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, swinv2_name), organization="nandwalritik", commit_message="Add model", ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_swinv2_checkpoint(args.swinv2_name, args.pytorch_dump_folder_path)
transformers/src/transformers/models/swinv2/convert_swinv2_timm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/swinv2/convert_swinv2_timm_to_pytorch.py", "repo_id": "transformers", "token_count": 3494 }
337
# coding=utf-8 # Copyright 2018 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model T5.""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...convert_slow_tokenizer import import_protobuf from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } SPIECE_UNDERLINE = "▁" class T5Tokenizer(PreTrainedTokenizer): """ Construct a T5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. extra_ids (`int`, *optional*, defaults to 100): Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. legacy (`bool`, *optional*): Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622 and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple example: - `legacy=True`: ```python >>> from transformers import T5Tokenizer >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True) >>> tokenizer.encode("Hello <extra_id_0>.") [8774, 32099, 3, 5, 1] ``` - `legacy=False`: ```python >>> from transformers import T5Tokenizer >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False) >>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here [8774, 32099, 5, 1] ``` Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, eos_token="</s>", unk_token="<unk>", pad_token="<pad>", extra_ids=100, additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, legacy=None, **kwargs, ) -> None: pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self._extra_ids = extra_ids self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) if additional_special_tokens is not None: extra_tokens = [x for x in additional_special_tokens if "<extra_id_" in str(x)] if len(extra_tokens) < 1: additional_special_tokens += [f"<extra_id_{i}>" for i in range(extra_ids)] elif extra_ids > 0 and extra_ids != len(extra_tokens): raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) else: extra_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)] additional_special_tokens = extra_tokens # for legacy purpose, we keep this. Will be removed and tests updated. (when `added_tokens_decoder` is not passed as kwargs) self._added_tokens_decoder = {} for i in range(len(extra_tokens)): self._added_tokens_decoder[len(self.sp_model) - 1 + extra_ids - i] = AddedToken( f"<extra_id_{i}>", single_word=False, lstrip=True, rstrip=True, special=True, normalized=False ) if legacy is None: logger.warning_once( f"You are using the default legacy behaviour of the {self.__class__}. This is" " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" " means, and thoroughly read the reason why this was added as explained in" " https://github.com/huggingface/transformers/pull/24565" ) legacy = True self.legacy = legacy self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) self.vocab_file = vocab_file self._extra_ids = extra_ids super().__init__( eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, extra_ids=extra_ids, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, legacy=legacy, **kwargs, ) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor def get_spm_processor(self, from_slow=False): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) if self.legacy or from_slow: # no dependency on protobuf tokenizer.Load(self.vocab_file) return tokenizer with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer @staticmethod def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): if pretrained_model_name_or_path in T5Tokenizer.max_model_input_sizes: deprecated_max_model_length = T5Tokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value.", FutureWarning, ) return max_model_length @property def vocab_size(self): return self.sp_model.get_piece_size() def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def get_sentinel_tokens(self): return list( set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens)) ) def get_sentinel_token_ids(self): return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()] def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X </s>` - pair of sequences: `A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1 def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: """ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the first token is special. """ if self.legacy or len(text) == 0: return super().tokenize(text, **kwargs) tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens @property def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ tokens = self.sp_model.encode(text, out_type=str) if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): return tokens # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] # since we manually add the prefix space, we have to remove it tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE) out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/t5/tokenization_t5.py/0
{ "file_path": "transformers/src/transformers/models/t5/tokenization_t5.py", "repo_id": "transformers", "token_count": 8895 }
338
# coding=utf-8 # Copyright 2023 MURGe-Lab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch TVLT model.""" import collections.abc import math from copy import deepcopy from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_tvlt import TvltConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "TvltConfig" _CHECKPOINT_FOR_DOC = "ZinengTang/tvlt-base" TVLT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "ZinengTang/tvlt-base", # See all TVLT models at https://huggingface.co/ZinengTang/tvlt-base ] @dataclass class TvltModelOutput(ModelOutput): """ Class for TvltModel's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. last_pixel_hidden_state (`torch.FloatTensor` of shape `(batch_size, pixel_sequence_length, hidden_size)`): Pixel sequence of hidden-states at the output of the last layer of the model. last_audio_hidden_state (`torch.FloatTensor` of shape `(batch_size, audio_sequence_length, hidden_size)`): Audio sequence of hidden-states at the output of the last layer of the model. pixel_label_masks (`torch.FloatTensor` of shape `(batch_size, pixel_patch_length)`): Tensor indicating which pixel patches are masked (1) and which are not (0). audio_label_masks (`torch.FloatTensor` of shape `(batch_size, audio_patch_length)`): Tensor indicating which audio patches are masked (1) and which are not (0). pixel_ids_restore (`torch.LongTensor` of shape `(batch_size, pixel_patch_length)`): Tensor containing the ids permutation of pixel masking. audio_ids_restore (`torch.LongTensor` of shape `(batch_size, audio_patch_length)`): Tensor containing the ids permutation of audio masking. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None last_pixel_hidden_state: torch.FloatTensor = None last_audio_hidden_state: torch.FloatTensor = None pixel_label_masks: torch.LongTensor = None audio_label_masks: torch.LongTensor = None pixel_ids_restore: torch.LongTensor = None audio_ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class TvltDecoderOutput(ModelOutput): """ Class for TvltDecoder's outputs, with potential hidden states and attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class TvltForPreTrainingOutput(ModelOutput): """ Class for TvltForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. matching_logits (`torch.FloatTensor` of shape `(batch_size, 1)`): Matching objective logits. pixel_logits (`torch.FloatTensor` of shape `(batch_size, pixel_patch_length, image_patch_size ** 3 * pixel_num_channels)`): Pixel reconstruction logits. audio_logits (`torch.FloatTensor` of shape `(batch_size, audio_patch_length, image_patch_size[0] * image_patch_size[1])`): Audio reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None matching_logits: torch.FloatTensor = None pixel_logits: torch.FloatTensor = None audio_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None def generate_pixel_mask_noise(pixel_values, pixel_mask=None, mask_ratio=0.75): """Generate noise for audio masking.""" batch_size, seq_len = pixel_values.shape[:2] noise = torch.rand((batch_size, seq_len), device=pixel_values.device) # noise in [0, 1] len_keep = int(seq_len * (1 - mask_ratio)) return noise, len_keep def generate_audio_mask_noise(audio_values, audio_mask=None, mask_ratio=0.75, mask_type="patch-level", freq_len=8): """Generate noise for audio masking.""" batch_size, seq_len = audio_values.shape[:2] if mask_type == "frame-level": num_time_patches = seq_len // freq_len noise = ( torch.rand(batch_size, num_time_patches, device=audio_values.device) .unsqueeze(-1) .repeat(1, 1, freq_len) .view(batch_size, seq_len) ) # noise in [0, 1] elif mask_type == "patch-level": noise = torch.rand(batch_size, seq_len, device=audio_values.device) # noise in [0, 1] len_keep = int(seq_len * (1 - mask_ratio)) return noise, len_keep def random_masking(sequence, noise, len_keep, attention_masks=None): """ Perform random masking by per-sample shuffling on frame-level. Per-sample shuffling is done by argsort random noise. sequence: [batch_size, seq_len, hidden_dim], sequence """ batch_size, seq_len, hidden_dim = sequence.shape # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] sequence_masked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, hidden_dim)) # generate the binary mask: 0 is keep, 1 is remove label_masks = torch.ones([batch_size, seq_len], device=sequence.device) label_masks[:, :len_keep] = 0 # unshuffle to get the binary mask label_masks = torch.gather(label_masks, dim=1, index=ids_restore) if attention_masks is not None: label_masks *= attention_masks attention_masks = torch.gather(attention_masks, dim=1, index=ids_keep) return sequence_masked, attention_masks, label_masks, ids_restore class TvltPixelEmbeddings(nn.Module): """Construct the patch and position embeddings.""" def __init__(self, config): super().__init__() self.patch_embeddings = TvltPixelPatchEmbeddings(config) self.num_patches_per_image = self.patch_embeddings.num_patches_per_image self.type_embed_v = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, config.hidden_size)) self.pos_embed_v = nn.Parameter(torch.zeros(1, self.num_patches_per_image, config.hidden_size)) self.config = config def forward(self, pixel_values, attention_masks=None): # create patch embeddings batch_size, num_frames, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values) embeddings += self.pos_embed_v.repeat(1, num_frames, 1) embeddings += torch.repeat_interleave(self.temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1) embeddings += self.type_embed_v return embeddings, attention_masks class TvltAudioEmbeddings(nn.Module): """Construct the patch and position embeddings.""" def __init__(self, config): super().__init__() self.patch_embeddings = TvltAudioPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches self.type_embed_a = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.num_freq_patches = config.frequency_length // config.audio_patch_size[1] self.pos_embed_a = nn.Parameter(torch.zeros(1, self.num_patches // self.num_freq_patches, config.hidden_size)) self.freq_embed = nn.Parameter(torch.zeros(1, self.num_freq_patches, config.hidden_size)) self.num_freq_patches = config.frequency_length // config.audio_patch_size[1] self.config = config def forward(self, audio_values, attention_masks=None): # create patch embeddings embeddings = self.patch_embeddings(audio_values) num_time_patches = embeddings.size(1) // self.num_freq_patches embeddings += self.freq_embed.repeat(1, num_time_patches, 1) embeddings += torch.repeat_interleave(self.pos_embed_a[:, :num_time_patches], self.num_freq_patches, dim=1) embeddings += self.type_embed_a return embeddings, attention_masks class TvltPixelPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.image_patch_size num_channels, hidden_size = config.num_image_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches_per_image = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches_per_image = num_patches_per_image self.hidden_size = hidden_size self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_frames, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) embeddings = embeddings.reshape(batch_size, num_frames * self.num_patches_per_image, self.hidden_size) return embeddings class TvltAudioPatchEmbeddings(nn.Module): """ This class turns `audio_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() spectrogram_length, frequency_length, patch_size = ( config.spectrogram_length, config.frequency_length, config.audio_patch_size, ) num_channels, hidden_size = config.num_audio_channels, config.hidden_size spectrogram_size = (spectrogram_length, frequency_length) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (spectrogram_size[1] // patch_size[1]) * (spectrogram_size[0] // patch_size[0]) patch_shape = (spectrogram_size[0] // patch_size[0], spectrogram_size[1] // patch_size[1]) self.spectrogram_size = spectrogram_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, audio_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = audio_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height > self.spectrogram_size[0] or width != self.spectrogram_size[1]: raise ValueError( f"Input audio size ({height}*{width}) doesn't match model" f" ({self.spectrogram_size[0]}*{self.spectrogram_size[1]})." ) embeddings = self.projection(audio_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vilt.modeling_vilt.ViltSelfAttention with Vilt->Tvlt class TvltSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vilt.modeling_vilt.ViltSelfOutput with Vilt->Tvlt class TvltSelfOutput(nn.Module): """ The residual connection is defined in TvltLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: TvltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vilt.modeling_vilt.ViltAttention with Vilt->Tvlt class TvltAttention(nn.Module): def __init__(self, config): super().__init__() self.attention = TvltSelfAttention(config) self.output = TvltSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vilt.modeling_vilt.ViltIntermediate with Vilt->Tvlt class TvltIntermediate(nn.Module): def __init__(self, config: TvltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vilt.modeling_vilt.ViltOutput with Vilt->Tvlt class TvltOutput(nn.Module): def __init__(self, config: TvltConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vilt.modeling_vilt.ViltLayer with Vilt->Tvlt class TvltLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = TvltAttention(config) self.intermediate = TvltIntermediate(config) self.output = TvltOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states.to(attention_output.device) # in ViLT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vilt.modeling_vilt.ViltEncoder with Vilt->Tvlt class TvltEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([TvltLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class TvltPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TvltConfig base_model_prefix = "tvlt" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) TVLT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TvltConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TVLT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. audio_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Audio values. Audio values can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. pixel_mask (`torch.FloatTensor` of shape `(batch_size, num_pixel_patches)`): Pixel masks. Pixel masks can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. audio_mask (`torch.FloatTensor` of shape `(batch_size, num_audio_patches)`): Audio masks. Audio masks can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. pixel_values_mixed (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): Pixel values that mix positive and negative samples in Tvlt vision-audio matching. Pixel values mixed can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. pixel_mask_mixed (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel masks of pixel_values_mixed. Pixel masks mixed can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. mask_pixel (`bool`, *optional*): Whether to mask pixel for MAE tasks. Only set to True in TvltForPreTraining. mask_audio (`bool`, *optional*): Whether to mask audio for MAE tasks. Only set to True in TvltForPreTraining. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare TVLT Model transformer outputting raw hidden-states without any specific head on top.", TVLT_START_DOCSTRING, ) class TvltModel(TvltPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.pixel_embeddings = TvltPixelEmbeddings(config) self.audio_embeddings = TvltAudioEmbeddings(config) self.encoder = TvltEncoder(config) self.cls_embedding = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if config.use_mean_pooling: self.layernorm = None else: self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.pixel_embeddings.patch_embeddings, self.audio_embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TvltModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, audio_values: torch.FloatTensor, pixel_mask: Optional[torch.FloatTensor] = None, audio_mask: Optional[torch.FloatTensor] = None, mask_pixel: bool = False, mask_audio: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], TvltModelOutput]: r""" Returns: Examples: ```python >>> from transformers import TvltProcessor, TvltModel >>> import numpy as np >>> import torch >>> num_frames = 8 >>> images = list(np.random.randn(num_frames, 3, 224, 224)) >>> audio = list(np.random.randn(10000)) >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base") >>> model = TvltModel.from_pretrained("ZinengTang/tvlt-base") >>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt") >>> outputs = model(**input_dict) >>> loss = outputs.loss ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict pixel_embedding_output, pixel_mask = self.pixel_embeddings(pixel_values, pixel_mask) audio_embedding_output, audio_mask = self.audio_embeddings(audio_values, audio_mask) # Mask pixel if mask_pixel is True pixel_label_masks = None pixel_ids_restore = None if mask_pixel: pixel_mask_noise, pixel_len_keep = generate_pixel_mask_noise( pixel_embedding_output, pixel_mask=pixel_mask, mask_ratio=self.config.pixel_mask_ratio ) pixel_embedding_output, pixel_mask, pixel_label_masks, pixel_ids_restore = random_masking( pixel_embedding_output, pixel_mask_noise, pixel_len_keep, attention_masks=pixel_mask, ) # Mask audio if mask_audio is True audio_label_masks = None audio_ids_restore = None if mask_audio: num_freq_patches = self.config.frequency_length // self.config.audio_patch_size[1] audio_mask_noise, audio_len_keep = generate_audio_mask_noise( audio_embedding_output, audio_mask=audio_mask, mask_ratio=self.config.audio_mask_ratio, mask_type=self.config.audio_mask_type, freq_len=num_freq_patches, ) audio_embedding_output, audio_mask, audio_label_masks, audio_ids_restore = random_masking( audio_embedding_output, audio_mask_noise, audio_len_keep, attention_masks=audio_mask, ) # Prepare for encoder inputs and attention masks batch_size = pixel_values.size(0) embedding_output = torch.cat( [self.cls_embedding.repeat(batch_size, 1, 1), pixel_embedding_output, audio_embedding_output], 1 ) masked_pixel_len = pixel_embedding_output.size(1) attention_mask = None if pixel_mask is not None and audio_mask is not None: attention_mask = torch.cat([pixel_mask[:, :1], pixel_mask, audio_mask], 1) input_shape = embedding_output.size() extended_attention_mask = None if attention_mask is not None: extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if self.layernorm is not None: sequence_output = self.layernorm(sequence_output) pixel_sequence_output = sequence_output[:, 1 : 1 + masked_pixel_len] audio_sequence_output = sequence_output[:, 1 + masked_pixel_len :] if not return_dict: return ( sequence_output, pixel_sequence_output, audio_sequence_output, pixel_label_masks, audio_label_masks, pixel_ids_restore, audio_ids_restore, ) + encoder_outputs[1:] return TvltModelOutput( last_hidden_state=sequence_output, last_pixel_hidden_state=pixel_sequence_output, last_audio_hidden_state=audio_sequence_output, pixel_label_masks=pixel_label_masks, audio_label_masks=audio_label_masks, pixel_ids_restore=pixel_ids_restore, audio_ids_restore=audio_ids_restore, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TvltDecoder(nn.Module): def __init__(self, config): super().__init__() decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = nn.ModuleList( [TvltLayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] ) self.layernorm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False self.config = config def forward( self, hidden_states, output_attentions=False, output_hidden_states=False, return_dict=True, ): # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, None, output_attentions, ) else: layer_outputs = layer_module(hidden_states, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # predictor projection logits = self.layernorm(hidden_states) if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return TvltDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions) @add_start_docstrings( "The TVLT Model transformer with the decoder on top for self-supervised pre-training.", TVLT_START_DOCSTRING, ) class TvltForPreTraining(TvltPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.task_matching = config.task_matching self.task_mae = config.task_mae if not (self.task_matching or self.task_mae): raise ValueError("Must set at least one of matching task and MAE task to true") self.tvlt = TvltModel(config) if self.task_matching: self.matching_head = TvltMatchingHead(config) if self.task_mae: self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=True) self.pixel_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) self.audio_mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) self.decoder = TvltDecoder(config) decoder_hidden_size = config.decoder_hidden_size num_frames = config.num_frames num_patches_per_image = self.tvlt.pixel_embeddings.num_patches_per_image self.decoder_pixel_pos_embed = nn.Parameter(torch.zeros(1, num_patches_per_image, decoder_hidden_size)) self.decoder_temporal_embed = nn.Parameter(torch.zeros(1, config.num_frames, decoder_hidden_size)) self.decoder_pixel_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size)) num_audio_patches = self.tvlt.audio_embeddings.num_patches num_freq_patches = config.frequency_length // config.audio_patch_size[1] self.decoder_audio_pos_embed = nn.Parameter( torch.zeros(1, num_audio_patches // num_freq_patches, decoder_hidden_size) ) self.decoder_freq_embed = nn.Parameter(torch.zeros(1, num_freq_patches, decoder_hidden_size)) self.decoder_audio_type_embed = nn.Parameter(torch.zeros(1, 1, decoder_hidden_size)) pixel_mae_output_dim = self.config.image_patch_size[0] ** 2 * self.config.num_image_channels self.pixel_mae_head = TvltMAEHead(config, pixel_mae_output_dim) audio_mae_output_dim = ( self.config.audio_patch_size[0] * self.config.audio_patch_size[1] * self.config.num_audio_channels ) self.audio_mae_head = TvltMAEHead(config, audio_mae_output_dim) self.num_frames = num_frames self.num_patches_per_image = num_patches_per_image self.num_freq_patches = num_freq_patches self.image_patch_size = config.image_patch_size self.audio_patch_size = config.audio_patch_size # Initialize weights and apply final processing self.post_init() def patchify_pixel(self, pixel_values): """ pixel_values: [batch_size, num_frames, 3, height, width] """ batch_size, num_frames, num_channels, height, width = pixel_values.shape num_patches_height = pixel_values.shape[3] // self.image_patch_size[0] num_patches_width = pixel_values.shape[4] // self.image_patch_size[1] patchified_pixel_values = pixel_values.reshape( shape=( batch_size, num_frames, num_channels, num_patches_height, self.image_patch_size[0], num_patches_width, self.image_patch_size[1], ) ) patchified_pixel_values = torch.einsum("ntchpwq->nthwpqc", patchified_pixel_values) patchified_pixel_values = patchified_pixel_values.reshape( shape=( batch_size, num_patches_height * num_patches_width * num_frames, self.image_patch_size[0] * self.image_patch_size[1] * num_channels, ) ) return patchified_pixel_values def patchify_audio(self, audio_values): """ audio_values: [batch_size, 1, height, width] """ batch_size, num_channels, height, width = audio_values.shape num_patches_height = height // self.audio_patch_size[0] num_patches_width = width // self.audio_patch_size[1] patchified_audio_values = audio_values.reshape( shape=( batch_size, num_channels, num_patches_height, self.audio_patch_size[0], num_patches_width, self.audio_patch_size[1], ) ) patchified_audio_values = torch.einsum("nchpwq->nhwpqc", patchified_audio_values) patchified_audio_values = patchified_audio_values.reshape( shape=( batch_size, num_patches_height * num_patches_width, self.audio_patch_size[0] * self.audio_patch_size[1] * num_channels, ) ) return patchified_audio_values def pixel_mae_loss(self, pixel_values, pixel_predictions, mask): patchified_pixel_values = self.patchify_pixel(pixel_values) loss = (pixel_predictions - patchified_pixel_values) ** 2 loss = loss.mean(dim=-1) # [batch_size, pixel_pixel_length], mean loss per patch loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss def audio_mae_loss(self, audio_values, audio_predictions, mask): patchified_audio_values = self.patchify_audio(audio_values) loss = (audio_predictions - patchified_audio_values) ** 2 loss = loss.mean(dim=-1) # [batch_size, audio_pixel_length], mean loss per patch loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss def concatenate_mask(self, mask_token, sequence, ids_restore): batch_size, seq_length, dim = sequence.shape mask_tokens = mask_token.repeat(batch_size, ids_restore.shape[1] - seq_length, 1) padded_sequence = torch.cat([sequence, mask_tokens], dim=1) padded_sequence = torch.gather( padded_sequence, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, dim) ) # unshuffle return padded_sequence @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TvltForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, audio_values: torch.FloatTensor, pixel_mask: Optional[torch.FloatTensor] = None, audio_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, pixel_values_mixed: Optional[torch.FloatTensor] = None, pixel_mask_mixed: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], TvltForPreTrainingOutput]: r""" pixel_values_mixed (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): Pixel values that mix positive and negative samples in Tvlt vision-audio matching. Audio values can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. pixel_mask_mixed (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel masks of pixel_values_mixed. Pixel values mixed can be obtained using [`TvltProcessor`]. See [`TvltProcessor.__call__`] for details. labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*): Labels for computing the vision audio matching loss. Indices should be in `[0, 1]`. num_labels has to be 1. Return: Examples: ```python >>> from transformers import TvltProcessor, TvltForPreTraining >>> import numpy as np >>> import torch >>> num_frames = 8 >>> images = list(np.random.randn(num_frames, 3, 224, 224)) >>> images_mixed = list(np.random.randn(num_frames, 3, 224, 224)) >>> audio = list(np.random.randn(10000)) >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base") >>> model = TvltForPreTraining.from_pretrained("ZinengTang/tvlt-base") >>> input_dict = processor( ... images, audio, images_mixed, sampling_rate=44100, mask_pixel=True, mask_audio=True, return_tensors="pt" ... ) >>> outputs = model(**input_dict) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict total_loss = 0.0 if self.task_matching: if labels is None: raise ValueError("Matching task requires labels") if pixel_values_mixed is None: raise ValueError("Matching task requires pixel_values_mixed") outputs = self.tvlt( pixel_values_mixed, audio_values, pixel_mask=pixel_mask_mixed, audio_mask=audio_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] matching_logits = self.matching_head(sequence_output) loss_fct = BCEWithLogitsLoss() loss = loss_fct(matching_logits.view(-1), labels.view(-1)) total_loss += loss pixel_logits = None audio_logits = None if self.task_mae and self.training: outputs = self.tvlt( pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask, mask_pixel=True, mask_audio=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pixel_sequence_output = outputs.last_pixel_hidden_state if return_dict else outputs[1] audio_sequence_output = outputs.last_audio_hidden_state if return_dict else outputs[2] pixel_label_masks = outputs.pixel_label_masks if return_dict else outputs[3] audio_label_masks = outputs.audio_label_masks if return_dict else outputs[4] pixel_ids_restore = outputs.pixel_ids_restore if return_dict else outputs[5] audio_ids_restore = outputs.audio_ids_restore if return_dict else outputs[6] pixel_decoder_input = self.encoder_to_decoder( pixel_sequence_output ) # [batch_size, num_masked_pixel_patches, decoder_hidden_size] audio_decoder_input = self.encoder_to_decoder( audio_sequence_output ) # [batch_size, num_masked_audio_patches, decoder_hidden_size] num_frames = pixel_values.size(1) pixel_decoder_input = self.concatenate_mask(self.pixel_mask_token, pixel_decoder_input, pixel_ids_restore) pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_pos_embed.repeat(1, num_frames, 1) pixel_decoder_input = pixel_decoder_input + torch.repeat_interleave( self.decoder_temporal_embed[:, :num_frames], self.num_patches_per_image, dim=1 ) pixel_decoder_input = pixel_decoder_input + self.decoder_pixel_type_embed pixel_decoder_outputs = self.decoder(pixel_decoder_input) pixel_logits = self.pixel_mae_head(pixel_decoder_outputs.logits) audio_decoder_input = self.concatenate_mask(self.audio_mask_token, audio_decoder_input, audio_ids_restore) num_time_patches = audio_decoder_input.size(1) // self.num_freq_patches audio_decoder_input = audio_decoder_input + self.decoder_freq_embed.repeat(1, num_time_patches, 1) audio_decoder_input = audio_decoder_input + torch.repeat_interleave( self.decoder_audio_pos_embed[:, :num_time_patches], self.num_freq_patches, dim=1 ) audio_decoder_input = audio_decoder_input + self.decoder_audio_type_embed audio_decoder_outputs = self.decoder(audio_decoder_input) audio_logits = self.audio_mae_head(audio_decoder_outputs.logits) loss = self.pixel_mae_loss(pixel_values, pixel_logits, pixel_label_masks) + self.audio_mae_loss( audio_values, audio_logits, audio_label_masks ) total_loss += loss if not return_dict: output = (matching_logits, pixel_logits, audio_logits) + outputs[7:] return ((total_loss,) + output) if loss is not None else output return TvltForPreTrainingOutput( loss=total_loss, matching_logits=matching_logits, pixel_logits=pixel_logits, audio_logits=audio_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class TvltPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class TvltMatchingHead(nn.Module): def __init__(self, config): super().__init__() self.pooler = TvltPooler(config) self.fc = nn.Linear(config.hidden_size, 1) def forward(self, hidden_states): hidden_states = self.fc(self.pooler(hidden_states)) return hidden_states class TvltMAEHead(nn.Module): def __init__(self, config, output_dim=None): super().__init__() self.config = config self.decoder = nn.Linear(config.decoder_hidden_size, output_dim) def forward(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states @add_start_docstrings( """ Tvlt Model transformer with a classifier head on top (an MLP on top of the final hidden state of the [CLS] token) for audiovisual classification tasks, e.g. CMU-MOSEI Sentiment Analysis and Audio to Video Retrieval. """, TVLT_START_DOCSTRING, ) class TvltForAudioVisualClassification(TvltPreTrainedModel): def __init__(self, config): super().__init__(config) self.tvlt = TvltModel(config) # Classifier head self.classifier = nn.Sequential( nn.Linear(config.hidden_size, config.hidden_size * 2), nn.LayerNorm(config.hidden_size * 2, eps=config.layer_norm_eps), nn.GELU(), nn.Linear(config.hidden_size * 2, config.num_labels), ) self.config = config # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TVLT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, audio_values: torch.FloatTensor, pixel_mask: Optional[torch.FloatTensor] = None, audio_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, num_labels)`, *optional*): Labels for computing the audiovisual loss. Indices should be in `[0, ..., num_classes-1]` where num_classes refers to the number of classes in audiovisual tasks. Return: Examples: ```python >>> from transformers import TvltProcessor, TvltForAudioVisualClassification >>> import numpy as np >>> import torch >>> num_frames = 8 >>> images = list(np.random.randn(num_frames, 3, 224, 224)) >>> audio = list(np.random.randn(10000)) >>> processor = TvltProcessor.from_pretrained("ZinengTang/tvlt-base") >>> model = TvltForAudioVisualClassification.from_pretrained("ZinengTang/tvlt-base") >>> input_dict = processor(images, audio, sampling_rate=44100, return_tensors="pt") >>> outputs = model(**input_dict) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.tvlt( pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0][:, 0] logits = self.classifier(sequence_output) # rank value loss = None if labels is not None: if self.config.loss_type == "regression": loss_fct = MSELoss() loss = loss_fct(logits, labels) elif self.config.loss_type == "classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[4:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/tvlt/modeling_tvlt.py/0
{ "file_path": "transformers/src/transformers/models/tvlt/modeling_tvlt.py", "repo_id": "transformers", "token_count": 24404 }
339
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert VideoMAE checkpoints from the original repository: https://github.com/MCG-NJU/VideoMAE""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def get_videomae_config(model_name): config = VideoMAEConfig() set_architecture_configs(model_name, config) if "finetuned" not in model_name: config.use_mean_pooling = False if "finetuned" in model_name: repo_id = "huggingface/label-files" if "kinetics" in model_name: config.num_labels = 400 filename = "kinetics400-id2label.json" elif "ssv2" in model_name: config.num_labels = 174 filename = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.") id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def set_architecture_configs(model_name, config): if "small" in model_name: config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 16 config.decoder_num_hidden_layers = 12 config.decoder_num_attention_heads = 3 config.decoder_hidden_size = 192 config.decoder_intermediate_size = 768 elif "large" in model_name: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.decoder_num_hidden_layers = 12 config.decoder_num_attention_heads = 8 config.decoder_hidden_size = 512 config.decoder_intermediate_size = 2048 elif "huge" in model_name: config.hidden_size = 1280 config.intermediate_size = 5120 config.num_hidden_layers = 32 config.num_attention_heads = 16 config.decoder_num_hidden_layers = 12 config.decoder_num_attention_heads = 8 config.decoder_hidden_size = 640 config.decoder_intermediate_size = 2560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"') def rename_key(name): if "encoder." in name: name = name.replace("encoder.", "") if "cls_token" in name: name = name.replace("cls_token", "videomae.embeddings.cls_token") if "decoder_pos_embed" in name: name = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed") if "pos_embed" in name and "decoder" not in name: name = name.replace("pos_embed", "videomae.embeddings.position_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "videomae.embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "videomae.embeddings.norm") if "decoder.blocks" in name: name = name.replace("decoder.blocks", "decoder.decoder_layers") if "blocks" in name: name = name.replace("blocks", "videomae.encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name and "bias" not in name: name = name.replace("attn", "attention.self") if "attn" in name: name = name.replace("attn", "attention.attention") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "decoder_embed" in name: name = name.replace("decoder_embed", "decoder.decoder_embed") if "decoder_norm" in name: name = name.replace("decoder_norm", "decoder.decoder_norm") if "decoder_pred" in name: name = name.replace("decoder_pred", "decoder.decoder_pred") if "norm.weight" in name and "decoder" not in name and "fc" not in name: name = name.replace("norm.weight", "videomae.layernorm.weight") if "norm.bias" in name and "decoder" not in name and "fc" not in name: name = name.replace("norm.bias", "videomae.layernorm.bias") if "head" in name and "decoder" not in name: name = name.replace("head", "classifier") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if key.startswith("encoder."): key = key.replace("encoder.", "") if "qkv" in key: key_split = key.split(".") if key.startswith("decoder.blocks"): dim = config.decoder_hidden_size layer_num = int(key_split[2]) prefix = "decoder.decoder_layers." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] else: dim = config.hidden_size layer_num = int(key_split[1]) prefix = "videomae.encoder.layer." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] else: orig_state_dict[rename_key(key)] = val return orig_state_dict # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file) return list(video) def convert_videomae_checkpoint(checkpoint_url, pytorch_dump_folder_path, model_name, push_to_hub): config = get_videomae_config(model_name) if "finetuned" in model_name: model = VideoMAEForVideoClassification(config) else: model = VideoMAEForPreTraining(config) # download original checkpoint, hosted on Google Drive output = "pytorch_model.bin" gdown.cached_download(checkpoint_url, output, quiet=False) files = torch.load(output, map_location="cpu") if "model" in files: state_dict = files["model"] else: state_dict = files["module"] new_state_dict = convert_state_dict(state_dict, config) model.load_state_dict(new_state_dict) model.eval() # verify model on basic input image_processor = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) video = prepare_video() inputs = image_processor(video, return_tensors="pt") if "finetuned" not in model_name: local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt") inputs["bool_masked_pos"] = torch.load(local_path) outputs = model(**inputs) logits = outputs.logits model_names = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([-0.9291, -0.4061, -0.9307]) elif model_name == "videomae-small-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([0.2671, -0.4689, -0.8235]) elif model_name == "videomae-base": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]]) elif model_name == "videomae-base-short": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]]) # we verified the loss both for normalized and unnormalized targets for this one expected_loss = torch.tensor([0.5142]) if config.norm_pix_loss else torch.tensor([0.6469]) elif model_name == "videomae-large": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]]) elif model_name == "videomae-large-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.0771, 0.0011, -0.3625]) elif model_name == "videomae-huge-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.2433, 0.1632, -0.4894]) elif model_name == "videomae-base-short-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.6588, 0.0990, -0.2493]) elif model_name == "videomae-base-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]) elif model_name == "videomae-base-short-ssv2": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]]) elif model_name == "videomae-base-short-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([-0.0537, -0.1539, -0.3266]) elif model_name == "videomae-base-ssv2": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]]) elif model_name == "videomae-base-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([0.1961, -0.8337, -0.6389]) else: raise ValueError(f"Model name not supported. Should be one of {model_names}") # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3], expected_slice, atol=1e-4) else: print("Logits:", logits[0, :3, :3]) assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4) print("Logits ok!") # verify loss, if applicable if model_name == "videomae-base-short": loss = outputs.loss assert torch.allclose(loss, expected_loss, atol=1e-4) print("Loss ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing to the hub...") model.push_to_hub(model_name, organization="nielsr") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
transformers/src/transformers/models/videomae/convert_videomae_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/videomae/convert_videomae_to_pytorch.py", "repo_id": "transformers", "token_count": 6110 }
340
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType logger = logging.get_logger(__name__) class VisionEncoderDecoderConfig(PretrainedConfig): r""" [`VisionEncoderDecoderConfig`] is the configuration class to store the configuration of a [`VisionEncoderDecoderModel`]. It is used to instantiate a Vision-Encoder-Text-Decoder model according to the specified arguments, defining the encoder and decoder configs. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: kwargs (*optional*): Dictionary of keyword arguments. Notably: - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the encoder config. - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the decoder config. Examples: ```python >>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel >>> # Initializing a ViT & BERT style configuration >>> config_encoder = ViTConfig() >>> config_decoder = BertConfig() >>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> # Initializing a ViTBert model (with random weights) from a ViT & bert-base-uncased style configurations >>> model = VisionEncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_encoder = model.config.encoder >>> config_decoder = model.config.decoder >>> # set decoder config to causal lm >>> config_decoder.is_decoder = True >>> config_decoder.add_cross_attention = True >>> # Saving the model, including its configuration >>> model.save_pretrained("my-model") >>> # loading model and config from pretrained folder >>> encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model") >>> model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) ```""" model_type = "vision-encoder-decoder" is_composition = True def __init__(self, **kwargs): super().__init__(**kwargs) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) encoder_config = kwargs.pop("encoder") encoder_model_type = encoder_config.pop("model_type") decoder_config = kwargs.pop("decoder") decoder_model_type = decoder_config.pop("model_type") self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) self.is_encoder_decoder = True @classmethod def from_encoder_decoder_configs( cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`VisionEncoderDecoderConfig`]: An instance of a configuration object """ logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") decoder_config.is_decoder = True decoder_config.add_cross_attention = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) class VisionEncoderDecoderEncoderOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 @property def outputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}}) class VisionEncoderDecoderDecoderOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict() common_inputs["input_ids"] = {0: "batch", 1: "past_decoder_sequence + sequence"} common_inputs["attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} common_inputs["encoder_hidden_states"] = {0: "batch", 1: "encoder_sequence"} return common_inputs def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizerBase", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: import torch common_inputs = OrderedDict() dummy_input = super().generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) batch, encoder_sequence = dummy_input["input_ids"].shape encoder_hidden_states_shape = (batch, encoder_sequence, self._config.encoder_hidden_size) common_inputs["input_ids"] = dummy_input.pop("input_ids") common_inputs["attention_mask"] = dummy_input.pop("attention_mask") common_inputs["encoder_hidden_states"] = torch.zeros(encoder_hidden_states_shape) return common_inputs class VisionEncoderDecoderOnnxConfig(OnnxConfig): @property def inputs(self) -> None: pass def get_encoder_config(self, encoder_config: PretrainedConfig) -> OnnxConfig: r""" Returns ONNX encoder config for `VisionEncoderDecoder` model. Args: encoder_config (`PretrainedConfig`): The encoder model's configuration to use when exporting to ONNX. Returns: [`VisionEncoderDecoderEncoderOnnxConfig`]: An instance of the ONNX configuration object """ return VisionEncoderDecoderEncoderOnnxConfig(encoder_config) def get_decoder_config( self, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, feature: str = "default" ) -> OnnxConfig: r""" Returns ONNX decoder config for `VisionEncoderDecoder` model. Args: encoder_config (`PretrainedConfig`): The encoder model's configuration to use when exporting to ONNX. decoder_config (`PretrainedConfig`): The decoder model's configuration to use when exporting to ONNX feature (`str`, *optional*): The type of feature to export the model with. Returns: [`VisionEncoderDecoderDecoderOnnxConfig`]: An instance of the ONNX configuration object. """ decoder_config.encoder_hidden_size = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(decoder_config, feature)
transformers/src/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py", "repo_id": "transformers", "token_count": 3122 }
341
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT checkpoints trained with the DINO method.""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT configuration config = ViTConfig() # patch_size if model_name[-1] == "8": config.patch_size = 8 # set labels if required if not base_model: config.num_labels = 1000 repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 # load original model from torch hub original_model = torch.hub.load("facebookresearch/dino:main", model_name) original_model.eval() # load state_dict of original model, remove and rename some keys state_dict = original_model.state_dict() if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model=base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) # load HuggingFace model if base_model: model = ViTModel(config, add_pooling_layer=False).eval() else: model = ViTForImageClassification(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by ViTImageProcessor image_processor = ViTImageProcessor() encoding = image_processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) if base_model: final_hidden_state_cls_token = original_model(pixel_values) assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1) else: logits = original_model(pixel_values) assert logits.shape == outputs.logits.shape assert torch.allclose(logits, outputs.logits, atol=1e-3) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) args = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
transformers/src/transformers/models/vit/convert_dino_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vit/convert_dino_to_pytorch.py", "repo_id": "transformers", "token_count": 3685 }
342
# coding=utf-8 # Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViT MAE (masked autoencoder) model.""" import collections.abc import math from copy import deepcopy from dataclasses import dataclass from typing import Optional, Set, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_vit_mae import ViTMAEConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViTMAEConfig" _CHECKPOINT_FOR_DOC = "facebook/vit-mae-base" VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/vit-mae-base", # See all ViTMAE models at https://huggingface.co/models?filter=vit_mae ] @dataclass class ViTMAEModelOutput(ModelOutput): """ Class for ViTMAEModel's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ViTMAEDecoderOutput(ModelOutput): """ Class for ViTMAEDecoder's outputs, with potential hidden states and attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ViTMAEForPreTrainingOutput(ModelOutput): """ Class for ViTMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False): """ Create 2D sin/cos positional embeddings. Args: embed_dim (`int`): Embedding dimension. grid_size (`int`): The grid height and width. add_cls_token (`bool`, *optional*, defaults to `False`): Whether or not to add a classification (CLS) token. Returns: (`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the position embeddings (with or without classification token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if add_cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") omega = np.arange(embed_dim // 2, dtype=float) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb class ViTMAEEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ViTMAEPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches # fixed sin-cos embedding self.position_embeddings = nn.Parameter( torch.zeros(1, self.num_patches + 1, config.hidden_size), requires_grad=False ) self.config = config self.initialize_weights() def initialize_weights(self): # initialize (and freeze) position embeddings by sin-cos embedding pos_embed = get_2d_sincos_pos_embed( self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True ) self.position_embeddings.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # initialize patch_embeddings like nn.Linear (instead of nn.Conv2d) w = self.patch_embeddings.projection.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.cls_token, std=self.config.initializer_range) def random_masking(self, sequence, noise=None): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. Args: sequence (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`) noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility """ batch_size, seq_length, dim = sequence.shape len_keep = int(seq_length * (1 - self.config.mask_ratio)) if noise is None: noise = torch.rand(batch_size, seq_length, device=sequence.device) # noise in [0, 1] # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([batch_size, seq_length], device=sequence.device) mask[:, :len_keep] = 0 # unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return sequence_unmasked, mask, ids_restore def forward(self, pixel_values, noise=None): batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values) # add position embeddings w/o cls token embeddings = embeddings + self.position_embeddings[:, 1:, :] # masking: length -> length * config.mask_ratio embeddings, mask, ids_restore = self.random_masking(embeddings, noise) # append cls token cls_token = self.cls_token + self.position_embeddings[:, :1, :] cls_tokens = cls_token.expand(embeddings.shape[0], -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) return embeddings, mask, ids_restore class ViTMAEPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention ViT->ViTMAE class ViTMAESelfAttention(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTMAE class ViTMAESelfOutput(nn.Module): """ The residual connection is defined in ViTMAELayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTMAE class ViTMAEAttention(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.attention = ViTMAESelfAttention(config) self.output = ViTMAESelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->ViTMAE class ViTMAEIntermediate(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->ViTMAE class ViTMAEOutput(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTMAE class ViTMAELayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViTMAEAttention(config) self.intermediate = ViTMAEIntermediate(config) self.output = ViTMAEOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTMAE, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViTMAE, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTMAE class ViTMAEEncoder(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTMAELayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViTMAEPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTMAEConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) VIT_MAE_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTMAEConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_MAE_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViTMAE Model transformer outputting raw hidden-states without any specific head on top.", VIT_MAE_START_DOCSTRING, ) class ViTMAEModel(ViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = ViTMAEEmbeddings(config) self.encoder = ViTMAEEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTMAEModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ViTMAEModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMAEModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = ViTMAEModel.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, mask, ids_restore = self.embeddings(pixel_values, noise=noise) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output, mask, ids_restore) + encoder_outputs[1:] return ViTMAEModelOutput( last_hidden_state=sequence_output, mask=mask, ids_restore=ids_restore, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class ViTMAEDecoder(nn.Module): def __init__(self, config, num_patches): super().__init__() self.decoder_embed = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=True) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) self.decoder_pos_embed = nn.Parameter( torch.zeros(1, num_patches + 1, config.decoder_hidden_size), requires_grad=False ) # fixed sin-cos embedding decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = nn.ModuleList( [ViTMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] ) self.decoder_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps) self.decoder_pred = nn.Linear( config.decoder_hidden_size, config.patch_size**2 * config.num_channels, bias=True ) # encoder to decoder self.gradient_checkpointing = False self.config = config self.initialize_weights(num_patches) def initialize_weights(self, num_patches): # initialize (and freeze) position embeddings by sin-cos embedding decoder_pos_embed = get_2d_sincos_pos_embed( self.decoder_pos_embed.shape[-1], int(num_patches**0.5), add_cls_token=True ) self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.mask_token, std=self.config.initializer_range) def forward( self, hidden_states, ids_restore, output_attentions=False, output_hidden_states=False, return_dict=True, ): # embed tokens x = self.decoder_embed(hidden_states) # append mask tokens to sequence mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token # add pos embed hidden_states = x + self.decoder_pos_embed # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, None, output_attentions, ) else: layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.decoder_norm(hidden_states) # predictor projection logits = self.decoder_pred(hidden_states) # remove cls token logits = logits[:, 1:, :] if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return ViTMAEDecoderOutput( logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """The ViTMAE Model transformer with the decoder on top for self-supervised pre-training. <Tip> Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). </Tip> """, VIT_MAE_START_DOCSTRING, ) class ViTMAEForPreTraining(ViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.vit = ViTMAEModel(config) self.decoder = ViTMAEDecoder(config, num_patches=self.vit.embeddings.num_patches) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.vit.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def patchify(self, pixel_values): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Returns: `torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels # sanity checks if (pixel_values.shape[2] != pixel_values.shape[3]) or (pixel_values.shape[2] % patch_size != 0): raise ValueError("Make sure the pixel values have a squared size that is divisible by the patch size") if pixel_values.shape[1] != num_channels: raise ValueError( "Make sure the number of channels of the pixel values is equal to the one set in the configuration" ) # patchify batch_size = pixel_values.shape[0] num_patches_one_direction = pixel_values.shape[2] // patch_size patchified_pixel_values = pixel_values.reshape( batch_size, num_channels, num_patches_one_direction, patch_size, num_patches_one_direction, patch_size ) patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values) patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_one_direction * num_patches_one_direction, patch_size**2 * num_channels ) return patchified_pixel_values def unpatchify(self, patchified_pixel_values): """ Args: patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. Returns: `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`: Pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels num_patches_one_direction = int(patchified_pixel_values.shape[1] ** 0.5) # sanity check if num_patches_one_direction**2 != patchified_pixel_values.shape[1]: raise ValueError("Make sure that the number of patches can be squared") # unpatchify batch_size = patchified_pixel_values.shape[0] patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_one_direction, num_patches_one_direction, patch_size, patch_size, num_channels, ) patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values) pixel_values = patchified_pixel_values.reshape( batch_size, num_channels, num_patches_one_direction * patch_size, num_patches_one_direction * patch_size, ) return pixel_values def forward_loss(self, pixel_values, pred, mask): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Predicted pixel values. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). Returns: `torch.FloatTensor`: Pixel reconstruction loss. """ target = self.patchify(pixel_values) if self.config.norm_pix_loss: mean = target.mean(dim=-1, keepdim=True) var = target.var(dim=-1, keepdim=True) target = (target - mean) / (var + 1.0e-6) ** 0.5 loss = (pred - target) ** 2 loss = loss.mean(dim=-1) # [N, L], mean loss per patch loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ViTMAEForPreTrainingOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMAEForPreTraining >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss >>> mask = outputs.mask >>> ids_restore = outputs.ids_restore ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) latent = outputs.last_hidden_state ids_restore = outputs.ids_restore mask = outputs.mask decoder_outputs = self.decoder(latent, ids_restore) logits = decoder_outputs.logits # shape (batch_size, num_patches, patch_size*patch_size*num_channels) loss = self.forward_loss(pixel_values, logits, mask) if not return_dict: output = (logits, mask, ids_restore) + outputs[2:] return ((loss,) + output) if loss is not None else output return ViTMAEForPreTrainingOutput( loss=loss, logits=logits, mask=mask, ids_restore=ids_restore, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/vit_mae/modeling_vit_mae.py/0
{ "file_path": "transformers/src/transformers/models/vit_mae/modeling_vit_mae.py", "repo_id": "transformers", "token_count": 17941 }
343
# coding=utf-8 # Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch VITS model.""" import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import ( BaseModelOutput, ModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_vits import VitsConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "VitsConfig" VITS_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/mms-tts-eng", # See all VITS models at https://huggingface.co/models?filter=vits # and all MMS models at https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts ] @dataclass class VitsModelOutput(ModelOutput): """ Describes the outputs for the VITS model, with potential hidden states and attentions. Args: waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): The final audio waveform predicted by the model. sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`): The length in samples of each element in the `waveform` batch. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi GAN decoder model to obtain the final audio waveform. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attention weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ waveform: torch.FloatTensor = None sequence_lengths: torch.FloatTensor = None spectrogram: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class VitsTextEncoderOutput(ModelOutput): """ Describes the outputs for the VITS text encoder model, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The predicted mean values of the prior distribution for the latent text variables. prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The predicted log-variance values of the prior distribution for the latent text variables. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attention weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None prior_means: torch.FloatTensor = None prior_log_variances: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels): in_act = input_a + input_b t_act = torch.tanh(in_act[:, :num_channels, :]) s_act = torch.sigmoid(in_act[:, num_channels:, :]) acts = t_act * s_act return acts def _unconstrained_rational_quadratic_spline( inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, reverse=False, tail_bound=5.0, min_bin_width=1e-3, min_bin_height=1e-3, min_derivative=1e-3, ): """ This transformation represents a monotonically increasing piecewise rational quadratic function. Outside of the `tail_bound`, the transform behaves as an identity function. Args: inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: Second half of the hidden-states input to the Vits convolutional flow module. unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection layer in the convolutional flow module unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection layer in the convolutional flow module unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection layer in the convolutional flow module reverse (`bool`, *optional*, defaults to `False`): Whether the model is being run in reverse mode. tail_bound (`float`, *optional* defaults to 5): Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the transform behaves as an identity function. min_bin_width (`float`, *optional*, defaults to 1e-3): Minimum bin value across the width dimension for the piecewise rational quadratic function. min_bin_height (`float`, *optional*, defaults to 1e-3): Minimum bin value across the height dimension for the piecewise rational quadratic function. min_derivative (`float`, *optional*, defaults to 1e-3): Minimum bin value across the derivatives for the piecewise rational quadratic function. Returns: outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: Hidden-states as transformed by the piecewise rational quadratic function with the `tail_bound` limits applied. log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: Logarithm of the absolute value of the determinants corresponding to the `outputs` with the `tail_bound` limits applied. """ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) outside_interval_mask = ~inside_interval_mask outputs = torch.zeros_like(inputs) log_abs_det = torch.zeros_like(inputs) constant = np.log(np.exp(1 - min_derivative) - 1) unnormalized_derivatives = nn.functional.pad(unnormalized_derivatives, pad=(1, 1)) unnormalized_derivatives[..., 0] = constant unnormalized_derivatives[..., -1] = constant outputs[outside_interval_mask] = inputs[outside_interval_mask] log_abs_det[outside_interval_mask] = 0.0 outputs[inside_interval_mask], log_abs_det[inside_interval_mask] = _rational_quadratic_spline( inputs=inputs[inside_interval_mask], unnormalized_widths=unnormalized_widths[inside_interval_mask, :], unnormalized_heights=unnormalized_heights[inside_interval_mask, :], unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], reverse=reverse, tail_bound=tail_bound, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative, ) return outputs, log_abs_det def _rational_quadratic_spline( inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, reverse, tail_bound, min_bin_width, min_bin_height, min_derivative, ): """ This transformation represents a monotonically increasing piecewise rational quadratic function. Unlike the function `_unconstrained_rational_quadratic_spline`, the function behaves the same across the `tail_bound`. Args: inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: Second half of the hidden-states input to the Vits convolutional flow module. unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection layer in the convolutional flow module unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection layer in the convolutional flow module unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection layer in the convolutional flow module reverse (`bool`): Whether the model is being run in reverse mode. tail_bound (`float`): Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the transform behaves as an identity function. min_bin_width (`float`): Minimum bin value across the width dimension for the piecewise rational quadratic function. min_bin_height (`float`): Minimum bin value across the height dimension for the piecewise rational quadratic function. min_derivative (`float`): Minimum bin value across the derivatives for the piecewise rational quadratic function. Returns: outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: Hidden-states as transformed by the piecewise rational quadratic function. log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: Logarithm of the absolute value of the determinants corresponding to the `outputs`. """ upper_bound = tail_bound lower_bound = -tail_bound if torch.min(inputs) < lower_bound or torch.max(inputs) > upper_bound: raise ValueError("Input to a transform is not within its domain") num_bins = unnormalized_widths.shape[-1] if min_bin_width * num_bins > 1.0: raise ValueError(f"Minimal bin width {min_bin_width} too large for the number of bins {num_bins}") if min_bin_height * num_bins > 1.0: raise ValueError(f"Minimal bin height {min_bin_height} too large for the number of bins {num_bins}") widths = nn.functional.softmax(unnormalized_widths, dim=-1) widths = min_bin_width + (1 - min_bin_width * num_bins) * widths cumwidths = torch.cumsum(widths, dim=-1) cumwidths = nn.functional.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) cumwidths = (upper_bound - lower_bound) * cumwidths + lower_bound cumwidths[..., 0] = lower_bound cumwidths[..., -1] = upper_bound widths = cumwidths[..., 1:] - cumwidths[..., :-1] derivatives = min_derivative + nn.functional.softplus(unnormalized_derivatives) heights = nn.functional.softmax(unnormalized_heights, dim=-1) heights = min_bin_height + (1 - min_bin_height * num_bins) * heights cumheights = torch.cumsum(heights, dim=-1) cumheights = nn.functional.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) cumheights = (upper_bound - lower_bound) * cumheights + lower_bound cumheights[..., 0] = lower_bound cumheights[..., -1] = upper_bound heights = cumheights[..., 1:] - cumheights[..., :-1] bin_locations = cumheights if reverse else cumwidths bin_locations[..., -1] += 1e-6 bin_idx = torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 bin_idx = bin_idx[..., None] input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] input_bin_widths = widths.gather(-1, bin_idx)[..., 0] input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] delta = heights / widths input_delta = delta.gather(-1, bin_idx)[..., 0] input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] input_heights = heights.gather(-1, bin_idx)[..., 0] intermediate1 = input_derivatives + input_derivatives_plus_one - 2 * input_delta if not reverse: theta = (inputs - input_cumwidths) / input_bin_widths theta_one_minus_theta = theta * (1 - theta) numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta) denominator = input_delta + intermediate1 * theta_one_minus_theta outputs = input_cumheights + numerator / denominator derivative_numerator = input_delta.pow(2) * ( input_derivatives_plus_one * theta.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - theta).pow(2) ) log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator) return outputs, log_abs_det else: # find the roots of a quadratic equation intermediate2 = inputs - input_cumheights intermediate3 = intermediate2 * intermediate1 a = input_heights * (input_delta - input_derivatives) + intermediate3 b = input_heights * input_derivatives - intermediate3 c = -input_delta * intermediate2 discriminant = b.pow(2) - 4 * a * c if not (discriminant >= 0).all(): raise RuntimeError(f"invalid discriminant {discriminant}") root = (2 * c) / (-b - torch.sqrt(discriminant)) outputs = root * input_bin_widths + input_cumwidths theta_one_minus_theta = root * (1 - root) denominator = input_delta + intermediate1 * theta_one_minus_theta derivative_numerator = input_delta.pow(2) * ( input_derivatives_plus_one * root.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - root).pow(2) ) log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator) return outputs, -log_abs_det class VitsWaveNet(torch.nn.Module): def __init__(self, config: VitsConfig, num_layers: int): super().__init__() self.hidden_size = config.hidden_size self.num_layers = num_layers self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.dropout = nn.Dropout(config.wavenet_dropout) if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm else: weight_norm = nn.utils.weight_norm if config.speaker_embedding_size != 0: cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1) self.cond_layer = weight_norm(cond_layer, name="weight") for i in range(num_layers): dilation = config.wavenet_dilation_rate**i padding = (config.wavenet_kernel_size * dilation - dilation) // 2 in_layer = torch.nn.Conv1d( in_channels=config.hidden_size, out_channels=2 * config.hidden_size, kernel_size=config.wavenet_kernel_size, dilation=dilation, padding=padding, ) in_layer = weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < num_layers - 1: res_skip_channels = 2 * config.hidden_size else: res_skip_channels = config.hidden_size res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1) res_skip_layer = weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, inputs, padding_mask, global_conditioning=None): outputs = torch.zeros_like(inputs) num_channels_tensor = torch.IntTensor([self.hidden_size]) if global_conditioning is not None: global_conditioning = self.cond_layer(global_conditioning) for i in range(self.num_layers): hidden_states = self.in_layers[i](inputs) if global_conditioning is not None: cond_offset = i * 2 * self.hidden_size global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :] else: global_states = torch.zeros_like(hidden_states) acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0]) acts = self.dropout(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.num_layers - 1: res_acts = res_skip_acts[:, : self.hidden_size, :] inputs = (inputs + res_acts) * padding_mask outputs = outputs + res_skip_acts[:, self.hidden_size :, :] else: outputs = outputs + res_skip_acts return outputs * padding_mask def remove_weight_norm(self): if self.speaker_embedding_size != 0: torch.nn.utils.remove_weight_norm(self.cond_layer) for layer in self.in_layers: torch.nn.utils.remove_weight_norm(layer) for layer in self.res_skip_layers: torch.nn.utils.remove_weight_norm(layer) class VitsPosteriorEncoder(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.out_channels = config.flow_size self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1) self.wavenet = VitsWaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers) self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1) def forward(self, inputs, padding_mask, global_conditioning=None): inputs = self.conv_pre(inputs) * padding_mask inputs = self.wavenet(inputs, padding_mask, global_conditioning) stats = self.conv_proj(inputs) * padding_mask mean, log_stddev = torch.split(stats, self.out_channels, dim=1) sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask return sampled, mean, log_stddev # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): for layer in self.convs1: nn.utils.weight_norm(layer) for layer in self.convs2: nn.utils.weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states class VitsHifiGan(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.config = config self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.flow_size, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False) if config.speaker_embedding_size != 0: self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1) def apply_weight_norm(self): for layer in self.upsampler: nn.utils.weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() def remove_weight_norm(self): for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() def forward( self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: r""" Converts a spectrogram into a speech waveform. Args: spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`): Tensor containing the spectrograms. global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*): Tensor containing speaker embeddings, for multispeaker models. Returns: `torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform. """ hidden_states = self.conv_pre(spectrogram) if global_conditioning is not None: hidden_states = hidden_states + self.cond(global_conditioning) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) waveform = torch.tanh(hidden_states) return waveform class VitsResidualCouplingLayer(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.half_channels = config.flow_size // 2 self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1) self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers) self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) hidden_states = self.conv_pre(first_half) * padding_mask hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning) mean = self.conv_post(hidden_states) * padding_mask log_stddev = torch.zeros_like(mean) if not reverse: second_half = mean + second_half * torch.exp(log_stddev) * padding_mask outputs = torch.cat([first_half, second_half], dim=1) log_determinant = torch.sum(log_stddev, [1, 2]) return outputs, log_determinant else: second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask outputs = torch.cat([first_half, second_half], dim=1) return outputs, None class VitsResidualCouplingBlock(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.flows = nn.ModuleList() for _ in range(config.prior_encoder_num_flows): self.flows.append(VitsResidualCouplingLayer(config)) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): if not reverse: for flow in self.flows: inputs, _ = flow(inputs, padding_mask, global_conditioning) inputs = torch.flip(inputs, [1]) else: for flow in reversed(self.flows): inputs = torch.flip(inputs, [1]) inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True) return inputs class VitsDilatedDepthSeparableConv(nn.Module): def __init__(self, config: VitsConfig, dropout_rate=0.0): super().__init__() kernel_size = config.duration_predictor_kernel_size channels = config.hidden_size self.num_layers = config.depth_separable_num_layers self.dropout = nn.Dropout(dropout_rate) self.convs_dilated = nn.ModuleList() self.convs_pointwise = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(self.num_layers): dilation = kernel_size**i padding = (kernel_size * dilation - dilation) // 2 self.convs_dilated.append( nn.Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, groups=channels, dilation=dilation, padding=padding, ) ) self.convs_pointwise.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(nn.LayerNorm(channels)) self.norms_2.append(nn.LayerNorm(channels)) def forward(self, inputs, padding_mask, global_conditioning=None): if global_conditioning is not None: inputs = inputs + global_conditioning for i in range(self.num_layers): hidden_states = self.convs_dilated[i](inputs * padding_mask) hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1) hidden_states = nn.functional.gelu(hidden_states) hidden_states = self.convs_pointwise[i](hidden_states) hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1) hidden_states = nn.functional.gelu(hidden_states) hidden_states = self.dropout(hidden_states) inputs = inputs + hidden_states return inputs * padding_mask class VitsConvFlow(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.filter_channels = config.hidden_size self.half_channels = config.depth_separable_channels // 2 self.num_bins = config.duration_predictor_flow_bins self.tail_bound = config.duration_predictor_tail_bound self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1) self.conv_dds = VitsDilatedDepthSeparableConv(config) self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) hidden_states = self.conv_pre(first_half) hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning) hidden_states = self.conv_proj(hidden_states) * padding_mask batch_size, channels, length = first_half.shape hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2) unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels) unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :] second_half, log_abs_det = _unconstrained_rational_quadratic_spline( second_half, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, reverse=reverse, tail_bound=self.tail_bound, ) outputs = torch.cat([first_half, second_half], dim=1) * padding_mask if not reverse: log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2]) return outputs, log_determinant else: return outputs, None class VitsElementwiseAffine(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.channels = config.depth_separable_channels self.translate = nn.Parameter(torch.zeros(self.channels, 1)) self.log_scale = nn.Parameter(torch.zeros(self.channels, 1)) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): if not reverse: outputs = self.translate + torch.exp(self.log_scale) * inputs outputs = outputs * padding_mask log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2]) return outputs, log_determinant else: outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask return outputs, None class VitsStochasticDurationPredictor(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.speaker_embedding_size filter_channels = config.hidden_size self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1) self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) self.conv_dds = VitsDilatedDepthSeparableConv( config, dropout_rate=config.duration_predictor_dropout, ) if embed_dim != 0: self.cond = nn.Conv1d(embed_dim, filter_channels, 1) self.flows = nn.ModuleList() self.flows.append(VitsElementwiseAffine(config)) for _ in range(config.duration_predictor_num_flows): self.flows.append(VitsConvFlow(config)) self.post_conv_pre = nn.Conv1d(1, filter_channels, 1) self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) self.post_conv_dds = VitsDilatedDepthSeparableConv( config, dropout_rate=config.duration_predictor_dropout, ) self.post_flows = nn.ModuleList() self.post_flows.append(VitsElementwiseAffine(config)) for _ in range(config.duration_predictor_num_flows): self.post_flows.append(VitsConvFlow(config)) def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0): inputs = torch.detach(inputs) inputs = self.conv_pre(inputs) if global_conditioning is not None: global_conditioning = torch.detach(global_conditioning) inputs = inputs + self.cond(global_conditioning) inputs = self.conv_dds(inputs, padding_mask) inputs = self.conv_proj(inputs) * padding_mask if not reverse: hidden_states = self.post_conv_pre(durations) hidden_states = self.post_conv_dds(hidden_states, padding_mask) hidden_states = self.post_conv_proj(hidden_states) * padding_mask random_posterior = ( torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype) * padding_mask ) log_determinant_posterior_sum = 0 latents_posterior = random_posterior for flow in self.post_flows: latents_posterior, log_determinant = flow( latents_posterior, padding_mask, global_conditioning=inputs + hidden_states ) latents_posterior = torch.flip(latents_posterior, [1]) log_determinant_posterior_sum += log_determinant first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1) log_determinant_posterior_sum += torch.sum( (nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2] ) logq = ( torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2]) - log_determinant_posterior_sum ) first_half = (durations - torch.sigmoid(first_half)) * padding_mask first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask log_determinant_sum = torch.sum(-first_half, [1, 2]) latents = torch.cat([first_half, second_half], dim=1) for flow in self.flows: latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs) latents = torch.flip(latents, [1]) log_determinant_sum += log_determinant nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum return nll + logq else: flows = list(reversed(self.flows)) flows = flows[:-2] + [flows[-1]] # remove a useless vflow latents = ( torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype) * noise_scale ) for flow in flows: latents = torch.flip(latents, [1]) latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True) log_duration, _ = torch.split(latents, [1, 1], dim=1) return log_duration class VitsDurationPredictor(nn.Module): def __init__(self, config): super().__init__() kernel_size = config.duration_predictor_kernel_size filter_channels = config.duration_predictor_filter_channels self.dropout = nn.Dropout(config.duration_predictor_dropout) self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) self.proj = nn.Conv1d(filter_channels, 1, 1) if config.speaker_embedding_size != 0: self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1) def forward(self, inputs, padding_mask, global_conditioning=None): inputs = torch.detach(inputs) if global_conditioning is not None: global_conditioning = torch.detach(global_conditioning) inputs = inputs + self.cond(global_conditioning) inputs = self.conv_1(inputs * padding_mask) inputs = torch.relu(inputs) inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1) inputs = self.dropout(inputs) inputs = self.conv_2(inputs * padding_mask) inputs = torch.relu(inputs) inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1) inputs = self.dropout(inputs) inputs = self.proj(inputs * padding_mask) return inputs * padding_mask class VitsAttention(nn.Module): """Multi-headed attention with relative positional representation.""" def __init__(self, config: VitsConfig): super().__init__() self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.dropout = config.attention_dropout self.window_size = config.window_size self.head_dim = self.embed_dim // self.num_heads self.scaling = self.head_dim**-0.5 if (self.head_dim * self.num_heads) != self.embed_dim: raise ValueError( f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}" f" and `num_attention_heads`: {self.num_heads})." ) self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) if self.window_size: self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if self.window_size is not None: key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len) relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1)) rel_pos_bias = self._relative_position_to_absolute_position(relative_logits) attn_weights += rel_pos_bias if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) if self.window_size is not None: value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len) relative_weights = self._absolute_position_to_relative_position(attn_probs) rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings) attn_output += rel_pos_bias attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped def _get_relative_embeddings(self, relative_embeddings, length): pad_length = max(length - (self.window_size + 1), 0) if pad_length > 0: relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) slice_start_position = max((self.window_size + 1) - length, 0) slice_end_position = slice_start_position + 2 * length - 1 return relative_embeddings[:, slice_start_position:slice_end_position] def _relative_position_to_absolute_position(self, x): batch_heads, length, _ = x.size() # Concat columns of pad to shift from relative to absolute indexing. x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0]) # Concat extra elements so to add up to shape (len+1, 2*len-1). x_flat = x.view([batch_heads, length * 2 * length]) x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0]) # Reshape and slice out the padded elements. x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1]) x_final = x_final[:, :length, length - 1 :] return x_final def _absolute_position_to_relative_position(self, x): batch_heads, length, _ = x.size() # Pad along column x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0]) x_flat = x.view([batch_heads, length * (2 * length - 1)]) # Add 0's in the beginning that will skew the elements after reshape x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0]) x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:] return x_final class VitsFeedForward(nn.Module): def __init__(self, config): super().__init__() self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size) self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size) self.dropout = nn.Dropout(config.activation_dropout) if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act if config.ffn_kernel_size > 1: pad_left = (config.ffn_kernel_size - 1) // 2 pad_right = config.ffn_kernel_size // 2 self.padding = [pad_left, pad_right, 0, 0, 0, 0] else: self.padding = None def forward(self, hidden_states, padding_mask): hidden_states = hidden_states.permute(0, 2, 1) padding_mask = padding_mask.permute(0, 2, 1) hidden_states = hidden_states * padding_mask if self.padding is not None: hidden_states = nn.functional.pad(hidden_states, self.padding) hidden_states = self.conv_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states * padding_mask if self.padding is not None: hidden_states = nn.functional.pad(hidden_states, self.padding) hidden_states = self.conv_2(hidden_states) hidden_states = hidden_states * padding_mask hidden_states = hidden_states.permute(0, 2, 1) return hidden_states class VitsEncoderLayer(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.attention = VitsAttention(config) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = VitsFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, padding_mask: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): residual = hidden_states hidden_states, attn_weights = self.attention( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = self.layer_norm(residual + hidden_states) residual = hidden_states hidden_states = self.feed_forward(hidden_states, padding_mask) hidden_states = self.dropout(hidden_states) hidden_states = self.final_layer_norm(residual + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class VitsEncoder(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.config = config self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.layerdrop = config.layerdrop def forward( self, hidden_states: torch.FloatTensor, padding_mask: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) hidden_states = hidden_states * padding_mask deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) skip_the_layer = self.training and (dropout_probability < self.layerdrop) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, padding_mask, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=attention_mask, padding_mask=padding_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = hidden_states * padding_mask if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class VitsTextEncoder(nn.Module): """ Transformer encoder that uses relative positional representation instead of absolute positional encoding. """ def __init__(self, config: VitsConfig): super().__init__() self.config = config self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.encoder = VitsEncoder(config) self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.Tensor, padding_mask: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]: hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size) encoder_outputs = self.encoder( hidden_states=hidden_states, padding_mask=padding_mask, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2) if not return_dict: outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:] return outputs return VitsTextEncoderOutput( last_hidden_state=last_hidden_state, prior_means=prior_means, prior_log_variances=prior_log_variances, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class VitsPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VitsConfig base_model_prefix = "vits" main_input_name = "input_ids" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() VITS_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VitsConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VITS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) speaker_id (`int`, *optional*): Which speaker embedding to use. Only used for multispeaker models. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The complete VITS model, for text-to-speech synthesis.", VITS_START_DOCSTRING, ) class VitsModel(VitsPreTrainedModel): def __init__(self, config: VitsConfig): super().__init__(config) self.config = config self.text_encoder = VitsTextEncoder(config) self.flow = VitsResidualCouplingBlock(config) self.decoder = VitsHifiGan(config) if config.use_stochastic_duration_prediction: self.duration_predictor = VitsStochasticDurationPredictor(config) else: self.duration_predictor = VitsDurationPredictor(config) if config.num_speakers > 1: self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size) # This is used only for training. self.posterior_encoder = VitsPosteriorEncoder(config) # These parameters control the synthesised speech properties self.speaking_rate = config.speaking_rate self.noise_scale = config.noise_scale self.noise_scale_duration = config.noise_scale_duration # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.text_encoder @add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, speaker_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.FloatTensor] = None, ) -> Union[Tuple[Any], VitsModelOutput]: r""" labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*): Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss computation. Returns: Example: ```python >>> from transformers import VitsTokenizer, VitsModel, set_seed >>> import torch >>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") >>> model = VitsModel.from_pretrained("facebook/mms-tts-eng") >>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") >>> set_seed(555) # make deterministic >>> with torch.no_grad(): ... outputs = model(inputs["input_ids"]) >>> outputs.waveform.shape torch.Size([1, 45824]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if attention_mask is not None: input_padding_mask = attention_mask.unsqueeze(-1).float() else: input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() if self.config.num_speakers > 1 and speaker_id is not None: if not 0 <= speaker_id < self.config.num_speakers: raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") if isinstance(speaker_id, int): speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) else: speaker_embeddings = None if labels is not None: raise NotImplementedError("Training of VITS is not supported yet.") text_encoder_output = self.text_encoder( input_ids=input_ids, padding_mask=input_padding_mask, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state hidden_states = hidden_states.transpose(1, 2) input_padding_mask = input_padding_mask.transpose(1, 2) prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances if self.config.use_stochastic_duration_prediction: log_duration = self.duration_predictor( hidden_states, input_padding_mask, speaker_embeddings, reverse=True, noise_scale=self.noise_scale_duration, ) else: log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) length_scale = 1.0 / self.speaking_rate duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() # Create a padding mask for the output lengths of shape (batch, 1, max_output_length) indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) batch_size, _, output_length, input_length = attn_mask.shape cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) valid_indices = indices.unsqueeze(0) < cum_duration valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask # Expand prior distribution prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) spectrogram = latents * output_padding_mask waveform = self.decoder(spectrogram, speaker_embeddings) waveform = waveform.squeeze(1) sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates) if not return_dict: outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:] return outputs return VitsModelOutput( waveform=waveform, sequence_lengths=sequence_lengths, spectrogram=spectrogram, hidden_states=text_encoder_output.hidden_states, attentions=text_encoder_output.attentions, )
transformers/src/transformers/models/vits/modeling_vits.py/0
{ "file_path": "transformers/src/transformers/models/vits/modeling_vits.py", "repo_id": "transformers", "token_count": 28934 }
344
# coding=utf-8 # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for Wav2Vec2.""" import json import os import sys import warnings from dataclasses import dataclass from itertools import groupby from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken, BatchEncoding from ...utils import ( ModelOutput, PaddingStrategy, TensorType, add_end_docstrings, is_flax_available, is_tf_available, is_torch_available, logging, to_py_obj, ) logger = logging.get_logger(__name__) if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp # noqa: F401 VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json", }, "tokenizer_config_file": { "facebook/wav2vec2-base-960h": ( "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer_config.json" ), }, } # Wav2Vec2 has no max input length PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/wav2vec2-base-960h": sys.maxsize} WAV2VEC2_KWARGS_DOCSTRING = r""" padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. """ ListOfDict = List[Dict[str, Union[int, str]]] @dataclass class Wav2Vec2CTCTokenizerOutput(ModelOutput): """ Output type of [` Wav2Vec2CTCTokenizer`], with transcription. Args: text (list of `str` or `str`): Decoded logits in text from. Usually the speech transcription. char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char offsets can be used to compute time stamps for each charater. Total logit score of the beam associated with produced text. word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets can be used to compute time stamps for each word. """ text: Union[List[str], str] char_offsets: Union[List[ListOfDict], ListOfDict] = None word_offsets: Union[List[ListOfDict], ListOfDict] = None class Wav2Vec2CTCTokenizer(PreTrainedTokenizer): """ Constructs a Wav2Vec2CTC tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. word_delimiter_token (`str`, *optional*, defaults to `"|"`): The token used for defining the end of a word. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to accept lowercase input and lowercase the output when decoding. target_lang (`str`, *optional*): A target language the tokenizer should set by default. `target_lang` has to be defined for multi-lingual, nested vocabulary such as [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all). **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|", replace_word_delimiter_char=" ", do_lower_case=False, target_lang=None, **kwargs, ): self._word_delimiter_token = word_delimiter_token self.do_lower_case = do_lower_case self.replace_word_delimiter_char = replace_word_delimiter_char self.target_lang = target_lang with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) # if target lang is defined vocab must be a nested dict # with each target lang being one vocabulary if target_lang is not None: self.encoder = self.vocab[target_lang] else: self.encoder = self.vocab self.decoder = {v: k for k, v in self.encoder.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, do_lower_case=do_lower_case, word_delimiter_token=word_delimiter_token, replace_word_delimiter_char=replace_word_delimiter_char, target_lang=target_lang, **kwargs, ) # make sure that tokens made of several # characters are not split at tokenization for token in self.encoder.keys(): if len(token) > 1: self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False)) def set_target_lang(self, target_lang: str): """ Set the target language of a nested multi-lingual dictionary """ if self.vocab == self.encoder: raise ValueError(f"{self.vocab} is not a multi-lingual, nested tokenizer. Cannot set target language.") if target_lang not in self.vocab: raise ValueError(f"{target_lang} does not exist. Choose one of {', '.join(self.vocab.keys())}.") self.target_lang = target_lang self.init_kwargs["target_lang"] = target_lang self.encoder = self.vocab[target_lang] self.decoder = {v: k for k, v in self.encoder.items()} # make sure that tokens made of several # characters are not split at tokenization for token in self.encoder.keys(): if len(token) > 1: self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False)) @property def word_delimiter_token(self) -> str: """ `str`: Word delimiter token. Log an error if used while not having been set. """ if self._word_delimiter_token is None and self.verbose: logger.error("Using word_delimiter_token, but it is not set yet.") return None return str(self._word_delimiter_token) @property def word_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._word_delimiter_token is None: return None return self.convert_tokens_to_ids(self.word_delimiter_token) @word_delimiter_token.setter def word_delimiter_token(self, value): self._word_delimiter_token = value @word_delimiter_token_id.setter def word_delimiter_token_id(self, value): self._word_delimiter_token = self.convert_tokens_to_ids(value) @property def vocab_size(self) -> int: return len(self.decoder) def get_vocab(self) -> Dict: vocab = dict(self.encoder) vocab.update(self.added_tokens_encoder) return vocab def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: # Overwritten to never strip! to_add = [] for token in new_tokens: if isinstance(token, str): to_add.append(AddedToken(token, rstrip=False, lstrip=False, normalized=False)) else: to_add.append(token) return super()._add_tokens(to_add, special_tokens) def _tokenize(self, text, **kwargs): """ Converts a string into a sequence of tokens (string), using the tokenizer. """ if self.do_lower_case: text = text.upper() return list(text.replace(" ", self.word_delimiter_token)) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an index (integer) using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" result = self.decoder.get(index, self.unk_token) return result def convert_tokens_to_string( self, tokens: List[str], group_tokens: bool = True, spaces_between_special_tokens: bool = False, output_char_offsets: bool = False, output_word_offsets: bool = False, ) -> Dict[str, Union[str, float]]: """ Converts a connectionist-temporal-classification (CTC) output tokens into a single string. """ if len(tokens) == 0: return {"text": "", "char_offsets": [], "word_offsets": []} # group same tokens into non-repeating tokens in CTC style decoding if group_tokens: chars, char_repetitions = zip(*((token, len(list(group_iter))) for token, group_iter in groupby(tokens))) else: chars = tokens char_repetitions = len(tokens) * [1] # filter self.pad_token which is used as CTC-blank token processed_chars = list(filter(lambda char: char != self.pad_token, chars)) # replace delimiter token processed_chars = [ self.replace_word_delimiter_char if char == self.word_delimiter_token else char for char in processed_chars ] # retrieve offsets char_offsets = word_offsets = None if output_char_offsets or output_word_offsets: char_offsets = self._compute_offsets(char_repetitions, chars, self.pad_token) if len(char_offsets) != len(processed_chars): raise ValueError( f"`char_offsets`: {char_offsets} and `processed_tokens`: {processed_chars}" " have to be of the same length, but are: " f"`len(offsets)`: {len(char_offsets)} and `len(processed_tokens)`:" f" {len(processed_chars)}" ) # set tokens to correct processed token for i, char in enumerate(processed_chars): char_offsets[i]["char"] = char # retrieve word offsets from character offsets word_offsets = None if output_word_offsets: word_offsets = self._get_word_offsets(char_offsets, self.replace_word_delimiter_char) # don't output chars if not set to True if not output_char_offsets: char_offsets = None # join to string join_char = " " if spaces_between_special_tokens else "" string = join_char.join(processed_chars).strip() if self.do_lower_case: string = string.lower() return {"text": string, "char_offsets": char_offsets, "word_offsets": word_offsets} @staticmethod def _compute_offsets( char_repetitions: List[int], chars: List[str], ctc_token: int ) -> List[Dict[str, Union[str, int]]]: end_indices = np.asarray(char_repetitions).cumsum() start_indices = np.concatenate(([0], end_indices[:-1])) offsets = [ {"char": t, "start_offset": s, "end_offset": e} for t, s, e in zip(chars, start_indices, end_indices) ] # filter out CTC token offsets = list(filter(lambda offsets: offsets["char"] != ctc_token, offsets)) return offsets @staticmethod def _get_word_offsets( offsets: Dict[str, Union[str, float]], word_delimiter_char: str = " " ) -> Dict[str, Union[str, float]]: word_offsets = [] last_state = "SPACE" word = "" start_offset = 0 end_offset = 0 for i, offset in enumerate(offsets): char = offset["char"] state = "SPACE" if char == word_delimiter_char else "WORD" if state == last_state: # If we are in the same state as before, we simply repeat what we've done before end_offset = offset["end_offset"] word += char else: # Switching state if state == "SPACE": # Finishing a word word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) else: # Starting a new word start_offset = offset["start_offset"] end_offset = offset["end_offset"] word = char last_state = state if last_state == "WORD": word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) return word_offsets def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): if is_split_into_words: text = " " + text return (text, kwargs) def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, group_tokens: bool = True, spaces_between_special_tokens: bool = False, output_word_offsets: Optional[bool] = False, output_char_offsets: Optional[bool] = False, ) -> str: """ special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on the whole token list and not individually on added tokens """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) result = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue result.append(token) string_output = self.convert_tokens_to_string( result, group_tokens=group_tokens, spaces_between_special_tokens=spaces_between_special_tokens, output_word_offsets=output_word_offsets, output_char_offsets=output_char_offsets, ) text = string_output["text"] clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: text = self.clean_up_tokenization(text) if output_word_offsets or output_char_offsets: return Wav2Vec2CTCTokenizerOutput( text=text, char_offsets=string_output["char_offsets"], word_offsets=string_output["word_offsets"], ) else: return text # overwritten from `tokenization_utils_base.py` because tokenizer can output # `ModelOutput` which should not be a list for batched output and # because we need docs for `output_char_offsets` here def batch_decode( self, sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, output_word_offsets: bool = False, **kwargs, ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make use of `output_char_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched output. </Tip> output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. <Tip> Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make use of `output_word_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched output. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when `output_char_offsets == True` or `output_word_offsets == True`. """ batch_decoded = [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, output_word_offsets=output_word_offsets, **kwargs, ) for seq in sequences ] if output_char_offsets or output_word_offsets: # transform list of dicts to dict of lists return Wav2Vec2CTCTokenizerOutput({k: [d[k] for d in batch_decoded] for k in batch_decoded[0]}) return batch_decoded # overwritten from `tokenization_utils_base.py` because we need docs for `output_char_offsets` # and `output_word_offsets` here def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, output_word_offsets: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the example below to better understand how to make use of `output_char_offsets`. </Tip> output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. <Tip> Please take a look at the example below to better understand how to make use of `output_word_offsets`. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when `output_char_offsets == True` or `output_word_offsets == True`. Example: ```python >>> # Let's see how to retrieve time steps for a model >>> from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # import model, feature extractor, tokenizer >>> model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") >>> # load first sample of English common_voice >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True) >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> dataset_iter = iter(dataset) >>> sample = next(dataset_iter) >>> # forward sample through model to get greedily predicted transcription ids >>> input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values >>> logits = model(input_values).logits[0] >>> pred_ids = torch.argmax(logits, axis=-1) >>> # retrieve word stamps (analogous commands for `output_char_offsets`) >>> outputs = tokenizer.decode(pred_ids, output_word_offsets=True) >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate >>> time_offset = model.config.inputs_to_logits_ratio / feature_extractor.sampling_rate >>> word_offsets = [ ... { ... "word": d["word"], ... "start_time": round(d["start_offset"] * time_offset, 2), ... "end_time": round(d["end_offset"] * time_offset, 2), ... } ... for d in outputs.word_offsets ... ] >>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer: >>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en >>> word_offsets[:3] [{'word': 'THE', 'start_time': 0.7, 'end_time': 0.78}, {'word': 'TRICK', 'start_time': 0.88, 'end_time': 1.08}, {'word': 'APPEARS', 'start_time': 1.2, 'end_time': 1.64}] ```""" # Convert inputs to python lists token_ids = to_py_obj(token_ids) return self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, output_word_offsets=output_word_offsets, **kwargs, ) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,) class Wav2Vec2Tokenizer(PreTrainedTokenizer): """ Constructs a Wav2Vec2 tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. word_delimiter_token (`str`, *optional*, defaults to `"|"`): The token used for defining the end of a word. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the output when decoding. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance for some models, *e.g.*, [wav2vec2-lv60](https://huggingface.co/models?search=lv60). return_attention_mask (`bool`, *optional*, defaults to `False`): Whether or not [`~Wav2Vec2Tokenizer.__call__`] should return `attention_mask`. <Tip> Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using `attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask` should be passed. For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as [wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be passed for batched inference. </Tip> **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = { "vocab_file": { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json" }, "tokenizer_config_file": { "facebook/wav2vec2-base-960h": ( "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer.json" ), }, } model_input_names = ["input_values", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|", do_lower_case=False, do_normalize=False, return_attention_mask=False, **kwargs, ): warnings.warn( "The class `Wav2Vec2Tokenizer` is deprecated and will be removed in version 5 of Transformers. Please use" " `Wav2Vec2Processor` or `Wav2Vec2CTCTokenizer` instead.", FutureWarning, ) self._word_delimiter_token = word_delimiter_token self.do_lower_case = do_lower_case self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, do_lower_case=do_lower_case, do_normalize=do_normalize, return_attention_mask=return_attention_mask, word_delimiter_token=word_delimiter_token, **kwargs, ) @property def word_delimiter_token(self) -> str: """ `str`: Padding token. Log an error if used while not having been set. """ if self._word_delimiter_token is None and self.verbose: logger.error("Using word_delimiter_token, but it is not set yet.") return None return str(self._word_delimiter_token) @property def word_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._word_delimiter_token is None: return None return self.convert_tokens_to_ids(self.word_delimiter_token) @word_delimiter_token.setter def word_delimiter_token(self, value): self._word_delimiter_token = value @word_delimiter_token_id.setter def word_delimiter_token_id(self, value): self._word_delimiter_token = self.convert_tokens_to_ids(value) @add_end_docstrings(WAV2VEC2_KWARGS_DOCSTRING) def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy array or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. """ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) # make sure input is in list format if is_batched and not isinstance(raw_speech[0], np.ndarray): raw_speech = [np.asarray(speech) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech) # always return batch if not is_batched: raw_speech = [raw_speech] # zero-mean and unit-variance normalization if self.do_normalize: raw_speech = [(x - np.mean(x)) / np.sqrt(np.var(x) + 1e-5) for x in raw_speech] # convert into correct format for padding encoded_inputs = BatchEncoding({"input_values": raw_speech}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=self.return_attention_mask, return_tensors=return_tensors, verbose=verbose, ) return padded_inputs @property def vocab_size(self) -> int: return len(self.decoder) def get_vocab(self) -> Dict: return dict(self.encoder, **self.added_tokens_encoder) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an index (integer) using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" result = self.decoder.get(index, self.unk_token) return result def convert_tokens_to_string(self, tokens: List[str]) -> str: """ Converts a connectionist-temporal-classification (CTC) output tokens into a single string. """ # group same tokens into non-repeating tokens in CTC style decoding grouped_tokens = [token_group[0] for token_group in groupby(tokens)] # filter self.pad_token which is used as CTC-blank token filtered_tokens = list(filter(lambda token: token != self.pad_token, grouped_tokens)) # replace delimiter token string = "".join([" " if token == self.word_delimiter_token else token for token in filtered_tokens]).strip() if self.do_lower_case: string = string.lower() return string def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: """ special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on the whole token list and not individually on added tokens """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) result = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue result.append(token) text = self.convert_tokens_to_string(result) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py", "repo_id": "transformers", "token_count": 16882 }
345
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert WavLM checkpoint.""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } TOP_LEVEL_KEYS = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_wavlm_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None): # load the pre-trained checkpoints checkpoint = torch.load(checkpoint_path) cfg = WavLMConfigOrig(checkpoint["cfg"]) model = WavLMOrig(cfg) model.load_state_dict(checkpoint["model"]) model.eval() if config_path is not None: config = WavLMConfig.from_pretrained(config_path) else: config = WavLMConfig() hf_wavlm = WavLMModel(config) recursively_load_weights(model, hf_wavlm) hf_wavlm.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") args = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
transformers/src/transformers/models/wavlm/convert_wavlm_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/wavlm/convert_wavlm_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3804 }
346
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ X-CLIP model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/xclip-base-patch32": "https://huggingface.co/microsoft/xclip-base-patch32/resolve/main/config.json", } class XCLIPTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XCLIPModel`]. It is used to instantiate an X-CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the X-CLIP [microsoft/xclip-base-patch32](https://huggingface.co/microsoft/xclip-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the X-CLIP text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XCLIPModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 77): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import XCLIPTextModel, XCLIPTextConfig >>> # Initializing a XCLIPTextModel with microsoft/xclip-base-patch32 style configuration >>> configuration = XCLIPTextConfig() >>> # Initializing a XCLIPTextConfig from the microsoft/xclip-base-patch32 style configuration >>> model = XCLIPTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xclip_text_model" def __init__( self, vocab_size=49408, hidden_size=512, intermediate_size=2048, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=77, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from XCLIPConfig if config_dict.get("model_type") == "xclip": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class XCLIPVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XCLIPModel`]. It is used to instantiate an X-CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the X-CLIP [microsoft/xclip-base-patch32](https://huggingface.co/microsoft/xclip-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mit_hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers of the Multiframe Integration Transformer (MIT). mit_intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Multiframe Integration Transformer (MIT). mit_num_hidden_layers (`int`, *optional*, defaults to 1): Number of hidden layers in the Multiframe Integration Transformer (MIT). mit_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Multiframe Integration Transformer (MIT). image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"gelu_new"` and ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). drop_path_rate (`float`, *optional*, defaults to 0.0): Stochastic depth rate. Example: ```python >>> from transformers import XCLIPVisionModel, XCLIPVisionConfig >>> # Initializing a XCLIPVisionModel with microsoft/xclip-base-patch32 style configuration >>> configuration = XCLIPVisionConfig() >>> # Initializing a XCLIPVisionModel model from the microsoft/xclip-base-patch32 style configuration >>> model = XCLIPVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xclip_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, mit_hidden_size=512, mit_intermediate_size=2048, mit_num_hidden_layers=1, mit_num_attention_heads=8, num_channels=3, image_size=224, patch_size=32, num_frames=8, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, drop_path_rate=0.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mit_hidden_size = mit_hidden_size self.mit_intermediate_size = mit_intermediate_size self.mit_num_hidden_layers = mit_num_hidden_layers self.mit_num_attention_heads = mit_num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.num_frames = num_frames self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.drop_path_rate = drop_path_rate @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from XCLIPConfig if config_dict.get("model_type") == "xclip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class XCLIPConfig(PretrainedConfig): r""" [`XCLIPConfig`] is the configuration class to store the configuration of a [`XCLIPModel`]. It is used to instantiate X-CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the X-CLIP [microsoft/xclip-base-patch32](https://huggingface.co/microsoft/xclip-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`XCLIPTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`XCLIPVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and vision projection layers. prompt_layers (`int`, *optional*, defaults to 2): Number of layers in the video specific prompt generator. prompt_alpha (`float`, *optional*, defaults to 0.1): Alpha value to use in the video specific prompt generator. prompt_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the video specific prompt generator. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. prompt_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads in the cross-attention of the video specific prompt generator. prompt_attention_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the attention layers in the video specific prompt generator. prompt_projection_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the projection layers in the video specific prompt generator. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* parameter. Default is used as per the original XCLIP implementation. kwargs (*optional*): Dictionary of keyword arguments. """ model_type = "xclip" def __init__( self, text_config=None, vision_config=None, projection_dim=512, prompt_layers=2, prompt_alpha=0.1, prompt_hidden_act="quick_gelu", prompt_num_attention_heads=8, prompt_attention_dropout=0.0, prompt_projection_dropout=0.0, logit_scale_init_value=2.6592, **kwargs, ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). text_config_dict = kwargs.pop("text_config_dict", None) vision_config_dict = kwargs.pop("vision_config_dict", None) super().__init__(**kwargs) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: text_config = {} # This is the complete result when using `text_config_dict`. _text_config_dict = XCLIPTextConfig(**text_config_dict).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: message = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`text_config_dict` is provided which will be used to initialize `XCLIPTextConfig`. The " f'value `text_config["{key}"]` will be overriden.' ) logger.info(message) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: vision_config = {} # This is the complete result when using `vision_config_dict`. _vision_config_dict = XCLIPVisionConfig(**vision_config_dict).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _vision_config_dict["id2label"] = { str(key): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: message = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`vision_config_dict` is provided which will be used to initialize `XCLIPVisionConfig`. " f'The value `vision_config["{key}"]` will be overriden.' ) logger.info(message) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `XCLIPTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `XCLIPVisionConfig` with default values.") self.text_config = XCLIPTextConfig(**text_config) self.vision_config = XCLIPVisionConfig(**vision_config) self.projection_dim = projection_dim self.prompt_layers = prompt_layers self.prompt_alpha = prompt_alpha self.prompt_hidden_act = prompt_hidden_act self.prompt_num_attention_heads = prompt_num_attention_heads self.prompt_attention_dropout = prompt_attention_dropout self.prompt_projection_dropout = prompt_projection_dropout self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: XCLIPTextConfig, vision_config: XCLIPVisionConfig, **kwargs): r""" Instantiate a [`XCLIPConfig`] (or a derived class) from xclip text model configuration and xclip vision model configuration. Returns: [`XCLIPConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
transformers/src/transformers/models/x_clip/configuration_x_clip.py/0
{ "file_path": "transformers/src/transformers/models/x_clip/configuration_x_clip.py", "repo_id": "transformers", "token_count": 8112 }
347
# Copyright 2023 The HuggingFace Team. All rights reserved. import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array: """ Helper function to read an audio file through ffmpeg. """ ar = f"{sampling_rate}" ac = "1" format_for_conversion = "f32le" ffmpeg_command = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process: output_stream = ffmpeg_process.communicate(bpayload) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error out_bytes = output_stream[0] audio = np.frombuffer(out_bytes, np.float32) if audio.shape[0] == 0: raise ValueError( "Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has " "a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote " "URL, ensure that the URL is the full address to **download** the audio file." ) return audio def ffmpeg_microphone( sampling_rate: int, chunk_length_s: float, format_for_conversion: str = "f32le", ): """ Helper function to read raw microphone data. """ ar = f"{sampling_rate}" ac = "1" if format_for_conversion == "s16le": size_of_sample = 2 elif format_for_conversion == "f32le": size_of_sample = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`") system = platform.system() if system == "Linux": format_ = "alsa" input_ = "default" elif system == "Darwin": format_ = "avfoundation" input_ = ":0" elif system == "Windows": format_ = "dshow" input_ = _get_microphone_name() ffmpeg_command = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample iterator = _ffmpeg_stream(ffmpeg_command, chunk_len) for item in iterator: yield item def ffmpeg_microphone_live( sampling_rate: int, chunk_length_s: float, stream_chunk_s: Optional[int] = None, stride_length_s: Optional[Union[Tuple[float, float], float]] = None, format_for_conversion: str = "f32le", ): """ Helper function to read audio from the microphone file through ffmpeg. This will output `partial` overlapping chunks starting from `stream_chunk_s` (if it is defined) until `chunk_length_s` is reached. It will make use of striding to avoid errors on the "sides" of the various chunks. Arguments: sampling_rate (`int`): The sampling_rate to use when reading the data from the microphone. Try using the model's sampling_rate to avoid resampling later. chunk_length_s (`float` or `int`): The length of the maximum chunk of audio to be sent returned. This includes the eventual striding. stream_chunk_s (`float` or `int`) The length of the minimal temporary audio to be returned. stride_length_s (`float` or `int` or `(float, float)`, *optional*, defaults to `None`) The length of the striding to be used. Stride is used to provide context to a model on the (left, right) of an audio sample but without using that part to actually make the prediction. Setting this does not change the length of the chunk. format_for_conversion (`str`, defalts to `f32le`) The name of the format of the audio samples to be returned by ffmpeg. The standard is `f32le`, `s16le` could also be used. Return: A generator yielding dictionaries of the following form `{"sampling_rate": int, "raw": np.array(), "partial" bool}` With optionnally a `"stride" (int, int)` key if `stride_length_s` is defined. `stride` and `raw` are all expressed in `samples`, and `partial` is a boolean saying if the current yield item is a whole chunk, or a partial temporary result to be later replaced by another larger chunk. """ if stream_chunk_s is not None: chunk_s = stream_chunk_s else: chunk_s = chunk_length_s microphone = ffmpeg_microphone(sampling_rate, chunk_s, format_for_conversion=format_for_conversion) if format_for_conversion == "s16le": dtype = np.int16 size_of_sample = 2 elif format_for_conversion == "f32le": dtype = np.float32 size_of_sample = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`") if stride_length_s is None: stride_length_s = chunk_length_s / 6 chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample if isinstance(stride_length_s, (int, float)): stride_length_s = [stride_length_s, stride_length_s] stride_left = int(round(sampling_rate * stride_length_s[0])) * size_of_sample stride_right = int(round(sampling_rate * stride_length_s[1])) * size_of_sample audio_time = datetime.datetime.now() delta = datetime.timedelta(seconds=chunk_s) for item in chunk_bytes_iter(microphone, chunk_len, stride=(stride_left, stride_right), stream=True): # Put everything back in numpy scale item["raw"] = np.frombuffer(item["raw"], dtype=dtype) item["stride"] = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) item["sampling_rate"] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def chunk_bytes_iter(iterator, chunk_len: int, stride: Tuple[int, int], stream: bool = False): """ Reads raw bytes from an iterator and does chunks of length `chunk_len`. Optionally adds `stride` to each chunks to get overlaps. `stream` is used to return partial results even if a full `chunk_len` is not yet available. """ acc = b"" stride_left, stride_right = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) _stride_left = 0 for raw in iterator: acc += raw if stream and len(acc) < chunk_len: stride = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(acc) >= chunk_len: # We are flushing the accumulator stride = (_stride_left, stride_right) item = {"raw": acc[:chunk_len], "stride": stride} if stream: item["partial"] = False yield item _stride_left = stride_left acc = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(acc) > stride_left: item = {"raw": acc, "stride": (_stride_left, 0)} if stream: item["partial"] = False yield item def _ffmpeg_stream(ffmpeg_command, buflen: int): """ Internal function to create the generator of data through ffmpeg """ bufsize = 2**24 # 16Mo try: with subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE, bufsize=bufsize) as ffmpeg_process: while True: raw = ffmpeg_process.stdout.read(buflen) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename") from error def _get_microphone_name(): """ Retrieve the microphone name in Windows . """ command = ["ffmpeg", "-list_devices", "true", "-f", "dshow", "-i", ""] try: ffmpeg_devices = subprocess.run(command, text=True, stderr=subprocess.PIPE, encoding="utf-8") microphone_lines = [line for line in ffmpeg_devices.stderr.splitlines() if "(audio)" in line] if microphone_lines: microphone_name = microphone_lines[0].split('"')[1] print(f"Using microphone: {microphone_name}") return f"audio={microphone_name}" except FileNotFoundError: print("ffmpeg was not found. Please install it or make sure it is in your system PATH.") return "default"
transformers/src/transformers/pipelines/audio_utils.py/0
{ "file_path": "transformers/src/transformers/pipelines/audio_utils.py", "repo_id": "transformers", "token_count": 3857 }
348
import collections import types import numpy as np from ..utils import ( add_end_docstrings, is_tensorflow_probability_available, is_tf_available, is_torch_available, requires_backends, ) from .base import ArgumentHandler, Dataset, Pipeline, PipelineException, build_pipeline_init_args if is_torch_available(): import torch from ..models.auto.modeling_auto import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, ) if is_tf_available() and is_tensorflow_probability_available(): import tensorflow as tf import tensorflow_probability as tfp from ..models.auto.modeling_tf_auto import ( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, ) class TableQuestionAnsweringArgumentHandler(ArgumentHandler): """ Handles arguments for the TableQuestionAnsweringPipeline """ def __call__(self, table=None, query=None, **kwargs): # Returns tqa_pipeline_inputs of shape: # [ # {"table": pd.DataFrame, "query": List[str]}, # ..., # {"table": pd.DataFrame, "query" : List[str]} # ] requires_backends(self, "pandas") import pandas as pd if table is None: raise ValueError("Keyword argument `table` cannot be None.") elif query is None: if isinstance(table, dict) and table.get("query") is not None and table.get("table") is not None: tqa_pipeline_inputs = [table] elif isinstance(table, list) and len(table) > 0: if not all(isinstance(d, dict) for d in table): raise ValueError( f"Keyword argument `table` should be a list of dict, but is {(type(d) for d in table)}" ) if table[0].get("query") is not None and table[0].get("table") is not None: tqa_pipeline_inputs = table else: raise ValueError( "If keyword argument `table` is a list of dictionaries, each dictionary should have a `table`" f" and `query` key, but only dictionary has keys {table[0].keys()} `table` and `query` keys." ) elif Dataset is not None and isinstance(table, Dataset) or isinstance(table, types.GeneratorType): return table else: raise ValueError( "Invalid input. Keyword argument `table` should be either of type `dict` or `list`, but " f"is {type(table)})" ) else: tqa_pipeline_inputs = [{"table": table, "query": query}] for tqa_pipeline_input in tqa_pipeline_inputs: if not isinstance(tqa_pipeline_input["table"], pd.DataFrame): if tqa_pipeline_input["table"] is None: raise ValueError("Table cannot be None.") tqa_pipeline_input["table"] = pd.DataFrame(tqa_pipeline_input["table"]) return tqa_pipeline_inputs @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class TableQuestionAnsweringPipeline(Pipeline): """ Table Question Answering pipeline using a `ModelForTableQuestionAnswering`. This pipeline is only available in PyTorch. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="google/tapas-base-finetuned-wtq") >>> table = { ... "Repository": ["Transformers", "Datasets", "Tokenizers"], ... "Stars": ["36542", "4512", "3934"], ... "Contributors": ["651", "77", "34"], ... "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], ... } >>> oracle(query="How many stars does the transformers repository have?", table=table) {'answer': 'AVERAGE > 36542', 'coordinates': [(0, 1)], 'cells': ['36542'], 'aggregator': 'AVERAGE'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This tabular question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"table-question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a tabular question answering task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=table-question-answering). """ default_input_names = "table,query" def __init__(self, args_parser=TableQuestionAnsweringArgumentHandler(), *args, **kwargs): super().__init__(*args, **kwargs) self._args_parser = args_parser if self.framework == "tf": mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy() mapping.update(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES) else: mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy() mapping.update(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES) self.check_model_type(mapping) self.aggregate = bool(getattr(self.model.config, "aggregation_labels", None)) and bool( getattr(self.model.config, "num_aggregation_labels", None) ) self.type = "tapas" if hasattr(self.model.config, "aggregation_labels") else None def batch_inference(self, **inputs): return self.model(**inputs) def sequential_inference(self, **inputs): """ Inference used for models that need to process sequences in a sequential fashion, like the SQA models which handle conversational query related to a table. """ if self.framework == "pt": all_logits = [] all_aggregations = [] prev_answers = None batch_size = inputs["input_ids"].shape[0] input_ids = inputs["input_ids"].to(self.device) attention_mask = inputs["attention_mask"].to(self.device) token_type_ids = inputs["token_type_ids"].to(self.device) token_type_ids_example = None for index in range(batch_size): # If sequences have already been processed, the token type IDs will be created according to the previous # answer. if prev_answers is not None: prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) for i in range(model_labels.shape[0]): segment_id = token_type_ids_example[:, 0].tolist()[i] col_id = token_type_ids_example[:, 1].tolist()[i] - 1 row_id = token_type_ids_example[:, 2].tolist()[i] - 1 if row_id >= 0 and col_id >= 0 and segment_id == 1: model_labels[i] = int(prev_answers[(col_id, row_id)]) token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device) input_ids_example = input_ids[index] attention_mask_example = attention_mask[index] # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) outputs = self.model( input_ids=input_ids_example.unsqueeze(0), attention_mask=attention_mask_example.unsqueeze(0), token_type_ids=token_type_ids_example.unsqueeze(0), ) logits = outputs.logits if self.aggregate: all_aggregations.append(outputs.logits_aggregation) all_logits.append(logits) dist_per_token = torch.distributions.Bernoulli(logits=logits) probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to( dist_per_token.probs.device ) coords_to_probs = collections.defaultdict(list) for i, p in enumerate(probabilities.squeeze().tolist()): segment_id = token_type_ids_example[:, 0].tolist()[i] col = token_type_ids_example[:, 1].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: coords_to_probs[(col, row)].append(p) prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} logits_batch = torch.cat(tuple(all_logits), 0) return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0)) else: all_logits = [] all_aggregations = [] prev_answers = None batch_size = inputs["input_ids"].shape[0] input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] token_type_ids = inputs["token_type_ids"].numpy() token_type_ids_example = None for index in range(batch_size): # If sequences have already been processed, the token type IDs will be created according to the previous # answer. if prev_answers is not None: prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) model_labels = np.zeros_like(prev_labels_example, dtype=np.int32) # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) for i in range(model_labels.shape[0]): segment_id = token_type_ids_example[:, 0].tolist()[i] col_id = token_type_ids_example[:, 1].tolist()[i] - 1 row_id = token_type_ids_example[:, 2].tolist()[i] - 1 if row_id >= 0 and col_id >= 0 and segment_id == 1: model_labels[i] = int(prev_answers[(col_id, row_id)]) token_type_ids_example[:, 3] = model_labels input_ids_example = input_ids[index] attention_mask_example = attention_mask[index] # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) outputs = self.model( input_ids=np.expand_dims(input_ids_example, axis=0), attention_mask=np.expand_dims(attention_mask_example, axis=0), token_type_ids=np.expand_dims(token_type_ids_example, axis=0), ) logits = outputs.logits if self.aggregate: all_aggregations.append(outputs.logits_aggregation) all_logits.append(logits) dist_per_token = tfp.distributions.Bernoulli(logits=logits) probabilities = dist_per_token.probs_parameter() * tf.cast(attention_mask_example, tf.float32) coords_to_probs = collections.defaultdict(list) token_type_ids_example = token_type_ids_example for i, p in enumerate(tf.squeeze(probabilities).numpy().tolist()): segment_id = token_type_ids_example[:, 0].tolist()[i] col = token_type_ids_example[:, 1].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: coords_to_probs[(col, row)].append(p) prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} logits_batch = tf.concat(tuple(all_logits), 0) return (logits_batch,) if not self.aggregate else (logits_batch, tf.concat(tuple(all_aggregations), 0)) def __call__(self, *args, **kwargs): r""" Answers queries according to a table. The pipeline accepts several types of inputs which are detailed below: - `pipeline(table, query)` - `pipeline(table, [query])` - `pipeline(table=table, query=query)` - `pipeline(table=table, query=[query])` - `pipeline({"table": table, "query": query})` - `pipeline({"table": table, "query": [query]})` - `pipeline([{"table": table, "query": query}, {"table": table, "query": query}])` The `table` argument should be a dict or a DataFrame built from that dict, containing the whole table: Example: ```python data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["56", "45", "59"], "number of movies": ["87", "53", "69"], "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], } ``` This dictionary can be passed in as such, or can be converted to a pandas DataFrame: Example: ```python import pandas as pd table = pd.DataFrame.from_dict(data) ``` Args: table (`pd.DataFrame` or `Dict`): Pandas DataFrame or dictionary that will be converted to a DataFrame containing all the table values. See above for an example of dictionary. query (`str` or `List[str]`): Query or list of queries that will be sent to the model alongside the table. sequential (`bool`, *optional*, defaults to `False`): Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the inference to be done sequentially to extract relations within sequences, given their conversational nature. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). Return: A dictionary or a list of dictionaries containing results: Each result is a dictionary with the following keys: - **answer** (`str`) -- The answer of the query given the table. If there is an aggregator, the answer will be preceded by `AGGREGATOR >`. - **coordinates** (`List[Tuple[int, int]]`) -- Coordinates of the cells of the answers. - **cells** (`List[str]`) -- List of strings made up of the answer cell values. - **aggregator** (`str`) -- If the model has an aggregator, this returns the aggregator. """ pipeline_inputs = self._args_parser(*args, **kwargs) results = super().__call__(pipeline_inputs, **kwargs) if len(results) == 1: return results[0] return results def _sanitize_parameters(self, sequential=None, padding=None, truncation=None, **kwargs): preprocess_params = {} if padding is not None: preprocess_params["padding"] = padding if truncation is not None: preprocess_params["truncation"] = truncation forward_params = {} if sequential is not None: forward_params["sequential"] = sequential return preprocess_params, forward_params, {} def preprocess(self, pipeline_input, sequential=None, padding=True, truncation=None): if truncation is None: if self.type == "tapas": truncation = "drop_rows_to_fit" else: truncation = "do_not_truncate" table, query = pipeline_input["table"], pipeline_input["query"] if table.empty: raise ValueError("table is empty") if query is None or query == "": raise ValueError("query is empty") inputs = self.tokenizer(table, query, return_tensors=self.framework, truncation=truncation, padding=padding) inputs["table"] = table return inputs def _forward(self, model_inputs, sequential=False): table = model_inputs.pop("table") if self.type == "tapas": if sequential: outputs = self.sequential_inference(**model_inputs) else: outputs = self.batch_inference(**model_inputs) else: outputs = self.model.generate(**model_inputs) model_outputs = {"model_inputs": model_inputs, "table": table, "outputs": outputs} return model_outputs def postprocess(self, model_outputs): inputs = model_outputs["model_inputs"] table = model_outputs["table"] outputs = model_outputs["outputs"] if self.type == "tapas": if self.aggregate: logits, logits_agg = outputs[:2] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits, logits_agg) answer_coordinates_batch, agg_predictions = predictions aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)} no_agg_label_index = self.model.config.no_aggregation_label_index aggregators_prefix = { i: aggregators[i] + " > " for i, pred in enumerate(agg_predictions) if pred != no_agg_label_index } else: logits = outputs[0] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits) answer_coordinates_batch = predictions[0] aggregators = {} aggregators_prefix = {} answers = [] for index, coordinates in enumerate(answer_coordinates_batch): cells = [table.iat[coordinate] for coordinate in coordinates] aggregator = aggregators.get(index, "") aggregator_prefix = aggregators_prefix.get(index, "") answer = { "answer": aggregator_prefix + ", ".join(cells), "coordinates": coordinates, "cells": [table.iat[coordinate] for coordinate in coordinates], } if aggregator: answer["aggregator"] = aggregator answers.append(answer) if len(answer) == 0: raise PipelineException("Empty answer") else: answers = [{"answer": answer} for answer in self.tokenizer.batch_decode(outputs, skip_special_tokens=True)] return answers if len(answers) > 1 else answers[0]
transformers/src/transformers/pipelines/table_question_answering.py/0
{ "file_path": "transformers/src/transformers/pipelines/table_question_answering.py", "repo_id": "transformers", "token_count": 9202 }
349
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Dict, Optional, Union from ..utils import is_torch_available from ..utils.quantization_config import QuantizationConfigMixin if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch class HfQuantizer(ABC): """ Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method yet. Attributes quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): The quantization config that defines the quantization parameters of your model that you want to quantize. modules_to_not_convert (`List[str]`, *optional*): The list of module names to not convert when quantizing the model. required_packages (`List[str]`, *optional*): The list of required pip packages to install prior to using the quantizer requires_calibration (`bool`): Whether the quantization method requires to calibrate the model before using it. requires_parameters_quantization (`bool`): Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is required to create a new xxxParameter in order to properly quantize the model. """ requires_calibration = False required_packages = None requires_parameters_quantization = False def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): self.quantization_config = quantization_config # -- Handle extra kwargs below -- self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) self.pre_quantized = kwargs.pop("pre_quantized", True) if not self.pre_quantized and self.requires_calibration: raise ValueError( f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " f"pass `pre_quantized=True` while knowing what you are doing." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Some quantization methods require to explicitly set the dtype of the model to a target dtype. You need to override this method in case you want to make sure that behavior is preserved Args: torch_dtype (`torch.dtype`): The input dtype that is passed in `from_pretrained` """ return torch_dtype def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: """ Override this method if you want to pass a override the existing device map with a new one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is passed, the device_map is set to `"auto"`` Args: device_map (`Union[dict, str]`, *optional*): The device_map that is passed through the `from_pretrained` method. """ return device_map def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. Args: torch_dtype (`torch.dtype`, *optional*): The torch_dtype that is used to compute the device_map. """ return torch_dtype def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: """ returns dtypes for modules that are not quantized - used for the computation of the device_map in case one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified in `_process_model_before_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize torch_dtype (`torch.dtype`): The dtype passed in `from_pretrained` method. """ return { name: torch_dtype for name, _ in model.named_parameters() if any(m in name for m in self.modules_to_not_convert) } def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: """adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" return max_memory def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any] ) -> bool: """ checks if a loaded state_dict component is part of quantized param + some validation; only defined if requires_parameters_quantization == True for quantization methods that require to create a new parameters for quantization. """ return False def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": """ takes needed components from state_dict and creates quantized param; only applicable if requires_parameters_quantization == True """ if not self.requires_parameters_quantization: raise AttributeError( f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}." ) def validate_environment(self, *args, **kwargs): """ This method is used to potentially check for potential conflicts with arguments that are passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers. If no explicit check are needed, simply return nothing. """ return def preprocess_model(self, model: "PreTrainedModel", **kwargs): """ Setting model attributes and/or converting model before weights loading. At this point the model should be initialized on the meta device so you can freely manipulate the skeleton of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_before_weight_loading`. """ model.is_quantized = True model.quantization_method = self.quantization_config.quant_method return self._process_model_before_weight_loading(model, **kwargs) def postprocess_model(self, model: "PreTrainedModel", **kwargs): """ Post-process the model post weights loading. Make sure to override the abstract method `_process_model_after_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_after_weight_loading`. """ model._is_quantized_training_enabled = self.is_trainable return self._process_model_after_weight_loading(model, **kwargs) @abstractmethod def _process_model_before_weight_loading(self, model, **kwargs): ... @abstractmethod def _process_model_after_weight_loading(self, model, **kwargs): ... @property @abstractmethod def is_serializable(self): ... @property @abstractmethod def is_trainable(self): ...
transformers/src/transformers/quantizers/base.py/0
{ "file_path": "transformers/src/transformers/quantizers/base.py", "repo_id": "transformers", "token_count": 3259 }
350
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "agents": ["Agent", "AzureOpenAiAgent", "HfAgent", "LocalAgent", "OpenAiAgent"], "base": ["PipelineTool", "RemoteTool", "Tool", "launch_gradio_demo", "load_tool"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["document_question_answering"] = ["DocumentQuestionAnsweringTool"] _import_structure["image_captioning"] = ["ImageCaptioningTool"] _import_structure["image_question_answering"] = ["ImageQuestionAnsweringTool"] _import_structure["image_segmentation"] = ["ImageSegmentationTool"] _import_structure["speech_to_text"] = ["SpeechToTextTool"] _import_structure["text_classification"] = ["TextClassificationTool"] _import_structure["text_question_answering"] = ["TextQuestionAnsweringTool"] _import_structure["text_summarization"] = ["TextSummarizationTool"] _import_structure["text_to_speech"] = ["TextToSpeechTool"] _import_structure["translation"] = ["TranslationTool"] if TYPE_CHECKING: from .agents import Agent, AzureOpenAiAgent, HfAgent, LocalAgent, OpenAiAgent from .base import PipelineTool, RemoteTool, Tool, launch_gradio_demo, load_tool try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .document_question_answering import DocumentQuestionAnsweringTool from .image_captioning import ImageCaptioningTool from .image_question_answering import ImageQuestionAnsweringTool from .image_segmentation import ImageSegmentationTool from .speech_to_text import SpeechToTextTool from .text_classification import TextClassificationTool from .text_question_answering import TextQuestionAnsweringTool from .text_summarization import TextSummarizationTool from .text_to_speech import TextToSpeechTool from .translation import TranslationTool else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/tools/__init__.py/0
{ "file_path": "transformers/src/transformers/tools/__init__.py", "repo_id": "transformers", "token_count": 984 }
351
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer from .base import PipelineTool LANGUAGE_CODES = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class TranslationTool(PipelineTool): """ Example: ```py from transformers.tools import TranslationTool translator = TranslationTool() translator("This is a super nice API!", src_lang="English", tgt_lang="French") ``` """ default_checkpoint = "facebook/nllb-200-distilled-600M" description = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) name = "translator" pre_processor_class = AutoTokenizer model_class = AutoModelForSeq2SeqLM lang_to_code = LANGUAGE_CODES inputs = ["text", "text", "text"] outputs = ["text"] def encode(self, text, src_lang, tgt_lang): if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language.") if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language.") src_lang = self.lang_to_code[src_lang] tgt_lang = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( text, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang ) def forward(self, inputs): return self.model.generate(**inputs) def decode(self, outputs): return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=True)
transformers/src/transformers/tools/translation.py/0
{ "file_path": "transformers/src/transformers/tools/translation.py", "repo_id": "transformers", "token_count": 4126 }
352
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class FlaxForcedBOSTokenLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxForcedEOSTokenLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxForceTokensLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGenerationMixin(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLogitsProcessorList(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLogitsWarper(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMinLengthLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxSuppressTokensAtBeginLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxSuppressTokensLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxTemperatureLogitsWarper(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxTopKLogitsWarper(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxTopPLogitsWarper(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWhisperTimeStampLogitsProcessor(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertForPreTraining(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAlbertPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None FLAX_MODEL_FOR_CAUSAL_LM_MAPPING = None FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None FLAX_MODEL_FOR_MASKED_LM_MAPPING = None FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None FLAX_MODEL_FOR_PRETRAINING_MAPPING = None FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING = None FLAX_MODEL_MAPPING = None class FlaxAutoModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForImageClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForNextSentencePrediction(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForPreTraining(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForSeq2SeqLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForSpeechSeq2Seq(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxAutoModelForVision2Seq(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBartDecoderPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBartForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBartForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBartForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBartForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBartModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBartPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBeitForImageClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBeitForMaskedImageModeling(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBeitModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBeitPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForNextSentencePrediction(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForPreTraining(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBertPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdForPreTraining(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBigBirdPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBlenderbotForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBlenderbotModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBlenderbotPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBlenderbotSmallForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBlenderbotSmallModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBlenderbotSmallPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBloomForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBloomModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxBloomPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxCLIPModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxCLIPPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxCLIPTextModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxCLIPTextModelWithProjection(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxCLIPTextPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxCLIPVisionModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxCLIPVisionPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxDistilBertForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxDistilBertForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxDistilBertForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxDistilBertForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxDistilBertForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxDistilBertModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxDistilBertPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraForPreTraining(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxElectraPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxEncoderDecoderModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPT2LMHeadModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPT2Model(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPT2PreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPTNeoForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPTNeoModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPTNeoPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPTJForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPTJModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxGPTJPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLlamaForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLlamaModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLlamaPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLongT5ForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLongT5Model(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxLongT5PreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMarianModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMarianMTModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMarianPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMBartForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMBartForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMBartForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMBartModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMBartPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMistralForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMistralModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMistralPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMT5EncoderModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMT5ForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxMT5Model(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxOPTForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxOPTModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxOPTPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxPegasusForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxPegasusModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxPegasusPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRegNetForImageClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRegNetModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRegNetPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxResNetForImageClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxResNetModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxResNetPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRobertaPreLayerNormPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRoFormerForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRoFormerForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRoFormerForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRoFormerForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRoFormerForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRoFormerModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxRoFormerPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxSpeechEncoderDecoderModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxT5EncoderModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxT5ForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxT5Model(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxT5PreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxVisionEncoderDecoderModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxVisionTextDualEncoderModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxViTForImageClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxViTModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxViTPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWav2Vec2ForCTC(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWav2Vec2ForPreTraining(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWav2Vec2Model(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWav2Vec2PreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWhisperForAudioClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWhisperForConditionalGeneration(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWhisperModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxWhisperPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXGLMForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXGLMModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXGLMPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class FlaxXLMRobertaForCausalLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXLMRobertaForMaskedLM(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXLMRobertaForMultipleChoice(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXLMRobertaForQuestionAnswering(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXLMRobertaForSequenceClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXLMRobertaForTokenClassification(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXLMRobertaModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) class FlaxXLMRobertaPreTrainedModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"])
transformers/src/transformers/utils/dummy_flax_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_flax_objects.py", "repo_id": "transformers", "token_count": 13843 }
353
# coding=utf-8 # Copyright 2020 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Logging utilities.""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from logging import captureWarnings as _captureWarnings from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None log_levels = { "detail": logging.DEBUG, # will also print filename and line number "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.WARNING _tqdm_active = not hf_hub_utils.are_progress_bars_disabled() def _get_default_logging_level(): """ If TRANSFORMERS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to `_default_log_level` """ env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. # set defaults based on https://github.com/pyinstaller/pyinstaller/issues/7334#issuecomment-1357447176 if sys.stderr is None: sys.stderr = open(os.devnull, "w") _default_handler.flush = sys.stderr.flush # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) # if logging level is debug, we add pathname and lineno to formatter for easy debugging if os.getenv("TRANSFORMERS_VERBOSITY", None) == "detail": formatter = logging.Formatter("[%(levelname)s|%(pathname)s:%(lineno)s] %(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) library_root_logger.propagate = False def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None def get_log_levels_dict(): return log_levels def captureWarnings(capture): """ Calls the `captureWarnings` method from the logging library to enable management of the warnings emitted by the `warnings` library. Read more about this method here: https://docs.python.org/3/library/logging.html#integration-with-the-warnings-module All warnings will be logged through the `py.warnings` logger. Careful: this method also adds a handler to this logger if it does not already have one, and updates the logging level of that logger to the library's root logger. """ logger = get_logger("py.warnings") if not logger.handlers: logger.addHandler(_default_handler) logger.setLevel(_get_library_root_logger().level) _captureWarnings(capture) def get_logger(name: Optional[str] = None) -> logging.Logger: """ Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom transformers module. """ if name is None: name = _get_library_name() _configure_library_root_logger() return logging.getLogger(name) def get_verbosity() -> int: """ Return the current level for the 🤗 Transformers's root logger as an int. Returns: `int`: The logging level. <Tip> 🤗 Transformers has following logging levels: - 50: `transformers.logging.CRITICAL` or `transformers.logging.FATAL` - 40: `transformers.logging.ERROR` - 30: `transformers.logging.WARNING` or `transformers.logging.WARN` - 20: `transformers.logging.INFO` - 10: `transformers.logging.DEBUG` </Tip>""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Transformers's root logger. Args: verbosity (`int`): Logging level, e.g., one of: - `transformers.logging.CRITICAL` or `transformers.logging.FATAL` - `transformers.logging.ERROR` - `transformers.logging.WARNING` or `transformers.logging.WARN` - `transformers.logging.INFO` - `transformers.logging.DEBUG` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): """Set the verbosity to the `INFO` level.""" return set_verbosity(INFO) def set_verbosity_warning(): """Set the verbosity to the `WARNING` level.""" return set_verbosity(WARNING) def set_verbosity_debug(): """Set the verbosity to the `DEBUG` level.""" return set_verbosity(DEBUG) def set_verbosity_error(): """Set the verbosity to the `ERROR` level.""" return set_verbosity(ERROR) def disable_default_handler() -> None: """Disable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def enable_default_handler() -> None: """Enable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def add_handler(handler: logging.Handler) -> None: """adds a handler to the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(handler) def remove_handler(handler: logging.Handler) -> None: """removes given handler from the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(handler) def disable_propagation() -> None: """ Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _configure_library_root_logger() _get_library_root_logger().propagate = False def enable_propagation() -> None: """ Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to prevent double logging if the root logger has been configured. """ _configure_library_root_logger() _get_library_root_logger().propagate = True def enable_explicit_format() -> None: """ Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(formatter) def reset_format() -> None: """ Resets the formatting for HuggingFace Transformers's loggers. All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None) def warning_advice(self, *args, **kwargs): """ This method is identical to `logger.warning()`, but if env var TRANSFORMERS_NO_ADVISORY_WARNINGS=1 is set, this warning will not be printed """ no_advisory_warnings = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", False) if no_advisory_warnings: return self.warning(*args, **kwargs) logging.Logger.warning_advice = warning_advice @functools.lru_cache(None) def warning_once(self, *args, **kwargs): """ This method is identical to `logger.warning()`, but will emit the warning with the same message only once Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache. The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to another type of cache that includes the caller frame information in the hashing function. """ self.warning(*args, **kwargs) logging.Logger.warning_once = warning_once class EmptyTqdm: """Dummy tqdm which doesn't do anything.""" def __init__(self, *args, **kwargs): # pylint: disable=unused-argument self._iterator = args[0] if args else None def __iter__(self): return iter(self._iterator) def __getattr__(self, _): """Return empty function.""" def empty_fn(*args, **kwargs): # pylint: disable=unused-argument return return empty_fn def __enter__(self): return self def __exit__(self, type_, value, traceback): return class _tqdm_cls: def __call__(self, *args, **kwargs): if _tqdm_active: return tqdm_lib.tqdm(*args, **kwargs) else: return EmptyTqdm(*args, **kwargs) def set_lock(self, *args, **kwargs): self._lock = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*args, **kwargs) def get_lock(self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() tqdm = _tqdm_cls() def is_progress_bar_enabled() -> bool: """Return a boolean indicating whether tqdm progress bars are enabled.""" global _tqdm_active return bool(_tqdm_active) def enable_progress_bar(): """Enable tqdm progress bar.""" global _tqdm_active _tqdm_active = True hf_hub_utils.enable_progress_bars() def disable_progress_bar(): """Disable tqdm progress bar.""" global _tqdm_active _tqdm_active = False hf_hub_utils.disable_progress_bars()
transformers/src/transformers/utils/logging.py/0
{ "file_path": "transformers/src/transformers/utils/logging.py", "repo_id": "transformers", "token_count": 4263 }
354
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule, OptionalDependencyNotAvailable, is_tokenizers_available {%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %} from ...utils import is_tf_available {% endif %} {%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %} from ...utils import is_torch_available {% endif %} {%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %} from ...utils import is_flax_available {% endif %} _import_structure = { "configuration_{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP", "{{cookiecutter.camelcase_modelname}}Config"], "tokenization_{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.camelcase_modelname}}Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_{{cookiecutter.lowercase_modelname}}_fast"] = ["{{cookiecutter.camelcase_modelname}}TokenizerFast"] {%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %} {% if cookiecutter.is_encoder_decoder_model == "False" %} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_{{cookiecutter.lowercase_modelname}}"] = [ "{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "{{cookiecutter.camelcase_modelname}}ForMaskedLM", "{{cookiecutter.camelcase_modelname}}ForCausalLM", "{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "{{cookiecutter.camelcase_modelname}}ForTokenClassification", "{{cookiecutter.camelcase_modelname}}Layer", "{{cookiecutter.camelcase_modelname}}Model", "{{cookiecutter.camelcase_modelname}}PreTrainedModel", "load_tf_weights_in_{{cookiecutter.lowercase_modelname}}", ] {% else %} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_{{cookiecutter.lowercase_modelname}}"] = [ "{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "{{cookiecutter.camelcase_modelname}}ForCausalLM", "{{cookiecutter.camelcase_modelname}}Model", "{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] {% endif %} {% endif %} {%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %} {% if cookiecutter.is_encoder_decoder_model == "False" %} try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_{{cookiecutter.lowercase_modelname}}"] = [ "TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "TF{{cookiecutter.camelcase_modelname}}ForMaskedLM", "TF{{cookiecutter.camelcase_modelname}}ForCausalLM", "TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "TF{{cookiecutter.camelcase_modelname}}ForTokenClassification", "TF{{cookiecutter.camelcase_modelname}}Layer", "TF{{cookiecutter.camelcase_modelname}}Model", "TF{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] {% else %} try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_{{cookiecutter.lowercase_modelname}}"] = [ "TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "TF{{cookiecutter.camelcase_modelname}}Model", "TF{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] {% endif %} {% endif %} {%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %} {% if cookiecutter.is_encoder_decoder_model == "False" %} try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_{{cookiecutter.lowercase_modelname}}"] = [ "Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM", "Flax{{cookiecutter.camelcase_modelname}}ForCausalLM", "Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification", "Flax{{cookiecutter.camelcase_modelname}}Layer", "Flax{{cookiecutter.camelcase_modelname}}Model", "Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] {% else %} try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_{{cookiecutter.lowercase_modelname}}"] = [ "Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "Flax{{cookiecutter.camelcase_modelname}}Model", "Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] {% endif %} {% endif %} if TYPE_CHECKING: from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config from .tokenization_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_{{cookiecutter.lowercase_modelname}}_fast import {{cookiecutter.camelcase_modelname}}TokenizerFast {%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %} {% if cookiecutter.is_encoder_decoder_model == "False" %} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.camelcase_modelname}}ForMaskedLM, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForMultipleChoice, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}ForTokenClassification, {{cookiecutter.camelcase_modelname}}Layer, {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}PreTrainedModel, load_tf_weights_in_{{cookiecutter.lowercase_modelname}}, ) {% else %} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% endif %} {% endif %} {%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %} {% if cookiecutter.is_encoder_decoder_model == "False" %} try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_{{cookiecutter.lowercase_modelname}} import ( TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForCausalLM, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification, TF{{cookiecutter.camelcase_modelname}}Layer, TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% else %} try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_{{cookiecutter.lowercase_modelname}} import ( TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% endif %} {% endif %} {%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %} {% if cookiecutter.is_encoder_decoder_model == "False" %} try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_{{cookiecutter.lowercase_modelname}} import ( Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM, Flax{{cookiecutter.camelcase_modelname}}ForCausalLM, Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice, Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification, Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification, Flax{{cookiecutter.camelcase_modelname}}Layer, Flax{{cookiecutter.camelcase_modelname}}Model, Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% else %} try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_{{cookiecutter.lowercase_modelname}} import ( Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification, Flax{{cookiecutter.camelcase_modelname}}Model, Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% endif %} {% endif %} else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/__init__.py/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/__init__.py", "repo_id": "transformers", "token_count": 4961 }
355
{ "modelname": "Template", "uppercase_modelname": "TEMPLATE", "lowercase_modelname": "template", "camelcase_modelname": "Template", "authors": "The HuggingFace Team", "checkpoint_identifier": "brand-new-bert-base-cased", "tokenizer_type": "Based on BERT", "generate_tensorflow_pytorch_and_flax": "PyTorch, TensorFlow and Flax", "is_encoder_decoder_model": "False" }
transformers/templates/adding_a_new_model/tests/encoder-bert-tokenizer.json/0
{ "file_path": "transformers/templates/adding_a_new_model/tests/encoder-bert-tokenizer.json", "repo_id": "transformers", "token_count": 148 }
356
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import io import itertools import json import os import unittest from copy import deepcopy from functools import partial import datasets from parameterized import parameterized import tests.trainer.test_trainer import transformers from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa from transformers import AutoModel, TrainingArguments, is_torch_available, logging from transformers.integrations.deepspeed import ( HfDeepSpeedConfig, is_deepspeed_available, unset_hf_deepspeed_config, ) from transformers.testing_utils import ( CaptureLogger, CaptureStd, CaptureStderr, LoggingLevel, TestCasePlus, backend_device_count, execute_subprocess_async, mockenv_context, require_deepspeed, require_optuna, require_torch_accelerator, require_torch_multi_accelerator, slow, torch_device, ) from transformers.trainer_utils import get_last_checkpoint, set_seed from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device if is_torch_available(): import torch from tests.trainer.test_trainer import ( # noqa RegressionModelConfig, RegressionPreTrainedModel, ) # hack to restore original logging level pre #21700 get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info") set_seed(42) # default torch.distributed port DEFAULT_MASTER_PORT = "10999" T5_SMALL = "t5-small" T5_TINY = "patrickvonplaten/t5-tiny-random" GPT2_TINY = "sshleifer/tiny-gpt2" GPTJ_TINY = "hf-internal-testing/tiny-random-gptj" def load_json(path): with open(path) as f: return json.load(f) def get_master_port(real_launcher=False): """ When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed) the issue is that once the port is tied it can't be used anywhere else outside of this process, since torch.dist doesn't free the port until the process exits. Therefore for the sake of being able to run both emulated launcher and normal launcher tests we need 2 distinct ports. This function will give the right port in the right context. For real launcher it'll give the base port, for emulated launcher it'll give the base port + 1. In both cases a string is returned. Args: `real_launcher`: whether a real launcher is going to be used, or the emulated one """ master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT) if not real_launcher: master_port_base = str(int(master_port_base) + 1) return master_port_base def require_deepspeed_aio(test_case): """ Decorator marking a test that requires deepspeed aio (nvme) """ if not is_deepspeed_available(): return unittest.skip("test requires deepspeed")(test_case) import deepspeed from deepspeed.ops.aio import AsyncIOBuilder if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]: return unittest.skip("test requires deepspeed async-io")(test_case) else: return test_case if is_deepspeed_available(): from deepspeed.utils import logger as deepspeed_logger # noqa from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled # noqa def get_launcher(distributed=False): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1 master_port = get_master_port(real_launcher=True) return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split() ZERO2 = "zero2" ZERO3 = "zero3" FP16 = "fp16" BF16 = "bf16" HF_OPTIM = "hf_optim" HF_SCHEDULER = "hf_scheduler" DS_OPTIM = "ds_optim" DS_SCHEDULER = "ds_scheduler" optims = [HF_OPTIM, DS_OPTIM] schedulers = [HF_SCHEDULER, DS_SCHEDULER] stages = [ZERO2, ZERO3] if is_torch_bf16_available_on_device(torch_device): dtypes = [FP16, BF16] else: dtypes = [FP16] def parameterized_custom_name_func(func, param_num, param): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test params = list(itertools.product(stages, dtypes)) params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers)) @require_deepspeed @require_torch_accelerator class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon): """ Testing non-Trainer DeepSpeed integration """ def setUp(self): super().setUp() master_port = get_master_port(real_launcher=False) self.dist_env_1_gpu = { "MASTER_ADDR": "localhost", "MASTER_PORT": master_port, "RANK": "0", "LOCAL_RANK": "0", "WORLD_SIZE": "1", } def tearDown(self): super().tearDown() # reset the ds config global so that tests state doesn't leak unset_hf_deepspeed_config() def test_init_zero3_fp16(self): # test that zero.Init() works correctly under zero3/fp16 ds_config = { "train_batch_size": 1, "zero_optimization": { "stage": 3, }, } dschf = HfDeepSpeedConfig(ds_config) self.assertTrue(dschf.is_zero3()) self.assertTrue(is_deepspeed_zero3_enabled()) with LoggingLevel(logging.INFO): with mockenv_context(**self.dist_env_1_gpu): logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: AutoModel.from_pretrained(T5_TINY) self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) # now remove zero optimization del ds_config["zero_optimization"] dschf = HfDeepSpeedConfig(ds_config) self.assertFalse(dschf.is_zero3()) self.assertFalse(is_deepspeed_zero3_enabled()) with LoggingLevel(logging.INFO): with mockenv_context(**self.dist_env_1_gpu): logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: AutoModel.from_pretrained(T5_TINY) self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out) def test_init_zero3_missing_params(self): # test that zero.Init() for missing parameters works correctly under zero3 import deepspeed import torch from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel class TinyGPT2WithUninitializedWeights(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = AutoModel.from_pretrained(GPT2_TINY, config=config) self.new_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=True) def forward(self, *args, **kwargs): transformer_outputs = self.transformer(*args, **kwargs) hidden_states = transformer_outputs[0] return self.new_head(hidden_states).float() def _init_weights(self, module): super()._init_weights(module) if module is self.new_head: self.new_head.weight.data.fill_(-100.0) self.new_head.bias.data.fill_(+100.0) ds_config = { "train_batch_size": 1, "zero_optimization": { "stage": 3, }, } dschf = HfDeepSpeedConfig(ds_config) self.assertTrue(dschf.is_zero3()) self.assertTrue(is_deepspeed_zero3_enabled()) with LoggingLevel(logging.INFO): with mockenv_context(**self.dist_env_1_gpu): logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY) self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight") with deepspeed.zero.GatheredParameters([model.new_head.weight, model.new_head.bias]): self.assertTrue( torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)), ) self.assertTrue( torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)), ) # now remove zero optimization del ds_config["zero_optimization"] dschf = HfDeepSpeedConfig(ds_config) self.assertFalse(dschf.is_zero3()) self.assertFalse(is_deepspeed_zero3_enabled()) with LoggingLevel(logging.INFO): with mockenv_context(**self.dist_env_1_gpu): logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY) self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out) self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight") self.assertTrue( torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)), ) self.assertTrue( torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)), ) def test_arange_bf16(self): # Tests that configuring DeepSpeed with 16 bits does not cause float `torch.arange()` tensors to be cast down. # NOTE -- this assumes that the function calls have the following downcast-preventing pattern, i.e. # `torch.arange(...,dtype=torch.int64)` followed by a cast like `.to(torch.float32)`. 🚨 If this pattern is # NOT applied (e.g. `torch.arange(...,dtype=torch.float32)` is used), DeepSpeed can automatically cast it down # at init time. See https://github.com/huggingface/transformers/issues/28685 for more info. ds_config = { "train_batch_size": 1, "zero_optimization": { "stage": 3, }, "bf16": {"enabled": True}, } dschf = HfDeepSpeedConfig(ds_config) self.assertTrue(dschf.is_zero3()) self.assertTrue(is_deepspeed_zero3_enabled()) with LoggingLevel(logging.INFO): with mockenv_context(**self.dist_env_1_gpu): logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: model = AutoModel.from_pretrained(GPTJ_TINY) self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) # The model weights are in BF16 as per deepspeed config self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16") good_deepspeed_sin_cos = model.h[0].attn.embed_positions # Monkeypatches the function that creates RoPE embeddings using the INCORRECT torch.arange() pattern, and # then recreates the model def bad_deepspeed_create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) # Incorrect pattern here: torch.arange has dtype=torch.float32 as its argument, and it will automatically # converted to BF16 by DeepSpeed sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=inv_freq.dtype), inv_freq) return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) good_deepspeed_create_sinusoidal_positions = transformers.models.gptj.modeling_gptj.create_sinusoidal_positions transformers.models.gptj.modeling_gptj.create_sinusoidal_positions = bad_deepspeed_create_sinusoidal_positions with LoggingLevel(logging.INFO): with mockenv_context(**self.dist_env_1_gpu): logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: model = AutoModel.from_pretrained(GPTJ_TINY) self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16") bad_deepspeed_sin_cos = model.h[0].attn.embed_positions # Compares the two values: the two sets of values are different, and the correct one matches the torch # (i.e. outside DeepSpeed) version. good_torch_sin_cos = good_deepspeed_create_sinusoidal_positions( model.config.max_position_embeddings, model.config.rotary_dim ) self.assertFalse(torch.allclose(good_deepspeed_sin_cos, bad_deepspeed_sin_cos)) self.assertTrue(torch.allclose(good_torch_sin_cos, good_deepspeed_sin_cos.cpu())) # Finally, we can see that the incorrect pattern is okay on vanilla torch, demostrating that this issue is # exclusive to DeepSpeed bad_torch_sin_cos = bad_deepspeed_create_sinusoidal_positions( model.config.max_position_embeddings, model.config.rotary_dim ) self.assertTrue(torch.allclose(bad_torch_sin_cos, good_torch_sin_cos)) class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus): def setUp(self): super().setUp() args = TrainingArguments(".") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size master_port = get_master_port(real_launcher=False) self.dist_env_1_gpu = { "MASTER_ADDR": "localhost", "MASTER_PORT": master_port, "RANK": "0", "LOCAL_RANK": "0", "WORLD_SIZE": "1", } self.ds_config_file = { "zero2": f"{self.test_file_dir_str}/ds_config_zero2.json", "zero3": f"{self.test_file_dir_str}/ds_config_zero3.json", } # use self.get_config_dict(stage) to use these to ensure the original is not modified with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f: config_zero2 = json.load(f) with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f: config_zero3 = json.load(f) # The following setting slows things down, so don't enable it by default unless needed by a test. # It's in the file as a demo for users since we want everything to work out of the box even if slower. config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False self.ds_config_dict = { "zero2": config_zero2, "zero3": config_zero3, } def tearDown(self): super().tearDown() # reset the ds config global so that tests state doesn't leak unset_hf_deepspeed_config() def get_config_dict(self, stage): # As some tests modify the dict, always make a copy return deepcopy(self.ds_config_dict[stage]) @require_deepspeed @require_torch_accelerator class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon): """ This class is for testing directly via get_regression_trainer It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods which we can re-use here. Important: this class' setup can only work with a single gpu because it runs within the current pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher. Note: if any of the tests of this class get run there will be at least one gpu occupied by them until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels won't be released until this pytest worker exits. This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This is not a bug. """ # --- These tests are enough to run on one of zero stages --- # def test_hf_ds_config_mismatch(self): ds_config = self.get_config_dict(ZERO2) # Purposefully configure these values to mismatch TrainingArguments values. # This currently doesn't cover all keys (but it could) per_device_train_batch_size = 2 ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2 ds_config["train_batch_size"] = 1000 gradient_accumulation_steps = 2 ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2 max_grad_norm = 1.0 ds_config["gradient_clipping"] = max_grad_norm + 0.1 adam_beta1, adam_beta2 = 0.9, 0.99 ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1] fp16 = True ds_config["fp16"]["enabled"] = not fp16 keys = [ "per_device_train_batch_size", "train_batch_size", "gradient_accumulation_steps", "max_grad_norm", "betas", "fp16", ] with mockenv_context(**self.dist_env_1_gpu): trainer = get_regression_trainer( local_rank=0, fp16=fp16, deepspeed=ds_config, per_device_train_batch_size=per_device_train_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, max_grad_norm=max_grad_norm, adam_beta1=adam_beta1, adam_beta2=adam_beta2, ) with self.assertRaises(Exception) as context: trainer.train() for key in keys: self.assertTrue( key in str(context.exception), f"{key} is not in the exception message:\n{context.exception}", ) # Test various combos # 1. DS scheduler + DS optimizer: this is already tested by most other tests # 2. HF scheduler + HF optimizer: # 3. DS scheduler + HF optimizer: # 4. HF scheduler + DS optimizer: def test_hf_scheduler_hf_optimizer(self): a = 0 with mockenv_context(**self.dist_env_1_gpu): ds_config_zero2_dict = self.get_config_dict(ZERO2) del ds_config_zero2_dict["optimizer"] # force default HF Trainer optimizer del ds_config_zero2_dict["scheduler"] # force default HF Trainer scheduler ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) trainer.train() new_a = trainer.model.a.item() self.assertNotEqual(new_a, a) def test_ds_scheduler_hf_optimizer(self): a = 0 with mockenv_context(**self.dist_env_1_gpu): ds_config_zero2_dict = self.get_config_dict(ZERO2) del ds_config_zero2_dict["optimizer"] # force default HF Trainer optimizer ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) trainer.train() new_a = trainer.model.a.item() self.assertNotEqual(new_a, a) def test_hf_scheduler_ds_optimizer(self): a = 0 with mockenv_context(**self.dist_env_1_gpu): ds_config_zero2_dict = self.get_config_dict(ZERO2) del ds_config_zero2_dict["scheduler"] # force default HF Trainer scheduler ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) trainer.train() new_a = trainer.model.a.item() self.assertNotEqual(new_a, a) @require_deepspeed_aio def test_stage3_nvme_offload(self): with mockenv_context(**self.dist_env_1_gpu): # this actually doesn't have to be on NVMe, any storage will do since this test only # runs a simple check that we can use some directory as if it were NVMe nvme_path = self.get_auto_remove_tmp_dir() nvme_config = {"device": "nvme", "nvme_path": nvme_path} ds_config_zero3_dict = self.get_config_dict(ZERO3) ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict) with CaptureLogger(deepspeed_logger) as cl: trainer.train() self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") @require_optuna def test_hyperparameter_search(self): with mockenv_context(**self.dist_env_1_gpu): ds_config_zero3_dict = self.get_config_dict(ZERO3) # hyperparameter_search requires model_init() to recreate the model for each trial def model_init(): config = RegressionModelConfig(a=0, b=0, double_output=False) model = RegressionPreTrainedModel(config) return model trainer = get_regression_trainer( local_rank=0, fp16=True, model_init=model_init, deepspeed=ds_config_zero3_dict, ) n_trials = 3 with CaptureLogger(deepspeed_logger) as cl: with CaptureStd() as cs: trainer.hyperparameter_search(direction="maximize", n_trials=n_trials) self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output") self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output") # --- These tests need to run on both zero stages --- # @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_hf_optimizer_with_offload(self, stage, dtype): # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB)) ds_config_dict = self.get_config_dict(stage) del ds_config_dict["optimizer"] # force default HF Trainer optimizer # force cpu offload ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu" ds_config_dict["zero_force_ds_cpu_optimizer"] = False # offload is not efficient w/o CPUAdam with mockenv_context(**self.dist_env_1_gpu): kwargs = {"local_rank": 0, "deepspeed": ds_config_dict} kwargs[dtype] = True trainer = get_regression_trainer(**kwargs) with CaptureLogger(deepspeed_logger) as cl: trainer.train() self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_fake_notebook_no_launcher(self, stage, dtype): # this setup emulates a notebook where a launcher needs to be emulated by hand # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger. with mockenv_context(**self.dist_env_1_gpu): kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)} kwargs[dtype] = True trainer = get_regression_trainer(**kwargs) with CaptureLogger(deepspeed_logger) as cl: trainer.train() self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_early_get_last_lr(self, stage, dtype): # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may # not run for the first few dozen steps while loss scale is too large, and thus during # that time `get_last_lr` will fail if called during that warm up stage, # # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step. with mockenv_context(**self.dist_env_1_gpu): a = b = 0.0 kwargs = { "a": a, "b": b, "local_rank": 0, "train_len": 8, "deepspeed": self.get_config_dict(stage), "per_device_train_batch_size": 8, "logging_steps": 1, } kwargs[dtype] = True trainer = get_regression_trainer(**kwargs) trainer.train() post_train_a = trainer.model.a.item() # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a # broken but a different qualitative outcome - as if optimizer did run # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere # print(trainer.model.a.item()) # print(trainer.model.b.item()) # need to investigate at some point if (stage == ZERO3 and dtype == FP16) or (dtype == BF16): return # it's enough that train didn't fail for this test, but we must check that # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing) self.assertEqual(post_train_a, a) @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_gradient_accumulation(self, stage, dtype): # this test measures that we get identical weights and similar loss with: # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1 # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2 # since the 2nd should produce the effective batch of 1st, with the same results # # I can get an identical loss for a small train_len=32, plus the power of the initial # dynamic loss scale value set to: # "fp16.initial_scale_power": 1 # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup. # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical train_len = 64 a = b = 0.0 kwargs = { "a": a, "b": b, "local_rank": 0, "train_len": train_len, "deepspeed": self.get_config_dict(stage), } kwargs[dtype] = True with mockenv_context(**self.dist_env_1_gpu): no_grad_accum_trainer = get_regression_trainer( **kwargs, per_device_train_batch_size=16, gradient_accumulation_steps=1, ) no_grad_accum_result = no_grad_accum_trainer.train() no_grad_accum_loss = no_grad_accum_result.training_loss no_grad_accum_a = no_grad_accum_trainer.model.a.item() no_grad_accum_b = no_grad_accum_trainer.model.b.item() # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger self.assertNotEqual(no_grad_accum_a, a) with mockenv_context(**self.dist_env_1_gpu): yes_grad_accum_trainer = get_regression_trainer( **kwargs, per_device_train_batch_size=4, gradient_accumulation_steps=4, ) yes_grad_accum_result = yes_grad_accum_trainer.train() yes_grad_accum_loss = yes_grad_accum_result.training_loss yes_grad_accum_a = yes_grad_accum_trainer.model.a.item() yes_grad_accum_b = yes_grad_accum_trainer.model.b.item() self.assertNotEqual(yes_grad_accum_a, a) # training with half the batch size but accumulation steps as 2 should give the same # weights, but sometimes get a slight difference still of 1e-6 self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5) self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5) # Relative difference. See the note above how to get identical loss on a small bs self.assertTrue((no_grad_accum_loss - yes_grad_accum_loss) / (no_grad_accum_loss + 1e-15) <= 1e-3) def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype): # adapted from TrainerIntegrationCommon.check_saved_checkpoints file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"] if stage == ZERO2: ds_file_list = ["mp_rank_00_model_states.pt"] elif stage == ZERO3: ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"] else: raise ValueError(f"unknown stage {stage}") if dtype == "bf16": ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt") for step in range(freq, total, freq): checkpoint = os.path.join(output_dir, f"checkpoint-{step}") self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found") # common files for filename in file_list: path = os.path.join(checkpoint, filename) self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found") # ds files ds_path = os.path.join(checkpoint, f"global_step{step}") for filename in ds_file_list: # filename = os.path.join(path, filename) # print(filename) path = os.path.join(ds_path, filename) self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found") @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_save_checkpoints(self, stage, dtype): # adapted from TrainerIntegrationTest.test_save_checkpoints freq = 5 output_dir = self.get_auto_remove_tmp_dir() ds_config_dict = self.get_config_dict(stage) if dtype == FP16: ds_config_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step # XXX: if stage == ZERO3: ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True # save checkpoints with mockenv_context(**self.dist_env_1_gpu): kwargs = { "output_dir": output_dir, "save_steps": freq, "deepspeed": ds_config_dict, } kwargs[dtype] = True trainer = get_regression_trainer(**kwargs) trainer.train() total = int(self.n_epochs * 64 / self.batch_size) self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype) @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_can_resume_training_errors(self, stage, dtype): with mockenv_context(**self.dist_env_1_gpu): ds_config_dict = self.get_config_dict(stage) output_dir = self.get_auto_remove_tmp_dir() kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict} kwargs[dtype] = True trainer = get_regression_trainer(**kwargs) # 1. fail to find any checkpoint - due a fresh output_dir with self.assertRaises(Exception) as context: trainer.train(resume_from_checkpoint=True) self.assertTrue( "No valid checkpoint found in output directory" in str(context.exception), f"got exception: {context.exception}", ) # 2. fail to find a bogus checkpoint with self.assertRaises(Exception) as context: checkpoint = os.path.join(output_dir, "checkpoint-5") trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus") self.assertTrue( "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}" ) @parameterized.expand(params_with_optims_and_schedulers, name_func=parameterized_custom_name_func) def test_can_resume_training_normal(self, stage, dtype, optim, scheduler): # adapted from TrainerIntegrationTest.test_can_resume_training # test normal resume for each stage separately, error-handling is tested in a different test # ToDo: Currently, hf_optim + hf_scheduler resumes with the correct states and # also has same losses for few steps but then slowly diverges. Need to figure it out. if optim == HF_OPTIM and scheduler == HF_SCHEDULER: return output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) ds_config_dict = self.get_config_dict(stage) if dtype == FP16: ds_config_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step # XXX: if stage == ZERO3: ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True if optim == HF_OPTIM: del ds_config_dict["optimizer"] if scheduler == HF_SCHEDULER: del ds_config_dict["scheduler"] kwargs = { "output_dir": output_dir, "train_len": 128, "save_steps": 5, "learning_rate": 0.1, "deepspeed": ds_config_dict, } kwargs[dtype] = True with mockenv_context(**self.dist_env_1_gpu): trainer = get_regression_trainer(**kwargs) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(output_dir, "checkpoint-5") # Reinitialize trainer trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Now check with a later checkpoint that it also works when we span over one epoch checkpoint = os.path.join(output_dir, "checkpoint-15") # Reinitialize trainer and load model trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Finally, should be able to resume with the same trainer/same deepspeed engine instance # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612 # trainer.train(resume_from_checkpoint=checkpoint) # a workaround needs to be used that re-creates the deepspeed engine @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_load_state_dict_from_zero_checkpoint(self, stage, dtype): # test that we can load fp32 weights directly from the zero checkpoint into the current model output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False, before=False) ds_config_dict = self.get_config_dict(stage) kwargs = { "output_dir": output_dir, "train_len": 4, "per_device_train_batch_size": 4, "num_train_epochs": 1, "save_strategy": "steps", "save_steps": 1, "learning_rate": 0.1, "deepspeed": ds_config_dict, } kwargs[dtype] = True with mockenv_context(**self.dist_env_1_gpu): trainer = get_regression_trainer(**kwargs) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint_dir = get_last_checkpoint(output_dir) model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) (a1, b1) = model.a.item(), model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) def test_config_object(self): # test that we can switch from zero2 to zero3 in the same process for example # test is_zero, etc. output_dir = self.get_auto_remove_tmp_dir() kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True} ds_config_zero3_dict = self.get_config_dict(ZERO3) ds_config_zero2_dict = self.get_config_dict(ZERO2) with mockenv_context(**self.dist_env_1_gpu): trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs) self.assertTrue(is_deepspeed_zero3_enabled()) # test we can repeat that and with train this time trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs) trainer.train() self.assertTrue(is_deepspeed_zero3_enabled()) # test zero3 is disabled trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs) self.assertFalse(is_deepspeed_zero3_enabled()) # check config obj config = deepspeed_config() self.assertTrue(bool(config), "Deepspeed config should be accessible") # with accelerate integration below line is additionally required for this test to pass trainer.accelerator.state._reset_state() del trainer # now weakref should gc the global and we shouldn't get anything here config = deepspeed_config() self.assertFalse(is_deepspeed_zero3_enabled()) self.assertFalse(bool(config), "Deepspeed config should not be accessible") @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_load_best_model(self, stage, dtype): # Test that forced deepspeed reinit doesn't break the model. the forced re-init after # loading the best model in Trainer is there to workaround this bug in Deepspeed # https://github.com/microsoft/DeepSpeed/issues/1612 # # The test is derived from a repro script submitted in this Issue: # https://github.com/huggingface/transformers/issues/17114 # # One additional feature of this test is that we use a non-AdamW optimizer to test that # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading # correctly from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer # noqa output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False, before=False) ds_config_dict = self.get_config_dict(stage) del ds_config_dict["optimizer"] # will use HF Trainer optimizer del ds_config_dict["scheduler"] # will use HF Trainer scheduler ds_config_dict["zero_force_ds_cpu_optimizer"] = False # offload is not efficient w/o CPUAdam # must use this setting to get the reload path exercised ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True with mockenv_context(**self.dist_env_1_gpu): args_dict = { "per_device_train_batch_size": 1, "per_device_eval_batch_size": 1, "gradient_accumulation_steps": 1, "learning_rate": 1e-4, "num_train_epochs": 1, "do_train": True, "do_eval": True, "optim": "adafactor", "evaluation_strategy": "steps", "eval_steps": 1, "save_strategy": "steps", "save_steps": 1, "load_best_model_at_end": True, "max_steps": 1, "deepspeed": ds_config_dict, "report_to": "none", } training_args = TrainingArguments(output_dir, **args_dict) tokenizer = T5Tokenizer.from_pretrained(T5_TINY) model = T5ForConditionalGeneration.from_pretrained(T5_TINY) def _add_eos_to_examples(example): example["input_text"] = f"question: {example['question']} context: {example['context']}" example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else "" return example def _convert_to_features(example_batch): input_encodings = tokenizer.batch_encode_plus( example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True ) target_encodings = tokenizer.batch_encode_plus( example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True ) encodings = { "input_ids": input_encodings["input_ids"], "attention_mask": input_encodings["attention_mask"], "labels": target_encodings["input_ids"], } return encodings def get_dataset(): data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json") data_files = {"train": data_file, "validation": data_file} raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data") train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True) valid_dataset = deepcopy(train_dataset) return train_dataset, valid_dataset train_dataset, eval_dataset = get_dataset() trainer = Trainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) trainer.train() # crash 1 was here trainer.evaluate() # crash 2 was here @slow @require_deepspeed @require_torch_accelerator class TestDeepSpeedWithLauncher(TestCasePlus): """This class is for testing via an external script - can do multiple gpus""" # Tests to devise # # # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that # the 2 gpus will generate prediction sequences that aren't of the same length - this is because # we had to code a special feature to sync the gpus when the predicted sequences aren't of the # same length. In general this will tested as a side-effect through a variety of other tests - # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as # long as we have a few full tests running on zero3 + predict_with_generate this should be # mostly covered. # # but there are 5 variations on beam search in `generate`- with identical code branched with `if # synced_gpus` # # 2. most tests should probably be run on both: zero2 and zero3 configs # @parameterized.expand(params, name_func=parameterized_custom_name_func) @require_torch_multi_accelerator def test_basic_distributed(self, stage, dtype): self.run_and_check(stage=stage, dtype=dtype, distributed=True) def test_do_eval_no_train(self): # testing only zero3 since zero2 makes no sense with inference self.run_and_check( stage=ZERO3, dtype=FP16, eval_steps=1, distributed=False, do_train=False, do_eval=True, ) @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_fp32_non_distributed(self, stage, dtype): # real model needs too much GPU memory under stage2+fp32, so using tiny random model here - # therefore no quality checks, just basic completion checks are done self.run_and_check( stage=stage, dtype=dtype, model_name=T5_TINY, distributed=False, do_train=True, do_eval=True, quality_checks=False, fp32=True, ) @parameterized.expand(params, name_func=parameterized_custom_name_func) @require_torch_multi_accelerator def test_fp32_distributed(self, stage, dtype): # real model needs too much GPU memory under stage2+fp32, so using tiny random model here - # therefore no quality checks, just basic completion checks are done self.run_and_check( stage=stage, dtype=dtype, model_name=T5_TINY, distributed=True, do_train=True, do_eval=True, quality_checks=False, fp32=True, ) @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_resume_train_not_from_ds_checkpoint(self, stage, dtype): # do normal training and then resume not from the deepspeed checkpoint but explicitly from # the saved model dir do_train = True do_eval = False kwargs = { "stage": stage, "dtype": dtype, "eval_steps": 1, "distributed": True, "do_train": do_train, "do_eval": do_eval, } # 1. normal training output_dir = self.run_and_check(**kwargs) # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir # - i.e. the same path the model was saved to in step 1 output_dir = self.run_trainer(**kwargs, model_name=output_dir) self.do_checks(output_dir, do_train=do_train, do_eval=do_eval) @parameterized.expand(["bf16", "fp16", "fp32"]) @require_torch_multi_accelerator def test_inference(self, dtype): if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device): self.skipTest("test requires bfloat16 hardware support") # this is just inference, so no optimizer should be loaded # it only works for z3 (makes no sense with z1-z2) fp32 = True if dtype == "fp32" else False self.run_and_check( stage=ZERO3, dtype=FP16, model_name=T5_TINY, distributed=True, do_train=False, do_eval=True, quality_checks=False, fp32=fp32, ) def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True): if do_train: train_metrics = load_json(os.path.join(output_dir, "train_results.json")) self.assertIn("train_samples_per_second", train_metrics) if quality_checks: self.assertGreater(train_metrics["train_samples_per_second"], 0.5) if do_eval: eval_metrics = load_json(os.path.join(output_dir, "eval_results.json")) self.assertIn("eval_bleu", eval_metrics) if quality_checks: self.assertGreater(eval_metrics["eval_bleu"], 1) # XXX: need to do better validation beyond just that the run was successful def run_and_check( self, stage, dtype, model_name: str = T5_SMALL, eval_steps: int = 10, distributed: bool = True, do_train: bool = True, do_eval: bool = True, quality_checks: bool = True, fp32: bool = False, extra_args_str: str = None, remove_args_str: str = None, ): # we are doing quality testing so using a small real model output_dir = self.run_trainer( stage=stage, dtype=dtype, model_name=model_name, eval_steps=eval_steps, num_train_epochs=1, do_train=do_train, do_eval=do_eval, distributed=distributed, fp32=fp32, extra_args_str=extra_args_str, remove_args_str=remove_args_str, ) self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks) return output_dir def run_trainer( self, stage: str, dtype: str, model_name: str, eval_steps: int = 10, num_train_epochs: int = 1, do_train: bool = False, do_eval: bool = True, distributed: bool = True, fp32: bool = False, extra_args_str: str = None, remove_args_str: str = None, ): max_len = 32 data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --output_dir {output_dir} --overwrite_output_dir --max_source_length {max_len} --max_target_length {max_len} --val_max_target_length {max_len} --warmup_steps 8 --predict_with_generate --save_steps 0 --eval_steps {eval_steps} --group_by_length --label_smoothing_factor 0.1 --source_lang en --target_lang ro --report_to none """.split() args.extend(["--source_prefix", '"translate English to Romanian: "']) if not fp32: args.extend([f"--{dtype}"]) actions = 0 if do_train: actions += 1 args.extend( f""" --do_train --num_train_epochs {str(num_train_epochs)} --max_train_samples 16 --per_device_train_batch_size 2 --learning_rate 3e-3 """.split() ) if do_eval: actions += 1 args.extend( """ --do_eval --max_eval_samples 16 --per_device_eval_batch_size 2 """.split() ) assert actions > 0, "need at least do_train or do_eval for the test to run" if extra_args_str is not None: args.extend(extra_args_str.split()) # currently only works for bool args if remove_args_str is not None: remove_args = remove_args_str.split() args = [x for x in args if x not in remove_args] ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split() script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"] launcher = get_launcher(distributed) cmd = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) return output_dir @parameterized.expand(params, name_func=parameterized_custom_name_func) def test_clm(self, stage, dtype): # this test exercises model.resize_token_embeddings() which requires param gathering outside # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py` data_dir = self.tests_dir / "fixtures" output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_name_or_path {GPT2_TINY} --train_file {data_dir}/sample_text.txt --validation_file {data_dir}/sample_text.txt --output_dir {output_dir} --overwrite_output_dir --do_train --do_eval --max_train_samples 16 --max_eval_samples 16 --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --num_train_epochs 1 --warmup_steps 8 --block_size 64 --report_to none """.split() args.extend([f"--{dtype}"]) ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split() script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"] launcher = get_launcher(distributed=True) cmd = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) def test_clm_from_config_zero3_fp16(self): # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called data_dir = self.tests_dir / "fixtures" output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_type gpt2 --tokenizer_name {GPT2_TINY} --train_file {data_dir}/sample_text.txt --validation_file {data_dir}/sample_text.txt --output_dir {output_dir} --overwrite_output_dir --do_train --max_train_samples 4 --per_device_train_batch_size 2 --num_train_epochs 1 --warmup_steps 8 --block_size 8 --fp16 --report_to none """.split() ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split() script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"] launcher = get_launcher(distributed=True) cmd = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die with CaptureStderr() as cs: execute_subprocess_async(cmd, env=self.get_env()) self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)
transformers/tests/deepspeed/test_deepspeed.py/0
{ "file_path": "transformers/tests/deepspeed/test_deepspeed.py", "repo_id": "transformers", "token_count": 25392 }
357
# coding=utf-8 # Copyright 2020 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import floats_tensor, ids_tensor if is_torch_available(): import torch from transformers.generation import ( BeamHypotheses, BeamSearchScorer, ConstrainedBeamSearchScorer, DisjunctiveConstraint, PhrasalConstraint, ) class BeamSearchTester: def __init__( self, parent, batch_size=3, sequence_length=10, vocab_size=99, pad_token_id=0, max_length=20, num_beams=4, length_penalty=2.0, do_early_stopping=True, num_beam_hyps_to_keep=2, ): self.parent = parent self.batch_size = batch_size self.sequence_length = sequence_length self.vocab_size = vocab_size self.pad_token_id = pad_token_id self.max_length = max_length self.num_beams = num_beams self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep # cannot be randomly generated self.eos_token_id = vocab_size + 1 def prepare_beam_scorer(self, **kwargs): return BeamSearchScorer( batch_size=kwargs.get("batch_size", self.batch_size), num_beams=kwargs.get("num_beams", self.num_beams), device=torch_device, length_penalty=kwargs.get("length_penalty", self.length_penalty), do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping), num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep), ) def prepare_inputs(self): input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size) next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device) next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device) next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True) return (input_ids, next_tokens, next_indices, next_scores) def check_beam_hypotheses(self, input_ids, *args): # check that correct number of beam hypotheses is set in beam scorer beam_scorer = self.prepare_beam_scorer(do_early_stopping=True) beam_hyp = beam_scorer._beam_hyps[0] self.parent.assertEqual(len(beam_scorer._beam_hyps), self.batch_size) # check correct type self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses)) # check that num_beams is correctly set self.parent.assertEqual(beam_hyp.num_beams, self.num_beams) # check for early stopping deactivated for beam_idx in range(self.num_beams): beam_hyp.add(input_ids[beam_idx], -10.0) # if early stopping True -> score does not matter self.parent.assertTrue(beam_hyp.is_done(-10.0, 5)) # re-init beam_scorer = self.prepare_beam_scorer(do_early_stopping=False) beam_hyp = beam_scorer._beam_hyps[0] # add `num_beams + 1` beams to change `worst_score` for beam_idx in range(self.num_beams + 1): beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx)) # -10.0 is removed => -9.0 is worst score self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty)) # -5.0 is better than worst score => should not be finished self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length)) # -20.0 is worse than worst score => should be finished self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length)) def check_beam_scorer_update(self, input_ids, next_tokens, next_indices, next_scores): # check too many eos tokens beam_scorer = self.prepare_beam_scorer() tokens = next_tokens.clone() tokens[0, :] = self.eos_token_id with self.parent.assertRaises(ValueError): beam_scorer.process(input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id) # check all batches are done beam_scorer = self.prepare_beam_scorer() tokens = next_tokens.clone() tokens[:, : self.num_beams] = self.eos_token_id beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device) beam_indices = tuple(tuple(b) for b in beam_indices) beam_scorer.process( input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices ) # beam scorer should be done self.parent.assertTrue(beam_scorer.is_done) # check beam_scorer = self.prepare_beam_scorer() tokens = next_tokens.clone() tokens[:, 1] = self.eos_token_id beam_outputs = beam_scorer.process( input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices ) output_scores = beam_outputs["next_beam_scores"] output_tokens = beam_outputs["next_beam_tokens"] output_indices = beam_outputs["next_beam_indices"] def cut_expected_tensor(tensor): return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten() # check all outptus # cut out id of eos token and take best `num_beams` outputs expected_output_tokens = cut_expected_tensor(tokens) expected_output_scores = cut_expected_tensor(next_scores) # add num_beams * batch_idx offset = torch.div( torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams, rounding_mode="floor" ) expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist()) self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist()) self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3)) # make sure ids of eos token are correctly saved in beam_hyps of beam scorer expected_beam_indices = list(range(10)) for batch_idx in range(self.batch_size): correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1] self.parent.assertListEqual( input_ids[correct_idx].tolist(), beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist() ) self.parent.assertListEqual( expected_beam_indices + [correct_idx], torch.tensor(beam_scorer._beam_hyps[batch_idx].beams[0][2]).tolist(), ) def check_beam_scores_finalize(self, input_ids, next_tokens, next_indices, next_scores): # max_length should be only one more than current input_ids to check that eos is correctly appended max_length = self.sequence_length + 1 beam_scorer = self.prepare_beam_scorer(num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False) # update beams and append to input_ids tokens = next_tokens.clone() # first batch, first output has to finish with eos token id since scores are correctly sorted tokens[0, 0] = self.eos_token_id # make sure corresponding score is as good as possible to surely be picked first next_scores[0, 0] = 0.0 beam_outputs = beam_scorer.process( input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id ) output_scores = beam_outputs["next_beam_scores"] output_tokens = beam_outputs["next_beam_tokens"] output_indices = beam_outputs["next_beam_indices"] input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1) # finalize beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device) beam_indices = tuple(tuple(b) for b in beam_indices) sequence_output = beam_scorer.finalize( input_ids, output_scores, output_tokens, output_indices, pad_token_id=self.pad_token_id, eos_token_id=self.eos_token_id, max_length=max_length, beam_indices=beam_indices, ) sequences = sequence_output["sequences"] sequence_scores = sequence_output["sequence_scores"] # since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length` self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length]) self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size]) # check sequence_scores self.parent.assertFalse((sequence_scores > 0).any().item()) # first batch has to finish with eos_token self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id) # other batches cannot finish with eos token self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id) self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id) # now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned beam_scorer.num_beam_hyps_to_keep = self.num_beams sequence_output = beam_scorer.finalize( input_ids, output_scores, output_tokens, output_indices, pad_token_id=self.pad_token_id, eos_token_id=self.eos_token_id, max_length=max_length, beam_indices=beam_indices, ) sequences = sequence_output["sequences"] sequence_scores = sequence_output["sequence_scores"] self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length]) self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size]) class ConstrainedBeamSearchTester: def __init__( self, parent, constraints=None, batch_size=3, sequence_length=10, vocab_size=99, pad_token_id=0, max_length=20, num_beams=4, length_penalty=2.0, do_early_stopping=True, num_beam_hyps_to_keep=2, ): self.parent = parent self.batch_size = batch_size self.sequence_length = sequence_length self.vocab_size = vocab_size self.pad_token_id = pad_token_id self.max_length = max_length self.num_beams = num_beams self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep if constraints is None: force_tokens = torch.randint(10, 50, (1, 2))[0].tolist() disjunctive_tokens = torch.randint(10, 50, (2, 2)).tolist() constraints = [PhrasalConstraint(force_tokens), DisjunctiveConstraint(disjunctive_tokens)] self.constraints = constraints # cannot be randomly generated self.eos_token_id = vocab_size + 1 def prepare_constrained_beam_scorer(self, **kwargs): return ConstrainedBeamSearchScorer( constraints=kwargs.get("constraints", self.constraints), batch_size=kwargs.get("batch_size", self.batch_size), num_beams=kwargs.get("num_beams", self.num_beams), device=torch_device, length_penalty=kwargs.get("length_penalty", self.length_penalty), do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping), num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep), ) def prepare_inputs(self): input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size) next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device) next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device) next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True) scores_for_all_vocab, _ = ( -floats_tensor((self.batch_size * self.num_beams, self.vocab_size)).to(torch_device) ).sort(descending=True) return (input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab) def check_beam_hypotheses(self, input_ids, *args): # check that correct number of beam hypotheses is set in beam scorer constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=True) beam_hyp = constrained_beam_scorer._beam_hyps[0] self.parent.assertEqual(len(constrained_beam_scorer._beam_hyps), self.batch_size) # check correct type self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses)) # check that num_beams is correctly set self.parent.assertEqual(beam_hyp.num_beams, self.num_beams) # check for early stopping deactivated for beam_idx in range(self.num_beams): beam_hyp.add(input_ids[beam_idx], -10.0) # if early stopping True -> score does not matter self.parent.assertTrue(beam_hyp.is_done(-10.0, 5)) # re-init constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=False) beam_hyp = constrained_beam_scorer._beam_hyps[0] # add `num_beams + 1` beams to change `worst_score` for beam_idx in range(self.num_beams + 1): beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx)) # -10.0 is removed => -9.0 is worst score self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty)) # -5.0 is better than worst score => should not be finished self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length)) # -20.0 is worse than worst score => should be finished self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length)) def check_constrained_beam_scorer_update( self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab ): # check too many eos tokens constrained_beam_scorer = self.prepare_constrained_beam_scorer() stacked_token_ids = [] for constraint in self.constraints: token_ids = constraint.token_ids token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids stacked_token_ids = stacked_token_ids + token_ids fulfilling_sequence = torch.LongTensor(stacked_token_ids) fulfill_len = fulfilling_sequence.size(0) input_ids[:, :fulfill_len] = fulfilling_sequence tokens = next_tokens.clone() tokens[0, :] = self.eos_token_id with self.parent.assertRaises(ValueError): constrained_beam_scorer.process( input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id ) # check all batches are done constrained_beam_scorer = self.prepare_constrained_beam_scorer() tokens = next_tokens.clone() tokens[:, : self.num_beams] = self.eos_token_id constrained_beam_scorer.process( input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id ) # beam scorer should be done self.parent.assertTrue(constrained_beam_scorer.is_done) # check constrained_beam_scorer = self.prepare_constrained_beam_scorer() tokens = next_tokens.clone() tokens[:, 1] = self.eos_token_id beam_outputs = constrained_beam_scorer.process( input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id ) output_scores = beam_outputs["next_beam_scores"] output_tokens = beam_outputs["next_beam_tokens"] output_indices = beam_outputs["next_beam_indices"] def cut_expected_tensor(tensor): return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten() # check all outptus # cut out id of eos token and take best `num_beams` outputs expected_output_tokens = cut_expected_tensor(tokens) expected_output_scores = cut_expected_tensor(next_scores) # add num_beams * batch_idx offset = torch.div( torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams, rounding_mode="floor" ) expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist()) self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist()) self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3)) # make sure ids of eos token are correctly saved in beam_hyps of beam scorer for batch_idx in range(self.batch_size): correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1] self.parent.assertListEqual( input_ids[correct_idx].tolist(), constrained_beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist() ) def check_constrained_beam_scorer_finalize( self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab ): # max_length should be only one more than current input_ids to check that eos is correctly appended max_length = self.sequence_length + 1 # for testing finalize, we do want to have fulfilled constraints stacked_token_ids = [] for constraint in self.constraints: token_ids = constraint.token_ids token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids stacked_token_ids = stacked_token_ids + token_ids fulfilling_sequence = torch.LongTensor(stacked_token_ids) fulfill_len = fulfilling_sequence.size(0) input_ids[:, :fulfill_len] = fulfilling_sequence constrained_beam_scorer = self.prepare_constrained_beam_scorer( num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False ) constraints = constrained_beam_scorer.constraints # update beams and append to input_ids tokens = next_tokens.clone() # first batch, first output has to finish with eos token id since scores are correctly sorted tokens[0, 0] = self.eos_token_id # make sure corresponding score is as good as possible to surely be picked first next_scores[0, 0] = 0.0 beam_outputs = constrained_beam_scorer.process( input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id ) output_scores = beam_outputs["next_beam_scores"] output_tokens = beam_outputs["next_beam_tokens"] output_indices = beam_outputs["next_beam_indices"] input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1) # finalize sequence_output = constrained_beam_scorer.finalize( input_ids, output_scores, output_tokens, output_indices, pad_token_id=self.pad_token_id, eos_token_id=self.eos_token_id, max_length=max_length, ) sequences = sequence_output["sequences"] sequence_scores = sequence_output["sequence_scores"] # since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length` self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length]) self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size]) # check sequence_scores self.parent.assertFalse((sequence_scores > 0).any().item()) # first batch has to finish with eos_token self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id) # other batches cannot finish with eos token self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id) self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id) # test that the constraint is indeed fulfilled for output, constraint in [(s, c) for s in sequences for c in constraints]: forced_token_ids = constraint.token_ids if isinstance(forced_token_ids[0], list): # disjunctive case flag = False for token_ids in forced_token_ids: if self._check_sequence_inside_sequence(output, token_ids): flag = True break self.parent.assertEqual(flag, True) else: self.parent.assertEqual(self._check_sequence_inside_sequence(output, forced_token_ids), True) # now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned # constrained_beam_scorer.num_beam_hyps_to_keep = self.num_beams constrained_beam_scorer = self.prepare_constrained_beam_scorer( num_beam_hyps_to_keep=self.num_beams, length_penalty=1.0, do_early_stopping=False ) sequence_output = constrained_beam_scorer.finalize( input_ids, output_scores, output_tokens, output_indices, pad_token_id=self.pad_token_id, eos_token_id=self.eos_token_id, max_length=max_length, ) sequences = sequence_output["sequences"] sequence_scores = sequence_output["sequence_scores"] self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length]) self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size]) def _check_sequence_inside_sequence(self, tensor_1, tensor_2): # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1. # set to same device. we don't care what device. if not isinstance(tensor_1, list): tensor_1 = tensor_1.cpu().tolist() if not isinstance(tensor_2, list): tensor_2 = tensor_2.cpu().tolist() in_order = len(tensor_1) <= len(tensor_2) longer = tensor_2 if in_order else tensor_1 shorter = tensor_1 if in_order else tensor_2 flag = False chunk_size = len(shorter) for chunk_idx in range(len(longer) - chunk_size + 1): subseq = longer[chunk_idx : chunk_idx + chunk_size] if subseq == shorter: flag = True break return flag @require_torch class BeamSearchTest(unittest.TestCase): def setUp(self): self.beam_search_tester = BeamSearchTester(self) def test_beam_hypotheses(self): inputs = self.beam_search_tester.prepare_inputs() self.beam_search_tester.check_beam_hypotheses(*inputs) def test_beam_scorer_update(self): inputs = self.beam_search_tester.prepare_inputs() self.beam_search_tester.check_beam_scorer_update(*inputs) def test_beam_scorer_finalize(self): inputs = self.beam_search_tester.prepare_inputs() self.beam_search_tester.check_beam_scores_finalize(*inputs) @require_torch class ConstrainedBeamSearchTest(unittest.TestCase): def setUp(self): self.constrained_beam_search_tester = ConstrainedBeamSearchTester(self) def test_constrained_beam_hypotheses(self): inputs = self.constrained_beam_search_tester.prepare_inputs() self.constrained_beam_search_tester.check_beam_hypotheses(*inputs) def test_constrained_beam_scorer_update(self): inputs = self.constrained_beam_search_tester.prepare_inputs() self.constrained_beam_search_tester.check_constrained_beam_scorer_update(*inputs) def test_constrained_beam_scorer_finalize(self): inputs = self.constrained_beam_search_tester.prepare_inputs() self.constrained_beam_search_tester.check_constrained_beam_scorer_finalize(*inputs)
transformers/tests/generation/test_beam_search.py/0
{ "file_path": "transformers/tests/generation/test_beam_search.py", "repo_id": "transformers", "token_count": 11152 }
358
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPT2Config, T5Config, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPT2LMHeadModel, TFRobertaForMaskedLM, TFT5ForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPT2LMHeadModel, RobertaForMaskedLM, T5ForConditionalGeneration, ) @is_pt_tf_cross_test class TFPTAutoModelTest(unittest.TestCase): @slow def test_model_from_pretrained(self): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModel.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertModel) model = AutoModel.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertModel) @slow def test_model_for_pretraining_from_pretrained(self): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForPreTraining.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForPreTraining) model = AutoModelForPreTraining.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForPreTraining) @slow def test_model_for_causal_lm(self): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, GPT2Config) model = TFAutoModelForCausalLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForCausalLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFGPT2LMHeadModel) model = AutoModelForCausalLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForCausalLM.from_pretrained( model_name, output_loading_info=True, from_tf=True ) self.assertIsNotNone(model) self.assertIsInstance(model, GPT2LMHeadModel) @slow def test_lmhead_model_from_pretrained(self): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelWithLMHead.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) model = AutoModelWithLMHead.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_masked_lm(self): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForMaskedLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForMaskedLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) model = AutoModelForMaskedLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForMaskedLM.from_pretrained( model_name, output_loading_info=True, from_tf=True ) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_encoder_decoder_lm(self): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, T5Config) model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFT5ForConditionalGeneration) model = AutoModelForSeq2SeqLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForSeq2SeqLM.from_pretrained( model_name, output_loading_info=True, from_tf=True ) self.assertIsNotNone(model) self.assertIsInstance(model, T5ForConditionalGeneration) @slow def test_sequence_classification_model_from_pretrained(self): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForSequenceClassification.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForSequenceClassification) model = AutoModelForSequenceClassification.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForSequenceClassification) @slow def test_question_answering_model_from_pretrained(self): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForQuestionAnswering.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForQuestionAnswering) model = AutoModelForQuestionAnswering.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForQuestionAnswering) def test_from_pretrained_identifier(self): model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_pt=True) self.assertIsInstance(model, TFBertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_tf=True) self.assertIsInstance(model, BertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_identifier_from_model_type(self): model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_pt=True) self.assertIsInstance(model, TFRobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_tf=True) self.assertIsInstance(model, RobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410)
transformers/tests/models/auto/test_modeling_tf_pytorch.py/0
{ "file_path": "transformers/tests/models/auto/test_modeling_tf_pytorch.py", "repo_id": "transformers", "token_count": 4447 }
359
# coding=utf-8 # Copyright 2021 HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class BartphoTokenizerTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = BartphoTokenizer test_rust_tokenizer = False test_sentencepiece = True def setUp(self): super().setUp() vocab = ["▁This", "▁is", "▁a", "▁t", "est"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.special_tokens_map = {"unk_token": "<unk>"} self.monolingual_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "This is a là test" output_text = "This is a<unk><unk> test" return input_text, output_text def test_full_tokenizer(self): tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map) text = "This is a là test" bpe_tokens = "▁This ▁is ▁a ▁l à ▁t est".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
transformers/tests/models/bartpho/test_tokenization_bartpho.py/0
{ "file_path": "transformers/tests/models/bartpho/test_tokenization_bartpho.py", "repo_id": "transformers", "token_count": 1058 }
360
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeq2SeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class TFBlenderbotModelTester: config_cls = BlenderbotConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=50, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFBlenderbotModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_blenderbot_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFBlenderbotModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () all_generative_model_classes = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_onnx = False def setUp(self): self.model_tester = TFBlenderbotModelTester(self) self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) @require_tokenizers @require_tf class TFBlenderbot400MIntegrationTests(unittest.TestCase): src_text = ["My friends are cool but they eat too many carbs."] model_name = "facebook/blenderbot-400M-distill" @cached_property def tokenizer(self): return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def model(self): model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) return model @slow def test_generation_from_long_input(self): model_inputs = self.tokenizer(self.src_text, return_tensors="tf") generated_ids = self.model.generate( model_inputs.input_ids, ) generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
transformers/tests/models/blenderbot/test_modeling_tf_blenderbot.py/0
{ "file_path": "transformers/tests/models/blenderbot/test_modeling_tf_blenderbot.py", "repo_id": "transformers", "token_count": 3935 }
361
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class CLIPProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = CLIPProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) image_processor_map = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return CLIPImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = CLIPProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = CLIPProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer) self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, CLIPImageProcessor) self.assertIsInstance(processor_fast.image_processor, CLIPImageProcessor) def test_save_load_pretrained_additional_features(self): processor = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, CLIPImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_proc = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
transformers/tests/models/clip/test_processor_clip.py/0
{ "file_path": "transformers/tests/models/clip/test_processor_clip.py", "repo_id": "transformers", "token_count": 3365 }
362
# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class CPMAntTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = CpmAntTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() vocab_tokens = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) @tooslow def test_pre_tokenization(self): tokenizer = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") texts = "今天天气真好!" jieba_tokens = ["今天", "天气", "真", "好", "!"] tokens = tokenizer.tokenize(texts) self.assertListEqual(tokens, jieba_tokens) normalized_text = "今天天气真好!" input_tokens = [tokenizer.bos_token] + tokens input_jieba_tokens = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_jieba_tokens) reconstructed_text = tokenizer.decode(input_jieba_tokens) self.assertEqual(reconstructed_text, normalized_text)
transformers/tests/models/cpmant/test_tokenization_cpmant.py/0
{ "file_path": "transformers/tests/models/cpmant/test_tokenization_cpmant.py", "repo_id": "transformers", "token_count": 1066 }
363
# coding=utf-8 # Copyright 2019 Hugging Face inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class DebertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = DebertaTokenizer test_rust_tokenizer = True rust_tokenizer_class = DebertaTokenizerFast def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "[UNK]"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def test_token_type_ids(self): tokenizer = self.get_tokenizer() tokd = tokenizer("Hello", "World") expected_token_type_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"], expected_token_type_ids) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/deberta-base") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def test_tokenizer_integration(self): tokenizer_classes = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: tokenizer = tokenizer_class.from_pretrained("microsoft/deberta-base") sequences = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] encoding = tokenizer(sequences, padding=True) decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] # fmt: off expected_encoding = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on expected_decoded_sequence = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data, expected_encoding) for expected, decoded in zip(expected_decoded_sequence, decoded_sequences): self.assertEqual(expected, decoded)
transformers/tests/models/deberta/test_tokenization_deberta.py/0
{ "file_path": "transformers/tests/models/deberta/test_tokenization_deberta.py", "repo_id": "transformers", "token_count": 3792 }
364
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class DiTIntegrationTest(unittest.TestCase): @slow def test_for_image_classification(self): image_processor = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model.to(torch_device) from datasets import load_dataset dataset = load_dataset("nielsr/rvlcdip-demo") image = dataset["train"][0]["image"].convert("RGB") inputs = image_processor(image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits expected_shape = torch.Size((1, 16)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [-0.4158, -0.4092, -0.4347], device=torch_device, dtype=torch.float, ) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/dit/test_modeling_dit.py/0
{ "file_path": "transformers/tests/models/dit/test_modeling_dit.py", "repo_id": "transformers", "token_count": 744 }
365
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch EfficientFormer model. """ import unittest import warnings from typing import List from transformers import EfficientFormerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, ) from transformers.models.efficientformer.modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class EfficientFormerModelTester: def __init__( self, parent, batch_size: int = 13, image_size: int = 64, patch_size: int = 2, embed_dim: int = 3, num_channels: int = 3, is_training: bool = True, use_labels: bool = True, hidden_size: int = 128, hidden_sizes=[16, 32, 64, 128], num_hidden_layers: int = 7, num_attention_heads: int = 4, intermediate_size: int = 37, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, type_sequence_label_size: int = 10, initializer_range: float = 0.02, encoder_stride: int = 2, num_attention_outputs: int = 1, dim: int = 128, depths: List[int] = [2, 2, 2, 2], resolution: int = 2, mlp_expansion_ratio: int = 2, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.encoder_stride = encoder_stride self.num_attention_outputs = num_attention_outputs self.embed_dim = embed_dim self.seq_length = embed_dim + 1 self.resolution = resolution self.depths = depths self.hidden_sizes = hidden_sizes self.dim = dim self.mlp_expansion_ratio = mlp_expansion_ratio def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def create_and_check_model(self, config, pixel_values, labels): model = EfficientFormerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = EfficientFormerForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = EfficientFormerForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class EfficientFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as EfficientFormer does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( EfficientFormerModel, EfficientFormerForImageClassificationWithTeacher, EfficientFormerForImageClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": EfficientFormerModel, "image-classification": ( EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, ), } if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = EfficientFormerModelTester(self) self.config_tester = ConfigTester( self, config_class=EfficientFormerConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings") def test_model_common_attributes(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: seq_length = seq_length * self.model_tester.chunk_length else: seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[-1].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "EfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet") def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # special case for EfficientFormerForImageClassificationWithTeacher model def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: # EfficientFormerForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(MODEL_MAPPING) or model_class.__name__ == "EfficientFormerForImageClassificationWithTeacher" ): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_problem_types(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), ] or model_class.__name__ == "EfficientFormerForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def test_model_from_pretrained(self): for model_name in EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = EfficientFormerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class EfficientFormerModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = EfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300").to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = (1, 1000) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.0555, 0.4825, -0.0852]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0][:3], expected_slice, atol=1e-4)) @slow def test_inference_image_classification_head_with_teacher(self): model = EfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ).to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = (1, 1000) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.1312, 0.4353, -1.0499]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0][:3], expected_slice, atol=1e-4))
transformers/tests/models/efficientformer/test_modeling_efficientformer.py/0
{ "file_path": "transformers/tests/models/efficientformer/test_modeling_efficientformer.py", "repo_id": "transformers", "token_count": 8619 }
366
# coding=utf-8 # Copyright 2020 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import FunnelConfig, FunnelTokenizer, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, ) class FunnelModelTester: """You can also import this e.g, from .test_modeling_funnel import FunnelModelTester""" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, block_sizes=[1, 1, 2], num_decoder_layers=1, d_model=32, n_head=4, d_head=8, d_inner=37, hidden_act="gelu_new", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, max_position_embeddings=512, type_vocab_size=3, initializer_std=0.02, # Set to a smaller value, so we can keep the small error threshold (1e-5) in the test num_labels=3, num_choices=4, scope=None, base=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.block_sizes = block_sizes self.num_decoder_layers = num_decoder_layers self.d_model = d_model self.n_head = n_head self.d_head = d_head self.d_inner = d_inner self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = 2 self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.initializer_std = initializer_std # Used in the tests to check the size of the first attention layer self.num_attention_heads = n_head # Used in the tests to check the size of the first hidden state self.hidden_size = self.d_model # Used in the tests to check the number of output hidden states/attentions self.num_hidden_layers = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: self.expected_num_hidden_layers = self.num_hidden_layers + 2 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1) config = self.get_config() return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ) def get_config(self): return FunnelConfig( vocab_size=self.vocab_size, block_sizes=self.block_sizes, num_decoder_layers=self.num_decoder_layers, d_model=self.d_model, n_head=self.n_head, d_head=self.d_head, d_inner=self.d_inner, hidden_act=self.hidden_act, hidden_dropout=self.hidden_dropout, attention_dropout=self.attention_dropout, activation_dropout=self.activation_dropout, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_std=self.initializer_std, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = FunnelModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) model.config.truncate_seq = False result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) model.config.separate_cls = False result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) def create_and_check_base_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = FunnelBaseModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model)) model.config.truncate_seq = False result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model)) model.config.separate_cls = False result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = FunnelForPreTraining(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = FunnelForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = FunnelForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_choices = self.num_choices model = FunnelForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = FunnelForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = FunnelForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class FunnelModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): test_head_masking = False test_pruning = False all_model_classes = ( ( FunnelModel, FunnelForMaskedLM, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": (FunnelBaseModel, FunnelModel), "fill-mask": FunnelForMaskedLM, "question-answering": FunnelForQuestionAnswering, "text-classification": FunnelForSequenceClassification, "token-classification": FunnelForTokenClassification, "zero-shot": FunnelForSequenceClassification, } if is_torch_available() else {} ) # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = FunnelModelTester(self) self.config_tester = ConfigTester(self, config_class=FunnelConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]: if hasattr(module, param) and getattr(module, param) is not None: weight = getattr(module, param) weight.data.fill_(3) @require_torch class FunnelBaseModelTest(ModelTesterMixin, unittest.TestCase): test_head_masking = False test_pruning = False all_model_classes = ( (FunnelBaseModel, FunnelForMultipleChoice, FunnelForSequenceClassification) if is_torch_available() else () ) def setUp(self): self.model_tester = FunnelModelTester(self, base=True) self.config_tester = ConfigTester(self, config_class=FunnelConfig) def test_config(self): self.config_tester.run_common_tests() def test_base_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) # overwrite from test_modeling_common def test_training(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class.__name__ == "FunnelBaseModel": continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]: if hasattr(module, param) and getattr(module, param) is not None: weight = getattr(module, param) weight.data.fill_(3) @require_torch @require_sentencepiece @require_tokenizers class FunnelModelIntegrationTest(unittest.TestCase): def test_inference_tiny_model(self): batch_size = 13 sequence_length = 7 input_ids = torch.arange(0, batch_size * sequence_length).long().reshape(batch_size, sequence_length) lengths = [0, 1, 2, 3, 4, 5, 6, 4, 1, 3, 5, 0, 1] token_type_ids = torch.tensor([[2] + [0] * a + [1] * (sequence_length - a - 1) for a in lengths]) model = FunnelModel.from_pretrained("sgugger/funnel-random-tiny") output = model(input_ids, token_type_ids=token_type_ids)[0].abs() expected_output_sum = torch.tensor(2344.8352) expected_output_mean = torch.tensor(0.8052) self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4)) attention_mask = torch.tensor([[1] * 7, [1] * 4 + [0] * 3] * 6 + [[0, 1, 1, 0, 0, 1, 1]]) output = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0].abs() expected_output_sum = torch.tensor(2343.8425) expected_output_mean = torch.tensor(0.8049) self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4)) @slow def test_inference_model(self): tokenizer = FunnelTokenizer.from_pretrained("huggingface/funnel-small") model = FunnelModel.from_pretrained("huggingface/funnel-small") inputs = tokenizer("Hello! I am the Funnel Transformer model.", return_tensors="pt") output = model(**inputs)[0] expected_output_sum = torch.tensor(235.7246) expected_output_mean = torch.tensor(0.0256) self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
transformers/tests/models/funnel/test_modeling_funnel.py/0
{ "file_path": "transformers/tests/models/funnel/test_modeling_funnel.py", "repo_id": "transformers", "token_count": 9059 }
367
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import GPT2Config, is_tf_available from transformers.testing_utils import require_tf, require_tf2onnx, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPT2Tokenizer from transformers.models.gpt2.modeling_tf_gpt2 import ( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TFGPT2DoubleHeadsModel, TFGPT2ForSequenceClassification, TFGPT2LMHeadModel, TFGPT2Model, ) from transformers.tf_utils import shape_list class TFGPT2ModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.bos_token_id = self.vocab_size - 1 self.eos_token_id = self.vocab_size - 1 self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = GPT2Config( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=True, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_gpt2_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass output, past_key_values = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) def create_and_check_gpt2_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] token_type_ids = token_type_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past_key_values, )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2LMHeadModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_gpt2_double_head( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args ): model = TFGPT2DoubleHeadsModel(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) def create_and_check_gpt2_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "labels": sequence_labels, } model = TFGPT2ForSequenceClassification(config) result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel) if is_tf_available() else () ) all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else () pipeline_model_mapping = ( { "feature-extraction": TFGPT2Model, "text-classification": TFGPT2ForSequenceClassification, "text-generation": TFGPT2LMHeadModel, "zero-shot": TFGPT2ForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFGPT2ModelTester(self) self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gpt2_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model(*config_and_inputs) def test_gpt2_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs) def test_gpt2_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs) def test_gpt2_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs) def test_gpt2_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs) def test_gpt2_double_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs) def test_gpt2_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFGPT2Model.from_pretrained(model_name) self.assertIsNotNone(model) # overwrite from common since ONNX runtime optimization doesn't work with tf.gather() when the argument # `batch_dims` > 0" @require_tf2onnx @slow def test_onnx_runtime_optimize(self): if not self.test_onnx: return import onnxruntime import tf2onnx config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Skip these 2 classes which uses `tf.gather` with `batch_dims=1` if model_class in [TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel]: continue model = model_class(config) model.build_in_name_scope() onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset) onnxruntime.InferenceSession(onnx_model_proto.SerializeToString()) # TODO (Joao): fix me @unittest.skip("Onnx compliancy broke with TF 2.10") def test_onnx_compliancy(self): pass @require_tf class TFGPT2ModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_greedy_distilgpt2_batch_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "repetition_penalty": 1.3, } output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and I am so happy to be able take part in this amazing event.", "Yesterday was a very interesting time for the world to see how much of this is", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_sample_distilgpt2_batch_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) generation_kwargs = { "do_sample": True, "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "repetition_penalty": 1.3, "temperature": 1.5, "top_k": 500, "top_p": 0.9, "seed": [42, 0], # seed set -> deterministic sampling sequence -> deterministic generation } # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and we will make you feel very hot/terrific in all your", "Yesterday was known by national television networks as Le Big Show or Wild Dog Jeopard", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_greedy_distilgpt2_beam_search_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "num_beams": 2, } output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and a great day for all of us.\n\nI’m", "Yesterday was the first time that a person has been arrested in the United States for", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_distilgpt2_left_padding(self): """Tests that the generated text is the same, regarless of left padding""" model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "repetition_penalty": 1.3, } expected_output_string = ( "Today is a beautiful day and I am so happy to be able take part in this amazing event." ) sentences = ["Today is a beautiful day and"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) # using default length output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertEqual(output_strings[0], expected_output_string) sentences = ["Today is a beautiful day and", "This is a very long input that we absolutely don't care about"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) # longer max length to capture the full length (remember: it is left padded) output_ids = model.generate(**input_ids, **generation_kwargs, max_length=27) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertEqual(output_strings[0], expected_output_string) @slow def test_lm_generate_gpt2_greedy_xla(self): model = TFGPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["The dog", "The flying machine"] expected_output_strings = [ "The dog was found in a field near the intersection of West and West Streets.\n\nThe", "The flying machine is a small, lightweight, and lightweight aircraft that can be used for any type of", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) output_ids = model.generate(**input_ids, do_sample=False) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(**input_ids, do_sample=False) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) @slow def test_lm_generate_gpt2_sample_xla(self): # NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same # output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible # and that we can seed both versions. # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): model = TFGPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentence = ["The dog", "The flying machine"] expected_output_string = [ "The dog owner asked why did our vet decide there needed to be extra ventilation inside because most" " puppies", "The flying machine was made by an artist who found it difficult to control it as it did not use", ] expected_output_string_xla = [ "The dog has been named in connection with the murder of a 20-year-old man in", "The flying machine is a new and improved system to operate and operate a new system and system " "system system", ] input_ids = tokenizer(sentence, return_tensors="tf", padding=True) output_ids = model.generate(**input_ids, do_sample=True, seed=[7, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_string) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(**input_ids, do_sample=True, seed=[7, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_string_xla) @slow def test_lm_generate_gpt2_beam_search_xla(self): model = TFGPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["The dog", "The flying machine"] expected_output_strings = [ "The dog was found in the backyard of a home in the 6500 block of South Main Street", "The flying machine is a very powerful machine, but it's not a very powerful machine. It's", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) output_ids = model.generate(**input_ids, do_sample=False, num_beams=2) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(**input_ids, do_sample=False, num_beams=2) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) @slow def test_contrastive_search_gpt2(self): article = ( "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based" ) gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large") gpt2_model = TFGPT2LMHeadModel.from_pretrained("gpt2-large") input_ids = gpt2_tokenizer(article, return_tensors="tf") outputs = gpt2_model.generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256) generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, " "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as " "Google Now, which helps users find the information they're looking for on the web. But the company " "is not the only one to collect data on its users. Facebook, for example, has its own facial " "recognition technology, as well as a database of millions of photos that it uses to personalize its " "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates " "concerned about the company's ability to keep users' information private. In a blog post last " 'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our ' 'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with ' 'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at ' '[email protected]."\n\nGoogle declined to comment on the privacy implications of its use of data, ' "but said in a statement to The Associated Press that" ], ) @slow def test_contrastive_search_gpt2_xla(self): article = ( "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based" ) gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large") gpt2_model = TFGPT2LMHeadModel.from_pretrained("gpt2-large") input_ids = gpt2_tokenizer(article, return_tensors="tf") xla_generate = tf.function(gpt2_model.generate, jit_compile=True) outputs = xla_generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256) generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, " "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as " "Google Now, which helps users find the information they're looking for on the web. But the company " "is not the only one to collect data on its users. Facebook, for example, has its own facial " "recognition technology, as well as a database of millions of photos that it uses to personalize its " "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates " "concerned about the company's ability to keep users' information private. In a blog post last " 'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our ' 'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with ' 'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at ' '[email protected]."\n\nGoogle declined to comment on the privacy implications of its use of data, ' "but said in a statement to The Associated Press that" ], )
transformers/tests/models/gpt2/test_modeling_tf_gpt2.py/0
{ "file_path": "transformers/tests/models/gpt2/test_modeling_tf_gpt2.py", "repo_id": "transformers", "token_count": 14210 }
368
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class JukeboxTokenizationTest(unittest.TestCase): tokenizer_class = JukeboxTokenizer metas = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": """I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def test_1b_lyrics_tokenizer(self): """ how to run the same test with openAI ... """ import torch tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics") tokens = tokenizer(**self.metas)["input_ids"] # fmt: off EXPECTED_OUTPUT = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 1069, 11]]), torch.tensor([[0, 0, 0, 1069, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def test_5b_lyrics_tokenizer(self): """ The outputs are similar that open AI but do not have the same format as this one is adapted to the HF integration. """ import torch tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics") tokens = tokenizer(**self.metas)["input_ids"] # fmt: off EXPECTED_OUTPUT = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
transformers/tests/models/jukebox/test_tokenization_jukebox.py/0
{ "file_path": "transformers/tests/models/jukebox/test_tokenization_jukebox.py", "repo_id": "transformers", "token_count": 6342 }
369
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow LayoutLMv3 model. """ from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMv3Config, TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, TFLayoutLMv3Model, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMv3ImageProcessor class TFLayoutLMv3ModelTester: def __init__( self, parent, batch_size=2, num_channels=3, image_size=4, patch_size=2, text_seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=36, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, coordinate_size=6, shape_size=6, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.coordinate_size = coordinate_size self.shape_size = shape_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) self.text_seq_length = text_seq_length self.image_seq_length = (image_size // patch_size) ** 2 + 1 self.seq_length = self.text_seq_length + self.image_seq_length def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) bbox = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: tmp_coordinate = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: tmp_coordinate = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = tmp_coordinate bbox = tf.constant(bbox) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) config = LayoutLMv3Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def create_and_check_model(self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask): model = TFLayoutLMv3Model(config=config) # text + image result = model(input_ids, pixel_values=pixel_values, training=False) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, training=False, ) result = model(input_ids, bbox=bbox, pixel_values=pixel_values, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # text only result = model(input_ids, training=False) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only result = model({"pixel_values": pixel_values}, training=False) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ): config.num_labels = self.num_labels model = TFLayoutLMv3ForSequenceClassification(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, training=False, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels ): config.num_labels = self.num_labels model = TFLayoutLMv3ForTokenClassification(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, training=False, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ): config.num_labels = 2 model = TFLayoutLMv3ForQuestionAnswering(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, training=False, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFLayoutLMv3ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFLayoutLMv3Model, TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( {"document-question-answering": TFLayoutLMv3ForQuestionAnswering, "feature-extraction": TFLayoutLMv3Model} if is_tf_available() else {} ) test_pruning = False test_resize_embeddings = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: inputs_dict = copy.deepcopy(inputs_dict) if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict = { k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(v, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING): inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING): inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.int32 ) return inputs_dict def setUp(self): self.model_tester = TFLayoutLMv3ModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) if getattr(model, "hf_compute_loss", None): # The number of elements in the loss should be the same as the number of elements in the label prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) added_label = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] ] expected_loss_size = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") loss = model(input_ids, **prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") if "labels" in prepared_for_class: labels = prepared_for_class["labels"].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: labels[0] = -100 prepared_for_class["labels"] = tf.convert_to_tensor(labels) loss = model(input_ids, **prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) loss = model(prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # Get keys that were added with the _prepare_for_class function label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: "input_ids"} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def test_model(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) def test_model_various_embeddings(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _, ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config.position_embedding_type = type self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) def test_for_sequence_classification(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ) def test_for_token_classification(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, token_labels, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels ) def test_for_question_answering(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ) @slow def test_model_from_pretrained(self): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFLayoutLMv3Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf class TFLayoutLMv3ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None @slow def test_inference_no_head(self): model = TFLayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base") image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="tf").pixel_values input_ids = tf.constant([[1, 2]]) bbox = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0) # forward pass outputs = model(input_ids=input_ids, bbox=bbox, pixel_values=pixel_values, training=False) # verify the logits expected_shape = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/layoutlmv3/test_modeling_tf_layoutlmv3.py/0
{ "file_path": "transformers/tests/models/layoutlmv3/test_modeling_tf_layoutlmv3.py", "repo_id": "transformers", "token_count": 9738 }
370
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import LlamaConfig, is_flax_available, is_tokenizers_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import jax.numpy as jnp from transformers.models.llama.modeling_flax_llama import FlaxLlamaForCausalLM, FlaxLlamaModel if is_tokenizers_available(): from transformers import LlamaTokenizerFast class FlaxLlamaModelTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, window_size=7, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.window_size = window_size self.initializer_range = initializer_range self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = np.tril(np.ones((self.batch_size, self.seq_length))) config = LlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, use_cache=True, is_decoder=False, initializer_range=self.initializer_range, ) return (config, input_ids, input_mask) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) attention_mask_cache = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxLlamaModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxLlamaModel, FlaxLlamaForCausalLM) if is_flax_available() else () all_generative_model_classes = (FlaxLlamaForCausalLM,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxLlamaModelTester(self) def test_use_cache_forward(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) def test_use_cache_forward_with_attn_mask(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( model_class_name, config, input_ids, attention_mask ) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openlm-research/open_llama_3b_v2", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) @slow @require_flax class FlaxLlamaIntegrationTest(unittest.TestCase): def setUp(self): self.model_id = "openlm-research/open_llama_3b_v2" self.model = FlaxLlamaForCausalLM.from_pretrained(self.model_id, from_pt=True) self.test_batch = jnp.arange(32).reshape(4, 8) + 1911 def test_model_logits(self): flax_logits = self.model(self.test_batch).logits # fmt: off EXPECTED_LOGITS = [-74.4243, -74.0680, -65.2507, -79.1658, -77.7460, -69.2379, -86.4588, -84.8933, -77.8456] EXPECTED_MIN, EXPECTED_MAX, EXPECTED_MEAN = -96.9952 EXPECTED_MAX = -18.4571 EXPECTED_MEAN = -65.0608 # fmt: on self.assertTrue(np.allclose(flax_logits[0, :3, :3].flatten(), EXPECTED_LOGITS, atol=1e-4)) self.assertAlmostEqual(flax_logits.min(), EXPECTED_MIN, places=3) self.assertAlmostEqual(flax_logits.max(), EXPECTED_MAX, places=3) self.assertAlmostEqual(flax_logits.mean(), EXPECTED_MEAN, places=3) def test_model_hidden_states(self): flax_hidden_states = self.model(self.test_batch, output_hidden_states=True).hidden_states flax_hidden_means = [h.mean() for h in flax_hidden_states] # fmt: off EXPECTED_HIDDEN_MEANS = [ -0.00007,-0.00049,-0.00169,-0.00253,-0.00271, -0.00290,-0.00252,0.00230,0.00230,0.00198, 0.00196,0.00174,0.00246,0.00205,0.00242, 0.00171,0.00092,0.00054,0.00102,0.00024, 0.00029,0.00037,-0.00101,-0.00062,-0.00341,-0.00636,-0.00357 ] # fmt: on self.assertTrue(np.allclose(flax_hidden_means, EXPECTED_HIDDEN_MEANS, atol=1e-4)) def test_generated_text(self): tokenizer = LlamaTokenizerFast.from_pretrained(self.model_id) tokenizer.pad_token_id = 2 test_batch = ["Aloha, World! ", "2 + 2 = ", "Paris is the capital of ", "我很高興認識"] inputs = tokenizer(test_batch, return_tensors="np", truncation=True, padding=True) generated_ids = self.model.generate(**inputs, max_length=15).sequences generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) # fmt: off EXPECTED_GENERATION = [ "Aloha, World! 201", "2 + 2 = 4\n2", "Paris is the capital of Île-", "我很高興認識你,我" ] # fmt: on self.assertListEqual(generated_text, EXPECTED_GENERATION)
transformers/tests/models/llama/test_modeling_flax_llama.py/0
{ "file_path": "transformers/tests/models/llama/test_modeling_flax_llama.py", "repo_id": "transformers", "token_count": 4765 }
371
# coding=utf-8 # Copyright 2018 LXMERT Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import numpy as np from transformers import LxmertConfig, is_tf_available, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, ) from transformers.models.lxmert.modeling_lxmert import LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST if is_tf_available(): import tensorflow as tf class LxmertModelTester: def __init__( self, parent, vocab_size=300, hidden_size=28, num_attention_heads=2, num_labels=2, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, num_qa_labels=30, num_object_labels=16, num_attr_labels=4, num_visual_features=10, l_layers=2, x_layers=1, r_layers=1, visual_feat_dim=128, visual_pos_dim=4, visual_loss_normalizer=6.67, seq_length=20, batch_size=4, is_training=True, task_matched=True, task_mask_lm=True, task_obj_predict=True, task_qa=True, visual_obj_loss=True, visual_attr_loss=True, visual_feat_loss=True, use_token_type_ids=True, use_lang_mask=True, output_attentions=False, output_hidden_states=False, scope=None, ): self.parent = parent self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_labels = num_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.pad_token_id = pad_token_id self.num_qa_labels = num_qa_labels self.num_object_labels = num_object_labels self.num_attr_labels = num_attr_labels self.l_layers = l_layers self.x_layers = x_layers self.r_layers = r_layers self.visual_feat_dim = visual_feat_dim self.visual_pos_dim = visual_pos_dim self.visual_loss_normalizer = visual_loss_normalizer self.seq_length = seq_length self.batch_size = batch_size self.is_training = is_training self.use_lang_mask = use_lang_mask self.task_matched = task_matched self.task_mask_lm = task_mask_lm self.task_obj_predict = task_obj_predict self.task_qa = task_qa self.visual_obj_loss = visual_obj_loss self.visual_attr_loss = visual_attr_loss self.visual_feat_loss = visual_feat_loss self.num_visual_features = num_visual_features self.use_token_type_ids = use_token_type_ids self.output_attentions = output_attentions self.output_hidden_states = output_hidden_states self.scope = scope self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} def prepare_config_and_inputs(self): output_attentions = self.output_attentions input_ids = ids_tensor([self.batch_size, self.seq_length], vocab_size=self.vocab_size) visual_feats = torch.rand(self.batch_size, self.num_visual_features, self.visual_feat_dim, device=torch_device) bounding_boxes = torch.rand(self.batch_size, self.num_visual_features, 4, device=torch_device) input_mask = None if self.use_lang_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) obj_labels = None if self.task_obj_predict: obj_labels = {} if self.visual_attr_loss and self.task_obj_predict: obj_labels["attr"] = ( ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), ) if self.visual_feat_loss and self.task_obj_predict: obj_labels["feat"] = ( ids_tensor( [self.batch_size, self.num_visual_features, self.visual_feat_dim], self.num_visual_features ), ids_tensor([self.batch_size, self.num_visual_features], self.num_visual_features), ) if self.visual_obj_loss and self.task_obj_predict: obj_labels["obj"] = ( ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), ) ans = None if self.task_qa: ans = ids_tensor([self.batch_size], self.num_qa_labels) masked_lm_labels = None if self.task_mask_lm: masked_lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) matched_label = None if self.task_matched: matched_label = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return ( config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ) def get_config(self): return LxmertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_attention_heads=self.num_attention_heads, num_labels=self.num_labels, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, pad_token_id=self.pad_token_id, num_qa_labels=self.num_qa_labels, num_object_labels=self.num_object_labels, num_attr_labels=self.num_attr_labels, l_layers=self.l_layers, x_layers=self.x_layers, r_layers=self.r_layers, visual_feat_dim=self.visual_feat_dim, visual_pos_dim=self.visual_pos_dim, visual_loss_normalizer=self.visual_loss_normalizer, task_matched=self.task_matched, task_mask_lm=self.task_mask_lm, task_obj_predict=self.task_obj_predict, task_qa=self.task_qa, visual_obj_loss=self.visual_obj_loss, visual_attr_loss=self.visual_attr_loss, visual_feat_loss=self.visual_feat_loss, output_attentions=self.output_attentions, output_hidden_states=self.output_hidden_states, ) def create_and_check_lxmert_model( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = LxmertModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=not output_attentions, ) result = model(input_ids, visual_feats, bounding_boxes, return_dict=False) result = model(input_ids, visual_feats, bounding_boxes, return_dict=True) self.parent.assertEqual(result.language_output.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual( result.vision_output.shape, (self.batch_size, self.num_visual_features, self.hidden_size) ) self.parent.assertEqual(result.pooled_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_lxmert_for_question_answering( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = LxmertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, labels=ans, output_attentions=output_attentions, ) result = model(input_ids, visual_feats, bounding_boxes, labels=ans) result = model( input_ids, visual_feats, bounding_boxes, labels=ans, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, labels=ans, output_attentions=not output_attentions, ) self.parent.assertEqual(result.question_answering_score.shape, (self.batch_size, self.num_qa_labels)) def create_and_check_lxmert_for_pretraining( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = LxmertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, obj_labels=obj_labels, matched_label=matched_label, ans=ans, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, output_attentions=not output_attentions, return_dict=False, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, obj_labels=obj_labels, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, matched_label=matched_label, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=ans, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, obj_labels=obj_labels, matched_label=matched_label, ans=ans, output_attentions=not output_attentions, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def resize_lxmert_num_qa_labels( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): start_labels = config.num_qa_labels num_large_labels = config.num_qa_labels * 2 num_small_labels = int(config.num_qa_labels * 2) less_labels_ans = ids_tensor([self.batch_size], num_small_labels) more_labels_ans = ids_tensor([self.batch_size], num_large_labels) model_pretrain = LxmertForPreTraining(config=config).to(torch_device) model_qa = LxmertForQuestionAnswering(config=config).to(torch_device) config.num_labels = num_small_labels end_labels = config.num_labels result_pretrain = model_pretrain( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=ans, ) result_qa = model_qa( input_ids, visual_feats, bounding_boxes, labels=ans, token_type_ids=token_type_ids, attention_mask=input_mask, ) model_pretrain.resize_num_qa_labels(num_small_labels) model_qa.resize_num_qa_labels(num_small_labels) result_pretrain_less = model_pretrain( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=less_labels_ans, ) result_qa_less = model_qa( input_ids, visual_feats, bounding_boxes, labels=less_labels_ans, token_type_ids=token_type_ids, attention_mask=input_mask, ) model_pretrain.resize_num_qa_labels(num_large_labels) model_qa.resize_num_qa_labels(num_large_labels) result_pretrain_more = model_pretrain( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=more_labels_ans, ) result_qa_more = model_qa( input_ids, visual_feats, bounding_boxes, labels=more_labels_ans, token_type_ids=token_type_ids, attention_mask=input_mask, ) model_qa_labels = model_qa.num_qa_labels self.parent.assertNotEqual(start_labels, end_labels) self.parent.assertNotEqual(model_qa_labels, start_labels) self.parent.assertEqual(result_qa.question_answering_score.shape, (self.batch_size, start_labels)) self.parent.assertEqual(result_pretrain.question_answering_score.shape, (self.batch_size, start_labels)) self.parent.assertEqual(result_qa_less.question_answering_score.shape, (self.batch_size, num_small_labels)) self.parent.assertEqual( result_pretrain_less.question_answering_score.shape, (self.batch_size, num_small_labels) ) self.parent.assertEqual(result_qa_more.question_answering_score.shape, (self.batch_size, num_large_labels)) self.parent.assertEqual( result_pretrain_more.question_answering_score.shape, (self.batch_size, num_large_labels) ) def prepare_config_and_inputs_for_common(self, return_obj_labels=False): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "visual_feats": visual_feats, "visual_pos": bounding_boxes, "token_type_ids": token_type_ids, "attention_mask": input_mask, } if return_obj_labels: inputs_dict["obj_labels"] = obj_labels else: config.task_obj_predict = False return config, inputs_dict @require_torch class LxmertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (LxmertModel, LxmertForPreTraining, LxmertForQuestionAnswering) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": LxmertModel, "question-answering": LxmertForQuestionAnswering} if is_torch_available() else {} ) fx_compatible = True test_head_masking = False test_pruning = False test_torchscript = False # overwrite function because qa models takes different input label shape def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING): inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): # special case for models like BERT that use multi-loss training for PreTraining inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = LxmertModelTester(self) self.config_tester = ConfigTester(self, config_class=LxmertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_lxmert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_model(*config_and_inputs) def test_lxmert_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_for_question_answering(*config_and_inputs) def test_lxmert_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_for_pretraining(*config_and_inputs) def test_lxmert_question_answering_labels_resize(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.resize_lxmert_num_qa_labels(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = LxmertModel.from_pretrained(model_name) model.to(torch_device) self.assertIsNotNone(model) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() seq_len = getattr(self.model_tester, "seq_length", None) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) attentions = [language_attentions, vision_attentions, cross_encoder_attentions] attention_shapes = [ [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], [ self.model_tester.num_attention_heads, self.model_tester.num_visual_features, self.model_tester.num_visual_features, ], [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], ] for attention, attention_shape in zip(attentions, attention_shapes): self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # 2 hidden states were added self.assertEqual(out_len + 2, len(outputs)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) attentions = [language_attentions, vision_attentions, cross_encoder_attentions] attention_shapes = [ [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], [ self.model_tester.num_attention_heads, self.model_tester.num_visual_features, self.model_tester.num_visual_features, ], [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], ] for attention, attention_shape in zip(attentions, attention_shapes): self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1] self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1) self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1) seq_length = self.model_tester.seq_length num_visual_features = self.model_tester.num_visual_features self.assertListEqual( list(language_hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) self.assertListEqual( list(vision_hidden_states[0].shape[-2:]), [num_visual_features, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) hidden_states_lang = outputs.language_hidden_states[0] attentions_lang = outputs.language_attentions[0] hidden_states_vision = outputs.vision_hidden_states[0] attentions_vision = outputs.vision_attentions[0] hidden_states_lang.retain_grad() attentions_lang.retain_grad() hidden_states_vision.retain_grad() attentions_vision.retain_grad() outputs.language_output.flatten()[0].backward(retain_graph=True) outputs.vision_output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states_lang.grad) self.assertIsNotNone(attentions_vision.grad) self.assertIsNotNone(hidden_states_vision.grad) self.assertIsNotNone(attentions_vision.grad) def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict): tf_inputs_dict = {} for key, value in pt_inputs_dict.items(): # skip key that does not exist in tf if isinstance(value, dict): tf_inputs_dict[key] = self.prepare_pt_inputs_from_tf_inputs(value) elif isinstance(value, (list, tuple)): tf_inputs_dict[key] = (self.prepare_pt_inputs_from_tf_inputs(iter_value) for iter_value in value) elif isinstance(value, bool): tf_inputs_dict[key] = value elif key == "input_values": tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) elif key == "pixel_values": tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) elif key == "input_features": tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) # other general float inputs elif value.is_floating_point(): tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) else: tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.int32) return tf_inputs_dict @require_torch class LxmertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = LxmertModel.from_pretrained(LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) input_ids = torch.tensor([[101, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 102]]) num_visual_features = 10 _, visual_feats = np.random.seed(0), np.random.rand(1, num_visual_features, model.config.visual_feat_dim) _, visual_pos = np.random.seed(0), np.random.rand(1, num_visual_features, 4) visual_feats = torch.as_tensor(visual_feats, dtype=torch.float32) visual_pos = torch.as_tensor(visual_pos, dtype=torch.float32) output = model(input_ids, visual_feats=visual_feats, visual_pos=visual_pos)[0] expected_shape = torch.Size([1, 11, 768]) self.assertEqual(expected_shape, output.shape) expected_slice = torch.tensor( [[[0.2417, -0.9807, 0.1480], [1.2541, -0.8320, 0.5112], [1.4070, -1.1052, 0.6990]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/lxmert/test_modeling_lxmert.py/0
{ "file_path": "transformers/tests/models/lxmert/test_modeling_lxmert.py", "repo_id": "transformers", "token_count": 15109 }
372
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class MobileBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=64, embedding_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.embedding_size = embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_mobilebert_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_mobilebert_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_mobilebert_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_mobilebert_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MobileBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mobilebert_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MobileBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_mobilebert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MobileBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MobileBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict # TODO (@SunMarc): Fix me @unittest.skip("It's broken.") def test_resize_tokens_embeddings(self): super().test_resize_tokens_embeddings() def setUp(self): self.model_tester = MobileBertModelTester(self) self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mobilebert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs) def _long_tensor(tok_lst): return torch.tensor( tok_lst, dtype=torch.long, device=torch_device, ) TOLERANCE = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class MobileBertModelIntegrationTests(unittest.TestCase): @slow def test_inference_no_head(self): model = MobileBertModel.from_pretrained("google/mobilebert-uncased").to(torch_device) input_ids = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 9, 512)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ], device=torch_device, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lower_bound = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE) upper_bound = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE) self.assertTrue(lower_bound and upper_bound)
transformers/tests/models/mobilebert/test_modeling_mobilebert.py/0
{ "file_path": "transformers/tests/models/mobilebert/test_modeling_mobilebert.py", "repo_id": "transformers", "token_count": 7069 }
373
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class MPNetModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def get_large_model_config(self): return MPNetConfig.from_pretrained("microsoft/mpnet-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_mpnet_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MPNetModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_mpnet_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MPNetForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_mpnet_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MPNetForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mpnet_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MPNetForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_mpnet_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MPNetForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MPNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = True def setUp(self): self.model_tester = MPNetModelTester(self) self.config_tester = ConfigTester(self, config_class=MPNetConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mpnet_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*config_and_inputs) @unittest.skip("TFMPNet adds poolers to all models, unlike the PT model class.") def test_tf_from_pt_safetensors(self): return @require_torch class MPNetModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = MPNetModel.from_pretrained("microsoft/mpnet-base") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/mpnet/test_modeling_mpnet.py/0
{ "file_path": "transformers/tests/models/mpnet/test_modeling_mpnet.py", "repo_id": "transformers", "token_count": 4626 }
374
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch OneFormer model. """ import copy import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import OneFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import ( require_torch, require_torch_accelerator, require_torch_fp16, require_torch_multi_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OneFormerForUniversalSegmentation, OneFormerModel if is_vision_available(): from transformers import OneFormerProcessor if is_vision_available(): from PIL import Image def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) return configs_no_init class OneFormerModelTester: def __init__( self, parent, batch_size=2, is_training=True, vocab_size=99, use_auxiliary_loss=False, num_queries=10, num_channels=3, min_size=32 * 8, max_size=32 * 8, num_labels=4, hidden_dim=64, sequence_length=77, n_ctx=4, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.vocab_size = vocab_size self.use_auxiliary_loss = use_auxiliary_loss self.num_queries = num_queries self.num_channels = num_channels self.min_size = min_size self.max_size = max_size self.num_labels = num_labels self.hidden_dim = hidden_dim self.sequence_length = sequence_length self.n_ctx = n_ctx def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( torch_device ) task_inputs = ( torch.randint(high=self.vocab_size, size=(self.batch_size, self.sequence_length)).to(torch_device).long() ) pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) text_inputs = ( torch.randint( high=self.vocab_size, size=(self.batch_size, self.num_queries - self.n_ctx, self.sequence_length) ) .to(torch_device) .long() ) mask_labels = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=torch_device) > 0.5 ).float() class_labels = (torch.rand((self.batch_size, self.num_labels), device=torch_device) > 0.5).long() config = self.get_config() return config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels def get_config(self): config = OneFormerConfig( text_encoder_vocab_size=self.vocab_size, hidden_size=self.hidden_dim, num_queries=self.num_queries, num_labels=self.num_labels, encoder_feedforward_dim=32, dim_feedforward=64, encoder_layers=2, decoder_layers=2, ) config.backbone_config.embed_dim = 16 config.backbone_config.depths = [1, 1, 1, 1] config.backbone_config.hidden_size = 16 config.backbone_config.num_channels = self.num_channels config.backbone_config.num_heads = [1, 1, 2, 2] config.backbone = None config.hidden_dim = self.hidden_dim config.mask_dim = self.hidden_dim config.conv_dim = self.hidden_dim config.text_encoder_width = self.hidden_dim config.task_seq_len = self.sequence_length config.max_seq_len = self.sequence_length config.text_encoder_context_length = self.sequence_length config.text_encoder_n_ctx = self.n_ctx return config def prepare_config_and_inputs_for_common(self): config, pixel_values, task_inputs, pixel_mask, _, _, _ = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask, "task_inputs": task_inputs} return config, inputs_dict def check_output_hidden_state(self, output, config): encoder_hidden_states = output.encoder_hidden_states pixel_decoder_hidden_states = output.pixel_decoder_hidden_states transformer_decoder_hidden_states = output.transformer_decoder_hidden_states self.parent.assertTrue(len(encoder_hidden_states), len(config.backbone_config.depths)) self.parent.assertTrue(len(pixel_decoder_hidden_states), config.encoder_layers) self.parent.assertTrue(len(transformer_decoder_hidden_states), config.decoder_layers - 1) def create_and_check_oneformer_model( self, config, pixel_values, task_inputs, pixel_mask, output_hidden_states=False ): with torch.no_grad(): model = OneFormerModel(config=config) model.to(torch_device) model.eval() output = model(pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask) output = model(pixel_values, task_inputs=task_inputs, output_hidden_states=True) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_object_queries.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_hidden_states is not None) self.parent.assertTrue(output.encoder_hidden_states is not None) if output_hidden_states: self.check_output_hidden_state(output, config) def create_and_check_oneformer_universal_segmentation_head_model( self, config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels ): model = OneFormerForUniversalSegmentation(config=config) model.to(torch_device) model.eval() def comm_check_on_output(result): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_hidden_states is not None) self.parent.assertTrue(result.pixel_decoder_hidden_states is not None) self.parent.assertTrue(result.encoder_hidden_states is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): result = model(pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask) result = model(pixel_values, task_inputs) comm_check_on_output(result) config.is_training = True model = OneFormerForUniversalSegmentation(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model( pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask, mask_labels=mask_labels, class_labels=class_labels, text_inputs=text_inputs, ) comm_check_on_output(result) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class OneFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (OneFormerModel, OneFormerForUniversalSegmentation) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": OneFormerModel} if is_torch_available() else {} is_encoder_decoder = False test_pruning = False test_head_masking = False test_missing_keys = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "FeatureExtractionPipelineTests": return True return False def setUp(self): self.model_tester = OneFormerModelTester(self) self.config_tester = ConfigTester(self, config_class=OneFormerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_oneformer_model(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_oneformer_model(config, **inputs, output_hidden_states=False) def test_oneformer_universal_segmentation_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_oneformer_universal_segmentation_head_model(*config_and_inputs) def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1:3] self.assertEqual(model_class.main_input_name, observed_main_input_name) @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_simple(self): pass @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_output_attentions(self): pass @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_output_hidden_state(self): pass @unittest.skip(reason="OneFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="OneFormer does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="OneFormer is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="OneFormer does not use token embeddings") def test_resize_tokens_embeddings(self): pass @require_torch_multi_gpu @unittest.skip( reason="OneFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def test_multi_gpu_data_parallel_forward(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values", "task_inputs"] self.assertListEqual(arg_names[:2], expected_arg_names) @slow def test_model_from_pretrained(self): for model_name in ["shi-labs/oneformer_ade20k_swin_tiny"]: model = OneFormerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_model_with_labels(self): size = (self.model_tester.min_size,) * 2 inputs = { "pixel_values": torch.randn((2, 3, *size), device=torch_device), "task_inputs": torch.randint(high=self.model_tester.vocab_size, size=(2, 77), device=torch_device).long(), "text_inputs": torch.randint( high=self.model_tester.vocab_size, size=(2, 6, 77), device=torch_device ).long(), "mask_labels": torch.randn((2, 150, *size), device=torch_device), "class_labels": torch.zeros(2, 150, device=torch_device).long(), } config = self.model_tester.get_config() config.is_training = True model = OneFormerForUniversalSegmentation(config).to(torch_device) outputs = model(**inputs) self.assertTrue(outputs.loss is not None) def test_hidden_states_output(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_oneformer_model(config, **inputs, output_hidden_states=True) def test_attention_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) outputs = model(**inputs, output_attentions=True) self.assertTrue(outputs.attentions is not None) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.contrastive_temperature = 1 configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_training(self): if not self.model_tester.is_training: return # only OneFormerForUniversalSegmentation has the loss model_class = self.all_model_classes[1] ( config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels, ) = self.model_tester.prepare_config_and_inputs() config.is_training = True model = model_class(config) model.to(torch_device) model.train() loss = model( pixel_values, task_inputs, text_inputs=text_inputs, mask_labels=mask_labels, class_labels=class_labels ).loss loss.backward() def test_retain_grad_hidden_states_attentions(self): # only OneFormerForUniversalSegmentation has the loss model_class = self.all_model_classes[1] ( config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels, ) = self.model_tester.prepare_config_and_inputs() config.output_hidden_states = True config.output_attentions = True config.is_training = True model = model_class(config) model.to(torch_device) model.train() outputs = model( pixel_values, task_inputs, text_inputs=text_inputs, mask_labels=mask_labels, class_labels=class_labels ) encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() transformer_decoder_class_predictions = outputs.transformer_decoder_class_predictions transformer_decoder_class_predictions.retain_grad() transformer_decoder_mask_predictions = outputs.transformer_decoder_mask_predictions transformer_decoder_mask_predictions.retain_grad() attentions = outputs.attentions[0][0] attentions.retain_grad() outputs.loss.backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_class_predictions.grad) self.assertIsNotNone(transformer_decoder_mask_predictions.grad) self.assertIsNotNone(attentions.grad) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @slow class OneFormerModelIntegrationTest(unittest.TestCase): @cached_property def model_checkpoints(self): return "shi-labs/oneformer_ade20k_swin_tiny" @cached_property def default_processor(self): return OneFormerProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def test_inference_no_head(self): model = OneFormerModel.from_pretrained(self.model_checkpoints).to(torch_device) processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size self.assertEqual(inputs_shape, (1, 3, 512, 682)) task_inputs_shape = inputs["task_inputs"].shape # check size self.assertEqual(task_inputs_shape, (1, 77)) with torch.no_grad(): outputs = model(**inputs) expected_slice_hidden_state = torch.tensor( [[0.2723, 0.8280, 0.6026], [1.2699, 1.1257, 1.1444], [1.1344, 0.6153, 0.4177]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.encoder_hidden_states[-1][0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[1.0581, 1.2276, 1.2003], [1.1903, 1.2925, 1.2862], [1.158, 1.2559, 1.3216]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.pixel_decoder_hidden_states[0][0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[3.0668, -1.1833, -5.1103], [3.344, -3.362, -5.1101], [2.6017, -4.3613, -4.1444]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.transformer_decoder_class_predictions[0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) def test_inference_universal_segmentation_head(self): model = OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(torch_device).eval() processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size self.assertEqual(inputs_shape, (1, 3, 512, 682)) with torch.no_grad(): outputs = model(**inputs) # masks_queries_logits masks_queries_logits = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, (inputs_shape[-1] + 2) // 4), ) expected_slice = [[[3.1848, 4.2141, 4.1993], [2.9000, 3.5721, 3.6603], [2.5358, 3.0883, 3.6168]]] expected_slice = torch.tensor(expected_slice).to(torch_device) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], expected_slice, atol=TOLERANCE)) # class_queries_logits class_queries_logits = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1), ) expected_slice = torch.tensor( [[3.0668, -1.1833, -5.1103], [3.3440, -3.3620, -5.1101], [2.6017, -4.3613, -4.1444]] ).to(torch_device) self.assertTrue(torch.allclose(class_queries_logits[0, :3, :3], expected_slice, atol=TOLERANCE)) @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): model = ( OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints) .to(torch_device, dtype=torch.float16) .eval() ) processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device, dtype=torch.float16) with torch.no_grad(): _ = model(**inputs) def test_with_segmentation_maps_and_loss(self): dummy_model = OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints) processor = self.default_processor processor.image_processor.num_text = dummy_model.config.num_queries - dummy_model.config.text_encoder_n_ctx dummy_model.config.is_training = True model = OneFormerForUniversalSegmentation(dummy_model.config).to(torch_device).eval() del dummy_model inputs = processor( [np.zeros((3, 512, 640)), np.zeros((3, 512, 640))], ["semantic", "semantic"], segmentation_maps=[np.zeros((384, 384)).astype(np.float32), np.zeros((384, 384)).astype(np.float32)], return_tensors="pt", ) inputs["pixel_values"] = inputs["pixel_values"].to(torch_device) inputs["task_inputs"] = inputs["task_inputs"].to(torch_device) inputs["text_inputs"] = inputs["text_inputs"].to(torch_device) inputs["mask_labels"] = [el.to(torch_device) for el in inputs["mask_labels"]] inputs["class_labels"] = [el.to(torch_device) for el in inputs["class_labels"]] with torch.no_grad(): outputs = model(**inputs) self.assertTrue(outputs.loss is not None)
transformers/tests/models/oneformer/test_modeling_oneformer.py/0
{ "file_path": "transformers/tests/models/oneformer/test_modeling_oneformer.py", "repo_id": "transformers", "token_count": 10046 }
375
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class OwlViTProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) image_processor_map = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token="!", **kwargs) def get_rust_tokenizer(self, **kwargs): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token="!", **kwargs) def get_image_processor(self, **kwargs): return OwlViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = OwlViTProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = OwlViTProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer) self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, OwlViTImageProcessor) self.assertIsInstance(processor_fast.image_processor, OwlViTImageProcessor) def test_save_load_pretrained_additional_features(self): processor = OwlViTProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False) processor = OwlViTProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", pad_token="!", do_normalize=False ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, OwlViTImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_proc = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str, return_tensors="np") encoded_tok = tokenizer(input_str, return_tensors="np") for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist()) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_with_text_list(self): model_name = "google/owlvit-base-patch32" processor = OwlViTProcessor.from_pretrained(model_name) input_text = ["cat", "nasa badge"] inputs = processor(text=input_text) seq_length = 16 self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape, (2, seq_length)) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_with_nested_text_list(self): model_name = "google/owlvit-base-patch32" processor = OwlViTProcessor.from_pretrained(model_name) input_texts = [["cat", "nasa badge"], ["person"]] inputs = processor(text=input_texts) seq_length = 16 batch_size = len(input_texts) num_max_text_queries = max([len(texts) for texts in input_texts]) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape, (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_case(self): model_name = "google/owlvit-base-patch32" processor = OwlViTProcessor.from_pretrained(model_name) input_texts = ["cat", "nasa badge"] inputs = processor(text=input_texts) seq_length = 16 input_ids = inputs["input_ids"] predicted_ids = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape, (2, seq_length)) self.assertListEqual(list(input_ids[0]), predicted_ids[0]) self.assertListEqual(list(input_ids[1]), predicted_ids[1]) def test_processor_case2(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() query_input = self.prepare_image_inputs() inputs = processor(images=image_input, query_images=query_input) self.assertListEqual(list(inputs.keys()), ["query_pixel_values", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor)
transformers/tests/models/owlvit/test_processor_owlvit.py/0
{ "file_path": "transformers/tests/models/owlvit/test_processor_owlvit.py", "repo_id": "transformers", "token_count": 4354 }
376
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Persimmon model. """ import gc import unittest from parameterized import parameterized from transformers import PersimmonConfig, is_torch_available, set_seed from transformers.testing_utils import ( backend_empty_cache, require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, PersimmonForCausalLM, PersimmonForSequenceClassification, PersimmonModel, ) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester with Llama->Persimmon class PersimmonModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return PersimmonConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = PersimmonModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = PersimmonModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = PersimmonForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = PersimmonForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class PersimmonModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (PersimmonModel, PersimmonForCausalLM, PersimmonForSequenceClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": PersimmonModel, "text-classification": PersimmonForSequenceClassification, # TODO (ydshieh): check why these two fail. Fix them or skip them in a better way. # "text-generation": PersimmonForCausalLM, # "zero-shot": PersimmonForSequenceClassification, } if is_torch_available() else {} ) all_generative_model_classes = (PersimmonForCausalLM,) if is_torch_available() else () test_headmasking = False test_pruning = False # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.setUp with Llama->Persimmon def setUp(self): self.model_tester = PersimmonModelTester(self) self.config_tester = ConfigTester(self, config_class=PersimmonConfig, hidden_size=37) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_config def test_config(self): self.config_tester.run_common_tests() # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_various_embeddings def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model with Llama->Persimmon,llama->persimmon def test_persimmon_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PersimmonForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_single_label with Llama->Persimmon,llama->persimmon def test_persimmon_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PersimmonForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_multi_label with Llama->Persimmon,llama->persimmon def test_persimmon_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = PersimmonForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("Persimmon buffers include complex numbers, which breaks this test") # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_save_load_fast_init_from_base def test_save_load_fast_init_from_base(self): pass @parameterized.expand([("linear",), ("dynamic",)]) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_rope_scaling with Llama->Persimmon def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = PersimmonModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = PersimmonModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch class PersimmonIntegrationTest(unittest.TestCase): @slow def test_model_8b_chat_logits(self): input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] model = PersimmonForCausalLM.from_pretrained( "adept/persimmon-8b-chat", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16 ) out = model(torch.tensor([input_ids], device=torch_device)).logits EXPECTED_MEAN = torch.tensor( [[-11.4726, -11.1495, -11.2694, -11.2223, -10.9452, -11.0663, -11.0031, -11.1028]] ) # change dtype to `torch.float32` before calling `mean` to avoid `nan` values torch.testing.assert_close(out.cpu().to(torch.float32).mean(-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4) # fmt: off EXPECTED_SLICE = torch.tensor( [-16.9062, -16.9062, -16.9062, -16.9062, -16.8906, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9531, -16.9062, -16.9062], dtype=torch.float16 ) # fmt: on torch.testing.assert_close(out.cpu()[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5) backend_empty_cache(torch_device) del model gc.collect() @slow @require_torch_accelerator @require_torch_fp16 def test_model_8b_chat_greedy_generation(self): EXPECTED_TEXT_COMPLETION = """human: Simply put, the theory of relativity states that?\n\nadept: The theory of relativity states that the laws of physics are the same for all observers, regardless of their relative motion.""" prompt = "human: Simply put, the theory of relativity states that?\n\nadept:" tokenizer = AutoTokenizer.from_pretrained("adept/persimmon-8b-chat", use_fast=False) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(torch_device) model = PersimmonForCausalLM.from_pretrained( "adept/persimmon-8b-chat", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16 ) # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=64) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) backend_empty_cache(torch_device) del model gc.collect()
transformers/tests/models/persimmon/test_modeling_persimmon.py/0
{ "file_path": "transformers/tests/models/persimmon/test_modeling_persimmon.py", "repo_id": "transformers", "token_count": 8403 }
377
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import ( check_json_file_has_correct_format, require_essentia, require_librosa, require_scipy, require_tf, require_torch, ) from transformers.utils.import_utils import ( is_essentia_available, is_librosa_available, is_scipy_available, is_torch_available, ) from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin requirements_available = ( is_torch_available() and is_essentia_available() and is_scipy_available() and is_librosa_available() ) if requirements_available: import torch from transformers import Pop2PianoFeatureExtractor class Pop2PianoFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, n_bars=2, sample_rate=22050, use_mel=True, padding_value=0, vocab_size_special=4, vocab_size_note=128, vocab_size_velocity=2, vocab_size_time=100, ): self.parent = parent self.n_bars = n_bars self.sample_rate = sample_rate self.use_mel = use_mel self.padding_value = padding_value self.vocab_size_special = vocab_size_special self.vocab_size_note = vocab_size_note self.vocab_size_velocity = vocab_size_velocity self.vocab_size_time = vocab_size_time def prepare_feat_extract_dict(self): return { "n_bars": self.n_bars, "sample_rate": self.sample_rate, "use_mel": self.use_mel, "padding_value": self.padding_value, "vocab_size_special": self.vocab_size_special, "vocab_size_note": self.vocab_size_note, "vocab_size_velocity": self.vocab_size_velocity, "vocab_size_time": self.vocab_size_time, } @require_torch @require_essentia @require_librosa @require_scipy class Pop2PianoFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = Pop2PianoFeatureExtractor if requirements_available else None def setUp(self): self.feat_extract_tester = Pop2PianoFeatureExtractionTester(self) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.use_mel mel_2 = feat_extract_second.use_mel self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.use_mel mel_2 = feat_extract_second.use_mel self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_call(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input = np.zeros([1000000], dtype=np.float32) input_features = feature_extractor(speech_input, sampling_rate=16_000, return_tensors="np") self.assertTrue(input_features.input_features.ndim == 3) self.assertEqual(input_features.input_features.shape[-1], 512) self.assertTrue(input_features.beatsteps.ndim == 2) self.assertTrue(input_features.extrapolated_beatstep.ndim == 2) def test_integration(self): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") speech_samples = ds.sort("id").select([0])["audio"] input_speech = [x["array"] for x in speech_samples][0] sampling_rate = [x["sampling_rate"] for x in speech_samples][0] feaure_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano") input_features = feaure_extractor( input_speech, sampling_rate=sampling_rate, return_tensors="pt" ).input_features EXPECTED_INPUT_FEATURES = torch.tensor( [[-7.1493, -6.8701, -4.3214], [-5.9473, -5.7548, -3.8438], [-6.1324, -5.9018, -4.3778]] ) self.assertTrue(torch.allclose(input_features[0, :3, :3], EXPECTED_INPUT_FEATURES, atol=1e-4)) def test_attention_mask(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2], sampling_rate=[44_100, 16_000], return_tensors="np", return_attention_mask=True, ) self.assertTrue(hasattr(input_features, "attention_mask")) # check shapes self.assertTrue(input_features["attention_mask"].ndim == 2) self.assertEqual(input_features["attention_mask_beatsteps"].shape[0], 2) self.assertEqual(input_features["attention_mask_extrapolated_beatstep"].shape[0], 2) # check if they are any values except 0 and 1 self.assertTrue(np.max(input_features["attention_mask"]) == 1) self.assertTrue(np.max(input_features["attention_mask_beatsteps"]) == 1) self.assertTrue(np.max(input_features["attention_mask_extrapolated_beatstep"]) == 1) self.assertTrue(np.min(input_features["attention_mask"]) == 0) self.assertTrue(np.min(input_features["attention_mask_beatsteps"]) == 0) self.assertTrue(np.min(input_features["attention_mask_extrapolated_beatstep"]) == 0) def test_batch_feature(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_attention_mask=True, ) self.assertEqual(len(input_features["input_features"].shape), 3) # check shape self.assertEqual(input_features["beatsteps"].shape[0], 3) self.assertEqual(input_features["extrapolated_beatstep"].shape[0], 3) def test_batch_feature_np(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_tensors="np", return_attention_mask=True, ) # check np array or not self.assertEqual(type(input_features["input_features"]), np.ndarray) # check shape self.assertEqual(len(input_features["input_features"].shape), 3) def test_batch_feature_pt(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_tensors="pt", return_attention_mask=True, ) # check pt tensor or not self.assertEqual(type(input_features["input_features"]), torch.Tensor) # check shape self.assertEqual(len(input_features["input_features"].shape), 3) @require_tf def test_batch_feature_tf(self): import tensorflow as tf feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_tensors="tf", return_attention_mask=True, ) # check tf tensor or not self.assertTrue(tf.is_tensor(input_features["input_features"])) # check shape self.assertEqual(len(input_features["input_features"].shape), 3) @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_accepts_tensors_pt(self): pass @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_accepts_tensors_tf(self): pass @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_from_list(self): pass @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_from_array(self): pass @unittest.skip("Pop2PianoFeatureExtractor does not support truncation") def test_attention_mask_with_truncation(self): pass @unittest.skip("Pop2PianoFeatureExtractor does not supports truncation") def test_truncation_from_array(self): pass @unittest.skip("Pop2PianoFeatureExtractor does not supports truncation") def test_truncation_from_list(self): pass
transformers/tests/models/pop2piano/test_feature_extraction_pop2piano.py/0
{ "file_path": "transformers/tests/models/pop2piano/test_feature_extraction_pop2piano.py", "repo_id": "transformers", "token_count": 4962 }
378
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import json import os import shutil import tempfile import unittest from unittest.mock import patch import numpy as np from transformers import BartTokenizer, T5Tokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import ( get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, require_torch_non_multi_gpu, slow, torch_device, ) from transformers.utils import cached_property, is_datasets_available, is_faiss_available, is_torch_available from ..bart.test_modeling_bart import BartModelTester from ..dpr.test_modeling_dpr import DPRModelTester from ..t5.test_modeling_t5 import T5ModelTester TOLERANCE = 1e-3 T5_SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available() and is_datasets_available() and is_faiss_available(): import faiss import torch from datasets import Dataset from transformers import ( AutoConfig, AutoModel, AutoModelForSeq2SeqLM, DPRContextEncoder, RagConfig, RagModel, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration, RagTokenizer, ) from transformers.modeling_outputs import BaseModelOutput def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): """If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def require_retrieval(test_case): """ Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with [`RagRetriever`]. These tests are skipped when respective libraries are not installed. """ if not (is_torch_available() and is_datasets_available() and is_faiss_available()): test_case = unittest.skip("test requires PyTorch, datasets and faiss")(test_case) return test_case @require_torch @require_retrieval @require_sentencepiece class RagTestMixin: all_model_classes = ( (RagModel, RagTokenForGeneration, RagSequenceForGeneration) if is_torch_available() and is_datasets_available() and is_faiss_available() else () ) retrieval_vector_size = 32 n_docs = 3 max_combined_length = 16 def setUp(self): self.tmpdirname = tempfile.mkdtemp() # DPR tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer") os.makedirs(dpr_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer") os.makedirs(bart_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) t5_tokenizer = T5Tokenizer(T5_SAMPLE_VOCAB) t5_tokenizer_path = os.path.join(self.tmpdirname, "t5_tokenizer") t5_tokenizer.save_pretrained(t5_tokenizer_path) @cached_property def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) @cached_property def dpr_ctx_encoder_tokenizer(self) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) @cached_property def bart_tokenizer(self) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer")) @cached_property def t5_tokenizer(self) -> BartTokenizer: return T5Tokenizer.from_pretrained(os.path.join(self.tmpdirname, "t5_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def get_retriever(self, config): dataset = Dataset.from_dict( { "id": ["0", "1", "3"], "text": ["foo", "bar", "qux"], "title": ["Foo", "Bar", "Qux"], "embeddings": [ np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size), 3 * np.ones(self.retrieval_vector_size), ], } ) dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT) tokenizer = self.bart_tokenizer if config.generator.model_type == "bart" else self.t5_tokenizer with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: mock_load_dataset.return_value = dataset retriever = RagRetriever( config, question_encoder_tokenizer=self.dpr_tokenizer, generator_tokenizer=tokenizer, ) return retriever def check_model_with_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes: model = model_class(config, retriever=self.get_retriever(config)).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_with_end2end_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) context_encoder_tokenizer = self.dpr_ctx_encoder_tokenizer dpr_context_encoder = DPRContextEncoder(config.question_encoder) # dpr is a twin tower retriever = self.get_retriever(config) retriever.set_ctx_encoder_tokenizer(context_encoder_tokenizer) # setting the ctx_encoder_tokenizer. for model_class in [RagTokenForGeneration, RagSequenceForGeneration]: model = model_class(config, retriever=retriever) model.set_context_encoder_for_training(dpr_context_encoder) # set the context_encoder for training model.to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_generate_from_context_input_ids( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) outputs = model.generate( context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, do_deduplication=True, ) self.assertIsNotNone(outputs) def check_model_generate( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes[1:]: model = model_class(config, retriever=self.get_retriever(config)).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model.generate( input_ids=input_ids, num_beams=2, num_return_sequences=2, decoder_start_token_id=config.generator.eos_token_id, ) self.assertIsNotNone(outputs) def check_model_without_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) outputs = model( context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_custom_n_docs( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, n_docs, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", n_docs=n_docs, ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) outputs = model( context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, n_docs=n_docs, ) # logits self.assertEqual( outputs.logits.shape, (n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], n_docs)) def check_model_with_mismatch_n_docs_value( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, retriever_n_docs, generator_n_docs, **kwargs, ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", n_docs=retriever_n_docs, ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) self.assertRaises( AssertionError, model.__call__, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, n_docs=generator_n_docs, ) def check_model_with_encoder_outputs( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes: model = model_class(config, retriever=self.get_retriever(config)).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) encoder_outputs = BaseModelOutput(outputs.generator_enc_last_hidden_state) # run only generator outputs = model( encoder_outputs=encoder_outputs, doc_scores=outputs.doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def test_model_with_retriever(self): inputs_dict = self.config_and_inputs self.check_model_with_retriever(**inputs_dict) def test_model_with_end2end_retriever(self): inputs_dict = self.config_and_inputs self.check_model_with_end2end_retriever(**inputs_dict) def test_model_without_retriever(self): inputs_dict = self.config_and_inputs self.check_model_without_retriever(**inputs_dict) def test_model_with_encoder_outputs(self): inputs_dict = self.config_and_inputs self.check_model_with_encoder_outputs(**inputs_dict) def test_model_generate(self): inputs_dict = self.config_and_inputs self.check_model_generate(**inputs_dict) def test_model_with_custom_n_docs(self): inputs_dict = self.config_and_inputs inputs_dict["n_docs"] = 1 self.check_model_custom_n_docs(**inputs_dict) def test_model_with_mismatch_n_docs_value(self): inputs_dict = self.config_and_inputs inputs_dict["retriever_n_docs"] = 3 inputs_dict["generator_n_docs"] = 2 self.check_model_with_mismatch_n_docs_value(**inputs_dict) @require_torch @require_retrieval class RagDPRBartTest(RagTestMixin, unittest.TestCase): @cached_property def config_and_inputs(self): question_encoder_tester = DPRModelTester(self) dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs() generator_tester = BartModelTester(self) bart_config_and_inputs = generator_tester.prepare_config_and_inputs_for_common() (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs (generator_config, bart_inputs_dict) = bart_config_and_inputs decoder_input_ids, decoder_attention_mask = bart_inputs_dict["input_ids"], bart_inputs_dict["attention_mask"] config = RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, n_docs=self.n_docs, retrieval_vector_size=self.retrieval_vector_size, max_combined_length=self.max_combined_length, ) return { "config": config, "input_ids": input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } @require_torch @require_retrieval class RagDPRT5Test(RagTestMixin, unittest.TestCase): @cached_property def config_and_inputs(self): question_encoder_tester = DPRModelTester(self) dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs() generator_tester = T5ModelTester(self, vocab_size=1100) t5_config_and_inputs = generator_tester.prepare_config_and_inputs() (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs (generator_config, _, decoder_input_ids, _, decoder_attention_mask, _) = t5_config_and_inputs config = RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, n_docs=self.n_docs, retrieval_vector_size=self.retrieval_vector_size, max_combined_length=self.max_combined_length, ) return { "config": config, "input_ids": input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } @require_torch @require_retrieval @require_sentencepiece @require_tokenizers @require_torch_non_multi_gpu class RagModelIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @cached_property def sequence_model(self): return ( RagSequenceForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn" ) .to(torch_device) .eval() ) @cached_property def token_model(self): return ( RagTokenForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn" ) .to(torch_device) .eval() ) def get_rag_config(self): question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn") return RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, bos_token_id=0, decoder_start_token_id=2, eos_token_id=2, is_encoder_decoder=True, pad_token_id=1, vocab_size=50264, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, dataset="wiki_dpr", dataset_split="train", index_name="exact", index_path=None, use_dummy_dataset=True, retrieval_vector_size=768, retrieval_batch_size=8, ) @slow def test_rag_sequence_inference(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_sequence = self.sequence_model rag_sequence.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with torch.no_grad(): output = rag_sequence( input_ids, labels=decoder_input_ids, ) expected_shape = torch.Size([5, 5, 50264]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device) _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE) expected_loss = torch.tensor([36.7368]).to(torch_device) _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE) @slow def test_rag_token_inference(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_token = self.token_model rag_token.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with torch.no_grad(): output = rag_token( input_ids, labels=decoder_input_ids, ) expected_shape = torch.Size([5, 5, 50264]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device) _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE) expected_loss = torch.tensor([36.3557]).to(torch_device) _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE) @slow def test_rag_token_generate_beam(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_token = self.token_model rag_token.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids input_ids = input_ids.to(torch_device) output_ids = rag_token.generate( input_ids, decoder_start_token_id=rag_token.generator.config.decoder_start_token_id, num_beams=2, num_return_sequences=2, ) # sequence generate test output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True) output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True) # Expected outputs as given by model at integration time. EXPECTED_OUTPUT_TEXT_1 = "\"She's My Kind of Girl" EXPECTED_OUTPUT_TEXT_2 = "\"She's My Kind of Love" self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1) self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2) @slow def test_rag_sequence_generate_beam(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_sequence = self.sequence_model rag_sequence.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids input_ids = input_ids.to(torch_device) output_ids = rag_sequence.generate( input_ids, decoder_start_token_id=rag_sequence.generator.config.decoder_start_token_id, num_beams=2, num_return_sequences=2, ) # sequence generate test output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True) output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True) # Expected outputs as given by model at integration time. EXPECTED_OUTPUT_TEXT_1 = """\"She's My Kind of Girl\" was released through Epic Records in Japan in March 1972, giving the duo a Top 10 hit. Two more singles were released in Japan, \"En Carousel\" and \"Love Has Its Ways\" Ulvaeus and Andersson persevered with their songwriting and experimented with new sounds and vocal arrangements.""" EXPECTED_OUTPUT_TEXT_2 = """In September 2018, Björn Ulvaeus revealed that the two new songs, \"I Still Have Faith In You\" and \"Don't Shut Me Down\", would be released no earlier than March 2019. The two new tracks will feature in a TV special set to air later in the year.""" self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1) self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2) @property def test_data_questions(self): return [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", ] @slow def test_rag_sequence_generate_batch(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ) rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to( torch_device ) input_dict = tokenizer( self.test_data_questions, return_tensors="pt", padding=True, truncation=True, ) input_ids = input_dict.input_ids.to(torch_device) attention_mask = input_dict.attention_mask.to(torch_device) output_ids = rag_sequence.generate( input_ids, attention_mask=attention_mask, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " june 22, 2018", " amplitude modulation", " tim besley ( chairman )", " june 20, 2018", " 1980", " 7.0", " 8", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @slow def test_rag_sequence_generate_batch_from_context_input_ids(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ) rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to( torch_device ) input_dict = tokenizer( self.test_data_questions, return_tensors="pt", padding=True, truncation=True, ) input_ids = input_dict.input_ids.to(torch_device) attention_mask = input_dict.attention_mask.to(torch_device) question_hidden_states = rag_sequence.question_encoder(input_ids, attention_mask=attention_mask)[0] docs_dict = retriever( input_ids.cpu().detach().numpy(), question_hidden_states.cpu().detach().numpy(), return_tensors="pt" ) doc_scores = torch.bmm( question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].to(torch_device).float().transpose(1, 2), ).squeeze(1) output_ids = rag_sequence.generate( context_input_ids=docs_dict["context_input_ids"].to(torch_device), context_attention_mask=docs_dict["context_attention_mask"].to(torch_device), doc_scores=doc_scores.to(torch_device), do_deduplication=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " june 22, 2018", " amplitude modulation", " tim besley ( chairman )", " june 20, 2018", " 1980", " 7.0", " 8", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @slow def test_rag_token_generate_batch(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) rag_token = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever).to( torch_device ) if torch_device == "cuda": rag_token.half() input_dict = tokenizer( self.test_data_questions, return_tensors="pt", padding=True, truncation=True, ) input_ids = input_dict.input_ids.to(torch_device) attention_mask = input_dict.attention_mask.to(torch_device) output_ids = rag_token.generate( input_ids, attention_mask=attention_mask, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " september 22, 2017", " amplitude modulation", " stefan persson", " april 20, 2018", " the 1970s", " 7.1. 2", " 13", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @require_torch @require_retrieval class RagModelSaveLoadTests(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def get_rag_config(self): question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn") return RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, bos_token_id=0, decoder_start_token_id=2, eos_token_id=2, is_encoder_decoder=True, pad_token_id=1, vocab_size=50264, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, dataset="wiki_dpr", dataset_split="train", index_name="exact", index_path=None, use_dummy_dataset=True, retrieval_vector_size=768, retrieval_batch_size=8, ) @slow def test_rag_sequence_from_pretrained(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: rag_sequence = RagSequenceForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn", retriever=rag_retriever, config=rag_config, ).to(torch_device) # check that the from pretrained methods work rag_sequence.save_pretrained(tmp_dirname) rag_sequence.from_pretrained(tmp_dirname, retriever=rag_retriever) rag_sequence.to(torch_device) with torch.no_grad(): output = rag_sequence( input_ids, labels=decoder_input_ids, ) loss_pretrained = output.loss del rag_sequence question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") rag_sequence = RagSequenceForGeneration( config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever ) rag_sequence.to(torch_device) with torch.no_grad(): output = rag_sequence( input_ids, labels=decoder_input_ids, ) loss_init = output.loss self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4) @slow def test_rag_token_from_pretrained(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: rag_token = RagTokenForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn", retriever=rag_retriever, config=rag_config, question_encoder_max_length=200, generator_max_length=200, ).to(torch_device) # check that the from pretrained methods work rag_token.save_pretrained(tmp_dirname) rag_token.from_pretrained(tmp_dirname, retriever=rag_retriever) rag_token.to(torch_device) self.assertTrue(rag_token.question_encoder.config.max_length == 200) self.assertTrue(rag_token.generator.config.max_length == 200) with torch.no_grad(): output = rag_token( input_ids, labels=decoder_input_ids, ) loss_pretrained = output.loss del rag_token question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") rag_token = RagTokenForGeneration( config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever ) rag_token.to(torch_device) with torch.no_grad(): output = rag_token( input_ids, labels=decoder_input_ids, ) loss_init = output.loss self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)
transformers/tests/models/rag/test_modeling_rag.py/0
{ "file_path": "transformers/tests/models/rag/test_modeling_rag.py", "repo_id": "transformers", "token_count": 21728 }
379
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch RemBERT model. """ import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( RemBertConfig, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertModel, ) from transformers.models.rembert.modeling_rembert import REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST class RemBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, input_embedding_size=18, output_embedding_size=43, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.input_embedding_size = input_embedding_size self.output_embedding_size = output_embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = RemBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, input_embedding_size=self.input_embedding_size, output_embedding_size=self.output_embedding_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RemBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RemBertModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RemBertForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RemBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RemBertForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RemBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RemBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RemBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RemBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RemBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( RemBertModel, RemBertForMaskedLM, RemBertForCausalLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (RemBertForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": RemBertModel, "fill-mask": RemBertForMaskedLM, "question-answering": RemBertForQuestionAnswering, "text-classification": RemBertForSequenceClassification, "text-generation": RemBertForCausalLM, "token-classification": RemBertForTokenClassification, "zero-shot": RemBertForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = RemBertModelTester(self) self.config_tester = ConfigTester(self, config_class=RemBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) @slow def test_model_from_pretrained(self): for model_name in REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RemBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class RemBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_model(self): # Test exact values at the last hidden layer model = RemBertModel.from_pretrained("google/rembert") input_ids = torch.tensor([[312, 56498, 313, 2125, 313]]) segment_ids = torch.tensor([[0, 0, 0, 1, 1]]) with torch.no_grad(): output = model(input_ids, token_type_ids=segment_ids, output_hidden_states=True) hidden_size = 1152 expected_shape = torch.Size((1, 5, hidden_size)) self.assertEqual(output["last_hidden_state"].shape, expected_shape) expected_implementation = torch.tensor( [ [ [0.0754, -0.2022, 0.1904], [-0.3354, -0.3692, -0.4791], [-0.2314, -0.6729, -0.0749], [-0.0396, -0.3105, -0.4234], [-0.1571, -0.0525, 0.5353], ] ] ) # Running on the original tf implementation gives slightly different results here. # Not clear why this variations is present # TODO: Find reason for discrepancy # expected_original_implementation = [[ # [0.07630594074726105, -0.20146065950393677, 0.19107051193714142], # [-0.3405614495277405, -0.36971670389175415, -0.4808273911476135], # [-0.22587086260318756, -0.6656315922737122, -0.07844287157058716], # [-0.04145475849509239, -0.3077218234539032, -0.42316967248916626], # [-0.15887849032878876, -0.054529931396245956, 0.5356100797653198] # ]] self.assertTrue(torch.allclose(output["last_hidden_state"][:, :, :3], expected_implementation, atol=1e-4))
transformers/tests/models/rembert/test_modeling_rembert.py/0
{ "file_path": "transformers/tests/models/rembert/test_modeling_rembert.py", "repo_id": "transformers", "token_count": 9297 }
380
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SeamlessM4T model. """ import copy import tempfile import unittest from transformers import SeamlessM4TConfig, is_speech_available, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from transformers.trainer_utils import set_seed from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, SeamlessM4TModel, ) from transformers.models.seamless_m4t.modeling_seamless_m4t import ( SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_speech_available(): from transformers import SeamlessM4TProcessor class SeamlessM4TModelTester: def __init__( self, parent, input_modality="speech", batch_size=2, seq_length=4, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, max_new_tokens=None, num_labels=3, num_choices=4, scope=None, vocab_size=20, t2u_vocab_size=20, hidden_size=6, num_hidden_layers=2, intermediate_size=6, max_position_embeddings=256, encoder_layers=2, decoder_layers=2, encoder_ffn_dim=6, decoder_ffn_dim=6, t2u_encoder_layers=2, t2u_decoder_layers=2, t2u_encoder_ffn_dim=6, t2u_decoder_ffn_dim=6, num_heads=2, vocoder_num_spkrs=5, vocoder_num_langs=5, upsample_initial_channel=32, unit_embed_dim=25, spkr_embed_dim=6, lang_embed_dim=6, num_conv_pos_embeddings=8, unit_hifi_gan_vocab_size=20, t2u_num_langs=0, t2u_max_new_tokens=25, t2u_offset_tgt_lang=0, vocoder_offset=0, ): self.parent = parent self.input_modality = input_modality self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.vocab_size = vocab_size self.t2u_vocab_size = t2u_vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.decoder_ffn_dim = decoder_ffn_dim self.t2u_encoder_layers = t2u_encoder_layers self.t2u_decoder_layers = t2u_decoder_layers self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim self.num_heads = num_heads self.num_attention_heads = num_heads self.vocoder_num_spkrs = vocoder_num_spkrs self.vocoder_num_langs = vocoder_num_langs self.upsample_initial_channel = upsample_initial_channel self.unit_embed_dim = unit_embed_dim self.spkr_embed_dim = spkr_embed_dim self.num_conv_pos_embeddings = num_conv_pos_embeddings self.lang_embed_dim = lang_embed_dim self.max_new_tokens = max_new_tokens self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size self.t2u_num_langs = t2u_num_langs self.t2u_max_new_tokens = t2u_max_new_tokens self.t2u_offset_tgt_lang = t2u_offset_tgt_lang self.vocoder_offset = vocoder_offset def prepare_config_and_inputs(self): if self.input_modality == "text": inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) else: inputs = ids_tensor([self.batch_size, self.seq_length, 160], self.vocab_size - 1).float() input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) lm_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return config, inputs, decoder_input_ids, input_mask, lm_labels def get_config(self): return SeamlessM4TConfig( hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, vocab_size=self.vocab_size, t2u_vocab_size=self.t2u_vocab_size, hidden_size=self.hidden_size, speech_encoder_layers=self.num_heads, speech_encoder_intermediate_size=self.intermediate_size, max_position_embeddings=self.max_position_embeddings, encoder_layers=self.encoder_layers, decoder_layers=self.decoder_layers, encoder_ffn_dim=self.encoder_ffn_dim, decoder_ffn_dim=self.decoder_ffn_dim, t2u_encoder_layers=self.t2u_encoder_layers, t2u_decoder_layers=self.t2u_decoder_layers, t2u_encoder_ffn_dim=self.t2u_encoder_ffn_dim, t2u_decoder_ffn_dim=self.t2u_decoder_ffn_dim, num_attention_heads=self.num_heads, encoder_attention_heads=self.num_heads, decoder_attention_heads=self.num_heads, t2u_encoder_attention_heads=self.num_heads, t2u_decoder_attention_heads=self.num_heads, speech_encoder_attention_heads=self.num_heads, unit_hifigan_vocab_vise=self.t2u_vocab_size, vocoder_num_spkrs=self.vocoder_num_spkrs, vocoder_num_langs=self.vocoder_num_langs, upsample_initial_channel=self.upsample_initial_channel, unit_embed_dim=self.unit_embed_dim, spkr_embed_dim=self.spkr_embed_dim, num_conv_pos_embeddings=self.num_conv_pos_embeddings, lang_embed_dim=self.lang_embed_dim, max_new_tokens=self.max_new_tokens, unit_hifi_gan_vocab_size=self.unit_hifi_gan_vocab_size, t2u_num_langs=self.t2u_num_langs, t2u_max_new_tokens=self.t2u_max_new_tokens, t2u_offset_tgt_lang=self.t2u_offset_tgt_lang, vocoder_offset=self.vocoder_offset, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model(self, config, input_ids, decoder_input_ids, input_mask, labels): model = SeamlessM4TModel(config=config) model.to(torch_device) model.eval() if self.input_modality == "text": result = model(input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) else: result = model(input_features=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_features=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) decoder_output = result.logits decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state if self.input_modality == "text": seq_length = self.seq_length else: # if speech, expected length has been subsampled. seq_length = model._compute_sub_sample_lengths_from_attention_mask(input_mask).max().item() self.parent.assertEqual(encoder_output.size(), (self.batch_size, seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, decoder_input_ids.shape[1], self.vocab_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.decoder_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True model = SeamlessM4TModel(config=config) model.to(torch_device) model.eval() # make sure no pad token in decoder_input_ids decoder_input_ids = torch.clamp(decoder_input_ids, config.pad_token_id + 1) # first forward pass outputs = model( input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=input_mask, use_cache=True ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( input_ids, decoder_input_ids=next_input_ids, decoder_attention_mask=next_attention_mask, output_hidden_states=True, ) output_from_no_past = output_from_no_past["decoder_hidden_states"][0] output_from_past = model( input_ids, decoder_input_ids=next_tokens, decoder_attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["decoder_hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = config_and_inputs input_name = "input_ids" if self.input_modality == "text" else "input_features" inputs_dict = { input_name: input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "labels": lm_labels, } return config, inputs_dict @require_torch class SeamlessM4TModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = False test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4TForSpeechToText,) if is_torch_available() else () input_name = "input_features" def setUp(self): self.model_tester = SeamlessM4TModelTester(self, input_modality="speech") self.config_tester = ConfigTester(self, config_class=SeamlessM4TConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SeamlessM4TModel.from_pretrained(model_name) self.assertIsNotNone(model) def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict[self.input_name] # cut to half length & take max batch_size 3 sequence_length = input_ids.shape[-1] // 2 input_ids = input_ids[:batch_size, :sequence_length] # generate max 3 tokens max_length = input_ids.shape[-1] + 3 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` if isinstance(config.eos_token_id, int): config.eos_token_id = [config.eos_token_id] config.pad_token_id = config.eos_token_id[0] attention_mask = torch.ones(input_ids.shape[:2], dtype=torch.long)[:batch_size, :sequence_length] return config, input_ids.float(), attention_mask, max_length @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( num_interleave, dim=0 ) input_ids = ( torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device) + model._get_decoder_start_token_id() ) attention_mask = None return encoder_outputs, input_ids, attention_mask def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="SeamlessM4TSpeechEncoder doesn't have an embedding layer") def test_inputs_embeds(self): pass @unittest.skip( reason="Expected missing keys serve when using SeamlessM4TForXXX.from_pretrained from a checkpoint saved by SeamlessM4TModel.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip( reason="SeamlessM4TModel is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4TModel can takes input_ids or input_features") def test_forward_signature(self): pass @unittest.skip(reason="SeamlessM4T has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_attention_outputs(self): # expected length is subsampled so need to change a bit this test if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) # no more chunk_length test for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) sub_sampled_length = ( model._compute_sub_sample_lengths_from_attention_mask(inputs_dict["attention_mask"]).max().item() ) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, sub_sampled_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) @unittest.skip( reason="In training model, the first speech encoder layer is sometimes skipped. Training is not supported yet, so the test is ignored." ) def test_retain_grad_hidden_states_attentions(self): pass @require_torch class SeamlessM4TModelWithTextInputTest( ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase ): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = True test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4TModel, SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4TForTextToText,) if is_torch_available() else () pipeline_model_mapping = ( { "automatic-speech-recognition": SeamlessM4TForSpeechToText, "conversational": SeamlessM4TForTextToText, "feature-extraction": SeamlessM4TModel, "summarization": SeamlessM4TForTextToText, "text-to-audio": SeamlessM4TForTextToSpeech, "text2text-generation": SeamlessM4TForTextToText, "translation": SeamlessM4TForTextToText, } if is_torch_available() else {} ) def setUp(self): self.model_tester = SeamlessM4TModelTester(self, input_modality="text") self.config_tester = ConfigTester(self, config_class=SeamlessM4TConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SeamlessM4TModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip( reason="Expected missing keys serve when using SeamlessM4TForXXX.from_pretrained from a checkpoint saved by SeamlessM4TModel.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip(reason="SeamlessM4TModel can take input_ids or input_features") def test_forward_signature(self): pass def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) @unittest.skip( reason="SeamlessM4TModel is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4T has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip( reason="In training model, the first encoder layer is sometimes skipped. Training is not supported yet, so the test is ignored." ) def test_retain_grad_hidden_states_attentions(self): pass @require_torch class SeamlessM4TGenerationTest(unittest.TestCase): # test that non-standard generation works # test generation of: SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TForTextToSpeech def setUp(self): self.speech_model_tester = SeamlessM4TModelTester(self, input_modality="speech") self.text_model_tester = SeamlessM4TModelTester(self, input_modality="text") self.tmpdirname = tempfile.mkdtemp() def update_generation(self, model): lang_code_to_id = { "fra": 4, "eng": 4, } generation_config = copy.deepcopy(model.generation_config) generation_config.__setattr__("text_decoder_lang_to_code_id", lang_code_to_id) generation_config.__setattr__("t2u_lang_code_to_id", lang_code_to_id) generation_config.__setattr__("vocoder_lang_code_to_id", lang_code_to_id) generation_config._from_model_config = False model.generation_config = generation_config def prepare_text_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_dict = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": "eng", "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_dict = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_and_text_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_speech = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_text = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": "eng", "num_beams": 2, "do_sample": True, } return config, input_speech, input_text def factory_generation_speech_test(self, model, inputs): set_seed(0) output = model.generate(**inputs) return output def test_speech_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() model = SeamlessM4TModel(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) state_dict = model.state_dict() text_model = SeamlessM4TForTextToSpeech.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() output_text = self.factory_generation_speech_test(model, input_text) speech_model = SeamlessM4TForSpeechToSpeech.from_pretrained(self.tmpdirname) self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") output_speech = self.factory_generation_speech_test(model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text[0].ravel().tolist()) self.assertListEqual(output_original_text[1].ravel().tolist(), output_text[1].ravel().tolist()) # test same speech output from input text # assertTrue because super long list makes this hang in case of failure self.assertTrue( output_original_speech[0].ravel().tolist() == output_speech[0].ravel().tolist(), "Speech generated was different", ) self.assertTrue( output_original_speech[1].ravel().tolist() == output_speech[1].ravel().tolist(), "Speech generated was different", ) def test_text_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() # to return speech input_speech["generate_speech"] = False input_text["generate_speech"] = False model = SeamlessM4TModel(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) # other models don't need it input_speech.pop("generate_speech") input_text.pop("generate_speech") state_dict = model.state_dict() text_model = SeamlessM4TForTextToText.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() for name, tensor in text_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist()) output_text = self.factory_generation_speech_test(text_model, input_text) speech_model = SeamlessM4TForSpeechToText.from_pretrained(self.tmpdirname) for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() output_speech = self.factory_generation_speech_test(speech_model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text.ravel().tolist()) # test same speech output from input text self.assertListEqual(output_original_speech[0].ravel().tolist(), output_speech.ravel().tolist()) def test_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() input_speech["num_beams"] = 3 input_speech["do_sample"] = True input_speech["num_return_sequences"] = 3 input_text["num_beams"] = 3 input_text["do_sample"] = True input_text["num_return_sequences"] = 3 for model_class in [SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TModel]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_speech) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_speech["input_features"].shape[0]) for model_class in [SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, SeamlessM4TModel]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_text) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_text["input_ids"].shape[0]) @require_torch class SeamlessM4TModelIntegrationTest(unittest.TestCase): repo_id = "facebook/hf-seamless-m4t-medium" def assertListAlmostEqual(self, list1, list2, tol=1e-3): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) @cached_property def processor(self): return SeamlessM4TProcessor.from_pretrained(self.repo_id) @cached_property def input_text(self): # corresponds to "C'est un test." with seamlessM4T_medium checkpoint input_ids = torch.tensor([[256057, 152, 248116, 354, 159, 7356, 248075, 3]]) # fmt: skip input_ids = input_ids.to(torch_device) attention_mask = torch.ones_like(input_ids).to(torch_device) inputs = { "attention_mask": attention_mask, "input_ids": input_ids, } return inputs @cached_property def input_audio(self): set_seed(0) seq_len = 20000 sampling_rate = 16000 input_features = torch.rand((2, seq_len)) return self.processor(audios=[input_features.tolist()], sampling_rate=sampling_rate, return_tensors="pt").to( torch_device ) def factory_test_task(self, class1, class2, inputs, class1_kwargs, class2_kwargs): model1 = class1.from_pretrained(self.repo_id).to(torch_device) model2 = class2.from_pretrained(self.repo_id).to(torch_device) set_seed(0) output_1 = model1.generate(**inputs, **class1_kwargs) set_seed(0) output_2 = model2.generate(**inputs, **class2_kwargs) for key in output_1: if isinstance(output_1[key], torch.Tensor): if len(output_1[key].shape) == 0: self.assertEqual(output_1[key].item(), output_2[key].item()) else: self.assertListAlmostEqual(output_1[key].squeeze().tolist(), output_2[key].squeeze().tolist()) @slow def test_to_eng_text(self): model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: eng expected_text_tokens = [3, 256047, 3291, 248116, 248066, 9, 7356, 248075, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 2,10051,8980,8212,949,1270,4311,1123,5918,2333,5311,3882,2415,5284,1123,612,8816,6370,5386,7334,4345,5645, 9437,5748,1378,9818,4319,7968,7375,2909,9119,5151,8728,5335,3896,4013,8939,8885,6048,9530,3167,5833,1072,693, 431,9867,364,7909,4608,5938,1889,9984,7947,4944,6171,3767,9861,9169,1187,8365,4571,7635,7784,7635,800,2393, 32,5380,5852,8289,2530,2762,1833,2056,3553,4641,3553,5683,370,2288,1344,1518,7534,703,8359,7699,2 ] # fmt: on expected_wav_slice = [-3e-05, -0.0004, -0.00037, -0.00013, -6e-05, 0.00012, -0.00016, 0.00025, 7e-05, -3e-05] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="eng", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) # FOR NOW, only first units correspondance self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10]) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) @slow def test_to_swh_text(self): model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: swh expected_text_tokens = [3, 256168, 1665, 188589, 7040, 248075, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 2,10071,5729,9995,3089,7546,1204,1721,2532,4340,5623,3496,432,7730,9096,7677,3143,8211,6447,8399,4248,3565, 4529,7700,9308,217,6476,3485,9667,3194,8476,4923,5593,1148,4466,7416,4872,463,4872,253,2348,4640,3450,2133, 6318,2806,817,7613,2698,6563,8712,8344,9286,6878,6387,4281,6387,640,6387,3200,640,8355,640,6708,979,1738,2 ] # fmt: on expected_wav_slice = [1e-05, -7e-05, -4e-05, -4e-05, -6e-05, -9e-05, -0.0001, -2e-05, -7e-05, -2e-05] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="swh", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10]) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) @slow def test_to_rus_speech(self): model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device) # test audio - tgt lang: rus expected_text_tokens = [3, 256147, 1197, 73565, 3413, 537, 233331, 248075, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 2, 10067, 5729, 4798, 9631, 8378, 4446, 2393, 6901, 5983, 2817, 4629, 8532, 1991, 2931, 8576, 8857, 5936, 4317, 9000, 7740, 7995, 1225, 5980, 6094, 1420, 5373, 8771, 6600, 4487, 7029, 3630, 6740, 4870, 1483, 3003, 5585, 5511, 7465, 3222, 32, 6272, 1950, 3120, 5368, 639, 3713, 5935, 7943, 567, 6129, 6822, 1226, 5063, 9878, 7756, 8825, 1078, 5943, 457, 9282, 9668, 817, 7613, 2698, 6563, 8712, 8704, 9286, 8704, 6387, 4281, 6387, 640, 3200, 6387, 640, 8355, 6708, 979, 1738, 2 ] # fmt: on expected_wav_slice = [0.00013, 0.00012, 0.00014, 3e-05, 0.0, -6e-05, -0.00018, -0.00016, -0.00021, -0.00018] # fmt: skip set_seed(0) output = model.generate(**self.input_audio, num_beams=1, tgt_lang="rus", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10]) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) @slow def test_text_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4TModel, SeamlessM4TForTextToText, self.input_text, kwargs1, kwargs2) @slow def test_speech_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4TModel, SeamlessM4TForSpeechToText, self.input_audio, kwargs1, kwargs2) @slow def test_speech_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, self.input_audio, kwargs1, kwargs1) @slow def test_text_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4TModel, SeamlessM4TForTextToSpeech, self.input_text, kwargs1, kwargs1)
transformers/tests/models/seamless_m4t/test_modeling_seamless_m4t.py/0
{ "file_path": "transformers/tests/models/seamless_m4t/test_modeling_seamless_m4t.py", "repo_id": "transformers", "token_count": 21929 }
381
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, SiglipTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): FRAMEWORK = "pt" elif is_tf_available(): FRAMEWORK = "tf" else: FRAMEWORK = "jax" @require_sentencepiece @require_tokenizers class SiglipTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = SiglipTokenizer test_rust_tokenizer = False test_sentencepiece = True test_sentencepiece_ignore_case = True # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.setUp with T5->Siglip def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = SiglipTokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_convert_token_and_id with T5->Siglip def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<s>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") def test_full_tokenizer(self): tokenizer = SiglipTokenizer(SAMPLE_VOCAB) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁this", "▁is", "▁a", "▁t", "est"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [66, 46, 10, 170, 382]) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE, "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [7, 23, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 12, 66, 46, 72, 80, 6, 0]) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE, "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ], ) @cached_property def siglip_tokenizer(self): return SiglipTokenizer.from_pretrained("google/siglip-base-patch16-224") # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.get_tokenizer with T5->Siglip def get_tokenizer(self, **kwargs) -> SiglipTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_rust_and_python_full_tokenizers with T5->Siglip def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_eos_treatment(self): tokenizer = self.siglip_tokenizer batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"]) batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""]) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) def test_prepare_batch(self): tokenizer = self.siglip_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [262, 266, 476, 8532, 270, 4460, 3949, 1682, tokenizer.eos_token_id] batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) self.assertIsInstance(batch, BatchEncoding) if FRAMEWORK != "jax": result = list(batch.input_ids.numpy()[0]) else: result = list(batch.input_ids.tolist()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 9), batch.input_ids.shape) def test_empty_target_text(self): tokenizer = self.siglip_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", batch) self.assertNotIn("decoder_input_ids", batch) self.assertNotIn("decoder_attention_mask", batch) def test_max_length(self): tokenizer = self.siglip_tokenizer tgt_text = ["Summary of the text.", "Another summary."] targets = tokenizer( text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK ) self.assertEqual(32, targets["input_ids"].shape[1]) def test_eos_in_input(self): tokenizer = self.siglip_tokenizer src_text = ["A long paragraph for summarization. </s>"] tgt_text = ["Summary of the text. </s>"] expected_src_tokens = [262, 266, 476, 8532, 270, 4460, 3949, 1682, 1] expected_tgt_tokens = [6254, 267, 260, 1443, 1] batch = tokenizer(src_text, text_target=tgt_text) self.assertEqual(expected_src_tokens, batch["input_ids"][0]) self.assertEqual(expected_tgt_tokens, batch["labels"][0]) @unittest.skip(reason="SiglipTokenizer strips the punctuation") def test_subword_regularization_tokenizer(self): pass @unittest.skip(reason="SiglipTokenizer strips the punctuation") def test_pickle_subword_regularization_tokenizer(self): pass # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_special_tokens_initialization with T5->Siglip def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [f"<extra_id_{i}>" for i in range(100)] + [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) p_output = tokenizer_p.encode("Hey this is a <special> token") r_output = tokenizer_r.encode("Hey this is a <special> token") cr_output = tokenizer_cr.encode("Hey this is a <special> token") special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in r_output) self.assertTrue(special_token_id in cr_output) # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_special_tokens_initialization_with_non_empty_additional_special_tokens with T5->Siglip def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(100)] special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained( tmp_dir, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # BySiglipTokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) ), ) def test_sentencepiece_tokenize_and_convert_tokens_to_string(self): """Test ``_tokenize`` and ``convert_tokens_to_string``.""" if not self.test_sentencepiece: return tokenizer = self.get_tokenizer() text = "This is text to test the tokenizer." if self.test_sentencepiece_ignore_case: text = text.lower() tokens = tokenizer.tokenize(text) self.assertTrue(len(tokens) > 0) # check if converting back to original text works reverse_text = tokenizer.convert_tokens_to_string(tokens) if self.test_sentencepiece_ignore_case: reverse_text = reverse_text.lower() expected_text = "this is text to test the tokenizer" self.assertEqual(reverse_text, expected_text) special_tokens = tokenizer.all_special_tokens special_tokens_string = tokenizer.convert_tokens_to_string(special_tokens) for special_token in special_tokens: self.assertIn(special_token, special_tokens_string) if self.test_rust_tokenizer: rust_tokenizer = self.get_rust_tokenizer() special_tokens_string_rust = rust_tokenizer.convert_tokens_to_string(special_tokens) self.assertEqual(special_tokens_string, special_tokens_string_rust) # overwritten from `test_tokenization_common` since Siglip has no max length # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_pretrained_model_lists with T5->Siglip def test_pretrained_model_lists(self): # We should have at least one default checkpoint for each tokenizer # We should specify the max input length as well (used in some part to list the pretrained checkpoints) self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) @slow def test_tokenizer_integration(self): tokenizer = SiglipTokenizer.from_pretrained("google/siglip-base-patch16-224") # fmt: off texts = [ 'the real mountain view', 'Zürich', 'San Francisco', 'a picture of a laptop with the lockscreen on, a cup of cappucino, salt and pepper grinders. The view through the window reveals lake Zürich and the Alps in the background of the city.', ] expected_input_ids = [ [260, 638, 3293, 870, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [262, 761, 5879, 5345, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [262, 264, 452, 20563, 15949, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [262, 266, 1357, 267, 262, 266, 4429, 275, 260, 3940, 6360, 277, 262, 266, 3064, 267, 3549, 388, 16538, 296, 298, 2617, 263, 4869, 14998, 264, 260, 870, 393, 260, 1710, 7958, 4324, 262, 761, 5879, 5345, 263, 260, 1518, 388, 264, 268, 260, 1970, 267, 260, 741, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ] # fmt: on for text, expected in zip(texts, expected_input_ids): input_ids = tokenizer(text, padding="max_length").input_ids self.assertListEqual(input_ids, expected) def test_some_edge_cases(self): tokenizer = SiglipTokenizer.from_pretrained("google/siglip-base-patch16-224", legacy=False) sp_tokens = tokenizer.sp_model.encode("</s>>", out_type=str) self.assertEqual(sp_tokens, ["</", "s", ">", ">"]) tokens = tokenizer.tokenize("</s>>") self.assertNotEqual(sp_tokens, tokens) self.assertEqual(tokens, ["</s>"]) tokens = tokenizer.tokenize("") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str)) tokens = tokenizer.tokenize(" ") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str)) tokens = tokenizer.tokenize("▁") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str)) tokens = tokenizer.tokenize(" ▁") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str)) @require_sentencepiece @require_tokenizers class CommonSpmIntegrationTests(unittest.TestCase): """ A class that regroups important test to make sure that we properly handle the special tokens. """ @classmethod def setUpClass(cls): tokenizer = SiglipTokenizer(SAMPLE_VOCAB, extra_ids=0, legacy=False) tokenizer.add_special_tokens( {"additional_special_tokens": [AddedToken("<extra_id_0>", rstrip=False, lstrip=False)]} ) cls.tokenizer = tokenizer def test_add_dummy_prefix(self): # make sure `'▁'` is prepended, and outputs match sp_model's # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute input_ids = self.tokenizer.encode(". Hello", add_special_tokens=False) self.assertEqual(input_ids, [37, 86, 20]) self.assertEqual(input_ids, [37, 86, 20]) tokens = self.tokenizer.tokenize(". Hello") self.assertEqual(tokens, ["▁he", "ll", "o"]) tokens = self.tokenizer.tokenize("") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str)) tokens = self.tokenizer.tokenize(" ") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str)) tokens = self.tokenizer.tokenize("▁") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode("▁", out_type=str)) def test_remove_extra_whitespaces(self): # make sure the extra spaces are eaten # sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute input_ids = self.tokenizer.encode(" . Hello", add_special_tokens=False) self.assertEqual(input_ids, [37, 86, 20]) self.assertEqual(input_ids, [37, 86, 20]) tokens = self.tokenizer.tokenize(" . Hello") self.assertEqual(tokens, ["▁he", "ll", "o"]) # `'▁'` is also a whitespace input_ids = self.tokenizer.encode("▁He is not") self.assertEqual(input_ids, [37, 46, 44, 2]) tokens = self.tokenizer.tokenize("▁He is not") self.assertEqual(tokens, ["▁he", "▁is", "▁not"]) # no extra space added input_ids = self.tokenizer.encode("▁He is not ▁He") self.assertEqual(input_ids, [37, 46, 44, 37, 2]) tokens = self.tokenizer.tokenize("▁He is not ▁He") self.assertEqual(tokens, ["▁he", "▁is", "▁not", "▁he"]) # spaces are eaten by spm even if not start
transformers/tests/models/siglip/test_tokenization_siglip.py/0
{ "file_path": "transformers/tests/models/siglip/test_tokenization_siglip.py", "repo_id": "transformers", "token_count": 9751 }
382
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the SpeechT5 processors.""" import json import os import shutil import tempfile import unittest from transformers import is_speech_available, is_torch_available from transformers.models.speecht5 import SpeechT5Tokenizer from transformers.testing_utils import get_tests_dir, require_torch from transformers.utils import FEATURE_EXTRACTOR_NAME if is_speech_available() and is_torch_available(): from transformers import SpeechT5FeatureExtractor, SpeechT5Processor from .test_feature_extraction_speecht5 import floats_list SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_torch class SpeechT5ProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() tokenizer = SpeechT5Tokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) feature_extractor_map = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "do_normalize": False, "num_mel_bins": 80, "hop_length": 16, "win_length": 64, "win_function": "hann_window", "fmin": 80, "fmax": 7600, "mel_floor": 1e-10, "reduction_factor": 2, "return_attention_mask": True, } self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") def get_tokenizer(self, **kwargs): return SpeechT5Tokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return SpeechT5FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = SpeechT5Processor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = SpeechT5Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = SpeechT5Processor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(audio=raw_speech, return_tensors="np") input_processor = processor(audio=raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_feature_extractor_target(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(audio_target=raw_speech, return_tensors="np") input_processor = processor(audio_target=raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_target(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text_target=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )
transformers/tests/models/speecht5/test_processor_speecht5.py/0
{ "file_path": "transformers/tests/models/speecht5/test_processor_speecht5.py", "repo_id": "transformers", "token_count": 2860 }
383
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Swinv2 model. """ import collections import inspect import unittest from transformers import Swinv2Config from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Swinv2Backbone, Swinv2ForImageClassification, Swinv2ForMaskedImageModeling, Swinv2Model from transformers.models.swinv2.modeling_swinv2 import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class Swinv2ModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=2, num_channels=3, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, type_sequence_label_size=10, encoder_stride=8, out_features=["stage1", "stage2"], out_indices=[1, 2], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.type_sequence_label_size = type_sequence_label_size self.encoder_stride = encoder_stride self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return Swinv2Config( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels): model = Swinv2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim)) def create_and_check_backbone(self, config, pixel_values, labels): model = Swinv2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = Swinv2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), 1) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = Swinv2ForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = Swinv2ForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = Swinv2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Swinv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Swinv2Model, Swinv2ForImageClassification, Swinv2ForMaskedImageModeling, Swinv2Backbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": Swinv2Model, "image-classification": Swinv2ForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Swinv2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Swinv2Config, embed_dim=37) def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) # TODO: check if this works again for PyTorch 2.x.y @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.") def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Swinv2 does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = len(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True window_size_squared = config.window_size**2 model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # also another +1 for reshaped_hidden_states added_hidden_states = 1 if model_class.__name__ == "Swinv2Backbone" else 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Swinv2 has a different seq_length patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patches, self.model_tester.embed_dim], ) if not model_class.__name__ == "Swinv2Backbone": reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size, num_channels, height, width = reshaped_hidden_states[0].shape reshaped_hidden_states = ( reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]), [num_patches, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) def test_hidden_states_output_with_padding(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.patch_size = 3 image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Swinv2Model.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="Swinv2 does not support feedforward chunking yet") def test_feed_forward_chunking(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_vision @require_torch class Swinv2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = Swinv2ForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256").to( torch_device ) image_processor = self.default_image_processor image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.3947, -0.4306, 0.0026]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class Swinv2BackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (Swinv2Backbone,) if is_torch_available() else () config_class = Swinv2Config def setUp(self): self.model_tester = Swinv2ModelTester(self)
transformers/tests/models/swinv2/test_modeling_swinv2.py/0
{ "file_path": "transformers/tests/models/swinv2/test_modeling_swinv2.py", "repo_id": "transformers", "token_count": 8747 }
384
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VipLlava model. """ import gc import unittest import requests from transformers import ( AutoProcessor, VipLlavaConfig, VipLlavaForConditionalGeneration, is_torch_available, is_vision_available, ) from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor if is_torch_available(): import torch else: is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image # Copied from transformers.tests.models.llava.test_modeling_llava.LlavaVisionText2TextModelTester with Llava->VipLlava class VipLlavaVisionText2TextModelTester: # Ignore copy def __init__( self, parent, ignore_index=-100, image_token_index=0, projector_hidden_act="gelu", seq_length=7, vision_feature_layers=[0, 0, 1, 1, 0], text_config={ "model_type": "llama", "seq_length": 7, "is_training": True, "use_input_mask": True, "use_token_type_ids": False, "use_labels": True, "vocab_size": 99, "hidden_size": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 16, "type_sequence_label_size": 2, "initializer_range": 0.02, "num_labels": 3, "num_choices": 4, "pad_token_id": 0, }, is_training=True, vision_config={ "batch_size": 12, "image_size": 30, "patch_size": 2, "num_channels": 3, "is_training": True, "hidden_size": 32, "projection_dim": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "dropout": 0.1, "attention_dropout": 0.1, "initializer_range": 0.02, }, ): self.parent = parent self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_layers = vision_feature_layers self.text_config = text_config self.vision_config = vision_config self.seq_length = seq_length self.num_hidden_layers = text_config["num_hidden_layers"] self.vocab_size = text_config["vocab_size"] self.hidden_size = text_config["hidden_size"] self.num_attention_heads = text_config["num_attention_heads"] self.is_training = is_training self.batch_size = 3 self.num_channels = 3 self.image_size = 336 self.encoder_seq_length = 231 def get_config(self): return VipLlavaConfig( text_config=self.text_config, vision_config=self.vision_config, ignore_index=self.ignore_index, image_token_index=self.image_token_index, projector_hidden_act=self.projector_hidden_act, vision_feature_layers=self.vision_feature_layers, ) def prepare_config_and_inputs(self): pixel_values = floats_tensor( [ self.batch_size, self.vision_config["num_channels"], self.vision_config["image_size"], self.vision_config["image_size"], ] ) config = self.get_config() return config, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1 attention_mask = input_ids.ne(1).to(torch_device) # we are giving 3 images let's make sure we pass in 3 image tokens input_ids[:, 1] = config.image_token_index inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch # Copied from transformers.tests.models.llava.test_modeling_llava.LlavaForConditionalGenerationModelTest with Llava->VipLlava class VipLlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase): """ Model tester for `VipLlavaForConditionalGeneration`. """ all_model_classes = (VipLlavaForConditionalGeneration,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = True test_head_masking = False def setUp(self): self.model_tester = VipLlavaVisionText2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=VipLlavaConfig, has_text_modality=False) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch class VipLlavaForConditionalGenerationIntegrationTest(unittest.TestCase): def setUp(self): self.processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf") def tearDown(self): gc.collect() torch.cuda.empty_cache() @slow @require_bitsandbytes def test_small_model_integration_test(self): model_id = "llava-hf/vip-llava-7b-hf" model = VipLlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True) processor = AutoProcessor.from_pretrained(model_id) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png" image = Image.open(requests.get(url, stream=True).raw) prompt = "USER: <image>\nCan you please describe this image?\nASSISTANT:" inputs = processor(prompt, image, return_tensors="pt").to(torch_device, torch.float16) outputs = model.generate(**inputs, max_new_tokens=10) EXPECTED_OUTPUT = "USER: <image> \nCan you please describe this image?\nASSISTANT: The image features a brown and white cat sitting on" self.assertEqual(processor.decode(outputs[0], skip_special_tokens=True), EXPECTED_OUTPUT) @slow @require_torch_gpu def test_vipllava_merge_inputs_error_bug(self): # This is a reproducer of https://github.com/huggingface/transformers/pull/28333 and makes sure it does not happen anymore model_id = "llava-hf/vip-llava-7b-hf" model = VipLlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True ).to(torch_device) # Simulate some user inputs pixel_values = torch.randn( (2, 3, 336, 336), dtype=torch.float, device=torch_device, ) input_ids = torch.tensor( [ [32001, 32001, 1, 15043, 7084, 32000, 29871, 13, 7900], [1, 15043, 7084, 29901, 29871, 32000, 29871, 13, 7900], ], dtype=torch.long, device=torch_device, ) attention_mask = torch.tensor( [[0, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.long, device=torch_device, ) # Make sure that the loss is properly computed loss = model( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, labels=input_ids, ).loss loss.backward()
transformers/tests/models/vipllava/test_modeling_vipllava.py/0
{ "file_path": "transformers/tests/models/vipllava/test_modeling_vipllava.py", "repo_id": "transformers", "token_count": 4119 }
385
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViT model. """ import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_accelerator, require_torch_fp16, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class ViTModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, scope=None, encoder_stride=2, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.encoder_stride = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def create_and_check_model(self, config, pixel_values, labels): model = ViTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = ViTForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = ViTForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = ViTForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = ViTForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = ViTModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ViTModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.2744, 0.8215, -0.0836]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_interpolate_pos_encoding(self): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. model = ViTModel.from_pretrained("facebook/dino-vits8").to(torch_device) image_processor = ViTImageProcessor.from_pretrained("facebook/dino-vits8", size=480) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass with torch.no_grad(): outputs = model(pixel_values, interpolate_pos_encoding=True) # verify the logits expected_shape = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) @slow @require_accelerate @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): r""" A small test to make sure that inference work in half precision without any problem. """ model = ViTModel.from_pretrained("facebook/dino-vits8", torch_dtype=torch.float16, device_map="auto") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass to make sure inference works in fp16 with torch.no_grad(): _ = model(pixel_values)
transformers/tests/models/vit/test_modeling_vit.py/0
{ "file_path": "transformers/tests/models/vit/test_modeling_vit.py", "repo_id": "transformers", "token_count": 4979 }
386
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Wav2Vec2Phoneme tokenizer.""" import json import os import unittest from typing import Tuple from transformers import Wav2Vec2PhonemeCTCTokenizer from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.models.wav2vec2_phoneme.tokenization_wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class Wav2Vec2PhonemeCTCTokenizerTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = Wav2Vec2PhonemeCTCTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() vocab = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" ") vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") # overwrite since phonemes require specific creation def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))] toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], do_phonemize=False), toks)) if max_length is not None and len(toks) > max_length: toks = toks[:max_length] if min_length is not None and len(toks) < min_length and len(toks) > 0: while len(toks) < min_length: toks = toks + toks # toks_str = [t[1] for t in toks] toks_ids = [t[0] for t in toks] # Ensure consistency output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) if " " not in output_txt and len(toks_ids) > 1: output_txt = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) ) if with_prefix_space: output_txt = " " + output_txt output_ids = tokenizer.encode(output_txt, add_special_tokens=False) return output_txt, output_ids def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return Wav2Vec2PhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **kwargs) def test_tokenizer_add_new_tokens(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") # check adding a single token tokenizer.add_tokens("xxx") token_ids = tokenizer("m xxx ɪ", do_phonemize=False).input_ids self.assertEqual(token_ids, [13, 392, 17]) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"]) token_ids = tokenizer("m aaa ɪ ccc", do_phonemize=False).input_ids self.assertEqual(token_ids, [13, 393, 17, 395]) # aaa and ccc should be after xxx and 2 after aaa token_ids = tokenizer("maɪ c", do_phonemize=False).input_ids self.assertEqual(token_ids, [3, 200]) # mai should be <unk> (=3) def test_phonemize(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(phonemes, "h ə l oʊ h aʊ ɑːɹ j uː") def test_encode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids) def test_encode_decode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids) self.assertEqual(phonemes, phonemes_enc_dec) def test_decode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] tokens = tokenizer.decode(sample_ids[0]) batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) def test_phonemize_with_word_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(phonemes, "h ə l oʊ | h aʊ | ɑːɹ | j uː |") def test_encode_with_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids) def test_decode_with_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") # fmt: off sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter tokens = tokenizer.decode(sample_ids[0]) batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) # decode with no word_del_token filter tokens = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=False) batch_tokens = tokenizer.batch_decode(sample_ids, filter_word_delimiter_token=False) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"]) def test_encode_decode_with_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=False) self.assertEqual(phonemes, phonemes_enc_dec) def test_encode_decode_with_del_filter(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=True) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip(), phonemes_enc_dec) def test_change_phonemizer_lang(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token=None ) input_text = "Hello how are you" input_ids_en = tokenizer(input_text, phonemizer_lang="en-us").input_ids input_ids_fr = tokenizer(input_text, phonemizer_lang="fr-fr").input_ids self.assertNotEqual(input_ids_en, input_ids_fr) text_en = tokenizer.decode(input_ids_en) text_fr = tokenizer.decode(input_ids_fr) self.assertEqual(text_en, "h ə l oʊ h aʊ ɑːɹ j uː") self.assertEqual(text_fr, "ɛ l o h aʊ a ʁ j u") def test_case_insensitive(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text_up = "Hello how Are you" input_text_low = "hello how are you" input_ids_up = tokenizer(input_text_up).input_ids input_ids_low = tokenizer(input_text_low).input_ids self.assertEqual(input_ids_up, input_ids_low) def test_tokenizer_decode_added_tokens(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") tokenizer.add_tokens(["!", "?"]) tokenizer.add_special_tokens({"cls_token": "$$$"}) # fmt: off sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"]) @staticmethod def get_from_offsets(offsets, key): retrieved_list = [d[key] for d in offsets] return retrieved_list def test_offsets(self): tokenizer = self.get_tokenizer(word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" sample_ids = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on outputs = tokenizer.decode(sample_ids, output_char_offsets=True, filter_word_delimiter_token=False) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()), 2) self.assertTrue("text" in outputs) self.assertTrue("char_offsets" in outputs) self.assertTrue(isinstance(outputs, Wav2Vec2PhonemeCTCTokenizerOutput)) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"], "char")), outputs.text) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "char"), ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "start_offset"), [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "end_offset"), [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def test_offsets_batch(self): tokenizer = self.get_tokenizer(word_delimiter_token="|") def check_list_tuples_equal(outputs_batch, outputs_list): self.assertTrue(isinstance(outputs_batch, Wav2Vec2PhonemeCTCTokenizerOutput)) self.assertTrue(isinstance(outputs_list[0], Wav2Vec2PhonemeCTCTokenizerOutput)) # transform list to ModelOutput outputs_batch_2 = Wav2Vec2PhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"], outputs_batch_2["text"]) def recursive_check(list_or_dict_1, list_or_dict_2): if isinstance(list_or_dict_1, list): [recursive_check(l1, l2) for l1, l2 in zip(list_or_dict_1, list_or_dict_2)] self.assertEqual(list_or_dict_1, list_or_dict_2) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"], outputs_batch_2["char_offsets"]) # fmt: off sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char outputs_char_batch = tokenizer.batch_decode(sample_ids, output_char_offsets=True) outputs_char = [tokenizer.decode(ids, output_char_offsets=True) for ids in sample_ids] check_list_tuples_equal(outputs_char_batch, outputs_char) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes") def test_added_tokens_do_lower_case(self): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes") def test_encode_decode_with_spaces(self): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency") def test_internal_consistency(self): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing") def test_pretrained_model_lists(self): pass # overwrite common def test_add_tokens_tokenizer(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1) self.assertGreater(tokens[-3], tokens[-4]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-3], tokenizer.pad_token_id) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def test_tf_encode_plus_sent_to_model(self): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def test_torch_encode_plus_sent_to_model(self): pass def test_convert_tokens_to_string_format(self): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokens = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] output = tokenizer.convert_tokens_to_string(tokens) self.assertIsInstance(output["text"], str)
transformers/tests/models/wav2vec2_phoneme/test_tokenization_wav2vec2_phoneme.py/0
{ "file_path": "transformers/tests/models/wav2vec2_phoneme/test_tokenization_wav2vec2_phoneme.py", "repo_id": "transformers", "token_count": 9963 }
387
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class TFXGLMModelTester: config_cls = XGLMConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, d_model=32, num_hidden_layers=2, num_attention_heads=4, ffn_dim=37, activation_function="gelu", activation_dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = d_model self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.ffn_dim = ffn_dim self.activation_function = activation_function self.activation_dropout = activation_dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = None self.bos_token_id = 0 self.eos_token_id = 2 self.pad_token_id = 1 def get_large_model_config(self): return XGLMConfig.from_pretrained("facebook/xglm-564M") def prepare_config_and_inputs(self): input_ids = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3 ) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() head_mask = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, ) def get_config(self): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=True, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () all_generative_model_classes = (TFXGLMForCausalLM,) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) test_onnx = False test_missing_keys = False test_pruning = False def setUp(self): self.model_tester = TFXGLMModelTester(self) self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() @slow def test_model_from_pretrained(self): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFXGLMModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def test_resize_token_embeddings(self): super().test_resize_token_embeddings() @require_tf class TFXGLMModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_xglm(self, verify_outputs=True): model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") input_ids = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.int32) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: skip output_ids = model.generate(input_ids, do_sample=False, num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) @slow def test_xglm_sample(self): tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tf.random.set_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="tf") input_ids = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0"): output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0]) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(output_str, EXPECTED_OUTPUT_STR) @slow def test_batch_generation(self): model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") tokenizer.padding_side = "left" # use different length sentences to test batching sentences = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] inputs = tokenizer(sentences, return_tensors="tf", padding=True) input_ids = inputs["input_ids"] outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], max_new_tokens=12) inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids output_non_padded = model.generate(input_ids=inputs_non_padded, max_new_tokens=12) inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=12) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
transformers/tests/models/xglm/test_modeling_tf_xglm.py/0
{ "file_path": "transformers/tests/models/xglm/test_modeling_tf_xglm.py", "repo_id": "transformers", "token_count": 4033 }
388
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, SummarizationPipeline, TFPreTrainedModel, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow, torch_device from transformers.tokenization_utils import TruncationStrategy from .test_pipelines_common import ANY @is_pipeline_test class SummarizationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def get_test_pipeline(self, model, tokenizer, processor): summarizer = SummarizationPipeline(model=model, tokenizer=tokenizer) return summarizer, ["(CNN)The Palestinian Authority officially became", "Some other text"] def run_pipeline_test(self, summarizer, _): model = summarizer.model outputs = summarizer("(CNN)The Palestinian Authority officially became") self.assertEqual(outputs, [{"summary_text": ANY(str)}]) outputs = summarizer( "(CNN)The Palestinian Authority officially became ", num_beams=2, min_length=2, max_length=5, ) self.assertEqual(outputs, [{"summary_text": ANY(str)}]) # Some models (Switch Transformers, LED, T5, LongT5, etc) can handle long sequences. model_can_handle_longer_seq = [ "SwitchTransformersConfig", "T5Config", "LongT5Config", "LEDConfig", "PegasusXConfig", "FSMTConfig", "M2M100Config", "ProphetNetConfig", # positional embeddings up to a fixed maximum size (otherwise clamping the values) ] if model.config.__class__.__name__ not in model_can_handle_longer_seq: # Too long and exception is expected. # For TF models, if the weights are initialized in GPU context, we won't get expected index error from # the embedding layer. if not ( isinstance(model, TFPreTrainedModel) and len(summarizer.model.trainable_weights) > 0 and "GPU" in summarizer.model.trainable_weights[0].device ): with self.assertRaises(Exception): outputs = summarizer("This " * 1000) outputs = summarizer("This " * 1000, truncation=TruncationStrategy.ONLY_FIRST) @require_torch def test_small_model_pt(self): summarizer = pipeline(task="summarization", model="sshleifer/tiny-mbart", framework="pt") outputs = summarizer("This is a small test") self.assertEqual( outputs, [ { "summary_text": "เข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไป" } ], ) @require_tf def test_small_model_tf(self): summarizer = pipeline(task="summarization", model="sshleifer/tiny-mbart", framework="tf") outputs = summarizer("This is a small test") self.assertEqual( outputs, [ { "summary_text": "เข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไปเข้าไป" } ], ) @require_torch @slow def test_integration_torch_summarization(self): summarizer = pipeline(task="summarization", device=torch_device) cnn_article = ( " (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) expected_cnn_summary = ( " The Palestinian Authority becomes the 123rd member of the International Criminal Court . The move gives" " the court jurisdiction over alleged crimes in Palestinian territories . Israel and the United States" " opposed the Palestinians' efforts to join the court . Rights group Human Rights Watch welcomes the move," " says governments seeking to penalize Palestine should end pressure ." ) result = summarizer(cnn_article) self.assertEqual(result[0]["summary_text"], expected_cnn_summary)
transformers/tests/pipelines/test_pipelines_summarization.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_summarization.py", "repo_id": "transformers", "token_count": 3529 }
389
# Testing mixed int8 quantization ![HFxbitsandbytes.png](https://cdn-uploads.huggingface.co/production/uploads/1660567705337-62441d1d9fdefb55a0b7d12c.png) The following is the recipe on how to effectively debug `bitsandbytes` integration on Hugging Face `transformers`. ## Library requirements + `transformers>=4.22.0` + `accelerate>=0.12.0` + `bitsandbytes>=0.31.5`. ## Hardware requirements The following instructions are tested with 2 NVIDIA-Tesla T4 GPUs. To run successfully `bitsandbytes` you would need a 8-bit core tensor supported GPU. Note that Turing, Ampere or newer architectures - e.g. T4, RTX20s RTX30s, A40-A100, A6000 should be supported. ## Virutal envs ```bash conda create --name int8-testing python==3.8 pip install bitsandbytes>=0.31.5 pip install accelerate>=0.12.0 pip install transformers>=4.23.0 ``` if `transformers>=4.23.0` is not released yet, then use: ``` pip install git+https://github.com/huggingface/transformers.git ``` ## Troubleshooting A list of common errors: ### Torch does not correctly do the operations on GPU First check that: ```py import torch vec = torch.randn(1, 2, 3).to(0) ``` Works without any error. If not, install torch using `conda` like: ```bash conda create --name int8-testing python==3.8 conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge pip install bitsandbytes>=0.31.5 pip install accelerate>=0.12.0 pip install transformers>=4.23.0 ``` For the latest pytorch instructions please see [this](https://pytorch.org/get-started/locally/) and the snippet above should work. ### ` bitsandbytes operations are not supported under CPU!` This happens when some Linear weights are set to the CPU when using `accelerate`. Please check carefully `model.hf_device_map` and make sure that there is no `Linear` module that is assigned to CPU. It is fine to have the last module (usually the Lm_head) set on CPU. ### `To use the type as a Parameter, please correct the detach() semantics defined by __torch_dispatch__() implementation.` Use the latest version of `accelerate` with a command such as: `pip install -U accelerate` and the problem should be solved. ### `Parameter has no attribue .CB` Same solution as above. ### `RuntimeError: CUDA error: an illegal memory access was encountered ... consider passing CUDA_LAUNCH_BLOCKING=1` Run your script by pre-pending `CUDA_LAUNCH_BLOCKING=1` and you should observe an error as described in the next section. ### `CUDA illegal memory error: an illegal memory access at line...`: Check the CUDA verisons with: ``` nvcc --version ``` and confirm it is the same version as the one detected by `bitsandbytes`. If not, run: ``` ls -l $CONDA_PREFIX/lib/libcudart.so ``` or ``` ls -l $LD_LIBRARY_PATH ``` Check if `libcudart.so` has a correct symlink that is set. Sometimes `nvcc` detects the correct CUDA version but `bitsandbytes` doesn't. You have to make sure that the symlink that is set for the file `libcudart.so` is redirected to the correct CUDA file. Here is an example of a badly configured CUDA installation: `nvcc --version` gives: ![Screenshot 2022-08-15 at 15.12.23.png](https://cdn-uploads.huggingface.co/production/uploads/1660569220888-62441d1d9fdefb55a0b7d12c.png) which means that the detected CUDA version is 11.3 but `bitsandbytes` outputs: ![image.png](https://cdn-uploads.huggingface.co/production/uploads/1660569284243-62441d1d9fdefb55a0b7d12c.png) First check: ```bash echo $LD_LIBRARY_PATH ``` If this contains multiple paths separated by `:`. Then you have to make sure that the correct CUDA version is set. By doing: ```bash ls -l $path/libcudart.so ``` On each path (`$path`) separated by `:`. If not, simply run ```bash ls -l $LD_LIBRARY_PATH/libcudart.so ``` and you can see ![Screenshot 2022-08-15 at 15.12.33.png](https://cdn-uploads.huggingface.co/production/uploads/1660569176504-62441d1d9fdefb55a0b7d12c.png) If you see that the file is linked to the wrong CUDA version (here 10.2), find the correct location for `libcudart.so` (`find --name libcudart.so`) and replace the environment variable `LD_LIBRARY_PATH` with the one containing the correct `libcudart.so` file.
transformers/tests/quantization/bnb/README.md/0
{ "file_path": "transformers/tests/quantization/bnb/README.md", "repo_id": "transformers", "token_count": 1401 }
390
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import numpy as np from datasets import load_dataset, load_metric import transformers from transformers import ( # Trainer,; TrainingArguments, AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PretrainedConfig, default_data_collator, set_seed, ) # Will import SageMaker Model parallelism specific Trainer from transformers.sagemaker import SageMakerTrainer as Trainer from transformers.sagemaker import SageMakerTrainingArguments as TrainingArguments from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.4.2") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: Optional[str] = field( default=None, metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=True, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_val_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) max_test_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of test examples to this " "value if set." ) }, ) train_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the training data."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) def __post_init__(self): if self.task_name is not None: self.task_name = self.task_name.lower() if self.task_name not in task_to_keys.keys(): raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task or a training/validation file.") else: train_extension = self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." validation_extension = self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if training_args.should_log else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if training_args.should_log: transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.task_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset("glue", data_args.task_name) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: train_extension = data_args.train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files datasets = load_dataset("csv", data_files=data_files) else: # Loading a dataset from local json files datasets = load_dataset("json", data_files=data_files) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) # Preprocessing the datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if sorted(label_name_to_id.keys()) == sorted(label_list): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]] return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in datasets and "validation_matched" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None: if "test" not in datasets and "test_matched" not in datasets: raise ValueError("--do_predict requires a test dataset") test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"] if data_args.max_test_samples is not None: test_dataset = test_dataset.select(range(data_args.max_test_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Get the metric function if data_args.task_name is not None: metric = load_metric("glue", data_args.task_name) # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from # compute_metrics # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) if data_args.task_name is not None: result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result elif is_regression: return {"mse": ((preds - p.label_ids) ** 2).mean().item()} else: return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): # Check the config from that potential checkpoint has the right number of labels before using it as a # checkpoint. if AutoConfig.from_pretrained(model_args.model_name_or_path).num_labels == num_labels: checkpoint = model_args.model_name_or_path train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] eval_datasets = [eval_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") eval_datasets.append(datasets["validation_mismatched"]) for eval_dataset, task in zip(eval_datasets, tasks): metrics = trainer.evaluate(eval_dataset=eval_dataset) max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Test ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] test_datasets = [test_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") test_datasets.append(datasets["test_mismatched"]) for test_dataset, task in zip(test_datasets, tasks): # Removing the `label` columns because it contains -1 and Trainer won't like that. test_dataset = test_dataset.remove_columns("label") predictions = trainer.predict(test_dataset=test_dataset).predictions predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) output_test_file = os.path.join(training_args.output_dir, f"test_results_{task}.txt") if trainer.is_world_process_zero(): with open(output_test_file, "w") as writer: logger.info(f"***** Test results {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/tests/sagemaker/scripts/pytorch/run_glue_model_parallelism.py/0
{ "file_path": "transformers/tests/sagemaker/scripts/pytorch/run_glue_model_parallelism.py", "repo_id": "transformers", "token_count": 9571 }
391
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import copy import gc import inspect import os import os.path import pickle import random import re import tempfile import warnings from collections import defaultdict from typing import Dict, List, Tuple import numpy as np from parameterized import parameterized from pytest import mark import transformers from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSequenceClassification, PretrainedConfig, PreTrainedModel, is_torch_available, logging, set_seed, ) from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import ( MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES, MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES, MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES, MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) from transformers.testing_utils import ( CaptureLogger, is_pt_flax_cross_test, is_pt_tf_cross_test, require_accelerate, require_bitsandbytes, require_flash_attn, require_safetensors, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_sdpa, slow, torch_device, ) from transformers.utils import ( CONFIG_NAME, GENERATION_CONFIG_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available, is_flax_available, is_tf_available, is_torch_bf16_available_on_device, is_torch_fp16_available_on_device, is_torch_fx_available, is_torch_sdpa_available, ) from transformers.utils.generic import ContextManagers, ModelOutput if is_accelerate_available(): from accelerate.utils import compute_module_sizes if is_torch_available(): import torch from safetensors.torch import load_file as safe_load_file from safetensors.torch import save_file as safe_save_file from torch import nn from transformers import MODEL_MAPPING, AdaptiveEmbedding from transformers.modeling_utils import load_state_dict, no_init_weights from transformers.pytorch_utils import id_tensor_storage if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp from tests.test_modeling_flax_utils import check_models_equal from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_fx_available(): from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) setattr(configs_no_init, key, no_init_subconfig) return configs_no_init def _mock_init_weights(self, module): for name, param in module.named_parameters(recurse=False): # Use the first letter of the name to get a value and go from a <> -13 to z <> 12 value = ord(name[0].lower()) - 110 param.data.fill_(value) def _mock_all_init_weights(self): # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) import transformers.modeling_utils if transformers.modeling_utils._init_weights: for module in self.modules(): module._is_hf_initialized = False # Initialize weights self.apply(self._initialize_weights) # Tie weights should be skipped when not initializing all weights # since from_pretrained(...) calls tie weights anyways self.tie_weights() @require_torch class ModelTesterMixin: model_tester = None all_model_classes = () all_generative_model_classes = () fx_compatible = False test_torchscript = True test_pruning = True test_resize_embeddings = True test_resize_position_embeddings = False test_head_masking = True test_mismatched_shapes = True test_missing_keys = True test_model_parallel = False is_encoder_decoder = False has_attentions = True model_split_percents = [0.5, 0.7, 0.9] def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): inputs_dict = { k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() if isinstance(v, torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES): inputs_dict.pop("attention_mask") if return_labels: if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) elif model_class.__name__ in [ *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), ]: inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class.__name__ in [ *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES), *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class.__name__ in [ *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES), *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES), *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES), *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES), ]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES): num_patches = self.model_tester.image_size // self.model_tester.patch_size inputs_dict["bool_masked_pos"] = torch.zeros( (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device ) elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES): batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, height, width], device=torch_device ).long() return inputs_dict def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_save_load(out1, out2): # make sure we don't have nans out_2 = out2.cpu().numpy() out_2[np.isnan(out_2)] = 0 out_1 = out1.cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**self._prepare_for_class(inputs_dict, model_class))[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) # the config file (and the generation config file, if it can generate) should be saved self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) self.assertEqual( model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) ) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): second = model(**self._prepare_for_class(inputs_dict, model_class))[0] if isinstance(first, tuple) and isinstance(second, tuple): for tensor1, tensor2 in zip(first, second): check_save_load(tensor1, tensor2) else: check_save_load(first, second) def test_from_pretrained_no_checkpoint(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) state_dict = model.state_dict() new_model = model_class.from_pretrained( pretrained_model_name_or_path=None, config=config, state_dict=state_dict ) for p1, p2 in zip(model.parameters(), new_model.parameters()): self.assertTrue(torch.equal(p1, p2)) def test_keep_in_fp32_modules(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._keep_in_fp32_modules is None: return model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16) for name, param in model.named_parameters(): if any(n in model_class._keep_in_fp32_modules for n in name.split(".")): self.assertTrue(param.dtype == torch.float32) else: self.assertTrue(param.dtype == torch.float16, name) def test_save_load_keys_to_ignore_on_save(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None) if _keys_to_ignore_on_save is None: continue # check the keys are in the original state_dict for k in _keys_to_ignore_on_save: self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys())) # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME) state_dict_saved = safe_load_file(output_model_file) for k in _keys_to_ignore_on_save: self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys())) # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer. load_result = model.load_state_dict(state_dict_saved, strict=False) keys_to_ignore = set(model._keys_to_ignore_on_save) if hasattr(model, "_tied_weights_keys"): keys_to_ignore.update(set(model._tied_weights_keys)) self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore) self.assertTrue(len(load_result.unexpected_keys) == 0) def test_gradient_checkpointing_backward_compatibility(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class.supports_gradient_checkpointing: continue config.gradient_checkpointing = True model = model_class(config) self.assertTrue(model.is_gradient_checkpointing) def test_gradient_checkpointing_enable_disable(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class.supports_gradient_checkpointing: continue # at init model should have gradient checkpointing disabled model = model_class(config) self.assertFalse(model.is_gradient_checkpointing) # check enable works model.gradient_checkpointing_enable() self.assertTrue(model.is_gradient_checkpointing) # Loop over all modules and check that relevant modules have gradient_checkpointing set to True for n, m in model.named_modules(): if hasattr(m, "gradient_checkpointing"): self.assertTrue( m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True" ) # check disable works model.gradient_checkpointing_disable() self.assertFalse(model.is_gradient_checkpointing) # Loop over all modules and check that relevant modules have gradient_checkpointing set to False for n, m in model.named_modules(): if hasattr(m, "gradient_checkpointing"): self.assertFalse( m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False" ) def test_save_load_fast_init_from_base(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if config.__class__ not in MODEL_MAPPING: return base_class = MODEL_MAPPING[config.__class__] if isinstance(base_class, tuple): base_class = base_class[0] for model_class in self.all_model_classes: if model_class == base_class: continue # make a copy of model class to not break future tests # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class class CopyClass(model_class): pass model_class_copy = CopyClass # make sure that all keys are expected for test model_class_copy._keys_to_ignore_on_load_missing = [] # make init deterministic, but make sure that # non-initialized weights throw errors nevertheless model_class_copy._init_weights = _mock_init_weights model_class_copy.init_weights = _mock_all_init_weights model = base_class(config) state_dict = model.state_dict() # this will often delete a single weight of a multi-weight module # to test an edge case random_key_to_del = random.choice(list(state_dict.keys())) del state_dict[random_key_to_del] # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) model_fast_init = model_class_copy.from_pretrained(tmpdirname) model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False) # Before we test anything for key in model_fast_init.state_dict().keys(): if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item() else: max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_fast_init_context_manager(self): # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__ class MyClass(PreTrainedModel): config_class = PretrainedConfig def __init__(self, config=None): super().__init__(config if config is not None else PretrainedConfig()) self.linear = nn.Linear(10, 10, bias=True) self.embedding = nn.Embedding(10, 10) self.std = 1 def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5)) if module.bias is not None: module.bias.data.normal_(mean=0.0, std=self.std) # 2. Make sure a linear layer's reset params is properly skipped: with ContextManagers([no_init_weights(True)]): no_init_instance = MyClass() set_seed(0) expected_bias = torch.tensor( ([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475]) ) init_instance = MyClass() torch.testing.assert_allclose(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4) set_seed(0) torch.testing.assert_allclose( init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5)) ) # 3. Make sure weights that are not present use init_weight_ and get expected values with tempfile.TemporaryDirectory() as tmpdirname: state_dict = init_instance.state_dict() del state_dict["linear.weight"] init_instance.config.save_pretrained(tmpdirname) torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) set_seed(0) model_fast_init = MyClass.from_pretrained(tmpdirname) set_seed(0) model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False) for key in model_fast_init.state_dict().keys(): max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])) self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical") def test_fast_init_tied_embeddings(self): class MyClass(PreTrainedModel): config_class = PretrainedConfig _tied_weights_keys = ["output_embeddings.weight"] def __init__(self, config=None): super().__init__(config if config is not None else PretrainedConfig()) self.input_embeddings = nn.Embedding(10, 10) self.output_embeddings = nn.Linear(10, 10, bias=False) self.tie_weights() def get_output_embeddings(self): return self.output_embeddings def set_output_embeddings(self, output_embeddings): self.output_embeddings = output_embeddings def get_input_embeddings(self): return self.input_embeddings def set_input_embeddings(self, input_embeddings): self.input_embeddings = input_embeddings def _init_weights(self, module): if module is self.output_embeddings: raise ValueError("unnecessarily initialized tied output embedding!") model = MyClass() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) # throws if it initializes the tied output_embeddings MyClass.from_pretrained(tmpdirname) def test_save_load_fast_init_to_base(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if config.__class__ not in MODEL_MAPPING: return base_class = MODEL_MAPPING[config.__class__] if isinstance(base_class, tuple): base_class = base_class[0] for model_class in self.all_model_classes: if model_class == base_class: continue # make a copy of model class to not break future tests # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class class CopyClass(base_class): pass base_class_copy = CopyClass # make sure that all keys are expected for test base_class_copy._keys_to_ignore_on_load_missing = [] # make init deterministic, but make sure that # non-initialized weights throw errors nevertheless base_class_copy._init_weights = _mock_init_weights base_class_copy.init_weights = _mock_all_init_weights model = model_class(config) state_dict = model.state_dict() # this will often delete a single weight of a multi-weight module # to test an edge case random_key_to_del = random.choice(list(state_dict.keys())) del state_dict[random_key_to_del] # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: model.config.save_pretrained(tmpdirname) torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) model_fast_init = base_class_copy.from_pretrained(tmpdirname) model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False) for key in model_fast_init.state_dict().keys(): if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): max_diff = torch.max( model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key] ).item() else: max_diff = torch.max( torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]) ).item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") def test_torch_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if config.__class__ not in MODEL_MAPPING: return base_class = MODEL_MAPPING[config.__class__] if isinstance(base_class, tuple): base_class = base_class[0] for model_class in self.all_model_classes: if model_class == base_class: continue # make a copy of model class to not break future tests # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class class CopyClass(base_class): pass base_class_copy = CopyClass # make sure that all keys are expected for test base_class_copy._keys_to_ignore_on_load_missing = [] # make init deterministic, but make sure that # non-initialized weights throw errors nevertheless base_class_copy._init_weights = _mock_init_weights base_class_copy.init_weights = _mock_all_init_weights model = model_class(config) state_dict = model.state_dict() def check_equal(loaded): for key in state_dict.keys(): max_diff = torch.max( state_dict()[key] ^ loaded[key] if isinstance(state_dict[key], torch.BoolTensor) else torch.abs(state_dict[key] - loaded[key]) ).item() self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical") # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin") torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True) check_equal(load_state_dict(pt_checkpoint_path)) torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False) check_equal(load_state_dict(pt_checkpoint_path)) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_determinism(first, second): out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**self._prepare_for_class(inputs_dict, model_class))[0] second = model(**self._prepare_for_class(inputs_dict, model_class))[0] if isinstance(first, tuple) and isinstance(second, tuple): for tensor1, tensor2 in zip(first, second): check_determinism(tensor1, tensor2) else: check_determinism(first, second) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions: expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"] self.assertListEqual(arg_names, expected_arg_names) elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions: expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"] self.assertListEqual(arg_names, expected_arg_names) else: expected_arg_names = [model.main_input_name] self.assertListEqual(arg_names[:1], expected_arg_names) def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None): if not self.model_tester.is_training: return for model_class in self.all_model_classes: if ( model_class.__name__ in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] or not model_class.supports_gradient_checkpointing ): continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs) model.train() # unfreeze additional layers for p in model.parameters(): p.requires_grad_(True) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() optimizer.step() for k, v in model.named_parameters(): if v.requires_grad: self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!") def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class.__name__ in [ *get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), ]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): # Scenario - 1 default behaviour self.check_training_gradient_checkpointing() def test_training_gradient_checkpointing_use_reentrant(self): # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's # torch.utils.checkpoint.checkpoint self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True}) def test_training_gradient_checkpointing_use_reentrant_false(self): # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for # future releases: https://pytorch.org/docs/stable/checkpoint.html self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False}) def test_attention_outputs(self): if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Question Answering model returns start_logits and end_logits if model_class.__name__ in [ *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), ]: correct_outlen += 1 # start_logits and end_logits instead of only 1 output if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(self_attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) @slow def test_torchscript_simple(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torchscript(config, inputs_dict) @slow def test_torchscript_output_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_attentions = True self._create_and_check_torchscript(config, inputs_dict) @slow def test_torchscript_output_hidden_state(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True self._create_and_check_torchscript(config, inputs_dict) # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry` def clear_torch_jit_class_registry(self): torch._C._jit_clear_class_registry() torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() # torch 1.8 has no `_clear_class_state` in `torch.jit._state` if hasattr(torch.jit._state, "_clear_class_state"): torch.jit._state._clear_class_state() def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: for attn_implementation in ["eager", "sdpa"]: if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()): continue configs_no_init._attn_implementation = attn_implementation model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) main_input_name = model_class.main_input_name try: if model.config.is_encoder_decoder: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward main_input = inputs[main_input_name] attention_mask = inputs["attention_mask"] decoder_input_ids = inputs["decoder_input_ids"] decoder_attention_mask = inputs["decoder_attention_mask"] model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask) traced_model = torch.jit.trace( model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask) ) elif "bbox" in inputs and "image" in inputs: # LayoutLMv2 requires additional inputs input_ids = inputs["input_ids"] bbox = inputs["bbox"] image = inputs["image"].tensor model(input_ids, bbox, image) traced_model = torch.jit.trace( model, (input_ids, bbox, image), check_trace=False ) # when traced model is checked, an error is produced due to name mangling elif "bbox" in inputs: # Bros requires additional inputs (bbox) input_ids = inputs["input_ids"] bbox = inputs["bbox"] model(input_ids, bbox) traced_model = torch.jit.trace( model, (input_ids, bbox), check_trace=False ) # when traced model is checked, an error is produced due to name mangling else: main_input = inputs[main_input_name] if model.config._attn_implementation == "sdpa": trace_input = {main_input_name: main_input} if "attention_mask" in inputs: trace_input["attention_mask"] = inputs["attention_mask"] else: self.skipTest("testing SDPA without attention_mask is not supported") model(main_input, attention_mask=inputs["attention_mask"]) # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1. traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input) else: model(main_input) traced_model = torch.jit.trace(model, (main_input,)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_torch_fx(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torch_fx_tracing(config, inputs_dict) def test_torch_fx_output_loss(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True) def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): if not is_torch_fx_available() or not self.fx_compatible: self.skipTest( f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx" ) configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) # We may want to test several inputs (various shapes, etc.). inputs_to_test = [inputs] if model.config.is_encoder_decoder: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward labels = inputs.get("labels", None) input_names = [ "attention_mask", "decoder_attention_mask", "decoder_input_ids", "input_features", "input_ids", "input_values", ] if labels is not None: input_names.append("labels") else: input_names = [ "attention_mask", "bbox", "input_features", "input_ids", "input_values", "pixel_values", "token_type_ids", "visual_feats", "visual_pos", ] labels = inputs.get("labels", None) start_positions = inputs.get("start_positions", None) end_positions = inputs.get("end_positions", None) if labels is not None: input_names.append("labels") if start_positions is not None: input_names.append("start_positions") if end_positions is not None: input_names.append("end_positions") if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE: input_names.append("past_key_values") # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs. if "past_key_values" not in inputs: batch_size = inputs[next(iter(inputs))].shape[0] num_heads = model.config.num_attention_heads head_dim = model.config.hidden_size // model.config.num_attention_heads cache_shape = (batch_size, num_heads, 0, head_dim) empty_pkv = tuple( ( torch.rand(cache_shape, dtype=torch.float, device=torch_device), torch.rand(cache_shape, dtype=torch.float, device=torch_device), ) for i in range(model.config.num_hidden_layers) ) cache_length = 9 cache_shape = (batch_size, num_heads, cache_length, head_dim) non_empty_pkv = tuple( ( torch.rand(cache_shape, dtype=torch.float, device=torch_device), torch.rand(cache_shape, dtype=torch.float, device=torch_device), ) for i in range(model.config.num_hidden_layers) ) inps = copy.deepcopy(inputs_to_test[0]) inputs_to_test[0]["past_key_values"] = empty_pkv inps["past_key_values"] = non_empty_pkv inputs_to_test.append(inps) past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float) inputs_to_test[1]["attention_mask"] = torch.cat( (past_mask, inputs_to_test[1]["attention_mask"]), dim=1 ) for inps in inputs_to_test: filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names} input_names = list(filtered_inputs.keys()) if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and ( not hasattr(model.config, "problem_type") or model.config.problem_type is None ): model.config.problem_type = "single_label_classification" traced_model = symbolic_trace(model, input_names) with torch.no_grad(): traced_output = traced_model(**filtered_inputs) model_output = model(**filtered_inputs) def flatten_output(output): flatten = [] for x in output: if isinstance(x, (tuple, list)): flatten += flatten_output(x) elif not isinstance(x, torch.Tensor): continue else: flatten.append(x) return flatten model_output = flatten_output(model_output) traced_output = flatten_output(traced_output) num_outputs = len(model_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], traced_output[i]), f"traced {i}th output doesn't match model {i}th output for {model_class}", ) # Test that the model can be serialized and restored properly with tempfile.TemporaryDirectory() as tmp_dir_name: pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") try: with open(pkl_file_name, "wb") as f: pickle.dump(traced_model, f) with open(pkl_file_name, "rb") as f: loaded = pickle.load(f) except Exception as e: self.fail(f"Couldn't serialize / deserialize the traced model: {e}") loaded_output = loaded(**filtered_inputs) loaded_output = flatten_output(loaded_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], loaded_output[i]), f"serialized model {i}th output doesn't match model {i}th output for {model_class}", ) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_headmasking(self): if not self.test_head_masking: return global_rng.seed(42) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() global_rng.seed() inputs_dict["output_attentions"] = True config.output_hidden_states = True configs_no_init = _config_zero_init(config) # To be sure we have no Nan for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() # Prepare head_mask # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior) head_mask = torch.ones( self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device, ) head_mask[0, 0] = 0 head_mask[-1, :-1] = 0 head_mask.requires_grad_(requires_grad=True) inputs = self._prepare_for_class(inputs_dict, model_class).copy() inputs["head_mask"] = head_mask if model.config.is_encoder_decoder: signature = inspect.signature(model.forward) arg_names = [*signature.parameters.keys()] if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model inputs["decoder_head_mask"] = head_mask if "cross_attn_head_mask" in arg_names: inputs["cross_attn_head_mask"] = head_mask outputs = model(**inputs, return_dict=True) # Test that we can get a gradient back for importance score computation output = sum(t.sum() for t in outputs[0]) output = output.sum() output.backward() multihead_outputs = head_mask.grad self.assertIsNotNone(multihead_outputs) self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers) def check_attentions_validity(attentions): # Remove Nan for t in attentions: self.assertLess( torch.sum(torch.isnan(t)), t.numel() / 4 ) # Check we don't have more than 25% nans (arbitrary) attentions = [ t.masked_fill(torch.isnan(t), 0.0) for t in attentions ] # remove them (the test is less complete) self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0) if len(attentions) > 2: # encoder-decoder models have only 2 layers in each module self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0) self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0) if model.config.is_encoder_decoder: check_attentions_validity(outputs.encoder_attentions) check_attentions_validity(outputs.decoder_attentions) check_attentions_validity(outputs.cross_attentions) else: check_attentions_validity(outputs.attentions) def test_head_pruning(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) # TODO: To have this check, we will need at least 3 layers. Do we really need it? # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_pretrained(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } model.prune_heads(heads_to_prune) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) # TODO: To have this check, we will need at least 3 layers. Do we really need it? # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_config_init(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) # TODO: To have this check, we will need at least 3 layers. Do we really need it? # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_integration(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False heads_to_prune = {1: [1, 2]} config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) heads_to_prune = {0: [0], 1: [1, 2]} model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]}) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: seq_length = seq_length * self.model_tester.chunk_length else: seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = self.has_attentions # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] if config.is_encoder_decoder: # Seq2Seq models encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() decoder_hidden_states = outputs.decoder_hidden_states[0] decoder_hidden_states.retain_grad() if self.has_attentions: encoder_attentions = outputs.encoder_attentions[0] encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(decoder_hidden_states.grad) if self.has_attentions: self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) else: # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: attentions = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def test_feed_forward_chunking(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: torch.manual_seed(0) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model.eval() hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] torch.manual_seed(0) config.chunk_size_feed_forward = 1 model = model_class(config) model.to(torch_device) model.eval() hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) def test_resize_position_vector_embeddings(self): if not self.test_resize_position_embeddings: return ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() max_position_embeddings = config.max_position_embeddings # Retrieve the embeddings and clone theme if model.config.is_encoder_decoder: encoder_model_embed, decoder_model_embed = model.get_position_embeddings() encoder_cloned_embeddings = encoder_model_embed.weight.clone() decoder_cloned_embeddings = decoder_model_embed.weight.clone() else: model_embed = model.get_position_embeddings() cloned_embeddings = model_embed.weight.clone() # Check that resizing the position embeddings with a larger max_position_embeddings increases # the model's postion embeddings size model.resize_position_embeddings(max_position_embeddings + 10) self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10) # Check that it actually resizes the embeddings matrix if model.config.is_encoder_decoder: encoder_model_embed, decoder_model_embed = model.get_position_embeddings() self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10) self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10) else: model_embed = model.get_position_embeddings() self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the position embeddings with a smaller max_position_embeddings decreases # the model's max_position_embeddings model.resize_position_embeddings(max_position_embeddings - 5) self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5) # Check that it actually resizes the embeddings matrix if model.config.is_encoder_decoder: encoder_model_embed, decoder_model_embed = model.get_position_embeddings() self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5) self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5) else: model_embed = model.get_position_embeddings() self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True if model.config.is_encoder_decoder: for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False else: for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) # make sure that decoder_input_ids are resized as well if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1) self.assertTrue(model.config.vocab_size + 10, model_vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size) self.assertTrue(model.config.vocab_size, model.vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size target_dimension = 128 model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0], target_dimension) with self.assertRaisesRegex( ValueError, "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer", ): model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3) def test_resize_embeddings_untied(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding)) model.set_input_embeddings(nn.Embedding(10, 10)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(model_class.main_input_name, observed_main_input_name) def test_correct_missing_keys(self): if not self.test_missing_keys: return config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) base_model_prefix = model.base_model_prefix if hasattr(model, base_model_prefix): extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)} extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)}) # Some models define this as None if model._keys_to_ignore_on_load_missing: for key in model._keys_to_ignore_on_load_missing: extra_params.pop(key, None) if not extra_params: # In that case, we *are* on a head model, but every # single key is not actual parameters and this is # tested in `test_tied_model_weights_key_ignore` test. continue with tempfile.TemporaryDirectory() as temp_dir_name: model.base_model.save_pretrained(temp_dir_name) model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__) def test_tie_model_weights(self): if not self.test_torchscript: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_same_values(layer_1, layer_2): equal = True for p1, p2 in zip(layer_1.weight, layer_2.weight): if p1.data.ne(p2.data).sum() > 0: equal = False return equal for model_class in self.all_model_classes: config.torchscript = True model_not_tied = model_class(config) if model_not_tied.get_output_embeddings() is None: continue config_tied = copy.deepcopy(config) config_tied.torchscript = False model_tied = model_class(config_tied) params_tied = list(model_tied.parameters()) # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # embeddings.weight.data.div_(2) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # decoding.weight.data.div_(4) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # Check that after resize they remain tied. model_tied.resize_token_embeddings(config.vocab_size + 10) params_tied_2 = list(model_tied.parameters()) self.assertEqual(len(params_tied_2), len(params_tied)) # decoding.weight.data.mul_(20) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape) # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head)) @require_safetensors def test_can_use_safetensors(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model_tied = model_class(config) with tempfile.TemporaryDirectory() as d: try: model_tied.save_pretrained(d, safe_serialization=True) except Exception as e: raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}") model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) # Checking the state dicts are correct reloaded_state = model_reloaded.state_dict() for k, v in model_tied.state_dict().items(): self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") torch.testing.assert_close( v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" ) # Checking there was no complain of missing weights self.assertEqual(infos["missing_keys"], []) # Checking the tensor sharing are correct ptrs = defaultdict(list) for k, v in model_tied.state_dict().items(): ptrs[v.data_ptr()].append(k) shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1} for _, shared_names in shared_ptrs.items(): reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names} self.assertEqual( len(reloaded_ptrs), 1, f"The shared pointers are incorrect, found different pointers for keys {shared_names}", ) def test_load_save_without_tied_weights(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() config.tie_word_embeddings = False for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as d: model.save_pretrained(d) model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) # Checking the state dicts are correct reloaded_state = model_reloaded.state_dict() for k, v in model.state_dict().items(): self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") torch.testing.assert_close( v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" ) # Checking there was no complain of missing weights self.assertEqual(infos["missing_keys"], []) def test_tied_weights_keys(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() config.tie_word_embeddings = True for model_class in self.all_model_classes: model_tied = model_class(config) ptrs = collections.defaultdict(list) for name, tensor in model_tied.state_dict().items(): ptrs[id_tensor_storage(tensor)].append(name) # These are all the pointers of shared tensors. tied_params = [names for _, names in ptrs.items() if len(names) > 1] tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else [] # Detect we get a hit for each key for key in tied_weight_keys: if not any(re.search(key, p) for group in tied_params for p in group): raise ValueError(f"{key} is not a tied weight key for {model_class}.") # Removed tied weights found from tied params -> there should only be one left after for key in tied_weight_keys: for i in range(len(tied_params)): tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None] tied_params = [group for group in tied_params if len(group) > 1] self.assertListEqual( tied_params, [], f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.", ) def test_model_weights_reload_no_missing_tied_weights(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) # We are nuking ALL weights on file, so every parameter should # yell on load. We're going to detect if we yell too much, or too little. placeholder_dict = {"tensor": torch.tensor([1, 2])} safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"}) model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True) prefix = f"{model_reloaded.base_model_prefix}." params = dict(model_reloaded.named_parameters()) params.update(dict(model_reloaded.named_buffers())) param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()} missing_keys = set(infos["missing_keys"]) extra_missing = missing_keys - param_names # Remove tied weights from extra missing: they are normally not warned as missing if their tied # counterpart is present but here there are no weights at all so we do get the warning. ptrs = collections.defaultdict(list) for name, tensor in model_reloaded.state_dict().items(): ptrs[id_tensor_storage(tensor)].append(name) tied_params = [names for _, names in ptrs.items() if len(names) > 1] for group in tied_params: group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group} # We remove the group from extra_missing if not all weights from group are in it if len(group - extra_missing) > 0: extra_missing = extra_missing - set(group) self.assertEqual( extra_missing, set(), f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. " f"For debugging, tied parameters are {tied_params}", ) missed_missing = param_names - missing_keys # Remove nonpersistent buffers from missed_missing buffers = [n for n, _ in model_reloaded.named_buffers()] nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()} nonpersistent_buffers = { k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers } missed_missing = missed_missing - nonpersistent_buffers if model_reloaded._keys_to_ignore_on_load_missing is None: expected_missing = set() else: expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing) self.assertEqual( missed_missing, expected_missing, f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real" " parameters. If they are non persistent buffers make sure to instantiate them with" " `persistent=False`", ) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) # Don't copy this method to model specific test file! # TODO: remove this method once the issues are all fixed! def _make_attention_mask_non_null(self, inputs_dict): """Make sure no sequence has all zeros as attention mask""" for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]: if k in inputs_dict: attention_mask = inputs_dict[k] # Make sure no all 0s attention masks - to avoid failure at this moment. # Put `1` at the beginning of sequences to make it still work when combining causal attention masks. # TODO: remove this line once a fix regarding large negative values for attention mask is done. attention_mask = torch.cat( [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1 ) # Here we make the first sequence with all 0s as attention mask. # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks. # TODO: enable this block once the large negative values thing is cleaned up. # (see https://github.com/huggingface/transformers/issues/14859) # attention_mask = torch.cat( # [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]], # dim=0 # ) inputs_dict[k] = attention_mask # Don't copy this method to model specific test file! # TODO: remove this method once the issues are all fixed! def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class): """For temporarily ignoring some failed test cases (issues to be fixed)""" tf_keys = {k for k, v in tf_outputs.items() if v is not None} pt_keys = {k for k, v in pt_outputs.items() if v is not None} key_differences = tf_keys.symmetric_difference(pt_keys) if model_class.__name__ in [ "FlaubertWithLMHeadModel", "FunnelForPreTraining", "ElectraForPreTraining", "XLMWithLMHeadModel", ]: for k in key_differences: if k in ["loss", "losses"]: tf_keys.discard(k) pt_keys.discard(k) elif model_class.__name__.startswith("GPT2"): # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple. tf_keys.discard("past_key_values") pt_keys.discard("past_key_values") # create new outputs from the remaining fields new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys}) new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys}) return new_tf_outputs, new_pt_outputs # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way. Args: model_class: The class of the model that is currently testing. For example, `TFBertModel`, TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative error messages. name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc. attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element being a named field in the output. """ self.assertEqual(type(name), str) if attributes is not None: self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). if isinstance(tf_outputs, ModelOutput): self.assertTrue( isinstance(pt_outputs, ModelOutput), f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is", ) # Don't copy this block to model specific test file! # TODO: remove this method and this line after issues are fixed tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class) tf_keys = [k for k, v in tf_outputs.items() if v is not None] pt_keys = [k for k, v in pt_outputs.items() if v is not None] self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch") # convert to the case of `tuple` # appending each key to the current (string) `name` attributes = tuple([f"{name}.{k}" for k in tf_keys]) self.check_pt_tf_outputs( tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes ) # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) elif type(tf_outputs) in [tuple, list]: self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch") self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch") if attributes is not None: # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) self.assertEqual( len(attributes), len(tf_outputs), f"{name}: The tuple `attributes` should have the same length as `tf_outputs`", ) else: # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name` attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))]) for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes): self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr) elif isinstance(tf_outputs, tf.Tensor): self.assertTrue( isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is" ) tf_outputs = tf_outputs.numpy() pt_outputs = pt_outputs.detach().to("cpu").numpy() self.assertEqual( tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch" ) # deal with NumPy's scalars to make replacing nan values by 0 work. if np.isscalar(tf_outputs): tf_outputs = np.array([tf_outputs]) pt_outputs = np.array([pt_outputs]) tf_nans = np.isnan(tf_outputs) pt_nans = np.isnan(pt_outputs) pt_outputs[tf_nans] = 0 tf_outputs[tf_nans] = 0 pt_outputs[pt_nans] = 0 tf_outputs[pt_nans] = 0 max_diff = np.amax(np.abs(tf_outputs - pt_outputs)) self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).") else: raise ValueError( "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got" f" {type(tf_outputs)} instead." ) def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict): tf_inputs_dict = {} for key, tensor in pt_inputs_dict.items(): # skip key that does not exist in tf if isinstance(tensor, bool): tf_inputs_dict[key] = tensor elif key == "input_values": tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) elif key == "pixel_values": tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) elif key == "input_features": tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) # other general float inputs elif tensor.is_floating_point(): tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) else: tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32) return tf_inputs_dict def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict): tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) # send pytorch inputs to the correct device pt_inputs_dict = { k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items() } # send pytorch model to the correct device pt_model.to(torch_device) # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences pt_model.eval() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs_dict) tf_outputs = tf_model(tf_inputs_dict) # tf models returned loss is usually a tensor rather than a scalar. # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`) # Change it here to a scalar to match PyTorch models' loss tf_loss = getattr(tf_outputs, "loss", None) if tf_loss is not None: tf_outputs.loss = tf.math.reduce_mean(tf_loss) self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model)) @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning if not hasattr(transformers, tf_model_class_name): # transformers does not have this model in TF version yet return # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) tf_model_class = getattr(transformers, tf_model_class_name) pt_model = model_class(config) tf_model = tf_model_class(config) pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs_dict_with_labels = self._prepare_for_class( inputs_dict, model_class, # Not all models accept "labels" in the forward pass (yet :) ) return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False, ) # make sure only tf inputs are forward that actually exist in function args tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys()) # remove all head masks tf_input_keys.discard("head_mask") tf_input_keys.discard("cross_attn_head_mask") tf_input_keys.discard("decoder_head_mask") pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys} pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys} # For some models (e.g. base models), there is no label returned. # Set the input dict to `None` to avoid check outputs twice for the same input dicts. if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()): pt_inputs_dict_with_labels = None # Check we can load pt model in tf and vice-versa with model => model functions # Here requires `tf_inputs_dict` to build `tf_model` tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) # check with `labels` if pt_inputs_dict_with_labels: self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) # check with `labels` if pt_inputs_dict_with_labels: self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): diff = np.abs((a - b)).max() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): """ Args: model_class: The class of the model that is currently testing. For example, ..., etc. Currently unused, but it could make debugging easier and faster. names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs. Currently unused, but in the future, we could use this information to make the error message clearer by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax. """ self.assertEqual(type(name), str) if attributes is not None: self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). if isinstance(fx_outputs, ModelOutput): self.assertTrue( isinstance(pt_outputs, ModelOutput), f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is", ) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch") # convert to the case of `tuple` # appending each key to the current (string) `name` attributes = tuple([f"{name}.{k}" for k in fx_keys]) self.check_pt_flax_outputs( fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes ) # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) elif type(fx_outputs) in [tuple, list]: self.assertEqual( type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch" ) self.assertEqual( len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch" ) if attributes is not None: # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) self.assertEqual( len(attributes), len(fx_outputs), f"{name}: The tuple `attributes` should have the same length as `fx_outputs`", ) else: # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name` attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))]) for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes): self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr) elif isinstance(fx_outputs, jnp.ndarray): self.assertTrue( isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is" ) # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`. fx_outputs = np.array(fx_outputs) pt_outputs = pt_outputs.detach().to("cpu").numpy() self.assertEqual( fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch" ) # deal with NumPy's scalars to make replacing nan values by 0 work. if np.isscalar(fx_outputs): fx_outputs = np.array([fx_outputs]) pt_outputs = np.array([pt_outputs]) fx_nans = np.isnan(fx_outputs) pt_nans = np.isnan(pt_outputs) pt_outputs[fx_nans] = 0 fx_outputs[fx_nans] = 0 pt_outputs[pt_nans] = 0 fx_outputs[pt_nans] = 0 max_diff = np.amax(np.abs(fx_outputs - pt_outputs)) self.assertLessEqual( max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})." ) else: raise ValueError( "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got" f" {type(fx_outputs)} instead." ) @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): fx_model_class_name = "Flax" + model_class.__name__ if not hasattr(transformers, fx_model_class_name): # no flax model exists for this class return # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions fx_model_class = getattr(transformers, fx_model_class_name) # load PyTorch class pt_model = model_class(config).eval() # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. pt_model.config.use_cache = False # load Flax class fx_model = fx_model_class(config, dtype=jnp.float32) # make sure only flax inputs are forward that actually exist in function args fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() # prepare inputs pt_inputs = self._prepare_for_class(inputs_dict, model_class) # remove function args that don't exist in Flax pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} # send pytorch inputs to the correct device pt_inputs = { k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() } # convert inputs to Flax fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state # send pytorch model to the correct device pt_model.to(torch_device) with torch.no_grad(): pt_outputs = pt_model(**pt_inputs) fx_outputs = fx_model(**fx_inputs) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**fx_inputs) fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class) @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): fx_model_class_name = "Flax" + model_class.__name__ if not hasattr(transformers, fx_model_class_name): # no flax model exists for this class return # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions fx_model_class = getattr(transformers, fx_model_class_name) # load PyTorch class pt_model = model_class(config).eval() # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. pt_model.config.use_cache = False # load Flax class fx_model = fx_model_class(config, dtype=jnp.float32) # make sure only flax inputs are forward that actually exist in function args fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() # prepare inputs pt_inputs = self._prepare_for_class(inputs_dict, model_class) # remove function args that don't exist in Flax pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} # send pytorch inputs to the correct device pt_inputs = { k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() } # convert inputs to Flax fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) # make sure weights are tied in PyTorch pt_model.tie_weights() # send pytorch model to the correct device pt_model.to(torch_device) with torch.no_grad(): pt_outputs = pt_model(**pt_inputs) fx_outputs = fx_model(**fx_inputs) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True) # send pytorch model to the correct device pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs) fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None]) self.assertEqual(fx_keys, pt_keys) self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_multi_gpu def test_multi_gpu_data_parallel_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # some params shouldn't be scattered by nn.DataParallel # so just remove them if they are present. blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] for k in blacklist_non_batched_params: inputs_dict.pop(k, None) # move input tensors to cuda:O for k, v in inputs_dict.items(): if torch.is_tensor(v): inputs_dict[k] = v.to(0) for model_class in self.all_model_classes: model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = nn.DataParallel(model) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)) @require_torch_multi_gpu def test_model_parallelization(self): if not self.test_model_parallel: return # a candidate for testing_utils def get_current_gpu_memory_use(): """returns a list of cuda memory allocations per GPU in MBs""" per_device_memory = [] for id in range(torch.cuda.device_count()): with torch.cuda.device(id): per_device_memory.append(torch.cuda.memory_allocated() >> 20) return per_device_memory # Needs a large model to see the difference. config = self.model_tester.get_large_model_config() for model_class in self.all_parallelizable_model_classes: torch.cuda.empty_cache() # 1. single gpu memory load + unload + memory measurements # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests) memory_at_start = get_current_gpu_memory_use() # Put model on device 0 and take a memory snapshot model = model_class(config) model.to("cuda:0") memory_after_model_load = get_current_gpu_memory_use() # The memory use on device 0 should be higher than it was initially. self.assertGreater(memory_after_model_load[0], memory_at_start[0]) del model gc.collect() torch.cuda.empty_cache() # 2. MP test # it's essential to re-calibrate the usage before the next stage memory_at_start = get_current_gpu_memory_use() # Spread model layers over multiple devices model = model_class(config) model.parallelize() memory_after_parallelization = get_current_gpu_memory_use() # Assert that the memory use on all devices is higher than it was when loaded only on CPU for n in range(len(model.device_map.keys())): self.assertGreater(memory_after_parallelization[n], memory_at_start[n]) # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it self.assertLess(memory_after_parallelization[0], memory_after_model_load[0]) # Assert that the memory use of device 1 is higher than it was when the entire model was loaded # on device 0 and device 1 wasn't used at all self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1]) del model gc.collect() torch.cuda.empty_cache() @require_torch_multi_gpu def test_model_parallel_equal_results(self): if not self.test_model_parallel: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_parallelizable_model_classes: inputs_dict = self._prepare_for_class(inputs_dict, model_class) def cast_to_device(dictionary, device): output = {} for k, v in dictionary.items(): if isinstance(v, torch.Tensor): output[k] = v.to(device) else: output[k] = v return output model = model_class(config) output = model(**cast_to_device(inputs_dict, "cpu")) model.parallelize() parallel_output = model(**cast_to_device(inputs_dict, "cuda:0")) for value, parallel_value in zip(output, parallel_output): if isinstance(value, torch.Tensor): self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7)) elif isinstance(value, (Tuple, List)): for value_, parallel_value_ in zip(value, parallel_value): self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7)) def check_device_map_is_respected(self, model, device_map): for param_name, param in model.named_parameters(): # Find device in device_map while len(param_name) > 0 and param_name not in device_map: param_name = ".".join(param_name.split(".")[:-1]) if param_name not in device_map: raise ValueError("device map is incomplete, it does not contain any device for `param_name`.") param_device = device_map[param_name] if param_device in ["cpu", "disk"]: self.assertEqual(param.device, torch.device("meta")) else: self.assertEqual(param.device, torch.device(param_device)) @require_accelerate @mark.accelerate_tests @require_torch_gpu def test_disk_offload_bin(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._no_split_modules is None: continue inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) model = model_class(config).eval() model = model.to(torch_device) torch.manual_seed(0) base_output = model(**inputs_dict_class) model_size = compute_module_sizes(model)[""] with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir, safe_serialization=False) with self.assertRaises(ValueError): max_size = int(self.model_split_percents[0] * model_size) max_memory = {0: max_size, "cpu": max_size} # This errors out cause it's missing an offload folder new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) max_size = int(self.model_split_percents[1] * model_size) max_memory = {0: max_size, "cpu": max_size} new_model = model_class.from_pretrained( tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir ) self.check_device_map_is_respected(new_model, new_model.hf_device_map) torch.manual_seed(0) new_output = new_model(**inputs_dict_class) self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) @require_accelerate @mark.accelerate_tests @require_torch_gpu def test_disk_offload_safetensors(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._no_split_modules is None: continue inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) model = model_class(config).eval() model = model.to(torch_device) torch.manual_seed(0) base_output = model(**inputs_dict_class) model_size = compute_module_sizes(model)[""] with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) max_size = int(self.model_split_percents[1] * model_size) max_memory = {0: max_size, "cpu": max_size} # This doesn't error out as it's in safetensors and doesn't need an offload folder new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) self.check_device_map_is_respected(new_model, new_model.hf_device_map) torch.manual_seed(0) new_output = new_model(**inputs_dict_class) self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) @require_accelerate @mark.accelerate_tests @require_torch_gpu def test_cpu_offload(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._no_split_modules is None: continue inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) model = model_class(config).eval() model = model.to(torch_device) torch.manual_seed(0) base_output = model(**inputs_dict_class) model_size = compute_module_sizes(model)[""] # We test several splits of sizes to make sure it works. max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) for max_size in max_gpu_sizes: max_memory = {0: max_size, "cpu": model_size * 2} new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) # Making sure part of the model will actually end up offloaded self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"}) self.check_device_map_is_respected(new_model, new_model.hf_device_map) torch.manual_seed(0) new_output = new_model(**inputs_dict_class) self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) @require_accelerate @mark.accelerate_tests @require_torch_multi_gpu def test_model_parallelism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class._no_split_modules is None: continue inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) model = model_class(config).eval() model = model.to(torch_device) torch.manual_seed(0) base_output = model(**inputs_dict_class) model_size = compute_module_sizes(model)[""] # We test several splits of sizes to make sure it works. max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) for max_size in max_gpu_sizes: max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2} new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) # Making sure part of the model will actually end up offloaded self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1}) self.check_device_map_is_respected(new_model, new_model.hf_device_map) torch.manual_seed(0) new_output = new_model(**inputs_dict_class) self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) def test_problem_types(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if model_class.__name__ not in [ *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), ]: continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() def test_load_with_mismatched_shapes(self): if not self.test_mismatched_shapes: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): continue with self.subTest(msg=f"Testing {model_class}"): with tempfile.TemporaryDirectory() as tmp_dir: model = model_class(config) model.save_pretrained(tmp_dir) # Fails when we don't set ignore_mismatched_sizes=True with self.assertRaises(RuntimeError): new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) with self.assertRaises(RuntimeError): new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10) logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: new_model = AutoModelForSequenceClassification.from_pretrained( tmp_dir, num_labels=42, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) new_model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) logits = new_model(**inputs).logits self.assertEqual(logits.shape[1], 42) with CaptureLogger(logger) as cl: new_model_without_prefix = AutoModel.from_pretrained( tmp_dir, vocab_size=10, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) input_ids = ids_tensor((2, 8), 10) new_model_without_prefix.to(torch_device) if self.is_encoder_decoder: new_model_without_prefix(input_ids, decoder_input_ids=input_ids) else: new_model_without_prefix(input_ids) def test_mismatched_shapes_have_properly_initialized_weights(self): if not self.test_mismatched_shapes: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): continue with self.subTest(msg=f"Testing {model_class}"): with tempfile.TemporaryDirectory() as tmp_dir: model = model_class(configs_no_init) model.save_pretrained(tmp_dir) # Fails when we don't set ignore_mismatched_sizes=True with self.assertRaises(RuntimeError): new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) logger = logging.get_logger("transformers.modeling_utils") with CaptureLogger(logger) as cl: new_model = AutoModelForSequenceClassification.from_pretrained( tmp_dir, num_labels=42, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) for name, param in new_model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self): # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__ class MyClass(PreTrainedModel): config_class = PretrainedConfig def __init__(self, config=None): super().__init__(config if config is not None else PretrainedConfig()) self.linear = nn.Linear(10, config.num_labels, bias=True) self.embedding = nn.Embedding(10, 10) self.std = 1 def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5)) if module.bias is not None: module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std) # Used to make sure the weights with matched shape are loaded correctly config = PretrainedConfig() config.num_labels = 3 model = MyClass(config=config) # Used to make sure the weights with mismatched shape are properly initialized set_seed(0) config = PretrainedConfig() config.num_labels = 4 # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below # for `linear` part. with ContextManagers([no_init_weights(True)]): target_model = MyClass(config=config) target_model.apply(target_model._initialize_weights) with tempfile.TemporaryDirectory() as tmpdirname: state_dict = model.state_dict() del state_dict["linear.weight"] model.config.save_pretrained(tmpdirname) torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) set_seed(0) new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True) for key in new_model.state_dict().keys(): # check weight values for weights with matched shapes are identical # (i.e. correctly loaded from the checkpoint) if key not in ["linear.weight", "linear.bias"]: max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key])) self.assertLessEqual( max_diff.item(), 1e-6, msg=f"the weight values for `{key}` in `new_model` and `model` are not identical", ) else: # check we have some mismatched shapes self.assertNotEqual( model.state_dict()[key].shape, new_model.state_dict()[key].shape, msg=f"the weight shapes for {key} in `model` and `new_model` should differ", ) # check the weights with mismatched shape are properly initialized max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key])) self.assertLessEqual( max_diff.item(), 1e-6, msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical", ) def test_model_is_small(self): # Just a consistency check to make sure we are not running tests on 80M parameter models. config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) num_params = model.num_parameters() assert ( num_params < 1000000 ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max." @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow def test_flash_attn_2_conversion(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2" ).to(torch_device) for _, module in model.named_modules(): if "FlashAttention" in module.__class__.__name__: return self.assertTrue(False, "FlashAttention2 modules not found in model") @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow def test_flash_attn_2_inference(self): for model_class in self.all_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_fa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model_fa.to(torch_device) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model.to(torch_device) dummy_input = inputs_dict[model.main_input_name][:1] if dummy_input.dtype in [torch.float32, torch.float16]: dummy_input = dummy_input.to(torch.bfloat16) dummy_attention_mask = inputs_dict.get("attention_mask", None) if dummy_attention_mask is not None: dummy_attention_mask = dummy_attention_mask[:1] dummy_attention_mask[:, 1:] = 1 dummy_attention_mask[:, :1] = 0 if model.config.is_encoder_decoder: decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1] outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) else: outputs = model(dummy_input, output_hidden_states=True) outputs_fa = model_fa(dummy_input, output_hidden_states=True) logits = ( outputs.hidden_states[-1] if not model.config.is_encoder_decoder else outputs.decoder_hidden_states[-1] ) logits_fa = ( outputs_fa.hidden_states[-1] if not model.config.is_encoder_decoder else outputs_fa.decoder_hidden_states[-1] ) assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2) if model.config.is_encoder_decoder: other_inputs = { "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": dummy_attention_mask, "output_hidden_states": True, } if dummy_attention_mask is not None: other_inputs["attention_mask"] = dummy_attention_mask outputs = model(dummy_input, **other_inputs) outputs_fa = model_fa(dummy_input, **other_inputs) else: other_inputs = { "output_hidden_states": True, } if dummy_attention_mask is not None: other_inputs["attention_mask"] = dummy_attention_mask outputs = model(dummy_input, **other_inputs) outputs_fa = model_fa(dummy_input, **other_inputs) logits = ( outputs.hidden_states[-1] if not model.config.is_encoder_decoder else outputs.decoder_hidden_states[-1] ) logits_fa = ( outputs_fa.hidden_states[-1] if not model.config.is_encoder_decoder else outputs_fa.decoder_hidden_states[-1] ) assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2) # check with inference + dropout model.train() _ = model_fa(dummy_input, **other_inputs) @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow def test_flash_attn_2_inference_padding_right(self): for model_class in self.all_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_fa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model_fa.to(torch_device) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model.to(torch_device) dummy_input = inputs_dict[model.main_input_name][:1] if dummy_input.dtype in [torch.float32, torch.float16]: dummy_input = dummy_input.to(torch.bfloat16) dummy_attention_mask = inputs_dict.get("attention_mask", None) if dummy_attention_mask is not None: dummy_attention_mask = dummy_attention_mask[:1] dummy_attention_mask[:, :-1] = 1 dummy_attention_mask[:, -1:] = 0 if model.config.is_encoder_decoder: decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1] outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) else: outputs = model(dummy_input, output_hidden_states=True) outputs_fa = model_fa(dummy_input, output_hidden_states=True) logits = ( outputs.hidden_states[-1] if not model.config.is_encoder_decoder else outputs.decoder_hidden_states[-1] ) logits_fa = ( outputs_fa.hidden_states[-1] if not model.config.is_encoder_decoder else outputs_fa.decoder_hidden_states[-1] ) assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2) if model.config.is_encoder_decoder: other_inputs = { "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": dummy_attention_mask, "output_hidden_states": True, } if dummy_attention_mask is not None: other_inputs["attention_mask"] = dummy_attention_mask outputs = model(dummy_input, **other_inputs) outputs_fa = model_fa(dummy_input, **other_inputs) else: other_inputs = { "output_hidden_states": True, } if dummy_attention_mask is not None: other_inputs["attention_mask"] = dummy_attention_mask outputs = model(dummy_input, **other_inputs) outputs_fa = model_fa(dummy_input, **other_inputs) logits = ( outputs.hidden_states[-1] if not model.config.is_encoder_decoder else outputs.decoder_hidden_states[-1] ) logits_fa = ( outputs_fa.hidden_states[-1] if not model.config.is_encoder_decoder else outputs_fa.decoder_hidden_states[-1] ) assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2) @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow def test_flash_attn_2_generate_left_padding(self): for model_class in self.all_generative_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( torch_device ) dummy_input = inputs_dict[model.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) # make sure we do left padding dummy_attention_mask[:, :-1] = 0 dummy_attention_mask[:, -1:] = 1 out = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False ) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) out_fa = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False ) self.assertTrue(torch.allclose(out, out_fa)) @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow def test_flash_attn_2_generate_padding_right(self): for model_class in self.all_generative_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( torch_device ) dummy_input = inputs_dict[model.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) # make sure we do right padding dummy_attention_mask[:, :-1] = 1 dummy_attention_mask[:, -1:] = 0 out = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False ) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) out_fa = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False ) self.assertTrue(torch.allclose(out, out_fa)) @parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) @require_torch_sdpa @slow def test_eager_matches_sdpa_inference(self, torch_dtype: str): if not self.all_model_classes[0]._supports_sdpa: self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA") if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device): self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)") if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device): self.skipTest( f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)" ) # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead. if torch_dtype == "float16": torch_dtype = torch.float16 elif torch_dtype == "bfloat16": torch_dtype = torch.bfloat16 elif torch_dtype == "float32": torch_dtype = torch.float32 atols = { ("cpu", False, torch.float32): 1e-6, ("cpu", False, torch.bfloat16): 1e-2, ("cpu", True, torch.float32): 1e-6, ("cpu", True, torch.bfloat16): 1e-2, ("cuda", False, torch.float32): 1e-6, ("cuda", False, torch.bfloat16): 1e-2, ("cuda", False, torch.float16): 5e-3, ("cuda", True, torch.float32): 1e-6, ("cuda", True, torch.bfloat16): 1e-2, ("cuda", True, torch.float16): 5e-3, } rtols = { ("cpu", False, torch.float32): 1e-4, ("cpu", False, torch.bfloat16): 1e-2, ("cpu", True, torch.float32): 1e-4, ("cpu", True, torch.bfloat16): 1e-2, ("cuda", False, torch.float32): 1e-4, ("cuda", False, torch.bfloat16): 1e-2, ("cuda", False, torch.float16): 5e-3, ("cuda", True, torch.float32): 1e-4, ("cuda", True, torch.bfloat16): 3e-2, ("cuda", True, torch.float16): 5e-3, } def get_mean_reldiff(failcase, x, ref, atol, rtol): return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}" for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) is_encoder_decoder = model.config.is_encoder_decoder with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype) model_sdpa = model_sdpa.eval().to(torch_device) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch_dtype, attn_implementation="eager", ) model_eager = model_eager.eval().to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: has_sdpa = True break if not has_sdpa and model_sdpa.config.model_type != "falcon": raise ValueError("The SDPA model should have SDPA attention layers") # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 8 times the model, # but it would be nicer to have an efficient way to use parameterized.expand fail_cases = [] for padding_side in ["left", "right"]: for use_mask in [False, True]: for batch_size in [1, 5]: dummy_input = inputs_dict[model.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]: dummy_input = dummy_input.to(torch_dtype) dummy_input = dummy_input[:batch_size] if dummy_input.shape[0] != batch_size: if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]: extension = torch.rand( batch_size - dummy_input.shape[0], *dummy_input.shape[1:], dtype=torch_dtype, device=torch_device, ) dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device) else: extension = torch.randint( high=5, size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]), dtype=dummy_input.dtype, device=torch_device, ) dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device) if not use_mask: dummy_attention_mask = None else: dummy_attention_mask = inputs_dict.get("attention_mask", None) if dummy_attention_mask is None: if is_encoder_decoder: seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1] else: seqlen = dummy_input.shape[-1] dummy_attention_mask = ( torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device) ) dummy_attention_mask = dummy_attention_mask[:batch_size] if dummy_attention_mask.shape[0] != batch_size: extension = torch.ones( batch_size - dummy_attention_mask.shape[0], *dummy_attention_mask.shape[1:], dtype=dummy_attention_mask.dtype, device=torch_device, ) dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0) dummy_attention_mask = dummy_attention_mask.to(torch_device) dummy_attention_mask[:] = 1 if padding_side == "left": dummy_attention_mask[-1, :-1] = 1 dummy_attention_mask[-1, -4:] = 0 elif padding_side == "right": dummy_attention_mask[-1, 1:] = 1 dummy_attention_mask[-1, :3] = 0 for enable_kernels in [False, True]: failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}" if is_encoder_decoder: decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size] if decoder_input_ids.shape[0] != batch_size: extension = torch.ones( batch_size - decoder_input_ids.shape[0], *decoder_input_ids.shape[1:], dtype=decoder_input_ids.dtype, device=torch_device, ) decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0) decoder_input_ids = decoder_input_ids.to(torch_device) # TODO: never an `attention_mask` arg here? other_inputs = { "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": dummy_attention_mask, "output_hidden_states": True, } else: other_inputs = { "output_hidden_states": True, } # Otherwise fails for e.g. WhisperEncoderModel if "attention_mask" in inspect.signature(model_eager.forward).parameters: other_inputs["attention_mask"] = dummy_attention_mask # TODO: test gradients as well (& for FA2 as well!) with torch.no_grad(): with torch.backends.cuda.sdp_kernel( enable_flash=enable_kernels, enable_math=True, enable_mem_efficient=enable_kernels, ): outputs_eager = model_eager(dummy_input, **other_inputs) outputs_sdpa = model_sdpa(dummy_input, **other_inputs) logits_eager = ( outputs_eager.hidden_states[-1] if not is_encoder_decoder else outputs_eager.decoder_hidden_states[-1] ) logits_sdpa = ( outputs_sdpa.hidden_states[-1] if not is_encoder_decoder else outputs_sdpa.decoder_hidden_states[-1] ) if torch_device in ["cpu", "cuda"]: atol = atols[torch_device, enable_kernels, torch_dtype] rtol = rtols[torch_device, enable_kernels, torch_dtype] else: atol = 1e-7 rtol = 1e-4 # Masked tokens output slightly deviates - we don't mind that. if use_mask: if padding_side == "left": sub_sdpa = logits_sdpa[:-1] sub_eager = logits_eager[:-1] if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): fail_cases.append( get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) ) sub_sdpa = logits_sdpa[-1, :-4] sub_eager = logits_eager[-1, :-4] if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): fail_cases.append( get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) ) # Testing the padding tokens is not really meaningful but anyway # sub_sdpa = logits_sdpa[-1, -4:] # sub_eager = logits_eager[-1, -4:] # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): # fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2)) elif padding_side == "right": sub_sdpa = logits_sdpa[:-1] sub_eager = logits_eager[:-1] if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): fail_cases.append( get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) ) sub_sdpa = logits_sdpa[-1, 3:] sub_eager = logits_eager[-1, 3:] if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): fail_cases.append( get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) ) # Testing the padding tokens is not really meaningful but anyway # sub_sdpa = logits_sdpa[-1, :3] # sub_eager = logits_eager[-1, :3] # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): # fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2)) else: if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol): fail_cases.append( get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol) ) self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases)) @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): max_new_tokens = 30 if len(self.all_generative_model_classes) == 0: self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test") for model_class in self.all_generative_model_classes: if not model_class._supports_sdpa: self.skipTest(f"{model_class.__name__} does not support SDPA") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) model_sdpa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(torch_device) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, attn_implementation="eager", ).to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: has_sdpa = True break if not has_sdpa: raise ValueError("The SDPA model should have SDPA attention layers") # Just test that a large cache works as expected res_eager = model_eager.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False ) res_sdpa = model_sdpa.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False ) self.assertTrue(torch.allclose(res_eager, res_sdpa)) @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow def test_flash_attn_2_generate_use_cache(self): max_new_tokens = 30 for model_class in self.all_generative_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) # Just test that a large cache works as expected _ = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False, use_cache=True, ) @require_flash_attn @require_torch_gpu @require_bitsandbytes @mark.flash_attn_test @slow def test_flash_attn_2_fp32_ln(self): for model_class in self.all_generative_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_input = inputs_dict[model.main_input_name] dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) if model.config.is_encoder_decoder: dummy_decoder_input_ids = inputs_dict["decoder_input_ids"] dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"] model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, load_in_4bit=True, ) for _, param in model.named_parameters(): # upcast only layer norms if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16): param.data = param.data.to(torch.float32) if model.config.is_encoder_decoder: _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids) # with attention mask _ = model( dummy_input, attention_mask=dummy_attention_mask, decoder_input_ids=dummy_decoder_input_ids, decoder_attention_mask=dummy_decoder_attention_mask, ) else: _ = model(dummy_input) # with attention mask _ = model(dummy_input, attention_mask=dummy_attention_mask) @is_pt_tf_cross_test def test_tf_from_pt_safetensors(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning if not hasattr(transformers, tf_model_class_name): # transformers does not have this model in TF version yet return tf_model_class = getattr(transformers, tf_model_class_name) pt_model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname, safe_serialization=True) tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True) pt_model.save_pretrained(tmpdirname, safe_serialization=False) tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True) # Check models are equal for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_flax_cross_test def test_flax_from_pt_safetensors(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() flax_model_class_name = "Flax" + model_class.__name__ # Add the "Flax at the beginning if not hasattr(transformers, flax_model_class_name): # transformers does not have this model in Flax version yet return flax_model_class = getattr(transformers, flax_model_class_name) pt_model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname, safe_serialization=True) flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True) pt_model.save_pretrained(tmpdirname, safe_serialization=False) flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True) # Check models are equal self.assertTrue(check_models_equal(flax_model_1, flax_model_2)) @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow def test_flash_attn_2_from_config(self): for model_class in self.all_generative_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, _ = self.model_tester.prepare_config_and_inputs_for_common() # TODO: to change it in the future with other relevant auto classes fa2_model = AutoModelForCausalLM.from_config( config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16 ).to(torch_device) dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device) dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device) fa2_correctly_converted = False for _, module in fa2_model.named_modules(): if "FlashAttention" in module.__class__.__name__: fa2_correctly_converted = True break self.assertTrue(fa2_correctly_converted) _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask) with tempfile.TemporaryDirectory() as tmpdirname: fa2_model.save_pretrained(tmpdirname) model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname) self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2") fa2_correctly_converted = False for _, module in model_from_pretrained.named_modules(): if "FlashAttention" in module.__class__.__name__: fa2_correctly_converted = True break self.assertFalse(fa2_correctly_converted) global_rng = random.Random() def ids_tensor(shape, vocab_size, rng=None, name=None): # Creates a random int32 tensor of the shape within the vocab size if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous() def random_attention_mask(shape, rng=None, name=None): attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None) # make sure that at least one token is attended to for each batch # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask attn_mask[:, 0] = 1 return attn_mask def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
transformers/tests/test_modeling_common.py/0
{ "file_path": "transformers/tests/test_modeling_common.py", "repo_id": "transformers", "token_count": 93801 }
392
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datasets import load_dataset from transformers import load_tool from .test_tools_common import ToolTesterMixin class DocumentQuestionAnsweringToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("document-question-answering") self.tool.setup() self.remote_tool = load_tool("document-question-answering", remote=True) def test_exact_match_arg(self): dataset = load_dataset("hf-internal-testing/example-documents", split="test") document = dataset[0]["image"] result = self.tool(document, "When is the coffee break?") self.assertEqual(result, "11-14 to 11:39 a.m.") def test_exact_match_arg_remote(self): dataset = load_dataset("hf-internal-testing/example-documents", split="test") document = dataset[0]["image"] result = self.remote_tool(document, "When is the coffee break?") self.assertEqual(result, "11-14 to 11:39 a.m.") def test_exact_match_kwarg(self): dataset = load_dataset("hf-internal-testing/example-documents", split="test") document = dataset[0]["image"] self.tool(document=document, question="When is the coffee break?") def test_exact_match_kwarg_remote(self): dataset = load_dataset("hf-internal-testing/example-documents", split="test") document = dataset[0]["image"] result = self.remote_tool(document=document, question="When is the coffee break?") self.assertEqual(result, "11-14 to 11:39 a.m.")
transformers/tests/tools/test_document_question_answering.py/0
{ "file_path": "transformers/tests/tools/test_document_question_answering.py", "repo_id": "transformers", "token_count": 756 }
393
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Dict import numpy as np from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_multi_xpu, require_torch_neuroncore, require_torch_npu, ) from transformers.training_args import ParallelMode from transformers.utils import logging logger = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset, IterableDataset from transformers import Trainer class DummyDataset(Dataset): def __init__(self, length: int = 101): self.length = length def __len__(self): return self.length def __getitem__(self, i) -> int: return i class DummyDataCollator: def __call__(self, features): return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)} class DummyModel(nn.Module): def __init__(self): super().__init__() # Add some (unused) params otherwise DDP will complain. self.fc = nn.Linear(120, 80) def forward(self, input_ids, labels=None): if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids class RegressionModel(nn.Module): def __init__(self, a=0, b=0, double_output=False): super().__init__() self.a = nn.Parameter(torch.tensor(a).float()) self.b = nn.Parameter(torch.tensor(b).float()) self.double_output = double_output self.config = None def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b if labels is None: return (y, y) if self.double_output else (y,) loss = nn.functional.mse_loss(y, labels) return (loss, y, y) if self.double_output else (loss, y) class SampleIterableDataset(IterableDataset): def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names) def __iter__(self): for i in range(len(self.dataset)): yield self.dataset[i] class FiniteIterableDataset(SampleIterableDataset): def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): super().__init__(a, b, length, seed, label_names) self.current_sample = 0 def __iter__(self): while self.current_sample < len(self.dataset): yield self.dataset[self.current_sample] self.current_sample += 1 class RegressionDataset: def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): np.random.seed(seed) self.label_names = ["labels"] if label_names is None else label_names self.length = length self.x = np.random.normal(size=(length,)).astype(np.float32) self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names] self.ys = [y.astype(np.float32) for y in self.ys] def __len__(self): return self.length def __getitem__(self, i): result = {name: y[i] for name, y in zip(self.label_names, self.ys)} result["input_x"] = self.x[i] return result class TestTrainerDistributedNeuronCore(TestCasePlus): @require_torch_neuroncore def test_trainer(self): distributed_args = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() output_dir = self.get_auto_remove_tmp_dir() args = f"--output_dir {output_dir}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class TestTrainerDistributedNPU(TestCasePlus): @require_torch_npu def test_trainer(self): distributed_args = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() output_dir = self.get_auto_remove_tmp_dir() args = f"--output_dir {output_dir}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class TestTrainerDistributed(TestCasePlus): @require_torch_multi_gpu def test_trainer(self): distributed_args = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() output_dir = self.get_auto_remove_tmp_dir() args = f"--output_dir {output_dir}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call @require_torch_multi_xpu class TestTrainerDistributedXPU(TestCasePlus): def test_trainer(self): distributed_args = f"""--nproc_per_node={torch.xpu.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() output_dir = self.get_auto_remove_tmp_dir() args = f"--output_dir {output_dir}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py parser = HfArgumentParser((TrainingArguments,)) training_args = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: dataset = DummyDataset(dataset_length) def compute_metrics(p: EvalPrediction) -> Dict: sequential = list(range(len(dataset))) success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} trainer = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) metrics = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) p = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) trainer.args.eval_accumulation_steps = 2 metrics = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) p = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) trainer.args.eval_accumulation_steps = None # Check that saving does indeed work with temp dir rotation # If this fails, will see a FileNotFoundError model = RegressionModel() training_args.max_steps = 1 opt = torch.optim.Adam(model.parameters(), lr=1e-3) sched = torch.optim.lr_scheduler.LambdaLR(opt, lambda x: 1) trainer = Trainer( model, training_args, optimizers=(opt, sched), data_collator=DummyDataCollator(), eval_dataset=dataset ) trainer._save_checkpoint(model=None, trial=None) # Check that the temp folder does not exist assert not (Path(training_args.output_dir) / "tmp-checkpoint-0").exists() assert (Path(training_args.output_dir) / "checkpoint-0").exists() # Check that `dispatch_batches=False` will work on a finite iterable dataset train_dataset = FiniteIterableDataset(label_names=["labels", "extra"], length=1) model = RegressionModel() training_args.per_device_train_batch_size = 1 training_args.max_steps = 1 training_args.dispatch_batches = False trainer = Trainer(model, training_args, train_dataset=train_dataset) trainer.train()
transformers/tests/trainer/test_trainer_distributed.py/0
{ "file_path": "transformers/tests/trainer/test_trainer_distributed.py", "repo_id": "transformers", "token_count": 4366 }
394
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 is_python_no_less_than_3_10 = sys.version_info >= (3, 10) def list_field(default=None, metadata=None): return field(default_factory=lambda: default, metadata=metadata) @dataclass class BasicExample: foo: int bar: float baz: str flag: bool @dataclass class WithDefaultExample: foo: int = 42 baz: str = field(default="toto", metadata={"help": "help message"}) @dataclass class WithDefaultBoolExample: foo: bool = False baz: bool = True opt: Optional[bool] = None class BasicEnum(Enum): titi = "titi" toto = "toto" class MixedTypeEnum(Enum): titi = "titi" toto = "toto" fourtytwo = 42 @dataclass class EnumExample: foo: BasicEnum = "toto" def __post_init__(self): self.foo = BasicEnum(self.foo) @dataclass class MixedTypeEnumExample: foo: MixedTypeEnum = "toto" def __post_init__(self): self.foo = MixedTypeEnum(self.foo) @dataclass class OptionalExample: foo: Optional[int] = None bar: Optional[float] = field(default=None, metadata={"help": "help message"}) baz: Optional[str] = None ces: Optional[List[str]] = list_field(default=[]) des: Optional[List[int]] = list_field(default=[]) @dataclass class ListExample: foo_int: List[int] = list_field(default=[]) bar_int: List[int] = list_field(default=[1, 2, 3]) foo_str: List[str] = list_field(default=["Hallo", "Bonjour", "Hello"]) foo_float: List[float] = list_field(default=[0.1, 0.2, 0.3]) @dataclass class RequiredExample: required_list: List[int] = field() required_str: str = field() required_enum: BasicEnum = field() def __post_init__(self): self.required_enum = BasicEnum(self.required_enum) @dataclass class StringLiteralAnnotationExample: foo: int required_enum: "BasicEnum" = field() opt: "Optional[bool]" = None baz: "str" = field(default="toto", metadata={"help": "help message"}) foo_str: "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"]) if is_python_no_less_than_3_10: @dataclass class WithDefaultBoolExamplePep604: foo: bool = False baz: bool = True opt: bool | None = None @dataclass class OptionalExamplePep604: foo: int | None = None bar: float | None = field(default=None, metadata={"help": "help message"}) baz: str | None = None ces: list[str] | None = list_field(default=[]) des: list[int] | None = list_field(default=[]) class HfArgumentParserTest(unittest.TestCase): def argparsersEqual(self, a: argparse.ArgumentParser, b: argparse.ArgumentParser): """ Small helper to check pseudo-equality of parsed arguments on `ArgumentParser` instances. """ self.assertEqual(len(a._actions), len(b._actions)) for x, y in zip(a._actions, b._actions): xx = {k: v for k, v in vars(x).items() if k != "container"} yy = {k: v for k, v in vars(y).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices", None) and yy.get("choices", None): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](expected_choice), yy["type"](expected_choice)) del xx["type"], yy["type"] self.assertEqual(xx, yy) def test_basic(self): parser = HfArgumentParser(BasicExample) expected = argparse.ArgumentParser() expected.add_argument("--foo", type=int, required=True) expected.add_argument("--bar", type=float, required=True) expected.add_argument("--baz", type=str, required=True) expected.add_argument("--flag", type=string_to_bool, default=False, const=True, nargs="?") self.argparsersEqual(parser, expected) args = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] (example,) = parser.parse_args_into_dataclasses(args, look_for_args_file=False) self.assertFalse(example.flag) def test_with_default(self): parser = HfArgumentParser(WithDefaultExample) expected = argparse.ArgumentParser() expected.add_argument("--foo", default=42, type=int) expected.add_argument("--baz", default="toto", type=str, help="help message") self.argparsersEqual(parser, expected) def test_with_default_bool(self): expected = argparse.ArgumentParser() expected.add_argument("--foo", type=string_to_bool, default=False, const=True, nargs="?") expected.add_argument("--baz", type=string_to_bool, default=True, const=True, nargs="?") # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz", action="store_false", default=False, dest="baz") expected.add_argument("--opt", type=string_to_bool, default=None) dataclass_types = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(WithDefaultBoolExamplePep604) for dataclass_type in dataclass_types: parser = HfArgumentParser(dataclass_type) self.argparsersEqual(parser, expected) args = parser.parse_args([]) self.assertEqual(args, Namespace(foo=False, baz=True, opt=None)) args = parser.parse_args(["--foo", "--no_baz"]) self.assertEqual(args, Namespace(foo=True, baz=False, opt=None)) args = parser.parse_args(["--foo", "--baz"]) self.assertEqual(args, Namespace(foo=True, baz=True, opt=None)) args = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"]) self.assertEqual(args, Namespace(foo=True, baz=True, opt=True)) args = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"]) self.assertEqual(args, Namespace(foo=False, baz=False, opt=False)) def test_with_enum(self): parser = HfArgumentParser(MixedTypeEnumExample) expected = argparse.ArgumentParser() expected.add_argument( "--foo", default="toto", choices=["titi", "toto", 42], type=make_choice_type_function(["titi", "toto", 42]), ) self.argparsersEqual(parser, expected) args = parser.parse_args([]) self.assertEqual(args.foo, "toto") enum_ex = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.toto) args = parser.parse_args(["--foo", "titi"]) self.assertEqual(args.foo, "titi") enum_ex = parser.parse_args_into_dataclasses(["--foo", "titi"])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.titi) args = parser.parse_args(["--foo", "42"]) self.assertEqual(args.foo, 42) enum_ex = parser.parse_args_into_dataclasses(["--foo", "42"])[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.fourtytwo) def test_with_literal(self): @dataclass class LiteralExample: foo: Literal["titi", "toto", 42] = "toto" parser = HfArgumentParser(LiteralExample) expected = argparse.ArgumentParser() expected.add_argument( "--foo", default="toto", choices=("titi", "toto", 42), type=make_choice_type_function(["titi", "toto", 42]), ) self.argparsersEqual(parser, expected) args = parser.parse_args([]) self.assertEqual(args.foo, "toto") args = parser.parse_args(["--foo", "titi"]) self.assertEqual(args.foo, "titi") args = parser.parse_args(["--foo", "42"]) self.assertEqual(args.foo, 42) def test_with_list(self): parser = HfArgumentParser(ListExample) expected = argparse.ArgumentParser() expected.add_argument("--foo_int", nargs="+", default=[], type=int) expected.add_argument("--bar_int", nargs="+", default=[1, 2, 3], type=int) expected.add_argument("--foo_str", nargs="+", default=["Hallo", "Bonjour", "Hello"], type=str) expected.add_argument("--foo_float", nargs="+", default=[0.1, 0.2, 0.3], type=float) self.argparsersEqual(parser, expected) args = parser.parse_args([]) self.assertEqual( args, Namespace(foo_int=[], bar_int=[1, 2, 3], foo_str=["Hallo", "Bonjour", "Hello"], foo_float=[0.1, 0.2, 0.3]), ) args = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split()) self.assertEqual(args, Namespace(foo_int=[1], bar_int=[2, 3], foo_str=["a", "b", "c"], foo_float=[0.1, 0.7])) def test_with_optional(self): expected = argparse.ArgumentParser() expected.add_argument("--foo", default=None, type=int) expected.add_argument("--bar", default=None, type=float, help="help message") expected.add_argument("--baz", default=None, type=str) expected.add_argument("--ces", nargs="+", default=[], type=str) expected.add_argument("--des", nargs="+", default=[], type=int) dataclass_types = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(OptionalExamplePep604) for dataclass_type in dataclass_types: parser = HfArgumentParser(dataclass_type) self.argparsersEqual(parser, expected) args = parser.parse_args([]) self.assertEqual(args, Namespace(foo=None, bar=None, baz=None, ces=[], des=[])) args = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split()) self.assertEqual(args, Namespace(foo=12, bar=3.14, baz="42", ces=["a", "b", "c"], des=[1, 2, 3])) def test_with_required(self): parser = HfArgumentParser(RequiredExample) expected = argparse.ArgumentParser() expected.add_argument("--required_list", nargs="+", type=int, required=True) expected.add_argument("--required_str", type=str, required=True) expected.add_argument( "--required_enum", type=make_choice_type_function(["titi", "toto"]), choices=["titi", "toto"], required=True, ) self.argparsersEqual(parser, expected) def test_with_string_literal_annotation(self): parser = HfArgumentParser(StringLiteralAnnotationExample) expected = argparse.ArgumentParser() expected.add_argument("--foo", type=int, required=True) expected.add_argument( "--required_enum", type=make_choice_type_function(["titi", "toto"]), choices=["titi", "toto"], required=True, ) expected.add_argument("--opt", type=string_to_bool, default=None) expected.add_argument("--baz", default="toto", type=str, help="help message") expected.add_argument("--foo_str", nargs="+", default=["Hallo", "Bonjour", "Hello"], type=str) self.argparsersEqual(parser, expected) def test_parse_dict(self): parser = HfArgumentParser(BasicExample) args_dict = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } parsed_args = parser.parse_dict(args_dict)[0] args = BasicExample(**args_dict) self.assertEqual(parsed_args, args) def test_parse_dict_extra_key(self): parser = HfArgumentParser(BasicExample) args_dict = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(ValueError, parser.parse_dict, args_dict, allow_extra_keys=False) def test_parse_json(self): parser = HfArgumentParser(BasicExample) args_dict_for_json = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: temp_local_path = os.path.join(tmp_dir, "temp_json") os.mkdir(temp_local_path) with open(temp_local_path + ".json", "w+") as f: json.dump(args_dict_for_json, f) parsed_args = parser.parse_yaml_file(Path(temp_local_path + ".json"))[0] args = BasicExample(**args_dict_for_json) self.assertEqual(parsed_args, args) def test_parse_yaml(self): parser = HfArgumentParser(BasicExample) args_dict_for_yaml = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: temp_local_path = os.path.join(tmp_dir, "temp_yaml") os.mkdir(temp_local_path) with open(temp_local_path + ".yaml", "w+") as f: yaml.dump(args_dict_for_yaml, f) parsed_args = parser.parse_yaml_file(Path(temp_local_path + ".yaml"))[0] args = BasicExample(**args_dict_for_yaml) self.assertEqual(parsed_args, args) def test_integration_training_args(self): parser = HfArgumentParser(TrainingArguments) self.assertIsNotNone(parser)
transformers/tests/utils/test_hf_argparser.py/0
{ "file_path": "transformers/tests/utils/test_hf_argparser.py", "repo_id": "transformers", "token_count": 6348 }
395
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that checks whether the copies defined in the library match the original or not. This includes: - All code commented with `# Copied from` comments, - The list of models in the main README.md matches the ones in the localized READMEs, - Files that are registered as full copies of one another in the `FULL_COPIES` constant of this script. This also checks the list of models in the README is complete (has all models) and add a line to complete if there is a model missing. Use from the root of the repo with: ```bash python utils/check_copies.py ``` for a check that will error in case of inconsistencies (used by `make repo-consistency`) or ```bash python utils/check_copies.py --fix_and_overwrite ``` for a check that will fix all inconsistencies automatically (used by `make fix-copies`). """ import argparse import glob import os import re import subprocess from collections import OrderedDict from typing import List, Optional, Tuple, Union from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py TRANSFORMERS_PATH = "src/transformers" MODEL_TEST_PATH = "tests/models" PATH_TO_DOCS = "docs/source/en" REPO_PATH = "." # Mapping for files that are full copies of others (keys are copies, values the file to keep them up to data with) FULL_COPIES = { "examples/tensorflow/question-answering/utils_qa.py": "examples/pytorch/question-answering/utils_qa.py", "examples/flax/question-answering/utils_qa.py": "examples/pytorch/question-answering/utils_qa.py", } LOCALIZED_READMES = { # If the introduction or the conclusion of the list change, the prompts may need to be updated. "README.md": { "start_prompt": "🤗 Transformers currently provides the following architectures", "end_prompt": "1. Want to contribute a new model?", "format_model_list": ( "**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by" " {paper_authors}.{supplements}" ), }, "README_zh-hans.md": { "start_prompt": "🤗 Transformers 目前支持如下的架构", "end_prompt": "1. 想要贡献新的模型?", "format_model_list": ( "**[{title}]({model_link})** (来自 {paper_affiliations}) 伴随论文 {paper_title_link} 由 {paper_authors}" " 发布。{supplements}" ), }, "README_zh-hant.md": { "start_prompt": "🤗 Transformers 目前支援以下的架構", "end_prompt": "1. 想要貢獻新的模型?", "format_model_list": ( "**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by" " {paper_authors}.{supplements}" ), }, "README_ko.md": { "start_prompt": "🤗 Transformers는 다음 모델들을 제공합니다", "end_prompt": "1. 새로운 모델을 올리고 싶나요?", "format_model_list": ( "**[{title}]({model_link})** ({paper_affiliations} 에서 제공)은 {paper_authors}.{supplements}의" " {paper_title_link}논문과 함께 발표했습니다." ), }, "README_es.md": { "start_prompt": "🤗 Transformers actualmente proporciona las siguientes arquitecturas", "end_prompt": "1. ¿Quieres aportar un nuevo modelo?", "format_model_list": ( "**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by" " {paper_authors}.{supplements}" ), }, "README_ja.md": { "start_prompt": "🤗Transformersは現在、以下のアーキテクチャを提供しています", "end_prompt": "1. 新しいモデルを投稿したいですか?", "format_model_list": ( "**[{title}]({model_link})** ({paper_affiliations} から) {paper_authors}.{supplements} から公開された研究論文" " {paper_title_link}" ), }, "README_hd.md": { "start_prompt": "🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं", "end_prompt": "1. एक नए मॉडल में योगदान देना चाहते हैं?", "format_model_list": ( "**[{title}]({model_link})** ({paper_affiliations} से) {paper_authors}.{supplements} द्वारा" "अनुसंधान पत्र {paper_title_link} के साथ जारी किया गया" ), }, "README_fr.md": { "start_prompt": "🤗 Transformers fournit actuellement les architectures suivantes", "end_prompt": "1. Vous souhaitez contribuer avec un nouveau modèle ?", "format_model_list": ( "**[{title}]({model_link})** (de {paper_affiliations}) publié dans l'article {paper_title_link} par" "{paper_authors}.{supplements}" ), }, } # This is to make sure the transformers module imported is the one in the repo. transformers_module = direct_transformers_import(TRANSFORMERS_PATH) def _is_definition_header_ending_line(line: str) -> bool: # Helper function. Returns `True` if `line` is the end parenthesis of a class/function definition return re.search(r"^\s*\)(\s*->.*:|:)\s*$", line) is not None def _should_continue(line: str, indent: str) -> bool: # Helper function. Returns `True` if `line` is empty, starts with the `indent` or is the end parenthesis of a # class/function definition return line.startswith(indent) or len(line.strip()) == 0 or _is_definition_header_ending_line(line) def _sanity_check_splits(splits_1, splits_2, is_class): """Check the two (inner) block structures of the corresponding code block given by `split_code_into_blocks` match. For the case of `class`, they must be of one of the following 3 cases: - a single block without name: class foo: a = 1 - a consecutive sequence of (1 or more) blocks with name class foo: def f(x): return x - a block without name, followed by a consecutive sequence of (1 or more) blocks with name class foo: a = 1 def f(x): return x def g(x): return None The 2 code snippets that give `splits_1` and `splits_2` have to be in the same case to pass this check, but the number of blocks with name in the consecutive sequence is not taken into account. For the case of `function or method`, we don't require it to be in one of the above 3 cases. However, the structure of`splits_1` and `splits_2` have to match exactly. In particular, the number of blocks with name in a consecutive sequence is taken into account. """ block_names_1 = [] block_names_2 = [] for block in splits_1[1:]: if block[0].startswith("_block_without_name_"): block_names_1.append("block_without_name") elif not block[0].startswith("_empty_block_") and ( not is_class or len(block_names_1) == 0 or block_names_1[-1].startswith("block_without_name") ): block_names_1.append("block_with_name") for block in splits_2[1:]: if block[0].startswith("_block_without_name_"): block_names_2.append("block_without_name") elif not block[0].startswith("_empty_block_") and ( not is_class or len(block_names_2) == 0 or block_names_2[-1].startswith("block_without_name") ): block_names_2.append("block_with_name") if is_class: if block_names_1 not in [ ["block_without_name"], ["block_with_name"], ["block_without_name", "block_with_name"], ]: raise ValueError( "For a class, it must have a specific structure. See the docstring of `_sanity_check_splits` in the file `utils/check_copies.py`" ) if block_names_1 != block_names_2: raise ValueError("The structures in the 2 code blocks differ.") def find_block_end(lines: List[str], start_index: int, indent: int) -> int: """ Find the end of the class/func block starting at `start_index` in a source code (defined by `lines`). Args: lines (`List[str]`): The source code, represented by a list of lines. start_index (`int`): The starting index of the target class/func block. indent (`int`): The indent of the class/func body. Returns: `int`: The index of the block's ending line plus by 1 (i.e. exclusive). """ indent = " " * indent # enter the block body line_index = start_index + 1 while line_index < len(lines) and _should_continue(lines[line_index], indent): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 return line_index def split_code_into_blocks( lines: List[str], start_index: int, end_index: int, indent: int, backtrace: bool = False ) -> List[Tuple[str, int, int]]: """ Split the class/func block starting at `start_index` in a source code (defined by `lines`) into *inner blocks*. The block's header is included as the first element. The contiguous regions (without empty lines) that are not inside any inner block are included as blocks. The contiguous regions of empty lines that are not inside any inner block are also included as (dummy) blocks. Args: lines (`List[str]`): The source code, represented by a list of lines. start_index (`int`): The starting index of the target class/func block. end_index (`int`): The ending index of the target class/func block. indent (`int`): The indent of the class/func body. backtrace (`bool`, *optional*, defaults to `False`): Whether or not to include the lines before the inner class/func block's header (e.g. comments, decorators, etc.) until an empty line is encountered. Returns: `List[Tuple[str, int, int]]`: A list of elements with the form `(block_name, start_index, end_index)`. """ splits = [] # `indent - 4` is the indent level of the target class/func header target_block_name = re.search(rf"^{' ' * (indent - 4)}((class|def)\s+\S+)(\(|\:)", lines[start_index]).groups()[0] # from now on, the `block` means inner blocks unless explicitly specified indent_str = " " * indent block_without_name_idx = 0 empty_block_idx = 0 # Find the lines for the definition header index = start_index if "(" in lines[start_index] and "):" not in lines[start_index] in lines[start_index]: while index < end_index: if _is_definition_header_ending_line(lines[index]): break index += 1 # the first line outside the definition header index += 1 splits.append((target_block_name, start_index, index)) block_start_index, prev_block_end_index = index, index while index < end_index: # if found, it will be an inner block block_found = re.search(rf"^{indent_str}((class|def)\s+\S+)(\(|\:)", lines[index]) if block_found: name = block_found.groups()[0] block_end_index = find_block_end(lines, index, indent + 4) # backtrace to include the lines before the found block's definition header (e.g. comments, decorators, # etc.) until an empty line is encountered. block_start_index = index if index > prev_block_end_index and backtrace: idx = index - 1 for idx in range(index - 1, prev_block_end_index - 2, -1): if not (len(lines[idx].strip()) > 0 and lines[idx].startswith(indent_str)): break idx += 1 if idx < index: block_start_index = idx # between the current found block and the previous found block if block_start_index > prev_block_end_index: # give it a dummy name if len("".join(lines[prev_block_end_index:block_start_index]).strip()) == 0: prev_block_name = f"_empty_block_{empty_block_idx}" empty_block_idx += 1 else: prev_block_name = f"_block_without_name_{block_without_name_idx}" block_without_name_idx += 1 # Add it as a block splits.append((prev_block_name, prev_block_end_index, block_start_index)) # Add the current found block splits.append((name, block_start_index, block_end_index)) prev_block_end_index = block_end_index index = block_end_index - 1 index += 1 if index > prev_block_end_index: if len("".join(lines[prev_block_end_index:index]).strip()) == 0: prev_block_name = f"_empty_block_{empty_block_idx}" else: prev_block_name = f"_block_without_name_{block_without_name_idx}" splits.append((prev_block_name, prev_block_end_index, index)) return splits def find_code_in_transformers( object_name: str, base_path: str = None, return_indices: bool = False ) -> Union[str, Tuple[List[str], int, int]]: """ Find and return the source code of an object. Args: object_name (`str`): The name of the object we want the source code of. base_path (`str`, *optional*): The path to the base folder where files are checked. If not set, it will be set to `TRANSFORMERS_PATH`. return_indices(`bool`, *optional*, defaults to `False`): If `False`, will only return the code (as a string), otherwise it will also return the whole lines of the file where the object specified by `object_name` is defined, together the start/end indices of the block in the file that defines the object. Returns: `Union[str, Tuple[List[str], int, int]]`: If `return_indices=False`, only the source code of the object will be returned. Otherwise, it also returns the whole lines of the file where the object specified by `object_name` is defined, together the start/end indices of the block in the file that defines the object. """ parts = object_name.split(".") i = 0 # We can't set this as the default value in the argument, otherwise `CopyCheckTester` will fail, as it uses a # patched temp directory. if base_path is None: base_path = TRANSFORMERS_PATH # Detail: the `Copied from` statement is originally designed to work with the last part of `TRANSFORMERS_PATH`, # (which is `transformers`). The same should be applied for `MODEL_TEST_PATH`. However, its last part is `models` # (to only check and search in it) which is a bit confusing. So we keep the copied statement staring with # `tests.models.` and change it to `tests` here. if base_path == MODEL_TEST_PATH: base_path = "tests" # First let's find the module where our object lives. module = parts[i] while i < len(parts) and not os.path.isfile(os.path.join(base_path, f"{module}.py")): i += 1 if i < len(parts): module = os.path.join(module, parts[i]) if i >= len(parts): raise ValueError( f"`object_name` should begin with the name of a module of transformers but got {object_name}." ) with open(os.path.join(base_path, f"{module}.py"), "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Now let's find the class / func in the code! indent = "" line_index = 0 for name in parts[i + 1 :]: while ( line_index < len(lines) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)", lines[line_index]) is None ): line_index += 1 # find the target specified in the current level in `parts` -> increase `indent` so we can search the next indent += " " # the index of the first line in the (currently found) block *body* line_index += 1 if line_index >= len(lines): raise ValueError(f" {object_name} does not match any function or class in {module}.") # `indent` is already one level deeper than the (found) class/func block's definition header # We found the beginning of the class / func, now let's find the end (when the indent diminishes). # `start_index` is the index of the class/func block's definition header start_index = line_index - 1 end_index = find_block_end(lines, start_index, len(indent)) code = "".join(lines[start_index:end_index]) return (code, (lines, start_index, end_index)) if return_indices else code def replace_code(code: str, replace_pattern: str) -> str: """Replace `code` by a pattern of the form `with X1->X2,Y1->Y2,Z1->Z2`. Args: code (`str`): The code to be modified. replace_pattern (`str`): The pattern used to modify `code`. Returns: `str`: The modified code. """ if len(replace_pattern) > 0: patterns = replace_pattern.replace("with", "").split(",") patterns = [_re_replace_pattern.search(p) for p in patterns] for pattern in patterns: if pattern is None: continue obj1, obj2, option = pattern.groups() code = re.sub(obj1, obj2, code) if option.strip() == "all-casing": code = re.sub(obj1.lower(), obj2.lower(), code) code = re.sub(obj1.upper(), obj2.upper(), code) return code def find_code_and_splits(object_name: str, base_path: str, buffer: dict = None): """Find the code of an object (specified by `object_name`) and split it into blocks. Args: object_name (`str`): The name of the object, e.g. `transformers.models.bert.modeling_bert.BertAttention` or `tests.models.llama.test_modeling_llama.LlamaModelTest.test_config`. base_path (`str`): The path to the base directory within which the search will be performed. It could be either `TRANSFORMERS_PATH` or `MODEL_TEST_PATH`. buffer (`dict`, *optional*): The buffer used to store the previous results in order to speed up the process. Returns: lines (`List[str]`): The lines of the whole file where the object is defined. code (`str`): The object's code. code_splits (`List[Tuple[str, int, int]]`): `code` splitted into blocks. See `split_code_into_blocks`. """ if buffer is None: buffer = {} if (object_name, base_path) in buffer: lines, code, code_splits = buffer[(object_name, base_path)] else: code, (lines, target_start_index, target_end_index) = find_code_in_transformers( object_name, base_path=base_path, return_indices=True ) indent = get_indent(code) # Split the code into blocks # `indent` is the indent of the class/func definition header, but `code_splits` expects the indent level of the # block body. code_splits = split_code_into_blocks( lines, target_start_index, target_end_index, len(indent) + 4, backtrace=True ) buffer[(object_name, base_path)] = lines, code, code_splits return lines, code, code_splits _re_copy_warning = re.compile(r"^(\s*)#\s*Copied from\s+transformers\.(\S+\.\S+)\s*($|\S.*$)") _re_copy_warning_for_test_file = re.compile(r"^(\s*)#\s*Copied from\s+tests\.(\S+\.\S+)\s*($|\S.*$)") _re_replace_pattern = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") _re_fill_pattern = re.compile(r"<FILL\s+[^>]*>") def get_indent(code: str) -> str: """ Find the indent in the first non empty line in a code sample. Args: code (`str`): The code to inspect. Returns: `str`: The indent looked at (as string). """ lines = code.split("\n") idx = 0 while idx < len(lines) and len(lines[idx]) == 0: idx += 1 if idx < len(lines): return re.search(r"^(\s*)\S", lines[idx]).groups()[0] return "" def run_ruff(code): command = ["ruff", "format", "-", "--config", "pyproject.toml", "--silent"] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) stdout, _ = process.communicate(input=code.encode()) return stdout.decode() def stylify(code: str) -> str: """ Applies the ruff part of our `make style` command to some code. This formats the code using `ruff format`. As `ruff` does not provide a python api this cannot be done on the fly. Args: code (`str`): The code to format. Returns: `str`: The formatted code. """ has_indent = len(get_indent(code)) > 0 if has_indent: code = f"class Bla:\n{code}" formatted_code = run_ruff(code) return formatted_code[len("class Bla:\n") :] if has_indent else formatted_code def check_codes_match(observed_code: str, theoretical_code: str) -> Optional[int]: """ Checks if two version of a code match with the exception of the class/function name. Args: observed_code (`str`): The code found. theoretical_code (`str`): The code to match. Returns: `Optional[int]`: The index of the first line where there is a difference (if any) and `None` if the codes match. """ observed_code_header = observed_code.split("\n")[0] theoretical_code_header = theoretical_code.split("\n")[0] # Catch the function/class name: it is expected that those do not match. _re_class_match = re.compile(r"class\s+([^\(:]+)(?:\(|:)") _re_func_match = re.compile(r"def\s+([^\(]+)\(") for re_pattern in [_re_class_match, _re_func_match]: if re_pattern.match(observed_code_header) is not None: observed_obj_name = re_pattern.search(observed_code_header).groups()[0] theoretical_name = re_pattern.search(theoretical_code_header).groups()[0] theoretical_code_header = theoretical_code_header.replace(theoretical_name, observed_obj_name) # Find the first diff. Line 0 is special since we need to compare with the function/class names ignored. diff_index = 0 if theoretical_code_header != observed_code_header: return 0 diff_index = 1 for observed_line, theoretical_line in zip(observed_code.split("\n")[1:], theoretical_code.split("\n")[1:]): if observed_line != theoretical_line: return diff_index diff_index += 1 def is_copy_consistent(filename: str, overwrite: bool = False, buffer: dict = None) -> Optional[List[Tuple[str, int]]]: """ Check if the code commented as a copy in a file matches the original. Args: filename (`str`): The name of the file to check. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the copies when they don't match. buffer (`dict`, *optional*): The buffer used to store the previous results in order to speed up the process. Returns: `Optional[List[Tuple[str, int]]]`: If `overwrite=False`, returns the list of differences as tuples `(str, int)` with the name of the object having a diff and the line number where theere is the first diff. """ base_path = TRANSFORMERS_PATH if not filename.startswith("tests") else MODEL_TEST_PATH with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() diffs = [] line_index = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lines): search_re = _re_copy_warning if filename.startswith("tests"): search_re = _re_copy_warning_for_test_file search = search_re.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. indent, object_name, replace_pattern = search.groups() # Find the file lines, the object's code, and its blocks target_lines, theoretical_code, theoretical_code_splits = find_code_and_splits( object_name, base_path, buffer=buffer ) # code replaced by the patterns theoretical_code_blocks = OrderedDict() for name, start, end in theoretical_code_splits: name = replace_code(name, replace_pattern) code = "".join(target_lines[start:end]) code = replace_code(code, replace_pattern) theoretical_code_blocks[name] = code theoretical_indent = get_indent(theoretical_code) # `start_index` is the index of the first line (the definition header) after `# Copied from`. # (`indent != theoretical_indent` doesn't seem to occur so far, not sure what this case is for.) start_index = line_index + 1 if indent == theoretical_indent else line_index # enter the block body line_index = start_index + 1 subcode = "\n".join(theoretical_code.split("\n")[1:]) indent = get_indent(subcode) # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. # We can't call `find_block_end` directly as there is sth. special `# End copy"` here. should_continue = True while line_index < len(lines) and should_continue: line_index += 1 if line_index >= len(lines): break line = lines[line_index] # There is a special pattern `# End copy` to stop early. It's not documented cause it shouldn't really be # used. should_continue = _should_continue(line, indent) and re.search(f"^{indent}# End copy", line) is None # `line_index` is outside the block # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 # Split the observed code into blocks observed_code_splits = split_code_into_blocks(lines, start_index, line_index, len(indent), backtrace=True) is_class = lines[start_index].startswith(f"{' ' * (len(indent) - 4)}class ") # sanity check _sanity_check_splits(theoretical_code_splits, observed_code_splits, is_class=is_class) # observed code in a structured way (a dict mapping block names to blocks' code) observed_code_blocks = OrderedDict() for name, start, end in observed_code_splits: code = "".join(lines[start:end]) observed_code_blocks[name] = code # Below, we change some names in `theoretical_code_blocks` and `observed_code_blocks`. These mappings map the # original names to the modified names: this is used to restore the original order of the code blocks. name_mappings_1 = {k: k for k in theoretical_code_blocks.keys()} name_mappings_2 = {k: k for k in observed_code_blocks.keys()} # Update code blocks' name and content: # If `"# Ignore copy"` is found in a block of the observed code: # 1. if it's a block only in the observed code --> add it to the theoretical code. # 2. if it's also in the theoretical code () --> put its content (body) to the corresponding block under the # same name in the theoretical code. # In both cases, we change the name to have a prefix `_ignored_` so we know if we can discard them during the # comparison. ignored_existing_block_index = 0 ignored_new_block_index = 0 for name in list(observed_code_blocks.keys()): code = observed_code_blocks[name] if "# Ignore copy" in code: if name in theoretical_code_blocks: # in the target --> just copy the content del theoretical_code_blocks[name] theoretical_code_blocks[f"_ignored_existing_block_{ignored_existing_block_index}"] = code name_mappings_1[name] = f"_ignored_existing_block_{ignored_existing_block_index}" del observed_code_blocks[name] observed_code_blocks[f"_ignored_existing_block_{ignored_existing_block_index}"] = code name_mappings_2[name] = f"_ignored_existing_block_{ignored_existing_block_index}" ignored_existing_block_index += 1 else: # not in the target --> add it theoretical_code_blocks[f"_ignored_new_block_{ignored_new_block_index}"] = code name_mappings_1[ f"_ignored_new_block_{ignored_new_block_index}" ] = f"_ignored_new_block_{ignored_new_block_index}" del observed_code_blocks[name] observed_code_blocks[f"_ignored_new_block_{ignored_new_block_index}"] = code name_mappings_2[name] = f"_ignored_new_block_{ignored_new_block_index}" ignored_new_block_index += 1 # Respect the original block order: # 1. in `theoretical_code_blocks`: the new blocks will follow the existing ones # 2. in `observed_code_blocks`: the original order are kept with names modified potentially. This is necessary # to compute the correct `diff_index` if `overwrite=True` and there is a diff. theoretical_code_blocks = { name_mappings_1[orig_name]: theoretical_code_blocks[name_mappings_1[orig_name]] for orig_name in name_mappings_1 } observed_code_blocks = { name_mappings_2[orig_name]: observed_code_blocks[name_mappings_2[orig_name]] for orig_name in name_mappings_2 } # Ignore the blocks specified to be ignored. This is the version used to check if there is a mismatch theoretical_code_blocks_clean = { k: v for k, v in theoretical_code_blocks.items() if not (k.startswith(("_ignored_existing_block_", "_ignored_new_block_"))) } theoretical_code = "".join(list(theoretical_code_blocks_clean.values())) # stylify `theoretical_code` before compare (this is needed only when `replace_pattern` is not empty) if replace_pattern: theoretical_code = stylify(theoretical_code) # Remove `\n\n` in `theoretical_code` before compare (so no empty line) while "\n\n" in theoretical_code: theoretical_code = theoretical_code.replace("\n\n", "\n") # Compute `observed_code` where we don't include any empty line + keep track the line index between the # original/processed `observed_code` so we can have the correct `diff_index`. idx_to_orig_idx_mapping_for_observed_code_lines = {} idx = -1 orig_idx = -1 observed_code = "" for name, code in observed_code_blocks.items(): if code.endswith("\n"): code = code[:-1] for code_line in code.split("\n"): orig_idx += 1 if code_line.strip() and not name.startswith(("_ignored_existing_block_", "_ignored_new_block_")): idx += 1 observed_code += code_line + "\n" idx_to_orig_idx_mapping_for_observed_code_lines[idx] = orig_idx # Test for a diff and act accordingly. diff_index = check_codes_match(observed_code, theoretical_code) if diff_index is not None: # switch to the index in the original `observed_code` (i.e. before removing empty lines) diff_index = idx_to_orig_idx_mapping_for_observed_code_lines[diff_index] diffs.append([object_name, diff_index + start_index + 1]) if overwrite: # `theoretical_code_to_write` is a single string but may have several lines. theoretical_code_to_write = stylify("".join(list(theoretical_code_blocks.values()))) lines = lines[:start_index] + [theoretical_code_to_write] + lines[line_index:] # Here we treat it as a single entry in `lines`. line_index = start_index + 1 if overwrite and len(diffs) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}.") with open(filename, "w", encoding="utf-8", newline="\n") as f: f.writelines(lines) return diffs def check_copies(overwrite: bool = False, file: str = None): """ Check every file is copy-consistent with the original. Also check the model list in the main README and other READMEs are consistent. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the copies when they don't match. file (`bool`, *optional*): The path to a specific file to check and/or fix. """ buffer = {} if file is None: all_files = glob.glob(os.path.join(TRANSFORMERS_PATH, "**/*.py"), recursive=True) all_test_files = glob.glob(os.path.join(MODEL_TEST_PATH, "**/*.py"), recursive=True) all_files = list(all_files) + list(all_test_files) else: all_files = [file] diffs = [] for filename in all_files: new_diffs = is_copy_consistent(filename, overwrite, buffer) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(diffs) > 0: diff = "\n".join(diffs) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) check_model_list_copy(overwrite=overwrite) def check_full_copies(overwrite: bool = False): """ Check the files that are full copies of others (as indicated in `FULL_COPIES`) are copy-consistent. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the copies when they don't match. """ diffs = [] for target, source in FULL_COPIES.items(): with open(source, "r", encoding="utf-8") as f: source_code = f.read() with open(target, "r", encoding="utf-8") as f: target_code = f.read() if source_code != target_code: if overwrite: with open(target, "w", encoding="utf-8") as f: print(f"Replacing the content of {target} by the one of {source}.") f.write(source_code) else: diffs.append(f"- {target}: copy does not match {source}.") if not overwrite and len(diffs) > 0: diff = "\n".join(diffs) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) def get_model_list(filename: str, start_prompt: str, end_prompt: str) -> str: """ Extracts the model list from a README. Args: filename (`str`): The name of the README file to check. start_prompt (`str`): The string to look for that introduces the model list. end_prompt (`str`): The string to look for that ends the model list. Returns: `str`: The model list. """ with open(os.path.join(REPO_PATH, filename), "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start of the list. start_index = 0 while not lines[start_index].startswith(start_prompt): start_index += 1 start_index += 1 result = [] current_line = "" end_index = start_index # Keep going until the end of the list. while not lines[end_index].startswith(end_prompt): if lines[end_index].startswith("1."): if len(current_line) > 1: result.append(current_line) current_line = lines[end_index] elif len(lines[end_index]) > 1: current_line = f"{current_line[:-1]} {lines[end_index].lstrip()}" end_index += 1 if len(current_line) > 1: result.append(current_line) return "".join(result) def convert_to_localized_md(model_list: str, localized_model_list: str, format_str: str) -> Tuple[bool, str]: """ Compare the model list from the main README to the one in a localized README. Args: model_list (`str`): The model list in the main README. localized_model_list (`str`): The model list in one of the localized README. format_str (`str`): The template for a model entry in the localized README (look at the `format_model_list` in the entries of `LOCALIZED_READMES` for examples). Returns: `Tuple[bool, str]`: A tuple where the first value indicates if the READMEs match or not, and the second value is the correct localized README. """ def _rep(match): title, model_link, paper_affiliations, paper_title_link, paper_authors, supplements = match.groups() return format_str.format( title=title, model_link=model_link, paper_affiliations=paper_affiliations, paper_title_link=paper_title_link, paper_authors=paper_authors, supplements=" " + supplements.strip() if len(supplements) != 0 else "", ) # This regex captures metadata from an English model description, including model title, model link, # affiliations of the paper, title of the paper, authors of the paper, and supplemental data (see DistilBERT for # example). _re_capture_meta = re.compile( r"\*\*\[([^\]]*)\]\(([^\)]*)\)\*\* \(from ([^)]*)\)[^\[]*([^\)]*\)).*?by (.*?[A-Za-z\*]{2,}?)\. (.*)$" ) # This regex is used to synchronize link. _re_capture_title_link = re.compile(r"\*\*\[([^\]]*)\]\(([^\)]*)\)\*\*") if len(localized_model_list) == 0: localized_model_index = {} else: try: localized_model_index = { re.search(r"\*\*\[([^\]]*)", line).groups()[0]: line for line in localized_model_list.strip().split("\n") } except AttributeError: raise AttributeError("A model name in localized READMEs cannot be recognized.") model_keys = [re.search(r"\*\*\[([^\]]*)", line).groups()[0] for line in model_list.strip().split("\n")] # We exclude keys in localized README not in the main one. readmes_match = not any(k not in model_keys for k in localized_model_index) localized_model_index = {k: v for k, v in localized_model_index.items() if k in model_keys} for model in model_list.strip().split("\n"): title, model_link = _re_capture_title_link.search(model).groups() if title not in localized_model_index: readmes_match = False # Add an anchor white space behind a model description string for regex. # If metadata cannot be captured, the English version will be directly copied. localized_model_index[title] = _re_capture_meta.sub(_rep, model + " ") elif _re_fill_pattern.search(localized_model_index[title]) is not None: update = _re_capture_meta.sub(_rep, model + " ") if update != localized_model_index[title]: readmes_match = False localized_model_index[title] = update else: # Synchronize link localized_model_index[title] = _re_capture_title_link.sub( f"**[{title}]({model_link})**", localized_model_index[title], count=1 ) sorted_index = sorted(localized_model_index.items(), key=lambda x: x[0].lower()) return readmes_match, "\n".join((x[1] for x in sorted_index)) + "\n" def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> Tuple[str, int, int, List[str]]: """ Find the text in a file between two prompts. Args: filename (`str`): The name of the file to look into. start_prompt (`str`): The string to look for that introduces the content looked for. end_prompt (`str`): The string to look for that ends the content looked for. Returns: Tuple[str, int, int, List[str]]: The content between the two prompts, the index of the start line in the original file, the index of the end line in the original file and the list of lines of that file. """ with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start prompt. start_index = 0 while not lines[start_index].startswith(start_prompt): start_index += 1 start_index += 1 end_index = start_index while not lines[end_index].startswith(end_prompt): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines def check_model_list_copy(overwrite: bool = False): """ Check the model lists in the README is consistent with the ones in the other READMES and also with `index.nmd`. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the copies when they don't match. """ # Fix potential doc links in the README with open(os.path.join(REPO_PATH, "README.md"), "r", encoding="utf-8", newline="\n") as f: readme = f.read() new_readme = readme.replace("https://huggingface.co/transformers", "https://huggingface.co/docs/transformers") new_readme = new_readme.replace( "https://huggingface.co/docs/main/transformers", "https://huggingface.co/docs/transformers/main" ) if new_readme != readme: if overwrite: with open(os.path.join(REPO_PATH, "README.md"), "w", encoding="utf-8", newline="\n") as f: f.write(new_readme) else: raise ValueError( "The main README contains wrong links to the documentation of Transformers. Run `make fix-copies` to " "automatically fix them." ) md_list = get_model_list( filename="README.md", start_prompt=LOCALIZED_READMES["README.md"]["start_prompt"], end_prompt=LOCALIZED_READMES["README.md"]["end_prompt"], ) # Build the converted Markdown. converted_md_lists = [] for filename, value in LOCALIZED_READMES.items(): _start_prompt = value["start_prompt"] _end_prompt = value["end_prompt"] _format_model_list = value["format_model_list"] localized_md_list = get_model_list(filename, _start_prompt, _end_prompt) readmes_match, converted_md_list = convert_to_localized_md(md_list, localized_md_list, _format_model_list) converted_md_lists.append((filename, readmes_match, converted_md_list, _start_prompt, _end_prompt)) # Compare the converted Markdowns for converted_md_list in converted_md_lists: filename, readmes_match, converted_md, _start_prompt, _end_prompt = converted_md_list if filename == "README.md": continue if overwrite: _, start_index, end_index, lines = _find_text_in_file( filename=os.path.join(REPO_PATH, filename), start_prompt=_start_prompt, end_prompt=_end_prompt ) with open(os.path.join(REPO_PATH, filename), "w", encoding="utf-8", newline="\n") as f: f.writelines(lines[:start_index] + [converted_md] + lines[end_index:]) elif not readmes_match: raise ValueError( f"The model list in the README changed and the list in `{filename}` has not been updated. Run " "`make fix-copies` to fix this." ) # Map a model name with the name it has in the README for the check_readme check SPECIAL_MODEL_NAMES = { "Bert Generation": "BERT For Sequence Generation", "BigBird": "BigBird-RoBERTa", "Data2VecAudio": "Data2Vec", "Data2VecText": "Data2Vec", "Data2VecVision": "Data2Vec", "DonutSwin": "Swin Transformer", "Marian": "MarianMT", "MaskFormerSwin": "Swin Transformer", "OpenAI GPT-2": "GPT-2", "OpenAI GPT": "GPT", "Perceiver": "Perceiver IO", "SAM": "Segment Anything", "ViT": "Vision Transformer (ViT)", } # Update this list with the models that shouldn't be in the README. This only concerns modular models or those who do # not have an associated paper. MODELS_NOT_IN_README = [ "BertJapanese", "Encoder decoder", "FairSeq Machine-Translation", "HerBERT", "RetriBERT", "Speech Encoder decoder", "Speech2Text", "Speech2Text2", "TimmBackbone", "Vision Encoder decoder", "VisionTextDualEncoder", "CLIPVisionModel", "SiglipVisionModel", ] # Template for new entries to add in the main README when we have missing models. README_TEMPLATE = ( "1. **[{model_name}](https://huggingface.co/docs/main/transformers/model_doc/{model_type})** (from " "<FILL INSTITUTION>) released with the paper [<FILL PAPER TITLE>](<FILL ARKIV LINK>) by <FILL AUTHORS>." ) def check_readme(overwrite: bool = False): """ Check if the main README contains all the models in the library or not. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether or not to add an entry for the missing models using `README_TEMPLATE`. """ info = LOCALIZED_READMES["README.md"] models, start_index, end_index, lines = _find_text_in_file( os.path.join(REPO_PATH, "README.md"), info["start_prompt"], info["end_prompt"], ) models_in_readme = [re.search(r"\*\*\[([^\]]*)", line).groups()[0] for line in models.strip().split("\n")] model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING absents = [ (key, name) for key, name in model_names_mapping.items() if SPECIAL_MODEL_NAMES.get(name, name) not in models_in_readme ] # Remove exceptions absents = [(key, name) for key, name in absents if name not in MODELS_NOT_IN_README] if len(absents) > 0 and not overwrite: print(absents) raise ValueError( "The main README doesn't contain all models, run `make fix-copies` to fill it with the missing model(s)" " then complete the generated entries.\nIf the model is not supposed to be in the main README, add it to" " the list `MODELS_NOT_IN_README` in utils/check_copies.py.\nIf it has a different name in the repo than" " in the README, map the correspondence in `SPECIAL_MODEL_NAMES` in utils/check_copies.py." ) new_models = [README_TEMPLATE.format(model_name=name, model_type=key) for key, name in absents] all_models = models.strip().split("\n") + new_models all_models = sorted(all_models, key=lambda x: re.search(r"\*\*\[([^\]]*)", x).groups()[0].lower()) all_models = "\n".join(all_models) + "\n" if all_models != models: if overwrite: print("Fixing the main README.") with open(os.path.join(REPO_PATH, "README.md"), "w", encoding="utf-8", newline="\n") as f: f.writelines(lines[:start_index] + [all_models] + lines[end_index:]) else: raise ValueError("The main README model list is not properly sorted. Run `make fix-copies` to fix this.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--file", type=str, default=None, help="A specific file to check and/or fix") parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() check_readme(args.fix_and_overwrite) check_copies(args.fix_and_overwrite, args.file) check_full_copies(args.fix_and_overwrite)
transformers/utils/check_copies.py/0
{ "file_path": "transformers/utils/check_copies.py", "repo_id": "transformers", "token_count": 20516 }
396
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging logger = logging.get_logger(__name__) def extract_warnings_from_single_artifact(artifact_path, targets): """Extract warnings from a downloaded artifact (in .zip format)""" selected_warnings = set() buffer = [] def parse_line(fp): for line in fp: if isinstance(line, bytes): line = line.decode("UTF-8") if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" "): # process a single warning and move it to `selected_warnings`. if len(buffer) > 0: warning = "\n".join(buffer) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets): selected_warnings.add(warning) buffer.clear() continue else: line = line.strip() buffer.append(line) if from_gh: for filename in os.listdir(artifact_path): file_path = os.path.join(artifact_path, filename) if not os.path.isdir(file_path): # read the file if filename != "warnings.txt": continue with open(file_path) as fp: parse_line(fp) else: try: with zipfile.ZipFile(artifact_path) as z: for filename in z.namelist(): if not os.path.isdir(filename): # read the file if filename != "warnings.txt": continue with z.open(filename) as fp: parse_line(fp) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def extract_warnings(artifact_dir, targets): """Extract warnings from all artifact files""" selected_warnings = set() paths = [os.path.join(artifact_dir, p) for p in os.listdir(artifact_dir) if (p.endswith(".zip") or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(p, targets)) return selected_warnings if __name__ == "__main__": def list_str(values): return values.split(",") parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) args = parser.parse_args() from_gh = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links artifacts = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts selected_warnings = extract_warnings(args.output_dir, args.targets) selected_warnings = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
transformers/utils/extract_warnings.py/0
{ "file_path": "transformers/utils/extract_warnings.py", "repo_id": "transformers", "token_count": 2110 }
397
from transformers import PretrainedConfig class CustomConfig(PretrainedConfig): model_type = "custom" def __init__(self, attribute=1, **kwargs): self.attribute = attribute super().__init__(**kwargs) class NoSuperInitConfig(PretrainedConfig): model_type = "custom" def __init__(self, attribute=1, **kwargs): self.attribute = attribute
transformers/utils/test_module/custom_configuration.py/0
{ "file_path": "transformers/utils/test_module/custom_configuration.py", "repo_id": "transformers", "token_count": 136 }
398
cff-version: 1.2.0 title: 'TRL: Transformer Reinforcement Learning' message: >- If you use this software, please cite it using the metadata from this file. type: software authors: - given-names: Leandro family-names: von Werra - given-names: Younes family-names: Belkada - given-names: Lewis family-names: Tunstall - given-names: Edward family-names: Beeching - given-names: Tristan family-names: Thrush - given-names: Nathan family-names: Lambert repository-code: 'https://github.com/huggingface/trl' abstract: "With trl you can train transformer language models with Proximal Policy Optimization (PPO). The library is built on top of the transformers library by \U0001F917 Hugging Face. Therefore, pre-trained language models can be directly loaded via transformers. At this point, most decoder and encoder-decoder architectures are supported." keywords: - rlhf - deep-learning - pytorch - transformers license: Apache-2.0 version: 0.2.1
trl/CITATION.cff/0
{ "file_path": "trl/CITATION.cff", "repo_id": "trl", "token_count": 313 }
399
BENCHMARK_SCRIPT="benchmark/benchmark_level1.sh" \ BENCHMARK_PLOT_SCRIPT="benchmark/benchmark_level1_plot.sh" \ bash benchmark/benchmark_and_report.sh
trl/benchmark/regression_test.sh/0
{ "file_path": "trl/benchmark/regression_test.sh", "repo_id": "trl", "token_count": 60 }
400
# Installation You can install TRL either from pypi or from source: ## pypi Install the library with pip: ```bash pip install trl ``` ### Source You can also install the latest version from source. First clone the repo and then run the installation with `pip`: ```bash git clone https://github.com/huggingface/trl.git cd trl/ pip install -e . ``` If you want the development install you can replace the pip install with the following: ```bash pip install -e ".[dev]" ```
trl/docs/source/installation.mdx/0
{ "file_path": "trl/docs/source/installation.mdx", "repo_id": "trl", "token_count": 147 }
401
# Examples Please check out https://huggingface.co/docs/trl/example_overview for documentation on our examples.
trl/examples/README.md/0
{ "file_path": "trl/examples/README.md", "repo_id": "trl", "token_count": 30 }
402
import argparse import os from accelerate import Accelerator from datasets import load_dataset from peft import LoraConfig from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, logging, set_seed from trl import SFTTrainer from trl.trainer import ConstantLengthDataset """ Fine-Tune Llama-7b on SE paired dataset """ def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default="") parser.add_argument("--dataset_name", type=str, default="lvwerra/stack-exchange-paired") parser.add_argument("--subset", type=str, default="data/finetune") parser.add_argument("--split", type=str, default="train") parser.add_argument("--size_valid_set", type=int, default=4000) parser.add_argument("--streaming", action="store_true") parser.add_argument("--shuffle_buffer", type=int, default=5000) parser.add_argument("--seq_length", type=int, default=1024) parser.add_argument("--max_steps", type=int, default=10000) parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--gradient_accumulation_steps", type=int, default=1) parser.add_argument("--eos_token_id", type=int, default=49152) parser.add_argument("--learning_rate", type=float, default=1e-4) parser.add_argument("--lr_scheduler_type", type=str, default="cosine") parser.add_argument("--num_warmup_steps", type=int, default=100) parser.add_argument("--weight_decay", type=float, default=0.05) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument("--fp16", action="store_true", default=False) parser.add_argument("--bf16", action="store_true", default=False) parser.add_argument("--gradient_checkpointing", action="store_true", default=False) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--num_workers", type=int, default=None) parser.add_argument("--output_dir", type=str, default="./checkpoints") parser.add_argument("--log_freq", default=1, type=int) parser.add_argument("--eval_freq", default=1000, type=int) parser.add_argument("--save_freq", default=1000, type=int) return parser.parse_args() def chars_token_ratio(dataset, tokenizer, nb_examples=400): """ Estimate the average number of characters per token in the dataset. """ total_characters, total_tokens = 0, 0 for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples): text = prepare_sample_text(example) total_characters += len(text) if tokenizer.is_fast: total_tokens += len(tokenizer(text).tokens()) else: total_tokens += len(tokenizer.tokenize(text)) return total_characters / total_tokens def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) def prepare_sample_text(example): """Prepare the text from a sample of the dataset.""" text = f"Question: {example['question']}\n\nAnswer: {example['response_j']}" return text def create_datasets(tokenizer, args): dataset = load_dataset( args.dataset_name, data_dir=args.subset, split=args.split, use_auth_token=True, num_proc=args.num_workers if not args.streaming else None, streaming=args.streaming, ) if args.streaming: print("Loading the dataset in streaming mode") valid_data = dataset.take(args.size_valid_set) train_data = dataset.skip(args.size_valid_set) train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed) else: dataset = dataset.train_test_split(test_size=0.005, seed=args.seed) train_data = dataset["train"] valid_data = dataset["test"] print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}") chars_per_token = chars_token_ratio(train_data, tokenizer) print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}") train_dataset = ConstantLengthDataset( tokenizer, train_data, formatting_func=prepare_sample_text, infinite=True, seq_length=args.seq_length, chars_per_token=chars_per_token, ) valid_dataset = ConstantLengthDataset( tokenizer, valid_data, formatting_func=prepare_sample_text, infinite=False, seq_length=args.seq_length, chars_per_token=chars_per_token, ) return train_dataset, valid_dataset def run_training(args, train_data, val_data): print("Loading the model") lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) train_data.start_iteration = 0 print("Starting main loop") training_args = TrainingArguments( output_dir=args.output_dir, dataloader_drop_last=True, evaluation_strategy="steps", max_steps=args.max_steps, eval_steps=args.eval_freq, save_steps=args.save_freq, logging_steps=args.log_freq, per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, warmup_steps=args.num_warmup_steps, gradient_accumulation_steps=args.gradient_accumulation_steps, gradient_checkpointing=args.gradient_checkpointing, fp16=args.fp16, bf16=args.bf16, weight_decay=args.weight_decay, run_name="llama-7b-finetuned", report_to="wandb", ddp_find_unused_parameters=False, ) model = AutoModelForCausalLM.from_pretrained( args.model_path, load_in_8bit=True, device_map={"": Accelerator().process_index} ) trainer = SFTTrainer( model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data, peft_config=lora_config, packing=True, ) print_trainable_parameters(trainer.model) print("Training...") trainer.train() print("Saving last checkpoint of the model") trainer.model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/")) def main(args): tokenizer = AutoTokenizer.from_pretrained(args.model_path) train_dataset, eval_dataset = create_datasets(tokenizer, args) run_training(args, train_dataset, eval_dataset) if __name__ == "__main__": args = get_args() assert args.model_path != "", "Please provide the llama model path" set_seed(args.seed) os.makedirs(args.output_dir, exist_ok=True) logging.set_verbosity_error() main(args)
trl/examples/research_projects/stack_llama/scripts/supervised_finetuning.py/0
{ "file_path": "trl/examples/research_projects/stack_llama/scripts/supervised_finetuning.py", "repo_id": "trl", "token_count": 2908 }
403
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # regular: python examples/scripts/sft.py \ --model_name_or_path="facebook/opt-350m" \ --report_to="wandb" \ --learning_rate=1.41e-5 \ --per_device_train_batch_size=64 \ --gradient_accumulation_steps=16 \ --output_dir="sft_openassistant-guanaco" \ --logging_steps=1 \ --num_train_epochs=3 \ --max_steps=-1 \ --push_to_hub \ --gradient_checkpointing \ # peft: python examples/scripts/sft.py \ --model_name_or_path="facebook/opt-350m" \ --report_to="wandb" \ --learning_rate=1.41e-5 \ --per_device_train_batch_size=64 \ --gradient_accumulation_steps=16 \ --output_dir="sft_openassistant-guanaco" \ --logging_steps=1 \ --num_train_epochs=3 \ --max_steps=-1 \ --push_to_hub \ --gradient_checkpointing \ --use_peft \ --lora_r=64 \ --lora_alpha=16 """ from dataclasses import dataclass, field import torch from datasets import load_dataset from tqdm import tqdm from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments from trl import ModelConfig, SFTTrainer, get_kbit_device_map, get_peft_config, get_quantization_config tqdm.pandas() @dataclass class ScriptArguments: dataset_name: str = field(default="timdettmers/openassistant-guanaco", metadata={"help": "the dataset name"}) dataset_text_field: str = field(default="text", metadata={"help": "the text field of the dataset"}) max_seq_length: int = field(default=512, metadata={"help": "The maximum sequence length for SFT Trainer"}) if __name__ == "__main__": parser = HfArgumentParser((ScriptArguments, TrainingArguments, ModelConfig)) args, training_args, model_config = parser.parse_args_into_dataclasses() training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) ################ # Model & Tokenizer ################ torch_dtype = ( model_config.torch_dtype if model_config.torch_dtype in ["auto", None] else getattr(torch, model_config.torch_dtype) ) quantization_config = get_quantization_config(model_config) model_kwargs = dict( revision=model_config.model_revision, trust_remote_code=model_config.trust_remote_code, attn_implementation=model_config.attn_implementation, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True) tokenizer.pad_token = tokenizer.eos_token ################ # Dataset ################ raw_datasets = load_dataset(args.dataset_name) train_dataset = raw_datasets["train"] eval_dataset = raw_datasets["test"] ################ # Training ################ trainer = SFTTrainer( model=model_config.model_name_or_path, model_init_kwargs=model_kwargs, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, dataset_text_field="text", max_seq_length=args.max_seq_length, tokenizer=tokenizer, packing=True, peft_config=get_peft_config(model_config), ) trainer.train() trainer.save_model(training_args.output_dir)
trl/examples/scripts/sft.py/0
{ "file_path": "trl/examples/scripts/sft.py", "repo_id": "trl", "token_count": 1552 }
404
import unittest from typing import Callable from datasets import Dataset, load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from trl.extras.dataset_formatting import get_formatting_func_from_dataset from trl.models.utils import ChatMlSpecialTokens, setup_chat_format class DatasetFormattingTestCase(unittest.TestCase): def setUp(self): self.llama_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") self.chatml_tokenizer = AutoTokenizer.from_pretrained("philschmid/gpt2-chatml-tokenizer") def test_get_formatting_func_from_dataset_with_chatml_messages(self): dataset = Dataset.from_dict( { "messages": [ [ {"role": "system", "content": "You are helpful"}, {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi, how can I help you?"}, ] ] } ) # Llama tokenizer formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) assert isinstance(formatting_func, Callable) formatted_text = formatting_func(dataset[0]) expected = "<s>[INST] <<SYS>>\nYou are helpful\n<</SYS>>\n\nHello [/INST] Hi, how can I help you? </s>" assert formatted_text == expected formatted_text = formatting_func(dataset[0:1]) assert formatted_text == [expected] # ChatML tokenizer formatting_func = get_formatting_func_from_dataset(dataset, self.chatml_tokenizer) formatted_text = formatting_func(dataset[0]) expected = "<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n" assert formatted_text == expected formatted_text = formatting_func(dataset[0:1]) assert formatted_text == [expected] def test_get_formatting_func_from_dataset_with_chatml_conversations(self): dataset = Dataset.from_dict( { "conversations": [ [ {"role": "system", "content": "You are helpful"}, {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi, how can I help you?"}, ] ] } ) # Llama tokenizer formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) assert isinstance(formatting_func, Callable) formatted_text = formatting_func(dataset[0]) expected = "<s>[INST] <<SYS>>\nYou are helpful\n<</SYS>>\n\nHello [/INST] Hi, how can I help you? </s>" assert formatted_text == expected formatted_text = formatting_func(dataset[0:1]) assert formatted_text == [expected] # ChatML tokenizer formatting_func = get_formatting_func_from_dataset(dataset, self.chatml_tokenizer) formatted_text = formatting_func(dataset[0]) expected = "<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n" assert formatted_text == expected formatted_text = formatting_func(dataset[0:1]) assert formatted_text == [expected] def test_get_formatting_func_from_dataset_with_instruction(self): dataset = Dataset.from_list( [{"prompt": "What is 2+2?", "completion": "4"}, {"prompt": "What is 3+3?", "completion": "6"}] ) formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) assert formatting_func is not None assert isinstance(formatting_func, Callable) formatted_text = formatting_func(dataset[0]) assert formatted_text == "<s>[INST] What is 2+2? [/INST] 4 </s>" formatted_text = formatting_func(dataset[0:1]) assert formatted_text == ["<s>[INST] What is 2+2? [/INST] 4 </s>"] def test_get_formatting_func_from_dataset_from_hub(self): ds_1 = load_dataset("philschmid/trl-test-instruction", split="train") ds_2 = load_dataset("philschmid/dolly-15k-oai-style", split="train") for ds in [ds_1, ds_2]: formatting_func = get_formatting_func_from_dataset(ds, self.llama_tokenizer) assert formatting_func is not None assert isinstance(formatting_func, Callable) ds_3 = load_dataset("philschmid/guanaco-sharegpt-style", split="train") formatting_func = get_formatting_func_from_dataset(ds_3, self.llama_tokenizer) assert formatting_func is None def test_get_formatting_func_from_dataset_with_unknown_format(self): dataset = Dataset.from_dict({"text": "test"}) formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) assert formatting_func is None class SetupChatFormatTestCase(unittest.TestCase): def setUp(self): self.tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") self.model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") def test_setup_chat_format(self): original_tokenizer_len = len(self.tokenizer) modified_model, modified_tokenizer = setup_chat_format( self.model, self.tokenizer, format="chatml", resize_to_multiple_of=64 ) _chatml = ChatMlSpecialTokens() # Check if special tokens are correctly set assert modified_tokenizer.eos_token == "<|im_end|>" assert modified_tokenizer.pad_token == "<|im_end|>" assert modified_tokenizer.bos_token == "<|im_start|>" assert modified_tokenizer.eos_token == _chatml.eos_token assert modified_tokenizer.pad_token == _chatml.pad_token assert modified_tokenizer.bos_token == _chatml.bos_token assert len(modified_tokenizer) == (original_tokenizer_len + 2) assert (self.model.get_input_embeddings().weight.shape[0] % 64) == 0 assert self.model.get_input_embeddings().weight.shape[0] == (original_tokenizer_len + 64) def test_example_with_setup_model(self): modified_model, modified_tokenizer = setup_chat_format( self.model, self.tokenizer, ) messages = [ {"role": "system", "content": "You are helpful"}, {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi, how can I help you?"}, ] prompt = modified_tokenizer.apply_chat_template(messages, tokenize=False) assert ( prompt == "<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n" )
trl/tests/test_dataset_formatting.py/0
{ "file_path": "trl/tests/test_dataset_formatting.py", "repo_id": "trl", "token_count": 3064 }
405
# flake8: noqa from .base_environment import TextEnvironment, TextHistory
trl/trl/environment/__init__.py/0
{ "file_path": "trl/trl/environment/__init__.py", "repo_id": "trl", "token_count": 21 }
406
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Callable, Dict, List, Optional, Tuple, Union import torch from datasets import Dataset from torch.utils.data import DataLoader from transformers import ( DataCollator, DataCollatorForLanguageModeling, DataCollatorForSeq2Seq, PreTrainedModel, PreTrainedTokenizerBase, Trainer, TrainingArguments, ) from transformers.trainer_utils import EvalLoopOutput from ..core import PPODecorators from ..import_utils import is_peft_available if is_peft_available(): from peft import PeftModel class IterativeSFTTrainer(Trainer): """ The IterativeSFTTrainer can be used to finetune models with methods that requires some steps between optimization. Attributes: **model** (`PreTrainedModel`) -- Model to be optimized, either an 'AutoModelForCausalLM' or an 'AutoModelForSeq2SeqLM'. Check the documentation of `PreTrainedModel` for more details. **args** (`transformers.TrainingArguments`): -- The arguments to use for training. **tokenizer** (`PreTrainedTokenizerBase`) -- Tokenizer to be used for encoding the data. Check the documentation of `transformers.PreTrainedTokenizer` and `transformers.PreTrainedTokenizerFast` for more details. **optimizers** (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): -- The optimizer and scheduler to use for training. **data_collator** (Union[DataCollatorForLanguageModeling, DataCollatorForSeq2Seq], *optional*) -- Data collator to be used for training and passed along the dataloader. **eval_dataset** (`datasets.Dataset`): The dataset to use for evaluation. **max_length** (`int`, defaults to `None`): -- The maximum length of the input. **truncation_mode** (`str`, defaults to `keep_end`): -- The truncation mode to use, either `keep_end` or `keep_start`. **preprocess_logits_for_metrics** (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): -- The function to use to preprocess the logits before computing the metrics. **compute_metrics** (`Callable[[EvalPrediction], Dict]`, *optional*): -- The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to metric values. **optimize_device_cache ** (`bool`, *optional*, defaults to `False`) -- Optimize CUDA cache for slightly more memory-efficient training. """ def __init__( self, model: Optional[PreTrainedModel] = None, args: Optional[TrainingArguments] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = ( None, None, ), data_collator: Optional[DataCollator] = None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None, max_length: Optional[int] = None, truncation_mode: Optional[str] = "keep_end", preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, compute_metrics: Optional[Callable[[EvalLoopOutput], Dict]] = None, optimize_device_cache: Optional[bool] = False, ): # Step 0: check positional arguments validity if not isinstance(tokenizer, (PreTrainedTokenizerBase)): raise ValueError( f"tokenizer must be a PreTrainedTokenizerBase like a PreTrainedTokenizer or a PreTrainedTokenizerFast, got {type(tokenizer)}" ) if not isinstance(model, PreTrainedModel): raise ValueError(f"model must be a PreTrainedModel, got {type(model)}") if not model.can_generate(): warnings.warn( f"The current model class {type(model)} is not compatible with `.generate()`" "Please make sure that this is intended." ) if optimizers[1] is None and args.max_steps == -1: raise ValueError( "When no scheduler is provided, you need to set the total number of training steps to perform `max_steps`" ) self.is_encoder_decoder = getattr(model.config, "is_encoder_decoder", False) self.is_peft_model = is_peft_available() and isinstance(model, PeftModel) self.tokenizer = tokenizer if data_collator is None: if self.is_encoder_decoder: warnings.warn( "No data collator is provided. Using 'DataCollatorForSeq2Seq' with" "'labels_pad_token_id' set to '-100' and 'pad_to_multiple_of' set to 8." ) self.data_collator = DataCollatorForSeq2Seq(tokenizer, label_pad_token_id=-100, pad_to_multiple_of=8) else: warnings.warn("No data collator is provided. Using 'DataCollatorForLanguageModeling'") self.data_collator = DataCollatorForLanguageModeling(self.tokenizer, mlm=False) else: self.data_collator = data_collator self.max_length = max_length self.truncation_mode = truncation_mode self.optimize_device_cache = optimize_device_cache super().__init__( model=model, args=args, data_collator=self.data_collator, eval_dataset=eval_dataset, tokenizer=tokenizer, compute_metrics=compute_metrics, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) self.create_optimizer_and_scheduler(self.args.max_steps) # prepare model, optimizer and lr_scheduler self.model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( self.model, self.optimizer, self.lr_scheduler ) self.tokenizer.truncation_side = "left" if self.truncation_mode == "keep_end" else "right" if not hasattr(self, "accelerator"): raise AttributeError( "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." ) PPODecorators.optimize_device_cache = self.optimize_device_cache def prepare_model_inputs(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels: torch.Tensor): if attention_mask is None: attention_mask = [torch.ones_like(ids) for ids in input_ids] if self.is_encoder_decoder: input_data = self.data_collator( [ {"input_ids": ids, "attention_mask": att, "labels": lab} for ids, att, lab in zip(input_ids, attention_mask, labels) ] ).to(self.model.device) input_data.pop("decoder_input_ids", None) # This is directly computed inside the model input_data["labels"][input_data["labels"] == self.tokenizer.pad_token_id] = -100 else: input_data = self.data_collator( [{"input_ids": ids, "attention_mask": att} for ids, att in zip(input_ids, attention_mask)] ).to(self.model.device) # truncate in case the user has provided input_ids, attention_mask and labels if self.max_length is not None: if self.truncation_mode == "keep_start": input_data = {k: v[: self.max_length] for k, v in input_data.items()} elif self.truncation_mode == "keep_end": input_data = {k: v[-self.max_length :] for k, v in input_data.items()} else: raise ValueError(f"Unknown truncation mode: {self.truncation_mode}") return input_data @staticmethod def _step_safety_checker( input_ids: List[torch.LongTensor], attention_mask: List[torch.LongTensor], labels: List[torch.LongTensor], texts: List[str], texts_labels: List[str], ): """ Check if the input data is valid for training. Args: input_ids (List[`torch.LongTensor`]): List of tensors containing the input_ids attention_mask (List[`torch.LongTensor`]): List of tensors containing the attention_mask labels (List[`torch.FloatTensor`]): List of tensors containing the labels texts (List[`str`]): List of string containing the text input. texts_labels (List[`str`]): List of string containing the text labels. Returns: `tuple`: The input data. """ if texts is None: if attention_mask is None: for name, tensor_list in zip(["input_ids", "labels"], [input_ids, labels]): if not isinstance(tensor_list, list): raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}") if not isinstance(tensor_list[0], torch.Tensor): raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}") else: for name, tensor_list in zip( ["input_ids", "attention_mask", "labels"], [input_ids, attention_mask, labels] ): if not isinstance(tensor_list, list): raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}") if not isinstance(tensor_list[0], torch.Tensor): raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}") else: if not isinstance(texts, list): raise ValueError(f"'text' must be a list of strings - got {type(texts)}") if not isinstance(texts[0], str): raise ValueError(f"Elements in 'text' must be strings - got {type(texts[0])}") if texts_labels is not None: if not isinstance(texts_labels, list): raise ValueError(f"'text_labels' must be a list of strings - got {type(texts_labels)}") if not isinstance(texts_labels[0], str): raise ValueError(f"Elements in 'text_labels' must be strings - got {type(texts_labels[0])}") return input_ids, attention_mask, labels, texts, texts_labels @PPODecorators.empty_device_cache() def step( self, input_ids: Optional[List[torch.LongTensor]] = None, attention_mask: Optional[List[torch.LongTensor]] = None, labels: Optional[List[torch.LongTensor]] = None, texts: Optional[List[str]] = None, texts_labels: Optional[List[str]] = None, ): """ Run an optimisation step given a list of input_ids, attention_mask, and labels or a list of text and text_labels. Args: input_ids (List[`torch.LongTensor`]): List of tensors containing the input_ids (if not provided, text will be used) attention_mask (List[`torch.LongTensor`], , *optional*): List of tensors containing the attention_mask labels (List[`torch.FloatTensor`], *optional*): List of tensors containing the labels (if set to None, will default to input_ids) texts (List[`str`], *optional*): List of strings containing the text input (if not provided, input_ids will directly be used) texts_labels (List[`str`], *optional*): List of strings containing the text labels (if set to None, will default to text) Returns: `dict[str, Any]`: A summary of the training statistics """ self.model.train() if self.state.global_step == 0: self.tr_loss = torch.tensor(0.0).to(self.args.device) self._globalstep_last_logged = self.state.global_step if input_ids is None and texts is None: raise ValueError("Step should include `input_ids` or `texts` as keyword arguments.") elif input_ids is not None and texts is not None: warnings.warn( "Both 'input_ids' and 'texts' are provided. 'input_ids' will be overwritten using inputs provided by the 'texts' keyword argument." ) if labels is None and texts_labels is None and self.is_encoder_decoder: raise ValueError( "No 'labels' or 'text_labels' are provided. When using an encoder-decoder architecture, 'labels' or 'text_labels' must be passed." ) input_ids, attention_mask, labels, texts, texts_labels = self._step_safety_checker( input_ids, attention_mask, labels, texts, texts_labels ) if texts is not None: model_inputs = self.tokenizer( texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt" ) input_ids, attention_mask = model_inputs["input_ids"], model_inputs["attention_mask"] if texts_labels is not None: labels = self.tokenizer( texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt" )["input_ids"] if labels is None: warnings.warn("No labels are provided. Setting labels to input_ids") labels = input_ids model_inputs = self.prepare_model_inputs(input_ids, attention_mask, labels) model_inputs_names = list(model_inputs.keys()) batch_dict = {} batch_dict.update(model_inputs) def collator(data): return_dict = dict() for key in data[0]: if key in ["input_ids", "attention_mask", "labels"]: return_dict[key] = torch.stack([d[key] for d in data]).to(self.model.device) return return_dict batch_data = Dataset.from_dict(batch_dict) batch_data.set_format("torch") step_dataloader = DataLoader( batch_data, batch_size=self.args.per_device_train_batch_size, shuffle=True, collate_fn=collator, ) for _, batch in enumerate(step_dataloader): with self.accelerator.accumulate(self.model): model_inputs = {k: batch[k] for k in model_inputs_names} loss = self.compute_loss(self.model, model_inputs) if self.args.n_gpu > 1: loss = loss.mean() tr_loss_step = loss.detach() self.accelerator.backward(loss) if self.accelerator.sync_gradients and self.args.max_grad_norm is not None: self.accelerator.clip_grad_norm_( self.model.parameters(), self.args.max_grad_norm, ) self.optimizer.step() self.optimizer.zero_grad() if self.lr_scheduler is not None: self.lr_scheduler.step() self.state.global_step += 1 # update stats etc self.tr_loss += tr_loss_step self._maybe_log_save_evaluate() def _maybe_log_save_evaluate(self): # check if eval is required if self.args.eval_steps is not None: if self.state.global_step % self.args.eval_steps == 0 and self.state.global_step != 0: self.evaluate(self.eval_dataset) # check if logging is required if self.args.logging_steps is not None: if self.state.global_step % self.args.logging_steps == 0 and self.state.global_step != 0: logs: Dict[str, float] = {} tr_loss_scalar = self._nested_gather(self.tr_loss).mean().item() # reset tr_loss to zero self.tr_loss -= self.tr_loss logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) logs["learning_rate"] = self._get_learning_rate() self._globalstep_last_logged = self.state.global_step self.log(logs)
trl/trl/trainer/iterative_sft_trainer.py/0
{ "file_path": "trl/trl/trainer/iterative_sft_trainer.py", "repo_id": "trl", "token_count": 7430 }
407
- sections: - local: index title: 🤗 Accelerate - local: basic_tutorials/install title: Installation - local: quicktour title: Quicktour title: Getting started - sections: - local: basic_tutorials/overview title: Overview - local: basic_tutorials/migration title: Migrating to 🤗 Accelerate - local: basic_tutorials/launch title: Launching distributed code - local: basic_tutorials/notebook title: Launching distributed training from Jupyter Notebooks - local: basic_tutorials/troubleshooting title: Troubleshooting guide title: Tutorials - sections: - local: usage_guides/explore title: Start Here! - local: usage_guides/training_zoo title: Example Zoo - local: usage_guides/big_modeling title: How to perform inference on large models with small resources - local: usage_guides/model_size_estimator title: Knowing how big of a model you can fit into memory - local: usage_guides/quantization title: How to quantize model - local: usage_guides/distributed_inference title: How to perform distributed inference with normal resources - local: usage_guides/gradient_accumulation title: Performing gradient accumulation - local: usage_guides/local_sgd title: Accelerating training with local SGD - local: usage_guides/checkpoint title: Saving and loading training states - local: usage_guides/tracking title: Using experiment trackers - local: usage_guides/mps title: How to use Apple Silicon M1 GPUs - local: usage_guides/low_precision_training title: How to train in low precision (FP8) - local: usage_guides/deepspeed title: How to use DeepSpeed - local: usage_guides/fsdp title: How to use Fully Sharded Data Parallelism - local: usage_guides/megatron_lm title: How to use Megatron-LM - local: usage_guides/sagemaker title: How to use 🤗 Accelerate with SageMaker - local: usage_guides/ipex title: How to use 🤗 Accelerate with Intel® Extension for PyTorch for cpu title: How-To Guides - sections: - local: concept_guides/internal_mechanism title: 🤗 Accelerate's internal mechanism - local: concept_guides/big_model_inference title: Loading big models into memory - local: concept_guides/performance title: Comparing performance across distributed setups - local: concept_guides/deferring_execution title: Executing and deferring jobs - local: concept_guides/gradient_synchronization title: Gradient synchronization - local: concept_guides/low_precision_training title: How training in low-precision environments is possible (FP8) - local: concept_guides/training_tpu title: TPU best practices title: Concepts and fundamentals - sections: - local: package_reference/accelerator title: Main Accelerator class - local: package_reference/state title: Stateful configuration classes - local: package_reference/cli title: The Command Line - local: package_reference/torch_wrappers title: Torch wrapper classes - local: package_reference/tracking title: Experiment trackers - local: package_reference/launchers title: Distributed launchers - local: package_reference/deepspeed title: DeepSpeed utilities - local: package_reference/logging title: Logging - local: package_reference/big_modeling title: Working with large models - local: package_reference/kwargs title: Kwargs handlers - local: package_reference/utilities title: Utility functions and classes - local: package_reference/megatron_lm title: Megatron-LM Utilities - local: package_reference/fsdp title: Fully Sharded Data Parallelism Utilities title: "Reference"
accelerate/docs/source/_toctree.yml/0
{ "file_path": "accelerate/docs/source/_toctree.yml", "repo_id": "accelerate", "token_count": 1157 }
0
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Accelerate 🤗 Accelerate is a library that enables the same PyTorch code to be run across any distributed configuration by adding just four lines of code! In short, training and inference at scale made simple, efficient and adaptable. ```diff + from accelerate import Accelerator + accelerator = Accelerator() + model, optimizer, training_dataloader, scheduler = accelerator.prepare( + model, optimizer, training_dataloader, scheduler + ) for batch in training_dataloader: optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = model(inputs) loss = loss_function(outputs, targets) + accelerator.backward(loss) optimizer.step() scheduler.step() ``` Built on `torch_xla` and `torch.distributed`, 🤗 Accelerate takes care of the heavy lifting, so you don't have to write any custom code to adapt to these platforms. Convert existing codebases to utilize [DeepSpeed](usage_guides/deepspeed), perform [fully sharded data parallelism](usage_guides/fsdp), and have automatic support for mixed-precision training! <Tip> To get a better idea of this process, make sure to check out the [Tutorials](basic_tutorials/overview)! </Tip> This code can then be launched on any system through Accelerate's CLI interface: ```bash accelerate launch {my_script.py} ``` <div class="mt-10"> <div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5"> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./basic_tutorials/overview" ><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div> <p class="text-gray-700">Learn the basics and become familiar with using 🤗 Accelerate. Start here if you are using 🤗 Accelerate for the first time!</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./usage_guides/explore" ><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div> <p class="text-gray-700">Practical guides to help you achieve a specific goal. Take a look at these guides to learn how to use 🤗 Accelerate to solve real-world problems.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./concept_guides/gradient_synchronization" ><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div> <p class="text-gray-700">High-level explanations for building a better understanding of important topics such as avoiding subtle nuances and pitfalls in distributed training and DeepSpeed.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./package_reference/accelerator" ><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div> <p class="text-gray-700">Technical descriptions of how 🤗 Accelerate classes and methods work.</p> </a> </div> </div>
accelerate/docs/source/index.md/0
{ "file_path": "accelerate/docs/source/index.md", "repo_id": "accelerate", "token_count": 1371 }
1
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Checkpointing When training a PyTorch model with 🤗 Accelerate, you may often want to save and continue a state of training. Doing so requires saving and loading the model, optimizer, RNG generators, and the GradScaler. Inside 🤗 Accelerate are two convenience functions to achieve this quickly: - Use [`~Accelerator.save_state`] for saving everything mentioned above to a folder location - Use [`~Accelerator.load_state`] for loading everything stored from an earlier `save_state` To further customize where and how states are saved through [`~Accelerator.save_state`] the [`~utils.ProjectConfiguration`] class can be used. For example if `automatic_checkpoint_naming` is enabled each saved checkpoint will be located then at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`. It should be noted that the expectation is that those states come from the same training script, they should not be from two separate scripts. - By using [`~Accelerator.register_for_checkpointing`], you can register custom objects to be automatically stored or loaded from the two prior functions, so long as the object has a `state_dict` **and** a `load_state_dict` functionality. This could include objects such as a learning rate scheduler. Below is a brief example using checkpointing to save and reload a state during training: ```python from accelerate import Accelerator import torch accelerator = Accelerator(project_dir="my/save/path") my_scheduler = torch.optim.lr_scheduler.StepLR(my_optimizer, step_size=1, gamma=0.99) my_model, my_optimizer, my_training_dataloader = accelerator.prepare(my_model, my_optimizer, my_training_dataloader) # Register the LR scheduler accelerator.register_for_checkpointing(my_scheduler) # Save the starting state accelerator.save_state() device = accelerator.device my_model.to(device) # Perform training for epoch in range(num_epochs): for batch in my_training_dataloader: my_optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = my_model(inputs) loss = my_loss_function(outputs, targets) accelerator.backward(loss) my_optimizer.step() my_scheduler.step() # Restore the previous state accelerator.load_state("my/save/path/checkpointing/checkpoint_0") ``` ## Restoring the state of the DataLoader After resuming from a checkpoint, it may also be desirable to resume from a particular point in the active `DataLoader` if the state was saved during the middle of an epoch. You can use [`~Accelerator.skip_first_batches`] to do so. ```python from accelerate import Accelerator accelerator = Accelerator(project_dir="my/save/path") train_dataloader = accelerator.prepare(train_dataloader) accelerator.load_state("my_state") # Assume the checkpoint was saved 100 steps into the epoch skipped_dataloader = accelerator.skip_first_batches(train_dataloader, 100) # After the first iteration, go back to `train_dataloader` # First epoch for batch in skipped_dataloader: # Do something pass # Second epoch for batch in train_dataloader: # Do something pass ```
accelerate/docs/source/usage_guides/checkpoint.md/0
{ "file_path": "accelerate/docs/source/usage_guides/checkpoint.md", "repo_id": "accelerate", "token_count": 1156 }
2
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # In this folder we showcase various full examples using 🤗 Accelerate ## Simple NLP example The [nlp_example.py](./nlp_example.py) script is a simple example to train a Bert model on a classification task ([GLUE's MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398)). Prior to running it you should install 🤗 Dataset and 🤗 Transformers: ```bash pip install datasets evaluate transformers ``` The same script can be run in any of the following configurations: - single CPU or single GPU - multi GPUs (using PyTorch distributed mode) - (multi) TPUs - fp16 (mixed-precision) or fp32 (normal precision) To run it in each of these various modes, use the following commands: - single CPU: * from a server without GPU ```bash python ./nlp_example.py ``` * from any server by passing `cpu=True` to the `Accelerator`. ```bash python ./nlp_example.py --cpu ``` * from any server with Accelerate launcher ```bash accelerate launch --cpu ./nlp_example.py ``` - single GPU: ```bash python ./nlp_example.py # from a server with a GPU ``` - with fp16 (mixed-precision) * from any server by passing `mixed_precison=fp16` to the `Accelerator`. ```bash python ./nlp_example.py --mixed_precision fp16 ``` * from any server with Accelerate launcher ```bash accelerate launch --mixed_precision fp16 ./nlp_example.py - multi GPUs (using PyTorch distributed mode) * With Accelerate config and launcher ```bash accelerate config # This will create a config file on your server accelerate launch ./nlp_example.py # This will run the script on your server ``` * With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`) ```bash torchrun --nproc_per_node 2 ./nlp_example.py ``` - multi GPUs, multi node (several machines, using PyTorch distributed mode) * With Accelerate config and launcher, on each machine: ```bash accelerate config # This will create a config file on each server accelerate launch ./nlp_example.py # This will run the script on each server ``` * With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node: ```bash torchrun \ # python -m torch.distributed.run --nproc_per_node 2 \ --nnodes 2 \ --rdzv_id 2299 \ # A unique job id --rdzv_backend c10d \ --rdzv_endpoint master_node_ip_address:29500 \ ./nlp_example.py ``` - (multi) TPUs * With Accelerate config and launcher ```bash accelerate config # This will create a config file on your TPU server accelerate launch ./nlp_example.py # This will run the script on each server ``` * In PyTorch: Add an `xmp.spawn` line in your script as you usually do. ## Simple vision example The [cv_example.py](./cv_example.py) script is a simple example to fine-tune a ResNet-50 on a classification task ([Ofxord-IIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/)). The same script can be run in any of the following configurations: - single CPU or single GPU - multi GPUs (using PyTorch distributed mode) - (multi) TPUs - fp16 (mixed-precision) or fp32 (normal precision) Prior to running it you should install timm and torchvision: ```bash pip install timm torchvision ``` and you should download the data with the following commands: ```bash wget https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz tar -xzf images.tar.gz ``` To run it in each of these various modes, use the following commands: - single CPU: * from a server without GPU ```bash python ./cv_example.py --data_dir path_to_data ``` * from any server by passing `cpu=True` to the `Accelerator`. ```bash python ./cv_example.py --data_dir path_to_data --cpu ``` * from any server with Accelerate launcher ```bash accelerate launch --cpu ./cv_example.py --data_dir path_to_data ``` - single GPU: ```bash python ./cv_example.py # from a server with a GPU ``` - with fp16 (mixed-precision) * from any server by passing `mixed_precison=fp16` to the `Accelerator`. ```bash python ./cv_example.py --data_dir path_to_data --mixed_precison fp16 ``` * from any server with Accelerate launcher ```bash accelerate launch --mixed_precison fp16 ./cv_example.py --data_dir path_to_data - multi GPUs (using PyTorch distributed mode) * With Accelerate config and launcher ```bash accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml` accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on your server ``` * With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`) ```bash torchrun --nproc_per_node 2 ./cv_example.py --data_dir path_to_data ``` - multi GPUs, multi node (several machines, using PyTorch distributed mode) * With Accelerate config and launcher, on each machine: ```bash accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml` accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server ``` * With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node: ```bash torchrun \ # python -m torch.distributed.run --nproc_per_node 2 \ --nnodes 2 \ --rdzv_id 2299 \ # A unique job id --rdzv_backend c10d \ --rdzv_endpoint master_node_ip_address:29500 \ ./cv_example.py --data_dir path_to_data ``` - (multi) TPUs * With Accelerate config and launcher ```bash accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml` accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server ``` * In PyTorch: Add an `xmp.spawn` line in your script as you usually do. ### Simple vision example (GANs) - [huggan project](https://github.com/huggingface/community-events/tree/main/huggan) ### Using AWS SageMaker integration - [Examples showcasing AWS SageMaker integration of 🤗 Accelerate.](https://github.com/pacman100/accelerate-aws-sagemaker) ## Simple Multi-GPU Hardware Launcher [multigpu_remote_launcher.py](./multigpu_remote_launcher.py) is a minimal script that demonstrates launching accelerate on multiple remote GPUs, and with automatic hardware environment and dependency setup for reproducibility. You can easily customize the training function used, training arguments, hyperparameters, and type of compute hardware, and then run the script to automatically launch multi GPU training on remote hardware. This script uses [Runhouse](https://github.com/run-house/runhouse) to launch on self-hosted hardware (e.g. in your own cloud account or on-premise cluster) but there are other options for running remotely as well. Runhouse can be installed with `pip install runhouse`, and you can refer to [hardware setup](https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup) for hardware setup instructions, or this [Colab tutorial](https://colab.research.google.com/drive/1qVwYyLTCPYPSdz9ZX7BZl9Qm0A3j7RJe) for a more in-depth walkthrough. ## SLURM Scripts In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) and [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we present two scripts for running the examples on a machine with [SLURM](https://slurm.schedmd.com/documentation.html) workload manager. In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) the only parameter in the launcher that needs to be modified is `--num_processes`, which determines the number of GPUs we will use. In this case, using the environment variable `$SLURM_GPUS`, we indicate that we want to utilize all the GPUs available on the node we have requested. In [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we must specify the number of nodes that will be part of the training (`--num_machines`), how many GPUs we will use in total (`--num_processes`), the [`backend`](https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend), `--main_process_ip` which will be the address the master node and the `--main_process_port`. In both scripts, we run `activateEnviroment.sh` at the beginning. This script should contain the necessary instructions to initialize the environment for execution. Below, we show an example that loads the necessary libraries ([Environment modules](https://github.com/cea-hpc/modules)), activates the Python environment, and sets up various environment variables, most of them to run the scripts in offline mode in case we don't have internet connection from the cluster. ```bash # activateEnvironment.sh module purge module load anaconda3/2020.02 cuda/10.2 cudnn/8.0.5 nccl/2.9.9 arrow/7.0.0 openmpi source activate /home/nct01/nct01328/pytorch_antoni_local export HF_HOME=/gpfs/projects/nct01/nct01328/ export HF_LOCAL_HOME=/gpfs/projects/nct01/nct01328/HF_LOCAL export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 export PYTHONPATH=/home/nct01/nct01328/transformers-in-supercomputers:$PYTHONPATH export GPUS_PER_NODE=4 ``` ## Finer Examples While the first two scripts are extremely barebones when it comes to what you can do with accelerate, more advanced features are documented in two other locations. ### `by_feature` examples These scripts are *individual* examples highlighting one particular feature or use-case within Accelerate. They all stem from the [nlp_example.py](./nlp_example.py) script, and any changes or modifications is denoted with a `# New Code #` comment. Read the README.md file located in the `by_feature` folder for more information. ### `complete_*` examples These two scripts contain *every* single feature currently available in Accelerate in one place, as one giant script. New arguments that can be passed include: - `checkpointing_steps`, whether the various states should be saved at the end of every `n` steps, or `"epoch"` for each epoch. States are then saved to folders named `step_{n}` or `epoch_{n}` - `resume_from_checkpoint`, should be used if you want to resume training off of a previous call to the script and passed a `checkpointing_steps` to it. - `with_tracking`, should be used if you want to log the training run using all available experiment trackers in your environment. Currently supported trackers include TensorBoard, Weights and Biases, and CometML.
accelerate/examples/README.md/0
{ "file_path": "accelerate/examples/README.md", "repo_id": "accelerate", "token_count": 4003 }
3
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a ResNet50 on the Oxford-IIT Pet Dataset # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## # Function to get the label from the filename def extract_label(fname): stem = fname.split(os.path.sep)[-1] return re.search(r"^(.*)_\d+\.jpg$", stem).groups()[0] class PetsDataset(Dataset): def __init__(self, file_names, image_transform=None, label_to_id=None): self.file_names = file_names self.image_transform = image_transform self.label_to_id = label_to_id def __len__(self): return len(self.file_names) def __getitem__(self, idx): fname = self.file_names[idx] raw_image = PIL.Image.open(fname) image = raw_image.convert("RGB") if self.image_transform is not None: image = self.image_transform(image) label = extract_label(fname) if self.label_to_id is not None: label = self.label_to_id[label] return {"image": image, "label": label} def training_function(config, args): # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) image_size = config["image_size"] if not isinstance(image_size, (list, tuple)): image_size = (image_size, image_size) # Grab all the image filenames file_names = [os.path.join(args.data_dir, fname) for fname in os.listdir(args.data_dir) if fname.endswith(".jpg")] # Build the label correspondences all_labels = [extract_label(fname) for fname in file_names] id_to_label = list(set(all_labels)) id_to_label.sort() label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)} # Set the seed before splitting the data. np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Split our filenames between train and validation random_perm = np.random.permutation(len(file_names)) cut = int(0.8 * len(file_names)) train_split = random_perm[:cut] eval_split = random_perm[cut:] # For training we use a simple RandomResizedCrop train_tfm = Compose([RandomResizedCrop(image_size, scale=(0.5, 1.0)), ToTensor()]) train_dataset = PetsDataset( [file_names[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id ) # For evaluation, we use a deterministic Resize eval_tfm = Compose([Resize(image_size), ToTensor()]) eval_dataset = PetsDataset([file_names[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id) # Instantiate dataloaders. train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size, num_workers=4) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Freezing the base model for param in model.parameters(): param.requires_grad = False for param in model.get_classifier().parameters(): param.requires_grad = True # We normalize the batches of images to be a bit faster. mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None].to(accelerator.device) std = torch.tensor(model.default_cfg["std"])[None, :, None, None].to(accelerator.device) # Instantiate optimizer optimizer = torch.optim.Adam(params=model.parameters(), lr=lr / 25) # Instantiate learning rate scheduler lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=lr, epochs=num_epochs, steps_per_epoch=len(train_dataloader)) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, batch["label"]) accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() accurate = 0 num_elems = 0 for _, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std with torch.no_grad(): outputs = model(inputs) predictions = outputs.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["label"])) accurate_preds = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() eval_metric = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}") def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument("--data_dir", required=True, help="The data folder on disk.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/cv_example.py/0
{ "file_path": "accelerate/examples/cv_example.py", "repo_id": "accelerate", "token_count": 3212 }
4
[tool.black] line-length = 119 target-version = ['py37'] [tool.ruff] # Never enforce `E501` (line length violations). ignore = ["E501", "E741", "W605"] select = ["E", "F", "I", "W"] line-length = 119 # Ignore import violations in all `__init__.py` files. [tool.ruff.per-file-ignores] "__init__.py" = ["E402", "F401", "F403", "F811"] [tool.ruff.isort] lines-after-imports = 2 known-first-party = ["accelerate"]
accelerate/pyproject.toml/0
{ "file_path": "accelerate/pyproject.toml", "repo_id": "accelerate", "token_count": 165 }
5
#!/usr/bin/env python # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from .config_args import default_config_file, load_config_from_file from .config_utils import SubcommandHelpFormatter description = "Update an existing config file with the latest defaults while maintaining the old configuration." def update_config(args): """ Update an existing config file with the latest defaults while maintaining the old configuration. """ config_file = args.config_file if config_file is None and Path(default_config_file).exists(): config_file = default_config_file elif not Path(config_file).exists(): raise ValueError(f"The passed config file located at {config_file} doesn't exist.") config = load_config_from_file(config_file) if config_file.endswith(".json"): config.to_json_file(config_file) else: config.to_yaml_file(config_file) return config_file def update_command_parser(parser, parents): parser = parser.add_parser("update", parents=parents, help=description, formatter_class=SubcommandHelpFormatter) parser.add_argument( "--config_file", default=None, help=( "The path to the config file to update. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), ) parser.set_defaults(func=update_config_command) return parser def update_config_command(args): config_file = update_config(args) print(f"Sucessfully updated the configuration file at {config_file}.")
accelerate/src/accelerate/commands/config/update.py/0
{ "file_path": "accelerate/src/accelerate/commands/config/update.py", "repo_id": "accelerate", "token_count": 774 }
6
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import logging import os from .state import PartialState class MultiProcessAdapter(logging.LoggerAdapter): """ An adapter to assist with logging in multiprocess. `log` takes in an additional `main_process_only` kwarg, which dictates whether it should be called on all processes or only the main executed one. Default is `main_process_only=True`. Does not require an `Accelerator` object to be created first. """ @staticmethod def _should_log(main_process_only): "Check if log should be performed" state = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def log(self, level, msg, *args, **kwargs): """ Delegates logger call after checking if we should log. Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes or only the main executed one. Default is `True` if not passed Also accepts "in_order", which if `True` makes the processes log one by one, in order. This is much easier to read, but comes at the cost of sometimes needing to wait for the other processes. Default is `False` to not break with the previous behavior. `in_order` is ignored if `main_process_only` is passed. """ if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) main_process_only = kwargs.pop("main_process_only", True) in_order = kwargs.pop("in_order", False) if self.isEnabledFor(level): if self._should_log(main_process_only): msg, kwargs = self.process(msg, kwargs) self.logger.log(level, msg, *args, **kwargs) elif in_order: state = PartialState() for i in range(state.num_processes): if i == state.process_index: msg, kwargs = self.process(msg, kwargs) self.logger.log(level, msg, *args, **kwargs) state.wait_for_everyone() @functools.lru_cache(None) def warning_once(self, *args, **kwargs): """ This method is identical to `logger.warning()`, but will emit the warning with the same message only once Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache. The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to another type of cache that includes the caller frame information in the hashing function. """ self.warning(*args, **kwargs) def get_logger(name: str, log_level: str = None): """ Returns a `logging.Logger` for `name` that can handle multiprocessing. If a log should be called on all processes, pass `main_process_only=False` If a log should be called on all processes and in order, also pass `in_order=True` Args: name (`str`): The name for the logger, such as `__file__` log_level (`str`, *optional*): The log level to use. If not passed, will default to the `LOG_LEVEL` environment variable, or `INFO` if not Example: ```python >>> from accelerate.logging import get_logger >>> from accelerate import Accelerator >>> logger = get_logger(__name__) >>> accelerator = Accelerator() >>> logger.info("My log", main_process_only=False) >>> logger.debug("My log", main_process_only=True) >>> logger = get_logger(__name__, log_level="DEBUG") >>> logger.info("My log") >>> logger.debug("My second log") >>> array = ["a", "b", "c", "d"] >>> letter_at_rank = array[accelerator.process_index] >>> logger.info(letter_at_rank, in_order=True) ``` """ if log_level is None: log_level = os.environ.get("ACCELERATE_LOG_LEVEL", None) logger = logging.getLogger(name) if log_level is not None: logger.setLevel(log_level.upper()) logger.root.setLevel(log_level.upper()) return MultiProcessAdapter(logger, {})
accelerate/src/accelerate/logging.py/0
{ "file_path": "accelerate/src/accelerate/logging.py", "repo_id": "accelerate", "token_count": 1789 }
7
#!/usr/bin/env python # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.test_utils.testing import assert_exception from accelerate.utils.dataclasses import DistributedType from accelerate.utils.operations import ( DistributedOperationException, broadcast, gather, gather_object, pad_across_processes, reduce, ) def create_tensor(state): return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device) def test_gather(state): tensor = create_tensor(state) gathered_tensor = gather(tensor) assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1)) def test_gather_object(state): obj = [state.process_index] gathered_obj = gather_object(obj) assert len(gathered_obj) == state.num_processes, f"{gathered_obj}, {len(gathered_obj)} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes)), f"{gathered_obj} != {list(range(state.num_processes))}" def test_gather_non_contigous(state): # Create a non-contiguous tensor tensor = torch.arange(12).view(4, 3).t().to(state.device) assert not tensor.is_contiguous() # Shouldn't error out _ = gather(tensor) def test_broadcast(state): tensor = create_tensor(state) broadcasted_tensor = broadcast(tensor) assert broadcasted_tensor.shape == torch.Size([state.num_processes]) assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1)) def test_pad_across_processes(state): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: tensor = torch.arange(state.num_processes + 1).to(state.device) else: tensor = torch.arange(state.num_processes).to(state.device) padded_tensor = pad_across_processes(tensor) assert padded_tensor.shape == torch.Size([state.num_processes + 1]) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0, state.num_processes)) + [0] def test_reduce_sum(state): # For now runs on only two processes if state.num_processes != 2: return tensor = create_tensor(state) reduced_tensor = reduce(tensor, "sum") truth_tensor = torch.tensor([4.0, 6]).to(state.device) assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}" def test_reduce_mean(state): # For now runs on only two processes if state.num_processes != 2: return tensor = create_tensor(state) reduced_tensor = reduce(tensor, "mean") truth_tensor = torch.tensor([2.0, 3]).to(state.device) assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}" def test_op_checker(state): # Must be in a distributed state if state.distributed_type == DistributedType.NO: return state.debug = True # `pad_across_processes` if state.process_index == 0: data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} else: data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4, 5]]]).to(state.device)} with assert_exception(DistributedOperationException): pad_across_processes(data, dim=0) # `reduce` if state.process_index == 0: data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} else: data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)} with assert_exception(DistributedOperationException): reduce(data) # `broadcast` if state.process_index == 0: data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} else: data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)} with assert_exception(DistributedOperationException): broadcast(data) state.debug = False def _mp_fn(index): # For xla_spawn (TPUs) main() def main(): state = PartialState() state.print(f"State: {state}") state.print("testing gather") test_gather(state) state.print("testing gather_object") test_gather_object(state) state.print("testing gather non-contigous") test_gather_non_contigous(state) state.print("testing broadcast") test_broadcast(state) state.print("testing pad_across_processes") test_pad_across_processes(state) state.print("testing reduce_sum") test_reduce_sum(state) state.print("testing reduce_mean") test_reduce_mean(state) state.print("testing op_checker") test_op_checker(state) if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/test_ops.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/test_ops.py", "repo_id": "accelerate", "token_count": 2004 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A collection of utilities for ensuring that training can always occur. Heavily influenced by the [toma](https://github.com/BlackHC/toma) library. """ import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def release_memory(*objects): """ Releases memory from `objects` by setting them to `None` and calls `gc.collect()` and `torch.cuda.empty_cache()`. Returned objects should be reassigned to the same variables. Args: objects (`Iterable`): An iterable of objects Returns: A list of `None` objects to replace `objects` Example: ```python >>> import torch >>> from accelerate.utils import release_memory >>> a = torch.ones(1000, 1000).cuda() >>> b = torch.ones(1000, 1000).cuda() >>> a, b = release_memory(a, b) ``` """ if not isinstance(objects, list): objects = list(objects) for i in range(len(objects)): objects[i] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def should_reduce_batch_size(exception: Exception) -> bool: """ Checks if `exception` relates to CUDA out-of-memory, CUDNN not supported, or CPU out-of-memory Args: exception (`Exception`): An exception """ _statements = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(exception, RuntimeError) and len(exception.args) == 1: return any(err in exception.args[0] for err in _statements) return False def find_executable_batch_size(function: callable = None, starting_batch_size: int = 128): """ A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or CUDNN, the batch size is cut in half and passed to `function` `function` must take in a `batch_size` parameter as its first argument. Args: function (`callable`, *optional*): A function to wrap starting_batch_size (`int`, *optional*): The batch size to try and fit into memory Example: ```python >>> from accelerate.utils import find_executable_batch_size >>> @find_executable_batch_size(starting_batch_size=128) ... def train(batch_size, model, optimizer): ... ... >>> train(model, optimizer) ``` """ if function is None: return functools.partial(find_executable_batch_size, starting_batch_size=starting_batch_size) batch_size = starting_batch_size def decorator(*args, **kwargs): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() params = list(inspect.signature(function).parameters.keys()) # Guard against user error if len(params) < (len(args) + 1): arg_str = ", ".join([f"{arg}={value}" for arg, value in zip(params[1:], args[1:])]) raise TypeError( f"Batch size was passed into `{function.__name__}` as the first argument when called." f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero.") try: return function(batch_size, *args, **kwargs) except Exception as e: if should_reduce_batch_size(e): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
accelerate/src/accelerate/utils/memory.py/0
{ "file_path": "accelerate/src/accelerate/utils/memory.py", "repo_id": "accelerate", "token_count": 2036 }
9
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import gc import os import unittest from collections import OrderedDict from tempfile import TemporaryDirectory import torch import torch.nn as nn from transformers import AutoModelForCausalLM, AutoTokenizer from accelerate.big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from accelerate.hooks import remove_hook_from_submodules from accelerate.test_utils import require_bnb, require_cuda, require_mps, require_multi_gpu, slow from accelerate.utils import is_torch_version, offload_state_dict class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class LinearWithNonPersistentBuffers(nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.register_buffer("weight", torch.ones((out_features, in_features), **factory_kwargs)) if bias: self.register_buffer("bias", torch.ones(out_features, **factory_kwargs), persistent=False) else: self.register_buffer("bias", None) def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.nn.functional.linear(input, self.weight, self.bias) class ModelForTestNonPersistentBuffers(nn.Module): def __init__(self): super().__init__() self.linear1 = LinearWithNonPersistentBuffers(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = LinearWithNonPersistentBuffers(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class ModelForTestCopy(nn.Module): def __init__(self, id: int): super().__init__() self.id = id self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))), self.id class ModelForTestTiedWeights(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(4, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 4) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class BiggerModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.linear2 = nn.Linear(4, 5) self.batchnorm = nn.BatchNorm1d(5) self.linear3 = nn.Linear(5, 6) self.linear4 = nn.Linear(6, 5) def forward(self, x): return self.linear4(self.linear3(self.batchnorm(self.linear2(self.linear1(x))))) # To test preload_module_classes class ModuleWithUnusedSubModules(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.linear = nn.Linear(input_dim, output_dim) def forward(self, x): return x @ self.linear.weight.t() + self.linear.bias class ModelWithUnusedSubModulesForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = ModuleWithUnusedSubModules(3, 4) self.linear2 = ModuleWithUnusedSubModules(4, 5) self.batchnorm = nn.BatchNorm1d(5) self.linear3 = ModuleWithUnusedSubModules(5, 6) self.linear4 = ModuleWithUnusedSubModules(6, 5) def forward(self, x): return self.linear4(self.linear3(self.batchnorm(self.linear2(self.linear1(x))))) class BigModelingTester(unittest.TestCase): def test_init_empty_weights(self): # base use with init_empty_weights(): module = nn.Linear(4, 5) self.assertEqual(module.weight.device, torch.device("meta")) # base use with buffers, they are not touched with init_empty_weights(): module = nn.BatchNorm1d(4) self.assertEqual(module.weight.device, torch.device("meta")) self.assertEqual(module.running_mean.device, torch.device("cpu")) # Use with include_buffers=True register_parameter_func = nn.Module.register_parameter register_buffer_func = nn.Module.register_buffer with init_empty_weights(include_buffers=True): module = nn.BatchNorm1d(4) # nn.Module.register_parameter/buffer shouldn't be changed with torch >= 2.0 if is_torch_version(">=", "2.0"): self.assertEqual(register_parameter_func, nn.Module.register_parameter) self.assertEqual(register_buffer_func, nn.Module.register_buffer) self.assertEqual(module.weight.device, torch.device("meta")) self.assertEqual(module.running_mean.device, torch.device("meta")) # Double check we didn't break PyTorch module = nn.BatchNorm1d(4) self.assertEqual(module.weight.device, torch.device("cpu")) self.assertEqual(module.running_mean.device, torch.device("cpu")) def test_init_empty_weights_very_large_model(self): # This is a 100 billion parameters model. with init_empty_weights(): _ = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) @require_cuda def test_init_on_device_cuda(self): device = torch.device("cuda:0") with init_on_device(device): model = nn.Linear(10, 10) self.assertEqual(model.weight.device, device) self.assertEqual(model.weight.device, device) @require_mps def test_init_on_device_mps(self): device = torch.device("mps:0") with init_on_device(device): model = nn.Linear(10, 10) self.assertEqual(model.weight.device, device) self.assertEqual(model.weight.device, device) def test_cpu_offload(self): model = ModelForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") cpu_offload(model, execution_device=device) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) cpu_offload(model, execution_device=device, offload_buffers=True) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) def test_cpu_offload_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") cpu_offload(model, execution_device=device, preload_module_classes=["ModuleWithUnusedSubModules"]) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) cpu_offload( model, execution_device=device, offload_buffers=True, preload_module_classes=["ModuleWithUnusedSubModules"], ) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) @slow @require_cuda def test_cpu_offload_gpt2(self): tokenizer = AutoTokenizer.from_pretrained("gpt2") inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(0) gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") cpu_offload(gpt2, execution_device=0) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) def test_disk_offload(self): model = ModelForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") with TemporaryDirectory() as tmp_dir: disk_offload(model, tmp_dir, execution_device=device) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) with TemporaryDirectory() as tmp_dir: disk_offload(model, tmp_dir, execution_device=device, offload_buffers=True) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) def test_disk_offload_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") with TemporaryDirectory() as tmp_dir: disk_offload( model, tmp_dir, execution_device=device, preload_module_classes=["ModuleWithUnusedSubModules"] ) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) with TemporaryDirectory() as tmp_dir: disk_offload( model, tmp_dir, execution_device=device, offload_buffers=True, preload_module_classes=["ModuleWithUnusedSubModules"], ) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) @slow @require_cuda def test_disk_offload_gpt2(self): tokenizer = AutoTokenizer.from_pretrained("gpt2") inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(0) gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") with TemporaryDirectory() as tmp_dir: disk_offload(gpt2, tmp_dir, execution_device=0) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) @require_cuda def test_dispatch_model(self): model = ModelForTest() device_map = {"linear1": "disk", "batchnorm": "cpu", "linear2": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_dispatch_model_with_non_persistent_buffers(self): model = ModelForTestNonPersistentBuffers() device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": "disk"} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir, offload_buffers=True) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_mps def test_dispatch_model_mps(self): model = ModelForTest() device_map = {"linear1": "mps", "batchnorm": "disk", "linear2": "disk"} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_dispatch_model_tied_weights(self): model = ModelForTestTiedWeights() model.linear1.weight = model.linear2.weight device_map = {"linear1": 0, "batchnorm": 0, "linear2": 0} dispatch_model(model, device_map) self.assertIs(model.linear2.weight, model.linear1.weight) @require_multi_gpu def test_dispatch_model_tied_weights_memory(self): # Test that we do not duplicate tied weights at any point during dispatch_model call. torch.cuda.empty_cache() # Needed in case we run several tests in a row. model = nn.Sequential( OrderedDict( [ ("linear0", nn.Linear(5000, 5000, bias=False)), ("linear1", nn.Linear(5000, 5000, bias=False)), ("linear2", nn.Linear(5000, 5000, bias=False)), ("linear3", nn.Linear(5000, 5000, bias=False)), ("linear4", nn.Linear(5000, 5000, bias=False)), ] ) ) model.linear2.weight = model.linear0.weight model.linear3.weight = model.linear0.weight model.linear4.weight = model.linear0.weight x = torch.randn(5, 5000) with torch.no_grad(): expected = model(x) # We should need only 5000 * 5000 * 32 // 8 * 1e-6 = 100 MB on the device 0 for the four linear weights. device_map = {"linear0": 0, "linear1": 1, "linear2": 0, "linear3": 0, "linear4": 0} # Just to intialize CUDA context. a = torch.rand(5).to("cuda:0") # noqa: F841 free_memory_bytes = torch.cuda.mem_get_info("cuda:0")[0] required_memory_bytes = 5000 * 5000 * (32 // 8) # Leaving 50 MB of free memory for possible buffers, etc. n_vals = (free_memory_bytes - required_memory_bytes - int(50e6)) // (32 // 8) foo = torch.rand(n_vals, device="cuda:0") # noqa: F841 # If this does OOM: there is an issue in somewhere in dispatch_model, memory of tied weights is duplicated. try: dispatch_model(model, device_map) except torch.cuda.OutOfMemoryError as e: raise torch.cuda.OutOfMemoryError( f"OOM error in dispatch_model. This is a bug and should not happen, see test_dispatch_model_tied_weights_memory. {e}" ) except Exception as e: raise e with torch.no_grad(): output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_dispatch_model_tied_weights_memory_with_nested_offload_cpu(self): # Test that we do not duplicate tied weights at any point during dispatch_model call. torch.cuda.empty_cache() # Needed in case we run several tests in a row. class SubModule(torch.nn.Module): def __init__(self, ref_to_parameter): super().__init__() self.parameter = ref_to_parameter def forward(self, x): return x + torch.max(self.parameter) class LinearModuleAndSubModule(torch.nn.Linear): def __init__(self, in_features, out_features): super().__init__(in_features, out_features, bias=False) self.weight_submodule = SubModule(self.weight) self.weight_submodule2 = SubModule(self.weight) self.weight_submodule3 = SubModule(self.weight) self.weight_submodule4 = SubModule(self.weight) def forward(self, x): a = torch.nn.functional.linear(self.weight_submodule(x), self.weight) b = torch.nn.functional.linear(self.weight_submodule2(x), self.weight) c = torch.nn.functional.linear(self.weight_submodule3(x), self.weight) d = torch.nn.functional.linear(self.weight_submodule4(x), self.weight) return a + b + c + d class ModelWithSubmodules(torch.nn.Module): def __init__(self): super().__init__() self.compute = LinearModuleAndSubModule(5000, 5000) self.compute1 = LinearModuleAndSubModule(5000, 5000) def forward(self, x): a = self.compute(x) b = self.compute1(x) return a + b # We should need only 2 * 5000 * 5000 * 32 // 8 * 1e-6 = 200 MB on the device 0 for the whole model forward, and not 600 MB. device_map = {"compute": 0, "compute1": "cpu"} model = ModelWithSubmodules() x = torch.randn(1, 5000) with torch.no_grad(): expected = model(x) # Just to intialize CUDA context. a = torch.rand(5).to("cuda:0") # noqa: F841 free_memory_bytes = torch.cuda.mem_get_info("cuda:0")[0] required_memory_bytes = 2 * 5000 * 5000 * (32 // 8) # 200 MB # Leaving 150 MB of free memory for possible buffers, etc. n_vals = (free_memory_bytes - required_memory_bytes - int(150e6)) // (32 // 8) foo = torch.rand(n_vals, device="cuda:0") # noqa: F841 free_memory_bytes_before_dispatch = torch.cuda.mem_get_info("cuda:0")[0] dispatch_model(model, device_map) free_memory_bytes_after_dispatch = torch.cuda.mem_get_info("cuda:0")[0] self.assertTrue((free_memory_bytes_after_dispatch - free_memory_bytes_before_dispatch) * 1e-6 < 130) original_pointer = model.compute1._hf_hook.weights_map["weight"].data_ptr() with torch.no_grad(): try: output = model(x) except torch.cuda.OutOfMemoryError as e: raise torch.cuda.OutOfMemoryError( f"OOM error in dispatch_model. This is a bug and should not happen, see test_dispatch_model_tied_weights_memory_with_nested_offload_cpu. {e}" ) except Exception as e: raise e self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) torch.cuda.empty_cache() free_memory_bytes_after_infer = torch.cuda.mem_get_info("cuda:0")[0] # Check that we have no more references on GPU for the offloaded tied weight. self.assertTrue(len(model.compute1.weight_submodule._hf_hook.tied_params_map[original_pointer]) == 0) self.assertTrue(len(model.compute1._hf_hook.tied_params_map[original_pointer]) == 0) self.assertTrue((free_memory_bytes_after_infer - free_memory_bytes_after_dispatch) * 1e-6 < 130) # Test is flacky otherwise. del model gc.collect() @require_cuda def test_dispatch_model_tied_weights_memory_with_nested_offload_disk(self): # Test that we do not duplicate tied weights at any point during dispatch_model call. torch.cuda.empty_cache() # Needed in case we run several tests in a row. class SubModule(torch.nn.Module): def __init__(self, ref_to_parameter): super().__init__() self.parameter = ref_to_parameter def forward(self, x): return x + torch.max(self.parameter) class LinearModuleAndSubModule(torch.nn.Linear): def __init__(self, in_features, out_features): super().__init__(in_features, out_features, bias=False) self.weight_submodule = SubModule(self.weight) self.weight_submodule2 = SubModule(self.weight) self.weight_submodule3 = SubModule(self.weight) self.weight_submodule4 = SubModule(self.weight) def forward(self, x): a = torch.nn.functional.linear(self.weight_submodule(x), self.weight) b = torch.nn.functional.linear(self.weight_submodule2(x), self.weight) c = torch.nn.functional.linear(self.weight_submodule3(x), self.weight) d = torch.nn.functional.linear(self.weight_submodule4(x), self.weight) return a + b + c + d class ModelWithSubmodules(torch.nn.Module): def __init__(self): super().__init__() self.compute = LinearModuleAndSubModule(5000, 5000) self.compute1 = LinearModuleAndSubModule(5000, 5000) def forward(self, x): a = self.compute(x) b = self.compute1(x) return a + b # We should need only 2 * 5000 * 5000 * 32 // 8 * 1e-6 = 200 MB on the device 0 for the whole model forward, and not 600 MB. device_map = {"compute": 0, "compute1": "disk"} model = ModelWithSubmodules() x = torch.randn(1, 5000) with torch.no_grad(): expected = model(x) # Just to intialize CUDA context. a = torch.rand(5).to("cuda:0") # noqa: F841 free_memory_bytes = torch.cuda.mem_get_info("cuda:0")[0] required_memory_bytes = 2 * 5000 * 5000 * (32 // 8) # 200 MB # Leaving 150 MB of free memory for possible buffers, etc. n_vals = (free_memory_bytes - required_memory_bytes - int(200e6)) // (32 // 8) foo = torch.rand(n_vals, device="cuda:0") # noqa: F841 free_memory_bytes_before_dispatch = torch.cuda.mem_get_info("cuda:0")[0] with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) free_memory_bytes_after_dispatch = torch.cuda.mem_get_info("cuda:0")[0] self.assertTrue((free_memory_bytes_after_dispatch - free_memory_bytes_before_dispatch) * 1e-6 < 130) with torch.no_grad(): try: output = model(x) except torch.cuda.OutOfMemoryError as e: raise torch.cuda.OutOfMemoryError( f"OOM error in dispatch_model. This is a bug and should not happen, see test_dispatch_model_tied_weights_memory_with_nested_offload_disk. {e}" ) except Exception as e: raise e self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) torch.cuda.empty_cache() free_memory_bytes_after_infer = torch.cuda.mem_get_info("cuda:0")[0] # Check that we have no more references on GPU for the offloaded tied weight. n_non_empty = 0 for pointer, pointer_dict in model.compute1.weight_submodule._hf_hook.tied_params_map.items(): if len(pointer_dict) > 0: n_non_empty += 1 self.assertTrue(n_non_empty == 1) # `compute` layer one. n_non_empty = 0 for pointer, pointer_dict in model.compute1._hf_hook.tied_params_map.items(): if len(pointer_dict) > 0: n_non_empty += 1 self.assertTrue(n_non_empty == 1) # `compute` layer one. self.assertTrue((free_memory_bytes_after_infer - free_memory_bytes_after_dispatch) * 1e-6 < 130) @require_multi_gpu def test_dispatch_model_multi_gpu(self): model = BiggerModelForTest() device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_dispatch_model_copy(self): original_model = ModelForTestCopy(id=1) device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 0} x = torch.randn(2, 3) expected, original_output_id = original_model(x) dispatch_model(original_model, device_map) copied_model = copy.deepcopy(original_model) copied_model.id = 2 output, copied_output_id = copied_model(x) self.assertEqual(original_model.id, original_output_id) self.assertEqual(copied_model.id, copied_output_id) self.assertFalse(copied_model.linear1.forward is original_model.linear1.forward) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_dispatch_model_move_offloaded_model(self): model = ModelForTest() device_map = {"linear1": "disk", "batchnorm": "cpu", "linear2": 0} with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) with self.assertRaises(RuntimeError): model.to(0) @require_multi_gpu def test_dispatch_model_move_model_warning(self): model = ModelForTest() device_map = {"linear1": 0, "batchnorm": 0, "linear2": 1} with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) with self.assertLogs("accelerate.big_modeling", level="WARNING"): model.to("cpu") with self.assertLogs("accelerate.big_modeling", level="WARNING"): model.cuda(0) with self.assertRaises(RuntimeError): x = torch.randn(2, 3) model(x) @slow @require_multi_gpu def test_dispatch_model_gpt2_on_two_gpus(self): tokenizer = AutoTokenizer.from_pretrained("gpt2") inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(0) gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") # Dispatch on GPUs 0 and 1 device_map = { "transformer.wte": 0, "transformer.wpe": 0, "transformer.ln_f": 1, "lm_head": 0, } for i in range(12): device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1 gpt2 = dispatch_model(gpt2, device_map) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) # Dispatch with a bit of CPU offload gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") for i in range(4): device_map[f"transformer.h.{i}"] = "cpu" gpt2 = dispatch_model(gpt2, device_map) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) # Dispatch with a bit of CPU and disk offload gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") for i in range(2): device_map[f"transformer.h.{i}"] = "disk" with TemporaryDirectory() as tmp_dir: state_dict = { k: p for k, p in gpt2.state_dict().items() if "transformer.h.0" in k or "transformer.h.1" in k } offload_state_dict(tmp_dir, state_dict) gpt2 = dispatch_model(gpt2, device_map, offload_dir=tmp_dir) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) @require_cuda def test_dispatch_model_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model( model, device_map, offload_dir=tmp_dir, preload_module_classes=["ModuleWithUnusedSubModules"] ) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_mps def test_dispatch_model_with_unused_submodules_mps(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "mps", "linear2": "mps", "batchnorm": "mps", "linear3": "mps", "linear4": "disk"} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model( model, device_map, offload_dir=tmp_dir, preload_module_classes=["ModuleWithUnusedSubModules"] ) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_multi_gpu def test_dispatch_model_with_unused_submodules_multi_gpu(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model( model, device_map, offload_dir=tmp_dir, preload_module_classes=["ModuleWithUnusedSubModules"] ) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_dispatch_model_force_hooks(self): model = ModelForTest() device_map = {"": 0} x = torch.randn(2, 3) expected = model(x) dispatch_model(model, device_map, force_hooks=True) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_load_checkpoint_and_dispatch(self): model = ModelForTest() device_map = {"linear1": "cpu", "batchnorm": "cpu", "linear2": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelForTest() new_model = load_checkpoint_and_dispatch(new_model, checkpoint, device_map=device_map) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.weight.device, torch.device(0)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_mps def test_load_checkpoint_and_dispatch_mps(self): model = ModelForTest() device_map = {"linear1": "mps", "batchnorm": "mps", "linear2": "disk"} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelForTest() new_model = load_checkpoint_and_dispatch( new_model, checkpoint, device_map=device_map, offload_folder=tmp_dir ) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.weight.device, torch.device("mps:0")) self.assertEqual(new_model.linear2.weight.device, torch.device("meta")) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_multi_gpu def test_load_checkpoint_and_dispatch_multi_gpu(self): model = BiggerModelForTest() device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = BiggerModelForTest() new_model = load_checkpoint_and_dispatch(new_model, checkpoint, device_map=device_map) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.weight.device, torch.device("meta")) self.assertEqual(new_model.linear3.weight.device, torch.device(0)) self.assertEqual(new_model.linear4.weight.device, torch.device(1)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_load_checkpoint_and_dispatch_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelWithUnusedSubModulesForTest() new_model = load_checkpoint_and_dispatch( new_model, checkpoint, device_map=device_map, preload_module_classes=["ModuleWithUnusedSubModules"] ) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear3.linear.weight.device, torch.device(0)) self.assertEqual(new_model.linear4.linear.weight.device, torch.device(0)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_mps def test_load_checkpoint_and_dispatch_with_unused_submodules_mps(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "mps", "linear2": "mps", "batchnorm": "mps", "linear3": "disk", "linear4": "disk"} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelWithUnusedSubModulesForTest() new_model = load_checkpoint_and_dispatch( new_model, checkpoint, device_map=device_map, preload_module_classes=["ModuleWithUnusedSubModules"], offload_folder=tmp_dir, ) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.linear.weight.device, torch.device("mps:0")) self.assertEqual(new_model.linear2.linear.weight.device, torch.device("mps:0")) self.assertEqual(new_model.linear3.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear4.linear.weight.device, torch.device("meta")) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_multi_gpu def test_load_checkpoint_and_dispatch_multi_gpu_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelWithUnusedSubModulesForTest() new_model = load_checkpoint_and_dispatch( new_model, checkpoint, device_map=device_map, preload_module_classes=["ModuleWithUnusedSubModules"] ) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear3.linear.weight.device, torch.device(0)) self.assertEqual(new_model.linear4.linear.weight.device, torch.device(1)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_cpu_offload_with_hook(self): model1 = torch.nn.Linear(4, 5) model1, hook1 = cpu_offload_with_hook(model1) self.assertEqual(model1.weight.device, torch.device("cpu")) inputs = torch.randn(3, 4) outputs = model1(inputs) self.assertEqual(outputs.device, torch.device(0)) self.assertEqual(model1.weight.device, torch.device(0)) hook1.offload() self.assertEqual(model1.weight.device, torch.device("cpu")) model2 = torch.nn.Linear(5, 5) model2, hook2 = cpu_offload_with_hook(model2, prev_module_hook=hook1) self.assertEqual(model2.weight.device, torch.device("cpu")) outputs = model1(inputs) self.assertEqual(outputs.device, torch.device(0)) self.assertEqual(model1.weight.device, torch.device(0)) outputs = model2(outputs) self.assertEqual(outputs.device, torch.device(0)) self.assertEqual(model1.weight.device, torch.device("cpu")) self.assertEqual(model2.weight.device, torch.device(0)) hook2.offload() self.assertEqual(model2.weight.device, torch.device("cpu")) @slow @require_bnb @require_multi_gpu def test_dispatch_model_bnb(self): """Tests that `dispatch_model` quantizes int8 layers""" from huggingface_hub import hf_hub_download from transformers import AutoConfig, AutoModel, BitsAndBytesConfig from transformers.utils.bitsandbytes import replace_with_bnb_linear with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin") model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map="balanced", ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) self.assertTrue(model.h[-1].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[-1].self_attention.query_key_value.weight.device.index == 1) @slow @require_bnb def test_dispatch_model_int8_simple(self): """Tests that `dispatch_model` quantizes int8 layers""" from huggingface_hub import hf_hub_download from transformers import AutoConfig, AutoModel, BitsAndBytesConfig from transformers.utils.bitsandbytes import replace_with_bnb_linear with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin") # test with auto model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map="auto", ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) # test with str device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": torch.device("cuda:0")}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) # test with torch.device device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": "cuda:0"}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) @slow @require_bnb def test_dipatch_model_fp4_simple(self): """Tests that `dispatch_model` quantizes fp4 layers""" from huggingface_hub import hf_hub_download from transformers import AutoConfig, AutoModel, BitsAndBytesConfig from transformers.utils.bitsandbytes import replace_with_bnb_linear with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) quantization_config = BitsAndBytesConfig(load_in_4bit=True) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin") # test with auto model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map="auto", ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) # test with str device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": torch.device("cuda:0")}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) # test with torch.device device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": "cuda:0"}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0)
accelerate/tests/test_big_modeling.py/0
{ "file_path": "accelerate/tests/test_big_modeling.py", "repo_id": "accelerate", "token_count": 20220 }
10
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.big_modeling import dispatch_model from accelerate.test_utils import assert_exception, device_count, execute_subprocess_async, require_multi_device from accelerate.utils import patch_environment class MultiDeviceTester(unittest.TestCase): def setUp(self): mod_file = inspect.getfile(accelerate.test_utils) self.test_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) self.data_loop_file_path = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"] ) self.operation_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_device def test_multi_device(self): print(f"Found {device_count} devices.") cmd = ["torchrun", f"--nproc_per_node={device_count}", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy()) @require_multi_device def test_multi_device_ops(self): print(f"Found {device_count} devices.") cmd = ["torchrun", f"--nproc_per_node={device_count}", self.operation_file_path] print(f"Command: {cmd}") with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy()) @require_multi_device def test_pad_across_processes(self): cmd = ["torchrun", f"--nproc_per_node={device_count}", inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy()) @require_multi_device def test_distributed_data_loop(self): """ This TestCase checks the behaviour that occurs during distributed training or evaluation, when the batch size does not evenly divide the dataset size. """ print(f"Found {device_count} devices, using 2 devices only") cmd = ["torchrun", f"--nproc_per_node={device_count}", self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices="0,1"): execute_subprocess_async(cmd, env=os.environ.copy()) if __name__ == "__main__": accelerator = Accelerator() shape = (accelerator.state.process_index + 2, 10) tensor = torch.randint(0, 10, shape).to(accelerator.device) error_msg = "" tensor1 = accelerator.pad_across_processes(tensor) if tensor1.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensor1.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensor1[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensor1[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." tensor2 = accelerator.pad_across_processes(tensor, pad_first=True) if tensor2.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensor2.shape} but should have {accelerator.state.num_processes + 1} at dim 0." index = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensor2[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensor2[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg) # Check device_map accelerator.print("Test `device_map` cannot be prepared.") class ModelForTest(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(3, 4) self.batchnorm = torch.nn.BatchNorm1d(4) self.linear2 = torch.nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 1} model = ModelForTest() dispatch_model(model, device_map=device_map) with assert_exception(ValueError, "You can't train a model that has been loaded with"): model = accelerator.prepare_model(model)
accelerate/tests/test_multigpu.py/0
{ "file_path": "accelerate/tests/test_multigpu.py", "repo_id": "accelerate", "token_count": 1928 }
11
.PHONY: style quality # make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!) export PYTHONPATH = src check_dirs := src tests scripts style: black --line-length 119 --target-version py310 $(check_dirs) setup.py isort $(check_dirs) setup.py quality: black --check --line-length 119 --target-version py310 $(check_dirs) setup.py isort --check-only $(check_dirs) setup.py flake8 --max-line-length 119 $(check_dirs) setup.py # Release stuff pre-release: python src/alignment/release.py pre-patch: python src/alignment/release.py --patch post-release: python src/alignment/release.py --post_release post-patch: python src/alignment/release.py --post_release --patch wheels: python setup.py bdist_wheel && python setup.py sdist wheels_clean: rm -rf build && rm -rf dist pypi_upload: python -m pip install twine twine upload dist/* -r pypi pypi_test_upload: python -m pip install twine twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
alignment-handbook/Makefile/0
{ "file_path": "alignment-handbook/Makefile", "repo_id": "alignment-handbook", "token_count": 363 }
12
# Instructions to Replicate Zephyr-7b-β As described in the Zephyr [technical report](https://huggingface.co/papers/2310.16944), training this model proceeds in two steps: 1. Apply SFT to fine-tune Mistral 7B on a filtered version of the UltraChat dataset ([link](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)). The result is an SFT model like [`zephyr-7b-sft-full`](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) or [`zephyr-7b-sft-qlora`](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora). 2. Align the SFT model to AI feedback via DPO on a preprocessed version of the UltraFeedback dataset ([link](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)). The result is an DPO model like [`zephyr-7b-dpo-full`](https://huggingface.co/alignment-handbook/zephyr-7b-dpo-full) or [`zephyr-7b-dpo-qlora`](https://huggingface.co/alignment-handbook/zephyr-7b-dpo-qlora). **Note:** after the release of Zephyr, the team at [Argilla](https://argilla.io) found that the source UltraFeedback dataset had a few thousand incorrect preference labels from GPT-4. Additionally, TRL's `SFTTrainer` had a bug in the learning rate scheduler which terminated training early. Accounting for these changes led us to find a better set of hyperparameters from those described in the technical report. In particular, for DPO training we found that training for 1 epoch with `beta=0.01` was suffucient to achieve comparable performance to `zephyr-7b-beta` (vs. 3 epochs with `beta=0.1`). See below for commands to train these models using either DeepSpeed ZeRO-3 or LoRA. ## Full training examples You will require 8 GPUs (80GB of VRAM) to train the full model. ```shell # Step 1 - SFT ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/deepspeed_zero3.yaml scripts/run_sft.py recipes/zephyr-7b-beta/sft/config_full.yaml # Step 2 - DPO ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/deepspeed_zero3.yaml scripts/run_dpo.py recipes/zephyr-7b-beta/dpo/config_full.yaml ``` ## QLoRA training examples ```shell # Step 1 - SFT ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/multi_gpu.yaml --num_processes=1 scripts/run_sft.py recipes/zephyr-7b-beta/sft/config_qlora.yaml --load_in_4bit=true # Step 2 - DPO ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/multi_gpu.yaml --num_processes=1 scripts/run_dpo.py recipes/zephyr-7b-beta/dpo/config_qlora.yaml ```
alignment-handbook/recipes/zephyr-7b-beta/README.md/0
{ "file_path": "alignment-handbook/recipes/zephyr-7b-beta/README.md", "repo_id": "alignment-handbook", "token_count": 888 }
13
# Model arguments model_name_or_path: alignment-handbook/zephyr-7b-sft-full # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.1 do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_accumulation_steps: 1 gradient_checkpointing: true hub_model_id: zephyr-7b-dpo-full learning_rate: 5.0e-7 log_level: info logging_steps: 10 lr_scheduler_type: linear max_length: 1024 max_prompt_length: 512 num_train_epochs: 3 optim: rmsprop output_dir: data/zephyr-7b-dpo-full per_device_train_batch_size: 8 per_device_eval_batch_size: 4 push_to_hub: true save_strategy: "no" save_total_limit: null seed: 42 warmup_ratio: 0.1
alignment-handbook/tests/fixtures/config_dpo_full.yaml/0
{ "file_path": "alignment-handbook/tests/fixtures/config_dpo_full.yaml", "repo_id": "alignment-handbook", "token_count": 329 }
14
# Hello world! We will now create the hello world of the ML world, building a model capable of solving MNIST dataset. Open `src/main.rs` and fill in this content: ```rust # extern crate candle_core; use candle_core::{Device, Result, Tensor}; struct Model { first: Tensor, second: Tensor, } impl Model { fn forward(&self, image: &Tensor) -> Result<Tensor> { let x = image.matmul(&self.first)?; let x = x.relu()?; x.matmul(&self.second) } } fn main() -> Result<()> { // Use Device::new_cuda(0)?; to use the GPU. let device = Device::Cpu; let first = Tensor::randn(0f32, 1.0, (784, 100), &device)?; let second = Tensor::randn(0f32, 1.0, (100, 10), &device)?; let model = Model { first, second }; let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?; let digit = model.forward(&dummy_image)?; println!("Digit {digit:?} digit"); Ok(()) } ``` Everything should now run with: ```bash cargo run --release ``` ## Using a `Linear` layer. Now that we have this, we might want to complexify things a bit, for instance by adding `bias` and creating the classical `Linear` layer. We can do as such ```rust # extern crate candle_core; # use candle_core::{Device, Result, Tensor}; struct Linear{ weight: Tensor, bias: Tensor, } impl Linear{ fn forward(&self, x: &Tensor) -> Result<Tensor> { let x = x.matmul(&self.weight)?; x.broadcast_add(&self.bias) } } struct Model { first: Linear, second: Linear, } impl Model { fn forward(&self, image: &Tensor) -> Result<Tensor> { let x = self.first.forward(image)?; let x = x.relu()?; self.second.forward(&x) } } ``` This will change the model running code into a new function ```rust # extern crate candle_core; # use candle_core::{Device, Result, Tensor}; # struct Linear{ # weight: Tensor, # bias: Tensor, # } # impl Linear{ # fn forward(&self, x: &Tensor) -> Result<Tensor> { # let x = x.matmul(&self.weight)?; # x.broadcast_add(&self.bias) # } # } # # struct Model { # first: Linear, # second: Linear, # } # # impl Model { # fn forward(&self, image: &Tensor) -> Result<Tensor> { # let x = self.first.forward(image)?; # let x = x.relu()?; # self.second.forward(&x) # } # } fn main() -> Result<()> { // Use Device::new_cuda(0)?; to use the GPU. // Use Device::Cpu; to use the CPU. let device = Device::cuda_if_available(0)?; // Creating a dummy model let weight = Tensor::randn(0f32, 1.0, (784, 100), &device)?; let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?; let first = Linear{weight, bias}; let weight = Tensor::randn(0f32, 1.0, (100, 10), &device)?; let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?; let second = Linear{weight, bias}; let model = Model { first, second }; let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?; // Inference on the model let digit = model.forward(&dummy_image)?; println!("Digit {digit:?} digit"); Ok(()) } ``` Now it works, it is a great way to create your own layers. But most of the classical layers are already implemented in [candle-nn](https://github.com/huggingface/candle/tree/main/candle-nn). ## Using `candle_nn`. For instance [Linear](https://github.com/huggingface/candle/blob/main/candle-nn/src/linear.rs) is already there. This Linear is coded with PyTorch layout in mind, to reuse better existing models out there, so it uses the transpose of the weights and not the weights directly. So instead we can simplify our example: ```bash cargo add --git https://github.com/huggingface/candle.git candle-nn ``` And rewrite our examples using it ```rust # extern crate candle_core; # extern crate candle_nn; use candle_core::{Device, Result, Tensor}; use candle_nn::{Linear, Module}; struct Model { first: Linear, second: Linear, } impl Model { fn forward(&self, image: &Tensor) -> Result<Tensor> { let x = self.first.forward(image)?; let x = x.relu()?; self.second.forward(&x) } } fn main() -> Result<()> { // Use Device::new_cuda(0)?; to use the GPU. let device = Device::Cpu; // This has changed (784, 100) -> (100, 784) ! let weight = Tensor::randn(0f32, 1.0, (100, 784), &device)?; let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?; let first = Linear::new(weight, Some(bias)); let weight = Tensor::randn(0f32, 1.0, (10, 100), &device)?; let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?; let second = Linear::new(weight, Some(bias)); let model = Model { first, second }; let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?; let digit = model.forward(&dummy_image)?; println!("Digit {digit:?} digit"); Ok(()) } ``` Feel free to modify this example to use `Conv2d` to create a classical convnet instead. Now that we have the running dummy code we can get to more advanced topics: - [For PyTorch users](../guide/cheatsheet.md) - [Running existing models](../inference/inference.md) - [Training models](../training/training.md)
candle/candle-book/src/guide/hello_world.md/0
{ "file_path": "candle/candle-book/src/guide/hello_world.md", "repo_id": "candle", "token_count": 2069 }
15
# candle Minimalist ML framework for Rust
candle/candle-core/README.md/0
{ "file_path": "candle/candle-core/README.md", "repo_id": "candle", "token_count": 11 }
16
use super::{Cpu, CpuF16}; #[cfg(target_arch = "x86")] use core::arch::x86::*; #[cfg(target_arch = "x86_64")] use core::arch::x86_64::*; use half::f16; pub struct CurrentCpu {} const STEP: usize = 32; const EPR: usize = 8; const ARR: usize = STEP / EPR; impl Cpu<ARR> for CurrentCpu { type Unit = __m256; type Array = [__m256; ARR]; const STEP: usize = STEP; const EPR: usize = EPR; fn n() -> usize { ARR } unsafe fn zero() -> Self::Unit { _mm256_setzero_ps() } unsafe fn zero_array() -> Self::Array { [Self::zero(); ARR] } unsafe fn from_f32(v: f32) -> Self::Unit { _mm256_set1_ps(v) } unsafe fn load(mem_addr: *const f32) -> Self::Unit { _mm256_loadu_ps(mem_addr) } unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit { _mm256_add_ps(a, b) } unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit { _mm256_add_ps(_mm256_mul_ps(b, c), a) } unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit) { _mm256_storeu_ps(mem_addr, a); } unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) { for i in 0..ARR / 2 { x[2 * i] = _mm256_add_ps(x[2 * i], x[2 * i + 1]); } for i in 0..ARR / 4 { x[4 * i] = _mm256_add_ps(x[4 * i], x[4 * i + 2]); } #[allow(clippy::reversed_empty_ranges)] for i in 0..ARR / 8 { x[8 * i] = _mm256_add_ps(x[8 * i], x[8 * i + 4]); } let t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), _mm256_extractf128_ps(x[0], 1)); let t1 = _mm_hadd_ps(t0, t0); *y = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); } } pub struct CurrentCpuF16 {} impl CpuF16<ARR> for CurrentCpuF16 { type Unit = __m256; type Array = [__m256; ARR]; const STEP: usize = STEP; const EPR: usize = EPR; fn n() -> usize { ARR } unsafe fn zero() -> Self::Unit { _mm256_setzero_ps() } unsafe fn zero_array() -> Self::Array { [Self::zero(); ARR] } unsafe fn from_f32(v: f32) -> Self::Unit { _mm256_set1_ps(v) } #[cfg(target_feature = "f16c")] unsafe fn load(mem_addr: *const f16) -> Self::Unit { _mm256_cvtph_ps(_mm_loadu_si128(mem_addr as *const __m128i)) } #[cfg(not(target_feature = "f16c"))] unsafe fn load(mem_addr: *const f16) -> Self::Unit { let mut tmp = [0.0f32; 8]; for i in 0..8 { tmp[i] = (*mem_addr.add(i)).to_f32(); } _mm256_loadu_ps(tmp.as_ptr()) } unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit { _mm256_add_ps(a, b) } unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit { _mm256_add_ps(_mm256_mul_ps(b, c), a) } #[cfg(target_feature = "f16c")] unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit) { _mm_storeu_si128(mem_addr as *mut __m128i, _mm256_cvtps_ph(a, 0)) } #[cfg(not(target_feature = "f16c"))] unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit) { let mut tmp = [0.0f32; 8]; _mm256_storeu_ps(tmp.as_mut_ptr(), a); for i in 0..8 { *mem_addr.add(i) = f16::from_f32(tmp[i]); } } unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) { let mut offset = ARR >> 1; for i in 0..offset { x[i] = _mm256_add_ps(x[i], x[offset + i]); } offset >>= 1; for i in 0..offset { x[i] = _mm256_add_ps(x[i], x[offset + i]); } offset >>= 1; for i in 0..offset { x[i] = _mm256_add_ps(x[i], x[offset + i]); } let t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), _mm256_extractf128_ps(x[0], 1)); let t1 = _mm_hadd_ps(t0, t0); *y = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); } }
candle/candle-core/src/cpu/avx.rs/0
{ "file_path": "candle/candle-core/src/cpu/avx.rs", "repo_id": "candle", "token_count": 2094 }
17