path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Ch3/08_Training_Dov2Vec_using_Gensim.ipynb
###Markdown In this notebook we demonstrate how to train a doc2vec model on your custom corpus. ###Code import warnings warnings.filterwarnings('ignore') from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize from pprint import pprint import nltk nltk.download('punkt') data = ["dog bites man", "man bites dog", "dog eats meat", "man eats food"] tagged_data = [TaggedDocument(words=word_tokenize(word.lower()), tags=[str(i)]) for i, word in enumerate(data)] tagged_data #dbow model_dbow = Doc2Vec(tagged_data,vector_size=20, min_count=1, epochs=2,dm=0) print(model_dbow.infer_vector(['man','eats','food']))#feature vector of man eats food model_dbow.wv.most_similar("man",topn=5)#top 5 most simlar words. model_dbow.wv.n_similarity(["dog"],["man"]) #dm model_dm = Doc2Vec(tagged_data, min_count=1, vector_size=20, epochs=2,dm=1) print("Inference Vector of man eats food\n ",model_dm.infer_vector(['man','eats','food'])) print("Most similar words to man in our corpus\n",model_dm.wv.most_similar("man",topn=5)) print("Similarity between man and dog: ",model_dm.wv.n_similarity(["dog"],["man"])) ###Output Inference Vector of man eats food [-1.6232852e-02 7.2173858e-03 -1.8149856e-02 1.9396329e-02 -1.0752306e-02 2.1854490e-02 -1.0387184e-02 5.0630077e-04 -1.0485582e-02 -2.3733964e-02 -2.1500139e-02 1.1494617e-02 -7.5761047e-05 -9.6794488e-03 -1.1162374e-02 2.3743976e-02 5.5664619e-03 -2.3691194e-02 1.7469568e-02 -8.0082249e-03] Most similar words to man in our corpus [('dog', 0.1856406182050705), ('meat', 0.12032049894332886), ('bites', 0.037392228841781616), ('food', -0.027777723968029022), ('eats', -0.29439008235931396)] Similarity between man and dog: 0.1856406 ###Markdown What happens when we compare between words which are not in the vocabulary? ###Code model_dm.wv.n_similarity(['covid'],['man']) ###Output _____no_output_____ ###Markdown Doc2VecIn this notebook we demonstrate how to train a doc2vec model on a custom corpus. ###Code # To install only the requirements of this notebook, uncomment the lines below and run this cell # =========================== !pip install gensim==3.6.0 !pip install spacy==2.2.4 !pip install nltk==3.2.5 # =========================== # To install the requirements for the entire chapter, uncomment the lines below and run this cell # =========================== # try : # import google.colab # !curl https://raw.githubusercontent.com/practical-nlp/practical-nlp/master/Ch3/ch3-requirements.txt | xargs -n 1 -L 1 pip install # except ModuleNotFoundError : # !pip install -r "ch3-requirements.txt" # =========================== import warnings warnings.filterwarnings('ignore') from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize from pprint import pprint import nltk nltk.download('punkt') data = ["dog bites man", "man bites dog", "dog eats meat", "man eats food"] tagged_data = [TaggedDocument(words=word_tokenize(word.lower()), tags=[str(i)]) for i, word in enumerate(data)] tagged_data #dbow model_dbow = Doc2Vec(tagged_data,vector_size=20, min_count=1, epochs=2,dm=0) print(model_dbow.infer_vector(['man','eats','food']))#feature vector of man eats food model_dbow.wv.most_similar("man",topn=5)#top 5 most simlar words. model_dbow.wv.n_similarity(["dog"],["man"]) #dm model_dm = Doc2Vec(tagged_data, min_count=1, vector_size=20, epochs=2,dm=1) print("Inference Vector of man eats food\n ",model_dm.infer_vector(['man','eats','food'])) print("Most similar words to man in our corpus\n",model_dm.wv.most_similar("man",topn=5)) print("Similarity between man and dog: ",model_dm.wv.n_similarity(["dog"],["man"])) ###Output Inference Vector of man eats food [-1.01456400e-02 -5.49062993e-03 -2.11605523e-02 -1.16518466e-02 3.54836439e-03 -7.06422143e-03 -9.27604642e-03 -2.83227302e-03 2.35041156e-02 -9.20040839e-05 2.26525515e-02 -8.97767674e-03 1.19706187e-02 -1.19358245e-02 1.34595484e-02 -2.25058738e-02 1.89621784e-02 -1.09350523e-02 1.78532843e-02 -1.49779590e-02] Most similar words to man in our corpus [('dog', 0.2630311846733093), ('eats', 0.23952406644821167), ('food', -0.11896046996116638), ('meat', -0.2617309093475342), ('bites', -0.306953489780426)] Similarity between man and dog: 0.26303118 ###Markdown What happens when we compare between words which are not in the vocabulary? ###Code model_dm.wv.n_similarity(['covid'],['man']) ###Output _____no_output_____ ###Markdown Doc2VecIn this notebook we demonstrate how to train a doc2vec model on a custom corpus. ###Code import warnings warnings.filterwarnings('ignore') from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize from pprint import pprint import nltk nltk.download('punkt') data = ["dog bites man", "man bites dog", "dog eats meat", "man eats food"] tagged_data = [TaggedDocument(words=word_tokenize(word.lower()), tags=[str(i)]) for i, word in enumerate(data)] tagged_data #dbow model_dbow = Doc2Vec(tagged_data,vector_size=20, min_count=1, epochs=2,dm=0) print(model_dbow.infer_vector(['man','eats','food']))#feature vector of man eats food model_dbow.wv.most_similar("man",topn=5)#top 5 most simlar words. model_dbow.wv.n_similarity(["dog"],["man"]) #dm model_dm = Doc2Vec(tagged_data, min_count=1, vector_size=20, epochs=2,dm=1) print("Inference Vector of man eats food\n ",model_dm.infer_vector(['man','eats','food'])) print("Most similar words to man in our corpus\n",model_dm.wv.most_similar("man",topn=5)) print("Similarity between man and dog: ",model_dm.wv.n_similarity(["dog"],["man"])) ###Output Inference Vector of man eats food [-1.6232852e-02 7.2173858e-03 -1.8149856e-02 1.9396329e-02 -1.0752306e-02 2.1854490e-02 -1.0387184e-02 5.0630077e-04 -1.0485582e-02 -2.3733964e-02 -2.1500139e-02 1.1494617e-02 -7.5761047e-05 -9.6794488e-03 -1.1162374e-02 2.3743976e-02 5.5664619e-03 -2.3691194e-02 1.7469568e-02 -8.0082249e-03] Most similar words to man in our corpus [('dog', 0.1856406182050705), ('meat', 0.12032049894332886), ('bites', 0.037392228841781616), ('food', -0.027777723968029022), ('eats', -0.29439008235931396)] Similarity between man and dog: 0.1856406 ###Markdown What happens when we compare between words which are not in the vocabulary? ###Code model_dm.wv.n_similarity(['covid'],['man']) ###Output _____no_output_____ ###Markdown Doc2VecIn this notebook we demonstrate how to train a doc2vec model on a custom corpus. ###Code # To install only the requirements of this notebook, uncomment the lines below and run this cell # =========================== # !pip install gensim==3.6.0 # !pip install spacy==2.2.4 # !pip install nltk==3.2.5 # =========================== # To install the requirements for the entire chapter, uncomment the lines below and run this cell # =========================== # try : # import google.colab # !curl https://raw.githubusercontent.com/practical-nlp/practical-nlp/master/Ch3/ch3-requirements.txt | xargs -n 1 -L 1 pip install # except ModuleNotFoundError : # !pip install -r "ch3-requirements.txt" # =========================== import warnings warnings.filterwarnings('ignore') from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize from pprint import pprint import nltk nltk.download('punkt') data = ["dog bites man", "man bites dog", "dog eats meat", "man eats food"] tagged_data = [TaggedDocument(words=word_tokenize(word.lower()), tags=[str(i)]) for i, word in enumerate(data)] tagged_data #dbow model_dbow = Doc2Vec(tagged_data,vector_size=20, min_count=1, epochs=2,dm=0) print(model_dbow.infer_vector(['man','eats','food']))#feature vector of man eats food model_dbow.wv.most_similar("man",topn=5)#top 5 most simlar words. model_dbow.wv.n_similarity(["dog"],["man"]) #dm model_dm = Doc2Vec(tagged_data, min_count=1, vector_size=20, epochs=2,dm=1) print("Inference Vector of man eats food\n ",model_dm.infer_vector(['man','eats','food'])) print("Most similar words to man in our corpus\n",model_dm.wv.most_similar("man",topn=5)) print("Similarity between man and dog: ",model_dm.wv.n_similarity(["dog"],["man"])) ###Output Inference Vector of man eats food [-0.01203259 0.01399781 0.00436171 -0.00180043 0.01481868 0.00915196 -0.00378094 -0.00889238 0.00451853 0.02051536 0.02342224 0.01624064 -0.00929315 -0.01506988 -0.02199879 0.01465174 0.02258903 -0.02092638 0.00850757 -0.01780711] Most similar words to man in our corpus [('meat', 0.39641645550727844), ('bites', 0.05595850199460983), ('dog', 0.050179000943899155), ('food', -0.06502582132816315), ('eats', -0.2928891181945801)] Similarity between man and dog: 0.050179023 ###Markdown What happens when we compare between words which are not in the vocabulary? ###Code model_dm.wv.n_similarity(['covid'],['man']) ###Output _____no_output_____ ###Markdown Doc2VecIn this notebook we demonstrate how to train a doc2vec model on a custom corpus. ###Code # To install only the requirements of this notebook, uncomment the lines below and run this cell # =========================== !pip install gensim==3.6.0 !pip install spacy==2.2.4 !pip install nltk==3.2.5 # =========================== # To install the requirements for the entire chapter, uncomment the lines below and run this cell # =========================== # try : # import google.colab # !curl https://raw.githubusercontent.com/practical-nlp/practical-nlp/master/Ch3/ch3-requirements.txt | xargs -n 1 -L 1 pip install # except ModuleNotFoundError : # !pip install -r "ch3-requirements.txt" # =========================== import warnings warnings.filterwarnings('ignore') from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize from pprint import pprint import nltk nltk.download('punkt') data = ["dog bites man", "man bites dog", "dog eats meat", "man eats food"] tagged_data = [TaggedDocument(words=word_tokenize(word.lower()), tags=[str(i)]) for i, word in enumerate(data)] tagged_data #dbow model_dbow = Doc2Vec(tagged_data,vector_size=20, min_count=1, epochs=2,dm=0) print(model_dbow.infer_vector(['man','eats','food']))#feature vector of man eats food model_dbow.wv.most_similar("man",topn=5)#top 5 most simlar words. model_dbow.wv.n_similarity(["dog"],["man"]) #dm model_dm = Doc2Vec(tagged_data, min_count=1, vector_size=20, epochs=2,dm=1) print("Inference Vector of man eats food\n ",model_dm.infer_vector(['man','eats','food'])) print("Most similar words to man in our corpus\n",model_dm.wv.most_similar("man",topn=5)) print("Similarity between man and dog: ",model_dm.wv.n_similarity(["dog"],["man"])) ###Output Inference Vector of man eats food [-1.01456400e-02 -5.49062993e-03 -2.11605523e-02 -1.16518466e-02 3.54836439e-03 -7.06422143e-03 -9.27604642e-03 -2.83227302e-03 2.35041156e-02 -9.20040839e-05 2.26525515e-02 -8.97767674e-03 1.19706187e-02 -1.19358245e-02 1.34595484e-02 -2.25058738e-02 1.89621784e-02 -1.09350523e-02 1.78532843e-02 -1.49779590e-02] Most similar words to man in our corpus [('dog', 0.2630311846733093), ('eats', 0.23952406644821167), ('food', -0.11896046996116638), ('meat', -0.2617309093475342), ('bites', -0.306953489780426)] Similarity between man and dog: 0.26303118 ###Markdown What happens when we compare between words which are not in the vocabulary? ###Code model_dm.wv.n_similarity(['covid'],['man']) ###Output _____no_output_____
examples/validation.ipynb
###Markdown Corpus ValidationClean and valid data is essential for successful machine learning. For this purpose the `validation` module provides different methods for validate a corpus on specific properties. ###Code import audiomate from audiomate.corpus import assets from audiomate.corpus import io from audiomate.corpus import validation # clear the data if already existing import shutil shutil.rmtree('output/fsd', ignore_errors=True) ###Output _____no_output_____ ###Markdown DataFirst we download the Free-spoken-digit corpus and load it. ###Code corpus_path = 'output/fsd' io.FreeSpokenDigitDownloader().download(corpus_path) corpus = audiomate.Corpus.load(corpus_path, reader='free-spoken-digits') ###Output _____no_output_____ ###Markdown Perform validation and print result We can either perform a single validation task ... ###Code val = validation.UtteranceTranscriptionRatioValidator(max_characters_per_second=6, label_list_idx=assets.LL_WORD_TRANSCRIPT) result = val.validate(corpus) print(result.get_report()) ###Output Utterance-Transcription-Ratio (word-transcript) =============================================== --> Label-List ID: word-transcript --> Threshold max. characters per second: 6 Result: Failed Invalid utterances: * 2_theo_34 (6.211180124223603) * 6_nicolas_23 (6.172839506172839) * 6_nicolas_35 (6.177606177606178) * 6_nicolas_7 (6.962576153176675) * 6_nicolas_9 (6.354249404289119) ###Markdown Or we can combine multiple validation tasks to run in one go. ###Code val = validation.CombinedValidator(validators=[ validation.UtteranceTranscriptionRatioValidator(max_characters_per_second=6, label_list_idx=assets.LL_WORD_TRANSCRIPT), validation.LabelCountValidator(min_number_of_labels=1, label_list_idx=assets.LL_WORD_TRANSCRIPT) ]) result = val.validate(corpus) print(result.get_report()) ###Output Label-Count (word-transcript) --> Passed Utterance-Transcription-Ratio (word-transcript) --> Failed Label-Count (word-transcript) ============================= --> Label-List ID: word-transcript --> Min. number of labels: 1 Result: Passed Utterance-Transcription-Ratio (word-transcript) =============================================== --> Label-List ID: word-transcript --> Threshold max. characters per second: 6 Result: Failed Invalid utterances: * 2_theo_34 (6.211180124223603) * 6_nicolas_23 (6.172839506172839) * 6_nicolas_35 (6.177606177606178) * 6_nicolas_7 (6.962576153176675) * 6_nicolas_9 (6.354249404289119) ###Markdown Corpus ValidationClean and valid data is essential for successful machine learning. For this purpose the `validation` module provides different methods for validate a corpus on specific properties. ###Code import audiomate from audiomate.corpus import io from audiomate.corpus import validation # clear the data if already existing import shutil shutil.rmtree('output/fsd', ignore_errors=True) ###Output _____no_output_____ ###Markdown DataFirst we download the Free-spoken-digit corpus and load it. ###Code corpus_path = 'output/fsd' io.FreeSpokenDigitDownloader().download(corpus_path) corpus = audiomate.Corpus.load(corpus_path, reader='free-spoken-digits') ###Output _____no_output_____ ###Markdown Perform validation and print result We can either perform a single validation task ... ###Code val = validation.UtteranceTranscriptionRatioValidator(max_characters_per_second=6, label_list_idx=audiomate.corpus.LL_WORD_TRANSCRIPT) result = val.validate(corpus) print(result.get_report()) ###Output Utterance-Transcription-Ratio (word-transcript) =============================================== --> Label-List ID: word-transcript --> Threshold max. characters per second: 6 Result: Failed Invalid Utterances: * 2_theo_34 (6.211180124223603) * 6_nicolas_23 (6.172839506172839) * 6_nicolas_35 (6.177606177606178) * 6_nicolas_7 (6.962576153176675) * 6_nicolas_9 (6.354249404289119) * 6_yweweler_1 (6.39488409272582) * 6_yweweler_10 (6.1443932411674345) * 6_yweweler_17 (6.182380216383307) * 6_yweweler_3 (6.968641114982579) ###Markdown Or we can combine multiple validation tasks to run in one go. ###Code val = validation.CombinedValidator(validators=[ validation.UtteranceTranscriptionRatioValidator( max_characters_per_second=6, label_list_idx=audiomate.corpus.LL_WORD_TRANSCRIPT ), validation.LabelCountValidator( min_number_of_labels=1, label_list_idx=audiomate.corpus.LL_WORD_TRANSCRIPT ) ]) result = val.validate(corpus) print(result.get_report()) ###Output Label-Count (word-transcript) --> Passed Utterance-Transcription-Ratio (word-transcript) --> Failed Label-Count (word-transcript) ============================= --> Label-List ID: word-transcript --> Min. number of labels: 1 Result: Passed Utterance-Transcription-Ratio (word-transcript) =============================================== --> Label-List ID: word-transcript --> Threshold max. characters per second: 6 Result: Failed Invalid Utterances: * 2_theo_34 (6.211180124223603) * 6_nicolas_23 (6.172839506172839) * 6_nicolas_35 (6.177606177606178) * 6_nicolas_7 (6.962576153176675) * 6_nicolas_9 (6.354249404289119) * 6_yweweler_1 (6.39488409272582) * 6_yweweler_10 (6.1443932411674345) * 6_yweweler_17 (6.182380216383307) * 6_yweweler_3 (6.968641114982579)
breast-cancer-prediction.ipynb
###Markdown Clean and prepare data ###Code df.drop('id',axis=1,inplace=True) df.drop('Unnamed: 32',axis=1,inplace=True) len(df) df.diagnosis.unique() #Convert df['diagnosis'] = df['diagnosis'].map({'M':1,'B':0}) df.head() # Explore data df.describe() df.describe() plt.hist(df['diagnosis']) plt.title('Diagnosis (M=1 , B=0)') plt.show() ###Output _____no_output_____ ###Markdown nucleus features vs diagnosis ###Code features_mean=list(df.columns[1:11]) # split dataframe into two based on diagnosis dfM=df[df['diagnosis'] ==1] dfB=df[df['diagnosis'] ==0] plt.rcParams.update({'font.size': 8}) fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(8,10)) axes = axes.ravel() for idx,ax in enumerate(axes): ax.figure binwidth= (max(df[features_mean[idx]]) - min(df[features_mean[idx]]))/50 ax.hist([dfM[features_mean[idx]],dfB[features_mean[idx]]], alpha=0.5,stacked=True, label=['M','B'],color=['r','g'],bins=np.arange(min(df[features_mean[idx]]), max(df[features_mean[idx]]) + binwidth, binwidth) , density = True,) ax.legend(loc='upper right') ax.set_title(features_mean[idx]) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Observations1. mean values of cell radius, perimeter, area, compactness, concavity and concave points can be used in classification of the cancer. Larger values of these parameters tends to show a correlation with malignant tumors. 2. mean values of texture, smoothness, symmetry or fractual dimension does not show a particular preference of one diagnosis over the other. In any of the histograms there are no noticeable large outliers that warrants further cleanup. Creating a test set and a training setSince this data set is not ordered, I am going to do a simple 70:30 split to create a training data set and a test data set. ###Code traindf, testdf = train_test_split(df, test_size = 0.3) ###Output _____no_output_____ ###Markdown Model BuildingHere we are going to build a classification model and evaluate its performance using the training set. Naive Bayes model ###Code from sklearn.naive_bayes import GaussianNB model=GaussianNB() predictor_var = ['radius_mean','perimeter_mean','area_mean','compactness_mean','concave points_mean'] outcome_var='diagnosis' model.fit(traindf[predictor_var],traindf[outcome_var]) predictions = model.predict(traindf[predictor_var]) accuracy = metrics.accuracy_score(predictions,traindf[outcome_var]) print("Accuracy : %s" % "{0:.3%}".format(accuracy)) import seaborn as sns sns.heatmap(metrics.confusion_matrix(predictions,traindf[outcome_var]),annot=True) from sklearn.model_selection import cross_val_score from statistics import mean print(mean(cross_val_score(model, traindf[predictor_var],traindf[outcome_var], cv=5))*100) ###Output 90.94936708860759 ###Markdown KNN Model ###Code from sklearn.neighbors import KNeighborsClassifier model=KNeighborsClassifier(n_neighbors=4) predictor_var = ['radius_mean','perimeter_mean','area_mean','compactness_mean','concave points_mean'] outcome_var='diagnosis' model.fit(traindf[predictor_var],traindf[outcome_var]) predictions = model.predict(traindf[predictor_var]) accuracy = metrics.accuracy_score(predictions,traindf[outcome_var]) print("Accuracy : %s" % "{0:.3%}".format(accuracy)) from sklearn.model_selection import cross_val_score from statistics import mean print(mean(cross_val_score(model, traindf[predictor_var],traindf[outcome_var], cv=5))*100) import numpy as np x_train=traindf[predictor_var] y_train=traindf[outcome_var] x_test=testdf[predictor_var] y_test=testdf[outcome_var] trainAccuracy=[] testAccuracy=[] errorRate=[] for k in range(1,40): model=KNeighborsClassifier(n_neighbors=k) model.fit(x_train,y_train) pred_i = model.predict(x_test) errorRate.append(np.mean(pred_i != y_test)) trainAccuracy.append(model.score(x_train,y_train)) testAccuracy.append(model.score(x_test,y_test)) plt.figure(figsize=(10,6)) plt.plot(range(1,40),errorRate,color='blue', linestyle='dashed', marker='o',markerfacecolor='red', markersize=10) plt.title('Error Rate vs. K Value') plt.xlabel('K') plt.ylabel('Error Rate') print("Minimum error:-",min(errorRate),"at K =",errorRate.index(min(errorRate))+1) from matplotlib import pyplot as plt,style plt.figure(figsize=(12,6)) plt.plot(range(1,40),trainAccuracy,label="Train Score",marker="o",markerfacecolor="teal",color="blue",linestyle="dashed") plt.plot(range(1,40),testAccuracy,label="Test Score",marker="o",markerfacecolor="red",color="black",linestyle="dashed") plt.legend() plt.xlabel("Number of Neighbors") plt.ylabel("Score") plt.title("Nbd Vs Score") plt.show() ###Output _____no_output_____ ###Markdown Testing with new K Value= 30 ###Code from sklearn.neighbors import KNeighborsClassifier model=KNeighborsClassifier(n_neighbors=31) predictor_var = ['radius_mean','perimeter_mean','area_mean','compactness_mean','concave points_mean'] outcome_var='diagnosis' model.fit(traindf[predictor_var],traindf[outcome_var]) predictions = model.predict(traindf[predictor_var]) accuracy = metrics.accuracy_score(predictions,traindf[outcome_var]) print("Accuracy : %s" % "{0:.3%}".format(accuracy)) from sklearn.model_selection import cross_val_score from statistics import mean print(mean(cross_val_score(model, traindf[predictor_var],traindf[outcome_var], cv=5))*100) ###Output 88.43987341772151 ###Markdown Using the Wisconsin breast cancer diagnostic data set for predictive analysisAttribute Information: - 1) ID number - 2) Diagnosis (M = malignant, B = benign) -3-32.Ten real-valued features are computed for each cell nucleus: - a) radius (mean of distances from center to points on the perimeter) - b) texture (standard deviation of gray-scale values) - c) perimeter - d) area - e) smoothness (local variation in radius lengths) - f) compactness (perimeter^2 / area - 1.0) - g). concavity (severity of concave portions of the contour) - h). concave points (number of concave portions of the contour) - i). symmetry - j). fractal dimension ("coastline approximation" - 1)The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.For this analysis, as a guide to predictive analysis I followed the instructions and discussion on "A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)" at Analytics Vidhya. Load Libraries ###Code import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import mpld3 as mpl from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn import metrics ###Output _____no_output_____ ###Markdown Load the data ###Code df = pd.read_csv("../input/data.csv",header = 0) df.head() ###Output _____no_output_____
CartPole/.ipynb_checkpoints/Q-learning-checkpoint.ipynb
###Markdown Hill Climb Test ###Code import gym import numpy as np import matplotlib.pyplot as plt from gym import wrappers def run_episode(env, parameters): observation = env.reset() totalreward = 0 counter = 0 for _ in range(200): env.render() action = 0 if np.matmul(parameters, observation) < 0 else 1 observation, reward, done, info = env.step(action) totalreward += reward counter+= 1 if done: break return totalreward def train(submit): env = gym.make('CartPole-v0') if submit: env = wrappers.Monitor(env, '/tmp/CartPole-v0-hill-climbing', None, True) episodes_per_update = 5 noise_scaling = 0.1 parameters = np.random.rand(4) * 2 - 1 # random weights between [-1, 1] bestreward = 0 counter = 0 for episode in range(2000): counter += 1 newparams = parameters + (np.random.rand(4) * 2 - 1) * noise_scaling print(episode) reward = run_episode(env, newparams) if reward > bestreward: bestreward = reward parameters = newparams if reward == 200: print('Yay') break return counter train(True) ###Output 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 ###Markdown Because it's hill climbing, not surprised it sucks. Your parameters are set Q-Learning I follow this: https://dev.to/n1try/cartpole-with-q-learning---first-experiences-with-openai-gymQ-learning makes a Q-table with discrete actions and state pairs. Since the observation_space is a 4 tuple of floats, we will need to discretize it. But how mnay states should we discretize it to? Goal: Stay alive for 200 time stepsWell, we take out x and x' because the cart probably won't leave the screen in 200 time steps.Now we are only left with theta(angle) and theta' (angle velocity) to worry about. Theta is [-0.42, .42] while theta' is [-3.4*1038, 3.4*1038]Q-learning uses one function to fetch the best action from the q-table and another function to update the q-table based on the last action. Rewards are 1 for every time step alive.Interestingly, the hyperparameters: alpha (learning rate), epsilon (exploration rate) and gamma (discount factor) are interesting to choose. ###Code import gym import numpy as np import matplotlib.pyplot as plt from gym import wrappers from gym import ObservationWrapper from gym import spaces import math ###Output _____no_output_____ ###Markdown Helper code to discretize observation space:Copied from:https://github.com/ngc92/space-wrappers/blob/master/space_wrappers/observation_wrappers.py ###Code from space_wrappers import observation_wrappers as ow ###Output _____no_output_____ ###Markdown Q-learning algorithm following pseudocode from: https://towardsdatascience.com/introduction-to-various-reinforcement-learning-algorithms-i-q-learning-sarsa-dqn-ddpg-72a5e0cb6287and mainly this dude's: https://dev.to/n1try/cartpole-with-q-learning---first-experiences-with-openai-gym Here's his github: https://gist.github.com/n1try/af0b8476ae4106ec098fea1dfe57f578 Here's the reasoning he followed: https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947 ###Code def Qlearning(): discount = 1.0 # You don't want to discount since your goal is to survive as long as possible num_episodes = 1000 buckets=(1, 1, 6, 12,) def discretize(obs): upper_bounds = [env.observation_space.high[0], 0.5, env.observation_space.high[2], math.radians(50)] lower_bounds = [env.observation_space.low[0], -0.5, env.observation_space.low[2], -math.radians(50)] ratios = [(obs[i] + abs(lower_bounds[i])) / (upper_bounds[i] - lower_bounds[i]) for i in range(len(obs))] new_obs = [int(round((buckets[i] - 1) * ratios[i])) for i in range(len(obs))] new_obs = [min(buckets[i] - 1, max(0, new_obs[i])) for i in range(len(obs))] return tuple(new_obs) env = gym.make('CartPole-v0') # Initialize a Q-table num_actions = 2 qtable = np.zeros(buckets + (num_actions,)) # Loop for every episode for ep in range(num_episodes): # Optimized epsilon epsilon = max(0.1, min(1, 1.0 - math.log10((ep + 1) / 25))) alpha = max(0.1, min(1.0, 1.0 - math.log10((ep + 1) / 25))) state = discretize(env.reset()) done = False score = 0 # Loop for each step of episode while not done: if ep % 100 == 0: env.render() # Select action using epsilon Greedy policy: Either folo policy or pick a random action action = np.random.choice([np.argmax(qtable[state]), env.action_space.sample()], 1, p=[1-epsilon, epsilon])[0] # Do the new action observation, reward, done, info = env.step(action) new_state = discretize(observation) # Update Q Table qtable[state][action] = qtable[state][action] + alpha * (reward + discount * np.max(qtable[new_state]) - qtable[state][action]) score += reward state = new_state print("Episode {}, Score: {}".format(ep, score)) env.close() Qlearning() # don't forget to do plots of the logistics and such ###Output _____no_output_____
toronto_neighborhood_geographical_coordinates.ipynb
###Markdown Problem 2Now that we have built a dataframe of the postal code of each neighborhood along with the borough name and neighborhood name, in order to utilize the Foursquare location data, we need to get the latitude and the longitude coordinates of each neighborhood. ###Code # Import libraries import pandas as pd from bs4 import BeautifulSoup import requests # Website url url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' # Scrapping data from thw website website_script = requests.get(url) # Website script (download the HTML content) website_content = website_script.content # Website content (HTML content) # Make HTML look Beautiful website_soup = BeautifulSoup(website_content, 'html.parser') # Get Toronto neighborhood dataframe def get_toronto_neighborhood_df(soup, table_class): # Table data table = soup.find_all('table', class_=table_class) # Table dataframe df = pd.read_html(str(table))[0] # Remove rows where Borough is 'Not assigned' df = df[df['Borough'] != 'Not assigned'] # Sort ascending values df.sort_values(by=['Postal Code'], ascending=True, inplace=True) # Return dataframe return df # Get result dataframe def get_result_df(neighborhood_df): # Latitude and Longitude dataframe lat_lng_coords_df = pd.read_csv('https://cocl.us/Geospatial_data') # The result of both dataframe result_df = pd.merge(neighborhood_df, lat_lng_coords_df, on="Postal Code") # Rename Postal Code and Neighborhood column result_df.rename(columns={"Neighbourhood": "Neighborhood", "Postal Code": "PostalCode"}, inplace=True) # Reset index result_df.reset_index(drop=True, inplace=True) # Return result dataframe return result_df # Dataframe toronto_neighborhood_df = get_toronto_neighborhood_df(website_soup, 'wikitable sortable') # Toronto neighborhood Dataframe result_df = get_result_df(toronto_neighborhood_df) # Result dataframe # Dataframe output print(result_df.head(12)) ###Output PostalCode Borough Neighborhood Latitude Longitude 0 M1B Scarborough Malvern, Rouge 43.806686 -79.194353 1 M1C Scarborough Rouge Hill, Port Union, Highland Creek 43.784535 -79.160497 2 M1E Scarborough Guildwood, Morningside, West Hill 43.763573 -79.188711 3 M1G Scarborough Woburn 43.770992 -79.216917 4 M1H Scarborough Cedarbrae 43.773136 -79.239476 5 M1J Scarborough Scarborough Village 43.744734 -79.239476 6 M1K Scarborough Kennedy Park, Ionview, East Birchmount Park 43.727929 -79.262029 7 M1L Scarborough Golden Mile, Clairlea, Oakridge 43.711112 -79.284577 8 M1M Scarborough Cliffside, Cliffcrest, Scarborough Village West 43.716316 -79.239476 9 M1N Scarborough Birch Cliff, Cliffside West 43.692657 -79.264848 10 M1P Scarborough Dorset Park, Wexford Heights, Scarborough Town... 43.757410 -79.273304 11 M1R Scarborough Wexford, Maryvale 43.750072 -79.295849
doc/nb/Fiddling_about.ipynb
###Markdown Fiddling about a bit ###Code # imports from pkg_resources import resource_filename from astropy.table import Table from astropy.coordinates import SkyCoord from astropy import units as u ###Output _____no_output_____ ###Markdown Load up ###Code DM_file = resource_filename('pulsars', 'data/atnf_cat/DM_cat_v1.56.dat') DMs = Table.read(DM_file, format='ascii') DMs ###Output _____no_output_____ ###Markdown Coords ###Code coords = SkyCoord(ra=DMs['RAJ'], dec=DMs['DECJ'], unit=(u.hourangle, u.deg)) ###Output _____no_output_____ ###Markdown Clouds Manchester+06 ###Code mfl = DMs['Pref'] == 'mfl+06' DMs[mfl] ###Output _____no_output_____ ###Markdown LMC coords ###Code lmc_distance = 50 * u.kpc lmc_coord = SkyCoord('J052334.6-694522', unit=(u.hourangle, u.deg), distance=lmc_distance) lmc_coord.separation(coords[mfl]).to('deg').value ###Output _____no_output_____ ###Markdown Others ###Code close_to_lmc = lmc_coord.separation(coords) < 3*u.deg DMs[close_to_lmc] ###Output _____no_output_____
examples/reference/widgets/RadioBoxGroup.ipynb
###Markdown The ``RadioBoxGroup`` widget allows selecting from a list or dictionary of values using a set of checkboxes. It falls into the broad category of single-value, option-selection widgets that provide a compatible API and include the [``RadioButtonGroup``](RadioButtonGroup.ipynb), [``Select``](Select.ipynb) and [``DiscreteSlider``](DiscreteSlider.ipynb) widgets.For more information about listening to widget events and laying out widgets refer to the [widgets user guide](../../user_guide/Widgets.ipynb). Alternatively you can learn how to build GUIs by declaring parameters independently of any specific widgets in the [param user guide](../../user_guide/Param.ipynb). To express interactivity entirely using Javascript without the need for a Python server take a look at the [links user guide](../../user_guide/Param.ipynb). Parameters:For layout and styling related parameters see the [customization user guide](../../user_guide/Customization.ipynb). Core* **``options``** (list or dict): A list or dictionary of options to select from* **``value``** (object): The current value; must be one of the option values Display* **``disabled``** (boolean): Whether the widget is editable* **``inline``** (boolean): Whether to arrange the items vertically in a column (``False``) or horizontally in a line (``True``)* **``name``** (str): The title of the widget___ ###Code radio_group = pn.widgets.RadioBoxGroup(name='RadioBoxGroup', options=['Biology', 'Chemistry', 'Physics'], inline=True) radio_group ###Output _____no_output_____ ###Markdown Like most other widgets, ``RadioBoxGroup`` has a value parameter that can be accessed or set: ###Code radio_group.value ###Output _____no_output_____ ###Markdown ControlsThe `RadioBoxGroup` widget exposes a number of options which can be changed from both Python and Javascript. Try out the effect of these parameters interactively: ###Code pn.Row(radio_group.controls(jslink=True), radio_group) ###Output _____no_output_____ ###Markdown The ``RadioBoxGroup`` widget allows selecting from a list or dictionary of values using a set of checkboxes. It falls into the broad category of single-value, option-selection widgets that provide a compatible API and include the [``RadioButtonGroup``](RadioButtonGroup.ipynb), [``Select``](Select.ipynb) and [``DiscreteSlider``](DiscreteSlider.ipynb) widgets.For more information about listening to widget events and laying out widgets refer to the [widgets user guide](../../user_guide/Widgets.ipynb). Alternatively you can learn how to build GUIs by declaring parameters independently of any specific widgets in the [param user guide](../../user_guide/Param.ipynb). To express interactivity entirely using Javascript without the need for a Python server take a look at the [links user guide](../../user_guide/Param.ipynb). Parameters:For layout and styling related parameters see the [customization user guide](../../user_guide/Customization.ipynb). Core* **``options``** (list or dict): A list or dictionary of options to select from* **``value``** (object): The current value; must be one of the option values Display* **``disabled``** (boolean): Whether the widget is editable* **``inline``** (boolean): Whether to arrange the items vertically in a column (``False``) or horizontally in a line (``True``)* **``name``** (str): The title of the widget___ ###Code radio_group = pn.widgets.RadioBoxGroup(name='RadioBoxGroup', options=['Biology', 'Chemistry', 'Physics'], inline=True) radio_group ###Output _____no_output_____ ###Markdown Like most other widgets, ``RadioBoxGroup`` has a value parameter that can be accessed or set: ###Code radio_group.value ###Output _____no_output_____
examples/heat_conduction_1d_uniform_bar.ipynb
###Markdown In this code we will solve the heat equation using PINN implemented with the DeepXDE library.The equation is as follows:$\frac{\partial u}{\partial t} = \alpha \nabla^2 u\;$ .Where $\nabla^2$ is the laplacian differential operator, $\alpha$ is the thermal diffusivity constant and $u$ is the function (temperature) we want to approximate.In a unidimensional case we have:$\frac{\partial u(x, t)}{\partial t}$ = $\alpha \frac{\partial^2u(x,t)}{{\partial x}^2}\;$, $\;\;\;\; x \in [0, 1]\;$, $\;\;\;\; t \in [0, 1]\;$.With Dirichlet boundary conditions $u(0, t) = u(1, t) = 0\;$ , and periodic (sinoidal) initial conditions:$u(x, 0) = sin(n\pi x/L)\;$, $\;\;\;\; 0 < x < L\;$, $\;\;\;\; n = 1, 2, ...\;.$This setup is a common problem in many differential equations textbooks and can be physically interpreted as the variation of temperature in a uniform and unidimensional bar over time. Here, the constant $\alpha$ is the thermal diffusivity (a property of the material that the bar is made) and $L$ is the lenght of the bar. ###Code if __name__ == "__main__": # Problem parameters: a = 0.4 # Thermal diffusivity L = 1 # Length of the bar n = 1 # Frequency of the sinusoidal initial conditions # Generate a dataset with the exact solution (if you dont have one): gen_exact_solution() # Solve the equation: main() ###Output c:\users\saransh\saransh_softwares\python_3.9\lib\site-packages\skopt\sampler\sobol.py:246: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+2542=2542. warnings.warn("The balance properties of Sobol' points require " c:\users\saransh\saransh_softwares\python_3.9\lib\site-packages\skopt\sampler\sobol.py:246: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+82=82. warnings.warn("The balance properties of Sobol' points require " c:\users\saransh\saransh_softwares\python_3.9\lib\site-packages\skopt\sampler\sobol.py:246: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+162=162. warnings.warn("The balance properties of Sobol' points require " ###Markdown In this code we will solve the heat equation using PINN implemented with the DeepXDE library.The equation is as follows:$\frac{\partial u}{\partial t} = \alpha \nabla^2 u\;$ .Where $\nabla^2$ is the laplacian differential operator, $\alpha$ is the thermal diffusivity constant and $u$ is the function (temperature) we want to approximate.In a unidimensional case we have:$\frac{\partial u(x, t)}{\partial t}$ = $\alpha \frac{\partial^2u(x,t)}{{\partial x}^2}\;$, $\;\;\;\; x \in [0, 1]\;$, $\;\;\;\; t \in [0, 1]\;$.With Dirichlet boundary conditions $u(0, t) = u(1, t) = 0\;$ , and periodic (sinoidal) initial conditions:$u(x, 0) = sin(n\pi x/L)\;$, $\;\;\;\; 0 < x < L\;$, $\;\;\;\; n = 1, 2, ...\;.$This setup is a common problem in many differential equations textbooks and can be physically interpreted as the variation of temperature in a uniform and unidimensional bar over time. Here, the constant $\alpha$ is the thermal diffusivity (a property of the material that the bar is made) and $L$ is the lenght of the bar. ###Code if __name__ == "__main__": # Problem parameters: a = 0.4 # Thermal diffusivity L = 1 # Lenght of the bar n = 1 # Frequency of the sinusoidal initial conditions # Generate a dataset with the exact solution (if you dont have one): gen_exact_solution() # Solve the equation: main() ###Output Compiling model... Building feed-forward neural network... 'build' took 0.051901 s ###Markdown In this code we will solve the heat equation using PINN implemented with the DeepXDE library.The equation is as follows:$\frac{\partial u}{\partial t} = \alpha \nabla^2 u\;$ .Where $\nabla^2$ is the laplacian differential operator, $\alpha$ is the thermal diffusivity constant and $u$ is the function (temperature) we want to approximate.In a unidimensional case we have:$\frac{\partial u(x, t)}{\partial t}$ = $\alpha \frac{\partial^2u(x,t)}{{\partial x}^2}\;$, $\;\;\;\; x \in [0, 1]\;$, $\;\;\;\; t \in [0, 1]\;$.With Dirichlet boundary conditions $u(0, t) = u(1, t) = 0\;$ , and periodic (sinoidal) initial conditions:$u(x, 0) = sin(n\pi x/L)\;$, $\;\;\;\; 0 < x < L\;$, $\;\;\;\; n = 1, 2, ...\;.$This setup is a common problem in many differential equations textbooks and can be physically interpreted as the variation of temperature in a uniform and unidimensional bar over time. Here, the constant $\alpha$ is the thermal diffusivity (a property of the material that the bar is made) and $L$ is the lenght of the bar. ###Code if __name__ == "__main__": # Problem parameters: a = 0.4 # Thermal diffusivity L = 1 # Length of the bar n = 1 # Frequency of the sinusoidal initial conditions # Generate a dataset with the exact solution (if you dont have one): gen_exact_solution() # Solve the equation: main() ###Output c:\users\saransh\saransh_softwares\python_3.9\lib\site-packages\skopt\sampler\sobol.py:246: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+2542=2542. warnings.warn("The balance properties of Sobol' points require " c:\users\saransh\saransh_softwares\python_3.9\lib\site-packages\skopt\sampler\sobol.py:246: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+82=82. warnings.warn("The balance properties of Sobol' points require " c:\users\saransh\saransh_softwares\python_3.9\lib\site-packages\skopt\sampler\sobol.py:246: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+162=162. warnings.warn("The balance properties of Sobol' points require " ###Markdown In this code we will solve the heat equation using PINN implemented with the DeepXDE library.The equation is as follows:$\frac{\partial u}{\partial t} = \alpha \nabla^2 u\;$ .Where $\nabla^2$ is the laplacian differential operator, $\alpha$ is the thermal diffusivity constant and $u$ is the function (temperature) we want to approximate.In a unidimensional case we have:$\frac{\partial u(x, t)}{\partial t}$ = $\alpha \frac{\partial^2u(x,t)}{{\partial x}^2}\;$, $\;\;\;\; x \in [0, 1]\;$, $\;\;\;\; t \in [0, 1]\;$.With Dirichlet boundary conditions $u(0, t) = u(1, t) = 0\;$ , and periodic (sinoidal) initial conditions:$u(x, 0) = sin(n\pi x/L)\;$, $\;\;\;\; 0 < x < L\;$, $\;\;\;\; n = 1, 2, ...\;.$This setup is a common problem in many differential equations textbooks and can be physically interpreted as the variation of temperature in a uniform and unidimensional bar over time. Here, the constant $\alpha$ is the thermal diffusivity (a property of the material that the bar is made) and $L$ is the lenght of the bar. ###Code if __name__ == "__main__": # Problem parameters: a = 0.4 # Thermal diffusivity L = 1 # Lenght of the bar n = 1 # Frequency of the sinusoidal initial conditions # Generate a dataset with the exact solution (if you dont have one): gen_exact_solution() # Solve the equation: main() ###Output Compiling model... Building feed-forward neural network... 'build' took 0.051901 s
archive/2018/demo5.ipynb
###Markdown Decision trees (example from sklearn) ###Code iris = datasets.load_iris() X_train, X_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target, test_size=0.33, random_state=3) clf = tree.DecisionTreeClassifier(max_depth=2) clf = clf.fit(X_train, y_train) dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph predictions = clf.predict(X_train) print ('Accuracy: %d ' % ((np.sum(y_train == predictions))/float(y_train.size)*100)) ###Output Accuracy: 97 ###Markdown Increasing the depth... ###Code clf = tree.DecisionTreeClassifier() clf = clf.fit(X_train, y_train) dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph predictions = clf.predict(X_train) print ('Accuracy: %d ' % ((np.sum(y_train == predictions))/float(y_train.size)*100)) ###Output Accuracy: 100 ###Markdown And what if we look at the accuracy over the test data? ###Code predictions = clf.predict(X_test) print ('Accuracy: %d ' % ((np.sum(y_test == predictions))/float(y_test.size)*100)) ###Output Accuracy: 96
Tutorials/Pandas/Method Chaining.ipynb
###Markdown IntroductionCongratulations! In this section we will put all of the things that we learned together to do some truly interesting things with some datasets. The exercises in this section are therefore more difficult! While working through the exercises, tTry using method chaning syntax (use the resource below if you don't know what method chaining means). Also, take advantage the hints we provide. Relevant Resource* **[Method chaining resource](https://www.kaggle.com/residentmario/method-chaining-reference). ** Set Up**First, fork this notebook using the "Fork Notebook" button towards the top of the screen.**Run the code cell below to load data and the libraries you'll use. ###Code import pandas as pd pd.set_option('max_rows', 5) import sys sys.path.append('../input/advanced-pandas-exercises/') from method_chaining import * chess_games = pd.read_csv("../input/chess/games.csv") ###Output _____no_output_____ ###Markdown Checking AnswersCheck your answers in each of the exercises that follow using the `check_qN` function provided in the code cell above (replacing `N` with the number of the exercise). For example here's how you would check an incorrect answer to exercise 1: ###Code check_q1(pd.DataFrame()) ###Output _____no_output_____ ###Markdown For the first set of questions, if you use `check_qN` on your answer, and your answer is right, a simple `True` value will be returned.For the second set of questions, using this function to check a correct answer will present you will an informative graph!If you get stuck, you may also use the companion `answer_qN` function to print the answer outright. Preview DataRun the cell below to preview the data ###Code chess_games.head() ###Output _____no_output_____ ###Markdown Exercises **Exercise 1**: It's well-known that in the game of chess, white has a slight first-mover advantage against black. Can you measure this effect in this dataset? Use the `winner` column to create a `pandas` `Series` showing how often white wins, how often black wins, and how often the result is a tie, as a ratio of total games played. In other words, a `Series` that looks something like this: white 0.48 black 0.44 draw 0.08 Name: winner, dtype: float64 Hint: use `len` to get the length of the initial `DataFrame`, e.g. the count of all games played. ###Code temp = chess_games.winner.value_counts()/len(chess_games) print (check_q1(temp), '\n\n', temp) ###Output True white 0.498604 black 0.454033 draw 0.047363 Name: winner, dtype: float64 ###Markdown **Exercise 2**: The `opening_name` field of the `chess_games` dataset provides interesting data on what the most commonly used chess openings are. However, it gives a bit _too_ much detail, including information on the variation used for the most common opening types. For example, rather than giving `Queen's Pawn Game`, the dataset often includes `Queen's Pawn Game: Zukertort Variation`.This makes it a bit difficult to use for categorical purposes. Here's a function that can be used to separate out the "opening archetype": ```python lambda n: n.split(":")[0].split("|")[0].split("")[0].strip() ```Use this function to parse the `opening_name` field and generate a `pandas` `Series` counting how many times each of the "opening archetypes" gets used. Hint: use a map. ###Code temp = chess_games.opening_name.map(lambda n: n.split(":")[0].split("|")[0].split("#")[0].strip()).value_counts() print (check_q2(temp), '\n\n', temp) ###Output True Sicilian Defense 2632 French Defense 1412 ... Valencia Opening 1 Pterodactyl Defense 1 Name: opening_name, Length: 143, dtype: int64 ###Markdown **Exercise 3**: In this dataset various players play variably number of games. Group the games by `{white_id, victory_status}` and count how many times each white player ended the game in `mate` , `draw`, `resign`, etcetera. The name of the column counting how many times each outcome occurred should be `n` (hint: `rename` or `assign` may help). ###Code temp = chess_games.assign(n=0).groupby(['white_id', 'victory_status']).n.apply(len).reset_index() temp ###Output _____no_output_____ ###Markdown **Exercise 4**: There are a lot of players in the dataset who have only played one or a small handful of games. Create a `DataFrame` like the one in the previous exercise, but only include users who are in the top 20 users by number of games played. See if you can do this using method chaining alone! Hint: reuse the code from the previous example. Then, use `pipe`. ###Code #chess_games.white_id.value_counts().sort_index() #temp['white_id'].value_counts().iloc[:20] temp = temp.pipe(lambda x: x.loc[x.white_id.isin(chess_games.white_id.value_counts().head(20).index)]) print (check_q4(temp), '\n\n', temp) chess_games.white_id.value_counts().head(20).index ###Output _____no_output_____ ###Markdown Next, let's do some visual exercises.The next exercise uses the following dataset: ###Code kepler = pd.read_csv("../input/kepler-exoplanet-search-results/cumulative.csv") kepler ###Output _____no_output_____ ###Markdown **Exercise 5**: The Kepler space observatory is in the business of finding potential exoplanets (planets orbiting stars other suns) and, after collecting the evidence, generating whether or not to confirm, decline to confirm, or deny that a given space body is, in fact, an exoplanet. In the dataset above, the "before" status of the body is `koi_pdisposition`, and the "after" status is `koi_disposition`. Using the dataset above, generate a `Series` counting all of the possible transitions between pre-disposition and post-disposition. In other words, generate a `Series` whose index is a `MultiIndex` based on the `{koi_pdisposition, koi_disposition}` fields, and whose values is a count of how many times each possible combination occurred. ###Code kepler.koi_disposition.unique() check_q5(kepler.groupby(['koi_pdisposition', 'koi_disposition']).rowid.count()) ###Output _____no_output_____ ###Markdown The next few exercises use the following datasets: ###Code wine_reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) wine_reviews.head() ramen_reviews = pd.read_csv("../input/ramen-ratings/ramen-ratings.csv", index_col=0) ramen_reviews.head() ###Output _____no_output_____ ###Markdown **Exercise 6**: As we demonstrated in previous workbooks, the `points` column in the `wine_reviews` dataset is measured on a 20-point scale between 80 and 100. Create a `Series` which normalizes the ratings so that they fit on a 1-to-5 scale instead (e.g. a score of 80 translates to 1 star, while a score of 100 is five stars). Set the `Series` name to "Wine Ratings", and sort by index value (ascending). ###Code temp2 = wine_reviews.points.map(lambda x: (x-80)/4).value_counts().sort_index().rename_axis("Wine Ratings") print (check_q6(temp2)) #check_q6(pd.Series(temp2, name='Wine Ratings')) #wine_reviews.points.sort_values().plot.hist() ###Output AxesSubplot(0.125,0.125;0.775x0.755) ###Markdown **Exercise 7**: The `Stars` column in the `ramen_reviews` dataset is the ramen equivalent to the similar data points in `wine_reviews`. Luckily it is already on a 0-to-5 scale, but it has some different problems...create a `Series` counting how many ramens earned each of the possible scores in the dataset. Convert the `Series` to the `float64` dtype and drop rames whose rating is `"Unrated"`. Set the name of the `Series` to "Ramen Ratings". Sort by index value (ascending). ###Code check_q7(ramen_reviews.Stars.replace('Unrated', None).dropna().astype('float64').value_counts().sort_index().rename_axis("Ramen Ratings")) #answer_q7() ###Output _____no_output_____ ###Markdown **Exercise 8**: We can see from the result of the previous exercise that whilst the wine reviewers stick to a strict 20-point scale, ramen reviews occassionally deviate into fractional numbers. Modify your answer to the previous exercise by rounding review scores to the nearest half-point (so 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5). ###Code round(3.7, 0) check_q8(ramen_reviews.Stars.replace('Unrated', None).dropna().astype('float64').map(lambda x: int(x) if x - int(x) < 0.5 else int(x) + 0.5).value_counts().sort_index().rename_axis("Ramen Reviews")) ###Output _____no_output_____
Netflix Stock Price Prediction/Netflix Stock Price Prediction using Pytorch and RNN.ipynb
###Markdown Netflix Stock Price Prediction ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import warnings warnings.simplefilter("ignore") df = pd.read_csv('NFLX_data.csv') df.sort_values('Date',inplace=True) df.head() df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 3418 entries, 0 to 3417 Data columns (total 7 columns): Date 3418 non-null object Open 3418 non-null float64 High 3418 non-null float64 Low 3418 non-null float64 Close 3418 non-null float64 Adj Close 3418 non-null float64 Volume 3418 non-null int64 dtypes: float64(5), int64(1), object(1) memory usage: 213.6+ KB ###Markdown No missing values found. ###Code df.plot(x='Date',y='Close',figsize=(16,8)) close = df[['Close']] from sklearn.preprocessing import MinMaxScaler mm = MinMaxScaler(feature_range=(-1, 1)) close['Close'] = mm.fit_transform(close['Close'].values.reshape(-1,1)) close.head(3) raw = close.as_matrix() print('Shape: ',raw.shape) print('') print(raw[:5]) lookback = 30 data = [] for index in range(len(raw) - lookback): data.append(raw[index: index + lookback]) data = np.array(data) print(data.shape) test_size = int(np.round(0.2*data.shape[0])) train_size = data.shape[0] - (test_size) x_train = data[:train_size,:-1,:] y_train = data[:train_size,-1,:] x_test = data[train_size:,:-1] y_test = data[train_size:,-1,:] print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) # make training and test sets in torch x_train = torch.from_numpy(x_train).type(torch.Tensor) x_test = torch.from_numpy(x_test).type(torch.Tensor) y_train = torch.from_numpy(y_train).type(torch.Tensor) y_test = torch.from_numpy(y_test).type(torch.Tensor) n_steps = lookback - 1 batch_size = 1000 epochs = 120 train = torch.utils.data.TensorDataset(x_train,y_train) test = torch.utils.data.TensorDataset(x_test,y_test) train_loader = torch.utils.data.DataLoader(dataset=train, batch_size=batch_size, shuffle=False) test_loader = torch.utils.data.DataLoader(dataset=test, batch_size=batch_size, shuffle=False) input_dim = 1 hidden_dim = 36 num_layers = 2 output_dim = 1 class LSTM(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, output_dim): super(LSTM, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) out = self.fc(out[:, -1, :]) return out model = LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers) loss_fn = torch.nn.MSELoss(size_average=True) optimiser = torch.optim.Adam(model.parameters(), lr=0.007) print(model) print(len(list(model.parameters()))) for i in range(len(list(model.parameters()))): print(list(model.parameters())[i].size()) lis = np.zeros(epochs) # Number of steps to unroll seq_dim =lookback-1 for t in range(epochs): y_train_pred = model(x_train) loss = loss_fn(y_train_pred, y_train) if t % 10 == 0 and t !=0: print("Epoch ", t, "MSE: ", loss.item()) lis[t] = loss.item() optimiser.zero_grad() loss.backward() optimiser.step() prd = mm.inverse_transform(y_train_pred.detach().numpy()) org = mm.inverse_transform(y_train.detach().numpy()) plt.plot(prd, label="Preds") plt.plot(org, label="Data") plt.legend() plt.show() plt.plot(lis, label="Training loss") plt.legend() plt.show() np.shape(y_train_pred) import math from sklearn.metrics import mean_squared_error from math import sqrt # make predictions y_test_pred = model(x_test) # invert predictions y_train_pred = mm.inverse_transform(y_train_pred.detach().numpy()) y_train = mm.inverse_transform(y_train.detach().numpy()) y_test_pred = mm.inverse_transform(y_test_pred.detach().numpy()) y_test = mm.inverse_transform(y_test.detach().numpy()) # calculate root mean squared error trainScore = math.sqrt(mean_squared_error(y_train[:,0], y_train_pred[:,0])) print('Train Score: %.2f RMSE' % (trainScore)) testScore = math.sqrt(mean_squared_error(y_test[:,0], y_test_pred[:,0])) print('Test Score: %.2f RMSE' % (testScore)) # shift train predictions for plotting trainPredictPlot = np.empty_like(close) trainPredictPlot[:, :] = np.nan trainPredictPlot[lookback:len(y_train_pred)+lookback, :] = y_train_pred # shift test predictions for plotting testPredictPlot = np.empty_like(close) testPredictPlot[:, :] = np.nan testPredictPlot[len(y_train_pred)+lookback-1:len(close)-1, :] = y_test_pred # plot baseline and predictions plt.figure(figsize=(15,8)) plt.plot(mm.inverse_transform(close),label='Actual Values') plt.plot(trainPredictPlot,label='Training Predictions') plt.plot(testPredictPlot,label='Test Predictions') plt.legend() plt.show() ###Output _____no_output_____
RFCPY/.ipynb_checkpoints/exemplo2-checkpoint.ipynb
###Markdown Random Forest from the scratch (using dataset Adult from UCI)A modifield version of a modifield version of:Decision Tree from the Scratch, Rakend Dubba (Computational Engineer | Data Scientist).*Source:* https://medium.com/@rakendd/decision-tree-from-scratch-9e23bcfb4928.This example is a basic refined from *exemplo1*. Done:1) Using Bagging, get a group of $N_B$ random samples ($x_i, i = 1,... ,N_B$) with replacement for each three, for all $M$ trees.2) Each tree with a maximum limit of $s_{MAX}$ splitlevels. Why there categorical features with more then two values, each level may have more then two nodes. *There is implemented the limit of splits trough each way, i.e., fallowing the same sequence till limit.5) The ensembling model is based in voting, may possible to use both majority or soft. The schoice is made when using the predict funcion. *Rather that, it is use only soft voting.The final version, we will have:3) Each tree receive $K = s_{MAX}$ random features from all $p$ features.4) There are two alternatives for splitting with numeric features: using entropy criteria and random splitting between max/min values. For categorical features, all values receive a node. ###Code import re import numpy as np import pandas as pd eps = np.finfo(float).eps from numpy import log2 as log from tabulate import tabulate as tb from anytree import Node, RenderTree from anytree import search as anys from anytree.exporter import DotExporter from IPython.display import Image ###Output /usr/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88 return f(*args, **kwds) /usr/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88 return f(*args, **kwds) ###Markdown Load dataset: ###Code features = ["Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital Status", "Occupation", "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss", "Hours per week", "Country", "Target"] train_data = pd.read_csv( #"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", "adult.data", names=features, sep=r'\s*,\s*', engine='python', na_values="?").dropna() Target = 'Target' Labels = train_data.Target.unique() counts = train_data.Target.value_counts() print(counts) test_data = pd.read_csv( #"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", "adult.test_fix", names=features, sep=r'\s*,\s*', skiprows=[0], engine='python', na_values="?").dropna() Labels = test_data.Target.unique() counts = test_data.Target.value_counts() print(counts) def find_entropy(df): entropy = 0 values = df[Target].unique() for value in values: temp = df[Target].value_counts()[value]/len(df[Target]) entropy += -temp*np.log2(temp) return entropy def find_entropy_attribute(df,attribute): if not np.issubdtype(df[attribute].dtype, np.number): return find_entropy_attribute_not_number(df,attribute), None else: return find_entropy_attribute_number(df,attribute) def find_entropy_attribute_not_number(df,attribute): target_variables = df[Target].unique() #This gives all 'Yes' and 'No' variables = df[attribute].unique() #This gives different features in that attribute (like 'Hot','Cold' in Temperature) entropy2 = 0 for variable in variables: entropy = 0 for target_variable in target_variables: num = len(df[attribute][df[attribute]==variable][df[Target] ==target_variable]) den = len(df[attribute][df[attribute]==variable]) fraction = num/(den+eps) entropy += -fraction*log(fraction+eps) entropy2 += -(den/len(df))*entropy return abs(entropy2) def find_entropy_attribute_number(df,attribute): target_variables = df[Target].unique() #This gives all 'Yes' and 'No' variables = df[attribute].unique() #This gives different features in that attribute (like 'Hot','Cold' in Temperature) variables.sort() if len(variables)>2: variables = variables[1:-1] vk3 = variables[0] entropy3 = 0 else: vk3 = variables[0] entropy3 = np.Inf for vk in variables: entropy = 0 for target_variable in target_variables: num = len(df[attribute][df[attribute]<=vk][df[Target] ==target_variable]) den = len(df[attribute][df[attribute]<=vk]) fraction = num/(den+eps) entropy += -fraction*log(fraction+eps) for target_variable in target_variables: num = len(df[attribute][df[attribute]>vk][df[Target] ==target_variable]) den = len(df[attribute][df[attribute]>vk]) fraction = num/(den+eps) entropy += -fraction*log(fraction+eps) entropy2 = (den/len(df))*abs(entropy) #print(str(entropy2)+"|"+str(vk)) if entropy2>entropy3: entropy3 = entropy2 vk3 = vk return abs(entropy3),vk3 def find_winner(df): IG = [] vk = list() for key in df.columns.difference([Target]): temp,temp2 = find_entropy_attribute(df,key) vk.append(temp2) IG.append(find_entropy(df)-temp) return df.columns.difference([Target])[np.argmax(IG)], vk[np.argmax(IG)] def print_result_node(node,value,classe,prob): print(node +' : '+value+' : '+classe+' ('+str(prob)+')') def buildtree(df,tree=None, mytree=None, T_pro=0.9, T_pro_num=0.6,total_splits=10,splits=1): def ramificatree(Thd,ss): if (len(clValue)==1): tree[node][value] = {} tree[node][value]['Class'] = clValue[0] tree[node][value]['Prob'] = 1.0 #print_result_node(node,value,clValue[0],1) else: prob = counts.max() / counts.sum() if (prob>=Thd)or(splits>=total_splits): tree[node][value] = {} tree[node][value]['Class'] = clValue[counts.argmax()] tree[node][value]['Prob'] = prob #print_result_node(node,value,clValue[counts.argmax()],prob) else: ss += 1 tree[node][value] = buildtree(subtable,splits=ss) #print(node +' : '+value+' : *') #print(find_winner(df)) #formata_dados(dados) node,vk = find_winner(df) if tree is None: tree={} tree[node] = {} if vk is None: attValue = np.unique(df[node]) for value in attValue: subtable = df[df[node] == value].reset_index(drop=True) clValue,counts = np.unique(subtable[Target],return_counts=True) splits += 1 ramificatree(T_pro,ss=splits) else: if (len(df[node][df[node] <= vk].unique())>0) and (len(df[node][df[node] > vk].unique())>0): # >vk value = node+' >'+str(vk) subtable = df[df[node] > vk].rename(columns = {node:value}).reset_index(drop=True) clValue,counts = np.unique(subtable[Target],return_counts=True) if (len(subtable[value].unique())==1) and (len(clValue)>1): tree[node][value] = {} tree[node][value]['Class'] = clValue[counts.argmax()] prob = counts.max() / counts.sum() tree[node][value]['Prob'] = prob #print_result_node(node,value,clValue[counts.argmax()],prob) else: splits += 1 ramificatree(T_pro_num,ss=splits) clValue_antes = clValue[0] value_antes = value # <=vk value = node+' <='+str(vk) subtable = df[df[node] <= vk].rename(columns = {node:value}).reset_index(drop=True) clValue,counts = np.unique(subtable[Target],return_counts=True) if ((len(subtable[value].unique())==1) and (len(clValue)>1)): tree[node][value] = {} tree[node][value]['Class'] = clValue[counts.argmax()] prob = counts.max() / counts.sum() tree[node][value]['Prob'] = prob #print_result_node(node,value,clValue[counts.argmax()],prob) else: splits += 1 ramificatree(T_pro_num,ss=splits) else: df[node] = df[node].astype(str) buildtree(df) return tree # Only to see def print_tree(arg): for pre, fill, node in RenderTree(arg): print("%s%s" % (pre, node.name)) def converte_para_anytree(tree,node=None,mytree=None): if node is None: temp = list(tree.keys()) node = temp[0] mytree = {} mytree[node] = Node(node) converte_para_anytree(tree,node,mytree) else: tree = tree[node] if not isinstance(tree, str): childs = list(tree.keys()) for child in childs: if (list(tree[child])[0] == 'Class'): temp = mytree[node] mytree[child] = Node(child, parent=temp, target=tree[child]['Class'], prob=tree[child]['Prob']) else: temp = mytree[node] mytree[child] = Node(child, parent=temp) converte_para_anytree(tree,child,mytree) else: mytree[node] = 'Fim' return mytree #anys.findall_by_attr(mytree['Taste'], name="target", value='Yes') def mostra_tree(tree): mytree = converte_para_anytree(tree) temp = list(tree.keys()) root = temp[0] mytree[root] for pre, fill, node in RenderTree(mytree[root]): txt_node = str(node) m = re.search('prob\=\d+\.\d+', txt_node) if Labels[0] in txt_node: if not m is None: print("%s%s" % (pre, node.name+': '+Labels[0]+' ('+m.group()[5:]+')')) else: print("%s%s" % (pre, node.name+': '+Labels[0]+' (?)')) elif Labels[1] in txt_node: if not m is None: print("%s%s" % (pre, node.name+': '+Labels[1]+' ('+m.group()[5:]+')')) else: print("%s%s" % (pre, node.name+': '+Labels[1]+' (?)')) else: print("%s%s" % (pre, node.name)) def mostra_tree_graph(tree, largura=None, altura=None): mytree = converte_para_anytree(tree) temp = list(tree.keys()) root = temp[0] mytree[root] DotExporter(mytree[root]).to_picture("tree.png") return Image(filename='tree.png', width=largura, height=altura) def predict(inst,tree): for node in tree.keys(): if ('<=' in str(tree[node].keys())): childs = list(tree[node].keys()) if ('<=' in childs[1]): temp = childs[1] childs[1] = childs[0] childs[0] = temp vk = float(childs[1].split('>')[1]) if ('>' in node): valor = float(str(inst[node.split('>')[0][:-1]])) elif ('<=' in node): valor = float(str(inst[node.split('<')[0][:-1]])) else: valor = float(str(inst[node])) if (valor > vk): tree = tree[node][childs[1]] prediction = None prob = None if (list(tree)[0] != 'Class'): prediction,prob = predict(inst, tree) else: prediction = tree['Class'] prob = tree['Prob'] break; else: tree = tree[node][childs[0]] prediction = None prob = None if (list(tree)[0] != 'Class'): prediction,prob = predict(inst, tree) else: prediction = tree['Class'] prob = tree['Prob'] break; else: value = str(inst[node]) if value in tree[node].keys(): tree = tree[node][value] prediction = None prob = None if (list(tree)[0] != 'Class'): prediction,prob = predict(inst, tree) else: prediction = tree['Class'] prob = tree['Prob'] break; else: prediction = 'Not exists node: '+value prob = 0 return prediction, prob def predict_forest(arg,forest): prob_yes = 0 prob_no = 0 for tree in forest: result = predict(arg,tree) if (result[0] == arg.Target): prob_yes += result[1] else: prob_no += 1-result[1] return prob_yes, prob_no def test_step_prob(arg,tree): P = 0; S = 0 for i in range(0,len(arg)): S += (predict(arg.iloc[i],tree)[0] == arg.iloc[i].Target)*1 P += predict(arg.iloc[i],tree)[1] S = S / len(arg) P = P / len(arg) print(str(S)+' ('+str(P)+')') def test_step(arg,tree): NO = 0; YES = 0 for i in range(0,len(arg)): if (predict(arg.iloc[i],tree)[0] == arg.iloc[i].Target): YES += 1 else: NO += 1 YES = YES / len(arg) NO = NO / len(arg) #print("YES: "+str(YES)+'. NO: '+str(NO)+'.') return YES,NO def test_step_forest(arg,forest): NO = 0; YES = 0 for i in range(0,len(arg)): result = predict_forest(arg.loc[i],forest) if result[0]>result[1]: YES += 1 else: NO += 1 YES = YES / len(arg) NO = NO / len(arg) #print("YES: "+str(YES)+'. NO: '+str(NO)+'.') return YES,NO # Bagging functions: def formata_dados(dados): for chave in dados.keys(): if not np.issubdtype(dados[chave].dtype, np.number): dados[chave] = dados[chave].astype(str) elif (len(dados[chave].unique())<5): dados[chave] = dados[chave].astype(str) return dados def amostra_dados(dados,n_samples): dados2 = dados.loc[dados[Target]==Labels[0]].sample(int(n_samples/2)) dados2 = dados2.append(dados.loc[dados[Target]==Labels[1]].sample(int(n_samples/2)), ignore_index=True).reset_index(drop=True) return formata_dados(dados2) n_samples=40 forest = list() M = 250 for m in range(0,M): print(str(m+1)+'/'+str(M), end='\r') train_bag = amostra_dados(train_data,n_samples) forest.append(buildtree(train_bag,T_pro=0.8, T_pro_num=0.8)) n_samples_test = 1000 test_bag = amostra_dados(test_data,n_samples_test) values_tree = np.empty((M,2)) m=0 for tree in forest: result = test_step(test_bag,tree) values_tree[m][0] = result[0] values_tree[m][1] = result[1] m+=1 values_forest = test_step_forest(test_bag,forest) mean_tree = round(values_tree[:,0].mean(),4) std_tree = round(values_tree[:,0].std(),4) print("\n") print(tb([['Trees', "{:.2f}".format(mean_tree)], ['Forest ', "{:.2f}".format(values_forest[0])]], headers=["Method", "Precision (%)"], tablefmt='orgtbl')) mean_tree = round(values_tree[:,0].mean(),4) std_tree = round(values_tree[:,0].std(),4) print("\n") print(tb([['Trees', "{:.2f}".format(mean_tree)], ['Forest ', "{:.2f}".format(values_forest[0])]], headers=["Method", "Precision (%)"], tablefmt='orgtbl')) size_tree = np.empty((M,1)) m=0 for tree in forest: size_tree[m] = len(str(tree)) m+=1 test_step(test_bag,forest[size_tree.argmin()]) mostra_tree_graph(forest[size_tree.argmin()]) mostra_tree(forest[size_tree.argmin()]) test_step(test_bag,forest[size_tree.argmax()]) mostra_tree_graph(forest[size_tree.argmax()]) mostra_tree(forest[size_tree.argmax()]) test_bag.dtypes ###Output _____no_output_____
Numerical_analysis/Test/Test_2/BFVM19DATASC2_I_DataScience2_1920_DSLS_LADR.ipynb
###Markdown Data Science 2 (modeling) Computer-exam BFVM19DATASC2 (irregular opp) Tue. 26 Jan 2021, 08:30-11:30, BB-Collaborate**Materials:**On your computer desktop you will find all data files and supplementary materials.* `BFVM19DATASC2_I_DataScience2_1920_DSLS_HEMI-LADR-WATS.ipynb`* `neuron.csv`* ...All notes, textbooks and other written reference materials are permitted.**Instructions:**This exam consists of three parts that can in principle be answered separately. All questions have the possible number of points to be scored indicated. Your grade will be calculated as follows:$$\text{Grade} = 1 + 9 \cdot \frac {\text{Points Scored}} {\text{Maximum Score}}$$Provide your answers in the code cells corresponding with each of the questions. For those questions that require a textual answer rather than python code, you may either type your answer in the cell using a python comment or insert a new markdown cell with your formatted text. You can receive partial credit on textual answers as well as code if you don't get the whole right answer. Be sure to explain your code through commenting, even if it doesn't work correctly.After finishing:Rename your notebook with your name and student number, like `JohnDoe_123456`, using the menu option `File` > `Rename`.Evaluate the notebook by means of the menu option `Kernel` > `Restart & Run All` and check that your notebook runs without errors.Save the evaluated notebook using the menu option `File` > `Save and Checkpoint`.Submit your saved file on Blackboard using the `Assignment submission` item. *** Part I: Graph theory [30 pts] Question 1a [5 pts]Bla bla bla Part II: Numerical analysis [30 pts]Below, you will investigate the behavior of the *FitzHugh-Nagumo* (FHN) model that can be used to crudely model the spiking behaviour of a single neuron in the central nervous system when stimulated with excitatory input. The first-order differential equations for the FHN model read [ref](http://www.scholarpedia.org/article/FitzHugh-Nagumo_model)$$\begin{aligned}\dot{V} &= V - \frac{V^3}{3} - W + I\\\dot{W} &= 0.08 \left( V + 0.7 - 0.8 W \right)\end{aligned}$$Here, the dotted variables $\dot{V}$ and $\dot{W}$ denote the derivatives of $V$ and $W$ with respect to time $t$ (so-called Newton's notation), and* $V$ is the neuron's membrane potential,* $W$ is a supplementary recovery variable,* $I$ is the magnitude of the stimulus current.It is an example of a *relaxation oscillator* because, if the external stimulus $I$ exceeds a certain threshold value, the system will exhibit a characteristic excursion called an *action potential* before the variables $V$ and $W$ relax back to their rest values.![neuron.jpg](attachment:neuron.jpg) Question 2a [9 pts]Integrate the FHN model using the *Midpoint* method from the Runge-Kutta family of integration methods. Employ starting values $V=W=0$ and a step size $\Delta t = \frac{1}{2}$, and plot the membrane potential $V(t)$ from $t_0=0$ to $t_1=300$ that you obtain for no ($I=0.0$), weak ($I=0.3$) or strong ($I=0.6$) stimulus currents in a single graph.What is the order of the Midpoint method?Hint:Modify your implementation of Heun's method to obtain the Midpoint method. ###Code import numpy as np import matplotlib.pyplot as plt def FHN(x, y, I = 0): return np.array([ y[0] - (y[0]**3)/3 - y[1] +I , 0.08*(y[0] + 0.7 - 0.8*y[1]) ]) def midpoint(f, y0, x0, x1, steps, I): h = (x1 - x0) / steps xs = np.linspace(x0, x1, steps + 1) y = y0 ys =[y] for x in xs[:-1]: k1 = f(x, y, I) k2 = f(x + (h/2), y + (h/2)*k1, I) y = y + h*(k2) ys.append(y) return xs, ys I = [0, 0.3, 0.6] for i in I: xs, ys = midpoint(FHN, np.array([0.0, 0.0]), 0, 300, 501, i) # print(ys) plt.axhline(-0.0019242265446122067) plt.plot(xs, ys) plt.show() ###Output _____no_output_____ ###Markdown Note:If you did not succeed in calculating neural signals according to the FHN model, import substitute data using `pandas.read_csv('./neuron.csv')`. Question 2b [7 pts]The average value $\bar{V}$ of the continuous signal $V(t)$ over an arbitrary interval $(t_0, t_1)$ can be determined by the expression$$\bar{V} = \frac{\int_{t_0}^{t_1} V(t) \text{d}t}{t_1-t_0}$$Given the sampled values $V(t)$ that you determined in **2a.**, determine the average value $\bar{V}$ of the membrane potential $V(t)$ between $t_0=100$ and $t_1=300$ for each of the three stimulus currents $I=0.0,0.3,0.6$ using *Simpson's integration rule* and report the three outcomes using three decimals.Would you generally prefer Simpson's rule to the trapezoidal rule? Explain why. ###Code def simpson(f, a, b, r, n=100): """df = simpson(f, a, b, n=...). Calculates the definite integral of the function f(x) from a to b using the composite Simpson's rule with n subdivisions (with default n=...). """ n += n % 2 # force to be even h = (b -a) / n I = f(a, r) + f(b, r) for i in range(1, n, 2): xi = a + i*h I += 4*f(xi, r) for i in range(2, n, 2): xi = a + i*h I += 2*f(xi, r) I *= h/3 return I def V(b, r): prey = [] x, res = midpoint(FHN, np.array([0.0, 0.0]), 0, b, 501, r) for i in range(len(res)): prey.append(res[i][0]) return prey[::-1][0] for i in I: print('I:',i) print( simpson( V, a = -2, b = 0, r = i)/200) ###Output I: 0 -0.00024738658669877826 I: 0.3 -0.0019242265446122067 I: 0.6 -0.003666881535684628 ###Markdown Question 2c [7 pts]For sufficiently high values of the stimulus $I$, the system shows oscillatory behavior, whereas below a certain critical threshold it quickly achieves a stable equilibrium close to $V(t) \approx -1$ in which no excursions occur. The fact that $V$ and $W$ are stationary in such an equilibrium implies that $\dot{V}=\dot{W}=0$. The second FHN equation $\dot{W} = 0.08 \left( V + 0.7 - 0.8 W \right) = 0$ then results in $W = (V+0.7) / 0.8$, which can be substituted into the first FHN equation to obtain$$V - \frac{V^3}{3} - \frac{V+0.7}{0.8} + I = 0$$Find the static solution for the above equality for $V$ near -1 for $I=0.0$, $0.3$, and $0.6$ to at least 3 digits accuracy.Do your results agree with those from **2b.**? Explain your observations. ###Code def func(x, I): return x - (x**3)/3 - (x -0.7)/0.8 + I x = np.linspace(-5, 5, 400) def rootsearch(f, a, b, steps, r): """lo, hi = rootsearch(f, a, b, steps). Searches the interval (a,b) in a number of steps for the bounds (lo,hi) of the roots of f(x). """ h = (b - a) / steps f_lo = f(a, r) for step in range(steps): lo = a + step * h hi = lo + h f_hi = f(hi, r) if f_lo * f_hi <= 0.0: yield lo, hi f_lo = f_hi for i in I: print('I:', i) plt.plot(x, func(x, i)) plt.show() print(list(rootsearch(func, -2, 2, 1000, i))) ###Output I: 0
Send_more_money.ipynb
###Markdown Ejercicio 2: Polinomios ###Code def p(x): a = [10, 20, 0, 1, 23, 4] s = 0.0 for i, ai in enumerate(reversed(a)): s += ai * x ** i return s p(2) ###Output _____no_output_____ ###Markdown SEND + MORE = MONEY ###Code def validate(a, b, c, codex, chars): stra = a strb = b strc = c for i in range(len(codex)): stra = stra.replace(chars[i], str(codex[i])) strb = strb.replace(chars[i], str(codex[i])) strc = strc.replace(chars[i], str(codex[i])) if int(stra) + int(strb) == int(strc): print(a, stra, b, strb, c, strc) validate("SEND", "MORE", "MONEY", [7,6,4,9,0,8,1,5], "SENDMORY") def combinations(digits, n, w, chars, codex, a, b, c): if w == n: validate(a, b, c, codex, chars) else: for i in range(len(digits)): e = digits[i] combinations(digits[:i] + digits[i+1:], n, w+1, chars, codex + [e], a, b, c) def solve(a, b, c): chars = list(set(a + b + c)) digits = [i for i in range(10)] #set quita los repetidos n = len(chars) combinations(digits, n, 0, chars, [], a, b, c) solve("SEND", "MORE", "MONEY") ###Output SEND 7429 MORE 0814 MONEY 08243 SEND 7539 MORE 0815 MONEY 08354 SEND 7649 MORE 0816 MONEY 08465 SEND 8432 MORE 0914 MONEY 09346 SEND 8542 MORE 0915 MONEY 09457 SEND 8324 MORE 0913 MONEY 09237 SEND 6853 MORE 0728 MONEY 07581 SEND 6419 MORE 0724 MONEY 07143 SEND 7531 MORE 0825 MONEY 08356 SEND 7643 MORE 0826 MONEY 08469 SEND 7534 MORE 0825 MONEY 08359 SEND 7316 MORE 0823 MONEY 08139 SEND 5849 MORE 0638 MONEY 06487 SEND 6851 MORE 0738 MONEY 07589 SEND 6524 MORE 0735 MONEY 07259 SEND 6415 MORE 0734 MONEY 07149 SEND 5731 MORE 0647 MONEY 06378 SEND 5732 MORE 0647 MONEY 06379 SEND 3719 MORE 0457 MONEY 04176 SEND 3829 MORE 0458 MONEY 04287 SEND 2817 MORE 0368 MONEY 03185 SEND 2819 MORE 0368 MONEY 03187 SEND 3821 MORE 0468 MONEY 04289 SEND 3712 MORE 0467 MONEY 04179 SEND 9567 MORE 1085 MONEY 10652
Stock_LSTM_day_1.ipynb
###Markdown Heat Map ###Code sns.heatmap(stock_df1_1[['open','high','low']]) ###Output _____no_output_____ ###Markdown Histograms and Curve Distribution ###Code fig, axes = plt.subplots(1,3, figsize=(15,5)) for name, ax in zip(['open', 'high', 'low'], axes): sns.distplot(stock_df1_1[name], ax=ax) ###Output _____no_output_____ ###Markdown Correlation ###Code plt.matshow(stock_df1_1.corr()) plt.show() ###Output _____no_output_____ ###Markdown Scatter Plot ###Code plt.scatter(stock_df1_1['Day'],stock_df1_1['open']) plt.scatter(stock_df1_1['Day'],stock_df1_1['high']) plt.scatter(stock_df1_1['Day'],stock_df1_1['low']) plt.legend(['Open','High','Low']) plt.xlabel('Dayss') plt.ylabel('Stock Rate') plt.show() ###Output _____no_output_____ ###Markdown Trend Line ###Code plt.plot(stock_df1_1['open'].rolling(window=150, center=True, min_periods=30).mean()) plt.plot(stock_df1_1['high'].rolling(window=150, center=True, min_periods=30).mean()) plt.plot(stock_df1_1['low'].rolling(window=150, center=True, min_periods=30).mean()) plt.legend(['Open','High','Low']) plt.title('Trend Line') plt.xlabel('Days') ###Output _____no_output_____ ###Markdown Splitting Data into Train/Test ###Code def train_test_data(data): x = np.array(data.iloc[:,:-1]) y = np.array(data.iloc[:,-1]) x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, shuffle= True) return (x_train, x_test, y_train, y_test) x_train_df1, x_test_df1, y_train_df1, y_test_df1 = train_test_data(stock_df2) x_train_df1.shape y_train_df1.shape X_train_df1 = x_train_df1.reshape((x_train_df1.shape[0],1, x_train_df1.shape[1])) X_test_df1 = x_test_df1.reshape((x_test_df1.shape[0],1, x_test_df1.shape[1])) ###Output _____no_output_____ ###Markdown LSTM ###Code from keras.layers import LSTM import keras from keras.models import Sequential from keras.layers import Dense, Dropout, BatchNormalization, Activation lstm = Sequential() lstm.add(LSTM(20, input_shape=(X_train_df1.shape[1], X_train_df1.shape[2]))) lstm.add(Dense(2, activation='sigmoid')) lstm.add(Dense(y_train_df1.reshape(-1,1).shape[1])) lstm.compile(loss='mae', optimizer='adam', metrics=['mean_squared_error']) lstm.summary() lstm.fit(X_train_df1, y_train_df1, epochs =20, verbose=1, batch_size=8, validation_data=(X_test_df1,y_test_df1), shuffle=True) predict = lstm.predict(X_test_df1) # Output value is scaled. To get actual value undo scaled value of output print('Scaled Value Predicted: %.2f' %predict[2]) print('Actual Predicted Value: %.2f'%out_scaler.inverse_transform([predict[2]])) print('True Value: %.2f' %out_scaler.inverse_transform([[y_test_df1[2]]])) lstm.save('lstm.h5') ###Output _____no_output_____ ###Markdown Evaluation ###Code print('R_2 Score: %.7f' %r2_score(y_test_df1, predict)) print('Mean Absolute Error: %.7f' %mean_absolute_error(y_test_df1, predict)) print('Mean Square Error: %.7f' %mean_squared_error(y_test_df1, predict)) print('Root Mean Square Error: %.7f' %np.sqrt(mean_squared_error(y_test_df1, predict))) ###Output R_2 Score: 0.9915114 Mean Absolute Error: 0.0175962 Mean Square Error: 0.0005674 Root Mean Square Error: 0.0238209 ###Markdown Plot ###Code f, ax = plt.subplots() ax.plot([None] + lstm.history.history['loss'], 'o-' ) ax.plot([None] + lstm.history.history['val_loss'], 'x-') ax.legend(['Train MAE', 'Valid MAE'], loc=1) ax.set_title('Train/Validation Mean Absolute Error') ax.set_xlabel('Epochs') ax.set_ylabel('MAE') f.show() f, ax = plt.subplots() ax.plot([None] + lstm.history.history['mean_squared_error'], 'o-' ) ax.plot([None] + lstm.history.history['val_mean_squared_error'], 'x-') ax.legend(['Train MSE', 'Valid MSE'], loc=1) ax.set_title('Train/Validation Mean ASquare Error') ax.set_xlabel('Epochs') ax.set_ylabel('MSE') f.show() plt.plot(y_test_df1[1:100], 'b') plt.plot( predict[1:100], 'y') plt.legend(['True', 'Pred']) plt.title('Predicted vs True') plt.xlabel('Samples') plt.ylabel('Stock') plt.show() plt.figure(figsize=(12,4)) plt.subplot(1,2,1) plt.hist(y_test_df1) plt.title('True') plt.subplot(1,2,2) plt.hist(predict, color='grey') plt.title('Predicted') plt.show() plt.boxplot(predict, showmeans=True) plt.show() ###Output _____no_output_____ ###Markdown Preprocessing Data ###Code def Date_Time(dataFrame): dateTime = dataFrame['date'].map(str)+dataFrame['time'] k = pd.to_datetime(dateTime, format='%Y%m%d%H:%M') dataFrame['DateTime'] = k dataFrame['Day'] = dataFrame['DateTime'].dt.day dataFrame['Month'] = dataFrame['DateTime'].dt.month dataFrame['Year'] = dataFrame['DateTime'].dt.year #dataFrame['Hour'] = dataFrame['DateTime'].dt.hour #dataFrame['Minute'] = dataFrame['DateTime'].dt.minute dataFrame = dataFrame.drop(labels=['DateTime'], axis=1) dataFrame['group']= dataFrame['Year'].map(str) + dataFrame['Month'].map(str)+ dataFrame['Day'].map(str) dataFrame = dataFrame[['open', 'high', 'low', 'Day', 'Month', 'Year','group','close']] dataFrame= dataFrame.sort_values(by=['Year','Month','Day']) dataFrame= dataFrame.reset_index(drop=True) return(dataFrame) def processing(dataframe): df = dataframe day_group = df['group'].unique() # extract unique hour values to form group based on days, month and year d_group_index = np.arange(1,len(day_group)+1)# for reindexing hour group values from 1 to number of groups. #As indexing starts from 0 so 1 is added # replacing hour group values with new indexing for extracting hour groups #(This step will take 20 minutes due to 3 hundred thousand samples) # it is already done once and results are saved in file hour.npy # so instead of running again, load this file for i in range(len(day_group)): df['group'] = df['group'].replace([day_group[i]],d_group_index[i]) df1 = pd.DataFrame(df, index= day_group) # this data frame has day group as index values for extracting its index count_index = df['close'].groupby(df['group']).count() # counting each day group values day_index = [] # extracting months index w=0 for i in count_index: w = i+w day_index.append(w) day_index = np.array(day_index) -1 # above steps are adding count values(in other words "commulative count_index") # we need commulative count_index as count_index are absolute values from which required values cant be extracted # extracting close values which is last value of each month group close = [] for i in day_index: t = df.loc[i,'close'] close.append(t) close = np.array(close) #extracting low, high, month, year values of each month group low = pd.DataFrame(df['low'].groupby(df['group']).min()).reset_index(drop=True) high = pd.DataFrame(df['high'].groupby(df['group']).max()).reset_index(drop=True) Day = pd.DataFrame(df['Day'].groupby(df['group']).max()).reset_index(drop=True) Month = pd.DataFrame(df['Month'].groupby(df['group']).max()).reset_index(drop=True) Year = pd.DataFrame(df['Year'].groupby(df['group']).max()).reset_index(drop=True) #extracting first value of open from each month group openn = [] for i in (day_index-count_index+1): r = df.loc[i,'open'] openn.append(r) openn = np.array(openn) #creating new data frame with extracted values df2 = pd.DataFrame() df2['open'] = openn df2['high'] = high df2['low'] = low df2['Day'] = Day df2['Month'] = Month df2['Year'] = Year df2['close'] = close # rearranging data into ascending form df2 = df2.sort_values(by=['Year','Month','Day']) df2 = df2.reset_index(drop=True) # reset index return(df2) def scaling(dataFrame): close = np.array(dataFrame['close']).reshape(-1,1) stock_df = dataFrame.drop(labels=['Day','Month','Year','close'], axis = 1) scaler = MinMaxScaler(feature_range=(0,1)) scaler.fit(stock_df) scaled_df = scaler.transform(stock_df) scaler2 = MinMaxScaler(feature_range=(0,1)) scaler2.fit(close) scaled_close = scaler2.transform(close) scaled_df = pd.DataFrame(scaled_df, columns=stock_df.columns) scaled_df['close'] = scaled_close return(scaled_df, scaler, scaler2) stock_df1 = Date_Time(df_1) stock_df1.head() stock_df1_1 = processing(stock_df1) stock_df1_1.head() stock_df2, in_scaler, out_scaler = scaling(stock_df1_1) stock_df2.head() ###Output _____no_output_____ ###Markdown Data Plots Time Series Distribution For Month ###Code sns.set(rc={'figure.figsize':(11,4)}) stock_df1_1[['open','high','low']].plot(linewidth=0.8, title='Days Series') plt.xlabel('Days (2012-2016)') plt.ylabel('Stock Rate') cols_plot = ['open', 'high','low'] axes = stock_df1_1[cols_plot].plot(marker='o', alpha=0.8, linestyle='-', figsize=(11, 9), subplots=True) for ax in axes: ax.set_ylabel('Stock Rate') ax.set_xlabel('Days (2012-2016)') ###Output _____no_output_____ ###Markdown Box Pots ###Code fig, axes = plt.subplots(3, 1, figsize=(12, 10), sharex=True) for name, ax in zip(['open', 'high', 'low'], axes): sns.boxplot(data=stock_df1_1, x='Day', y=name, ax=ax) ax.set_ylabel('Stock Rate') ax.set_title(name) ###Output _____no_output_____
Crosstab.ipynb
###Markdown CrossTab Simple ###Code pd.crosstab(df.Nationality, df.Handedness) pd.crosstab(df.Sex, df.Handedness) ###Output _____no_output_____ ###Markdown With Margins ###Code pd.crosstab(df.Sex, df.Handedness, margins=True) ###Output _____no_output_____ ###Markdown Multi-Index Column and Rows ###Code pd.crosstab(df.Sex, [df.Handedness, df.Nationality], margins=True) ###Output _____no_output_____ ###Markdown Normalize ###Code pd.crosstab(df.Sex, df.Handedness, normalize='index') ###Output _____no_output_____ ###Markdown Aggregate function ###Code import numpy as np pd.crosstab(df.Sex, df.Handedness, values=df.Age, aggfunc=np.average) ###Output _____no_output_____ ###Markdown Automotive dataset example Define the headers since the data does not have any ###Code headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration","num_doors", "body_style", "drive_wheels", "engine_location", "wheel_base", "length", "width", "height", "curb_weight", "engine_type", "num_cylinders", "engine_size", "fuel_system", "bore", "stroke", "compression_ratio", "horsepower", "peak_rpm", "city_mpg", "highway_mpg", "price"] ###Output _____no_output_____ ###Markdown Read in the CSV file and convert "?" to NaN ###Code df_raw = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data', header=None, names=headers, na_values="?" ) ###Output _____no_output_____ ###Markdown Define a list of models that we want to review ###Code models = ["toyota","nissan","mazda", "honda", "mitsubishi", "subaru", "volkswagen", "volvo"] ###Output _____no_output_____ ###Markdown Create a copy of the data with only the top 8 manufacturers ###Code df = df_raw[df_raw.make.isin(models)].copy() ###Output _____no_output_____ ###Markdown CrossTab: make vs body_style ###Code pd.crosstab(df.make, df.body_style) ###Output _____no_output_____ ###Markdown Groupby ###Code df.groupby(['make', 'body_style'])['body_style'].count().unstack().fillna(0) ###Output _____no_output_____ ###Markdown Pivot table ###Code df.pivot_table(index='make' , columns= 'body_style' , aggfunc={ 'body_style' :len}, fill_value=0) ###Output _____no_output_____ ###Markdown Crosstab: make vs num_doors ###Code pd.crosstab(df.make, df.num_doors, margins=True, margins_name="Total") ###Output _____no_output_____ ###Markdown Crosstab: Multi-index ###Code pd.crosstab(df.make, [df.body_style, df.drive_wheels]) ###Output _____no_output_____ ###Markdown Crosstab: Normalize ###Code pd.crosstab([df.make, df.num_doors], [df.body_style, df.drive_wheels], rownames=['Auto Manufacturer', "Doors"], colnames=['Body Style', "Drive Type"], dropna=False) ###Output _____no_output_____ ###Markdown A combination ###Code pd.crosstab(df.make, [df.body_style, df.drive_wheels], values=df.curb_weight, aggfunc='mean').fillna('-') ###Output _____no_output_____ ###Markdown Normalization All ###Code pd.crosstab(df.make, df.body_style, normalize=True) ###Output _____no_output_____ ###Markdown Rows ###Code pd.crosstab(df.make, df.body_style, normalize='index') ###Output _____no_output_____ ###Markdown Columns ###Code pd.crosstab(df.make, df.body_style, normalize='columns') ###Output _____no_output_____ ###Markdown CrossTab Simple ###Code ###Output _____no_output_____ ###Markdown With Margins ###Code ###Output _____no_output_____ ###Markdown Multi-Index Column and Rows ###Code ###Output _____no_output_____ ###Markdown Normalize Aggregate function ###Code ###Output _____no_output_____ ###Markdown Automotive dataset example Define the headers since the data does not have any ###Code headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration","num_doors", "body_style", "drive_wheels", "engine_location", "wheel_base", "length", "width", "height", "curb_weight", "engine_type", "num_cylinders", "engine_size", "fuel_system", "bore", "stroke", "compression_ratio", "horsepower", "peak_rpm", "city_mpg", "highway_mpg", "price"] ###Output _____no_output_____ ###Markdown Read in the CSV file and convert "?" to NaN ###Code df_raw = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data', header=None, names=headers, na_values="?" ) ###Output _____no_output_____ ###Markdown Define a list of models that we want to review ###Code models = ["toyota","nissan","mazda", "honda", "mitsubishi", "subaru", "volkswagen", "volvo"] ###Output _____no_output_____ ###Markdown Create a copy of the data with only the top 8 manufacturers ###Code df = df_raw[df_raw.make.isin(models)].copy() ###Output _____no_output_____ ###Markdown CrossTab: make vs body_style ###Code pd.crosstab(df.make, df.body_style) ###Output _____no_output_____ ###Markdown Groupby ###Code df.groupby(['make', 'body_style'])['body_style'].count().unstack().fillna(0) ###Output _____no_output_____ ###Markdown Pivot table ###Code df.pivot_table(index='make' , columns= 'body_style' , aggfunc={ 'body_style' :len}, fill_value=0) ###Output _____no_output_____ ###Markdown Crosstab: make vs num_doors ###Code pd.crosstab(df.make, df.num_doors, margins=True, margins_name="Total") ###Output _____no_output_____ ###Markdown Crosstab: Multi-index ###Code pd.crosstab(df.make, [df.body_style, df.drive_wheels]) ###Output _____no_output_____ ###Markdown Crosstab: Normalize ###Code pd.crosstab([df.make, df.num_doors], [df.body_style, df.drive_wheels], rownames=['Auto Manufacturer', "Doors"], colnames=['Body Style', "Drive Type"], dropna=False) ###Output _____no_output_____ ###Markdown A combination ###Code pd.crosstab(df.make, [df.body_style, df.drive_wheels], values=df.curb_weight, aggfunc='mean').fillna('-') ###Output _____no_output_____ ###Markdown Normalization All ###Code pd.crosstab(df.make, df.body_style, normalize=True) ###Output _____no_output_____ ###Markdown Rows ###Code pd.crosstab(df.make, df.body_style, normalize='index') ###Output _____no_output_____ ###Markdown Columns ###Code pd.crosstab(df.make, df.body_style, normalize='columns') ###Output _____no_output_____
hash_to_emoji.ipynb
###Markdown hash_to_emojiMitchell / Isthmus - July 2020Twitter recently applied a filter that appears to block any tweets containing alphanumeric strings longer than 26 characters. Unfortunately this includes hash digests (among many other use cases).This inspired the latest cryptographic stenographic innovation for censorship resistance: `hash_to_emoji` ExampleInput: `some prediction for the future`Output: 🐇🐈☁❄☃☃🌁🐕🌀💀☃🌁🎺🐕☃🐁✉👀🌁👀🌀🌀🐕🐁☁☃🌀☃🐈👀👍🐇☃🐈🎺🐕☂☃🐈🐇🐇❄🔔🐇❄💀☁🐇🐇☂👍☁🐕☁🔔💀🐈👍👍❄🐇🌀☃💀 Notes - The 1:1 mapping from hex representation digit to emoji is painfully inefficient. Shorter final digests could be produced by using more characters from the large emoji set. - A possible extension would be an efficient (bidirectional) translation between arbitrary data blobs and emoji strings. (Silly example: can't access a p2p blockchain network to broadcast your transaction? Just convert it to an emoji string and tweet at @xyzGateway to be added to the main mempool) Import libraries ###Code #!pip install emoji import emoji import hashlib ###Output _____no_output_____ ###Markdown Inputs ###Code message_to_hash = 'some prediction for the future' ###Output _____no_output_____ ###Markdown Process Calculate hashYou can easily swap in different algorithms from hashlib ###Code raw_hash = hashlib.sha256(message_to_hash.encode()).hexdigest() ###Output _____no_output_____ ###Markdown Convert alphanumeric hash to emoji set ###Code mapping = { "0":":skull:", "1":":umbrella:", "2":":cloud:", "3":":snowflake:", "4":":snowman:", "5":":trumpet:", "6":":cyclone:", "7":":foggy:", "8":":eyes:", "9":":cat:", "a":":dog:", "b":":mouse:", "c":":bell:", "d":":rabbit:", "e":":envelope:", "f":":thumbs_up:" } output_vec = str() for i in range(len(raw_hash)): this_char = raw_hash[i] output_vec = output_vec + mapping[this_char] ###Output _____no_output_____ ###Markdown Provide output ###Code emoji_str = emoji.emojize(output_vec) print(emoji.emojize('\nHash digest:\n\n' + emoji_str)) ###Output Hash digest: 🐇🐈☁❄☃☃🌁🐕🌀💀☃🌁🎺🐕☃🐁✉👀🌁👀🌀🌀🐕🐁☁☃🌀☃🐈👀👍🐇☃🐈🎺🐕☂☃🐈🐇🐇❄🔔🐇❄💀☁🐇🐇☂👍☁🐕☁🔔💀🐈👍👍❄🐇🌀☃💀
00_Intro.ipynb
###Markdown Python for EpisAll these files are here: https://github.com/kialio/py4Epis You should be able to install python and run them after this. Feel free to ask me questions now or later.* I'm going to give some background and then some high level examples as fast as I can...* There are many examples on the web. * There are even some for SAS Users. Here's a good one: https://github.com/RandyBetancourt/PythonForSASUsers Objectives* Introduce you to the Python language* Show its utility in your research life* (I'm not going to show how to install python or get it going on your machine, if you want to get going quickly, check out conda: https://docs.conda.io/en/latest/) Credits* Borrowed heavily from https://github.com/profjsb/python-bootcamp Who I Am Jeremy Perkins[@oldmanperkins](https://twitter.com/oldmanperkins)https://github.com/kialioI work at NASA/GSFC (here as a private citizen) and work on developing next generation gamma-ray instrumentation ([AMEGO](https://asd.gsfc.nasa.gov/amego/), [BurstCube](https://asd.gsfc.nasa.gov/burstcube/)). I use python to analyze data, control hardware, figure out budgets (I try to get data out of the excel spreadsheets my financial people give me as fast as possible), make pretty plots... Introduction* What is Python?* Why Python?* Getting Started... What is Python?>Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language to connect existing components together. Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed.https://www.python.org/doc/essays/blurb/ What is Python? interpreted no need for a compiling stage object-oriented programming paradigm that uses objects (complex data structures with methods) high level abstraction from the way machine interprets & executes dynamic semantics can change meaning on-the-fly built in core language (not external) data structures ways of storing/manipulating data script/glue programs that control other programs typing the sort of variable (int, string) syntax grammar which defines the language library reusable collection of code binary a file that you can run/execute Development History* Started over the Christmas break 1989, by Guido van Rossum* Developed in the early 1990s* Name comes from Monty Python’s Flying Circus* Guido is the Benevolent Dictator for Life (BDFL), meaning that he continues to oversee Python’s development. Development History* Open-sourced development from the start (BSD licensed now) * http://www.opensource.org/licenses/bsd-license.php* Relies on large community input (bugs, patches) and 3rd party add-on software* Version 2.0 (2000), 2.6 (2008), 2.7 (2010). * Version 2.7.X is reaching end of life this year.* Version 3.X (2008) is not backward compatible with 1.X & 2.X. If you're starting now, use 3.X. Why Python Some of the AlternativesI've used almost all of these at some point C, C++, Fortran*Pros: great performance, backbone of legacy scientific computing codes*`Cons: syntax not optimized for causal programming, no interactive facilities, difficult visualization, text processing, etc. ` Mathmatica, Maple, Matlab, IDL (and I guess SAS, SPSS,...)*Pros: interactive, great visuals, extensive libraries*`Cons: costly, proprietary, unpleasant for large-scale programs and non-mathematical tasks.` Perlhttp://strombergers.com/python/ Why Python* **Free** (BSD license), highly portable (Linux, OSX, Windows, lots...)* **Interactive** interpreter provided.* Extremely readable syntax (**“executable pseudo-code”**). * **Simple**: non-professional programmers can use it effectively * great documentation * total abstraction of memory management * Clean object-oriented model, but **not mandatory**.* Rich built-in types: lists, sets, dictionaries (hash tables), strings, ... * Very comprehensive standard library (**batteries included**) * Standard libraries for IDL/Matlab-like arrays (NumPy)* Easy to wrap existing C, C++ and FORTRAN codes. Why Python Amazingly Scalable* Interactive experimentation * build small, self-contained scripts or million-lines projects. * From occasional/novice to full-time use (try that with C++).* Large community of open source packages The Kitchen Sink (in a good way)* really can do anything you want, with impressive simplicity Performance, if you need it* As an interpreted language, Python is slow.* But...if you need speed you can do the heavy lifting in C or FORTRAN ...or you can use a Python compiler (e.g., Cython) My Group Uses Python For Providing a comprehensive analysis framework for Fermi LAT data(I was forced into using python...)* Interface to the low-level (c++) code - Interactive data analysis* Scripting* Developing new analysis techniques* Adding features to static code quickly* Providing high-level analysis tools (data selection, statistical testing, simulation development, plot making, and so on and so forth)* Validation and Testing What I Use Python For* Data reduction & Analysis * processing FITS images quickly * wrapping around 3rd party software* A Handy & Quick Calculator* Prototyping new algorithms/ideas* Making plots for papers* Notebooking (i.e. making me remember stuff) * see the iPython sessions later* Writing Presentations (these slides)* Controling hardware Python is everywherehttps://wiki.python.org/moin/OrganizationsUsingPython Applications are Numerous* Scripting and Programing* GUI's* Web Development* Interactive Notebooks (see later)* Visualization* Parralelization* Animation* And so on... Firing up the interpreter in OSX Go to Utilities->Terminal***`[pyuser@pymac ~]$ python``Python 3.6.7 | packaged by conda-forge | (default, Jul 2 2019, 02:07:37)``[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin``Type "help", "copyright", "credits" or "license" for more information.``>>>`***The details might be different (different version, different compiler). You could also use iPython:***`[pyuser@pymac ~]$ ipython ``Python 3.6.7 | packaged by conda-forge | (default, Jul 2 2019, 02:07:37)``Type 'copyright', 'credits' or 'license' for more information``IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.``In [1]:`*** Firing it up in other OS's like WindowsInstall python via Conda and follow the directions. Creating Python Programs and Scripts* Basically, any raw text editor will do * Lot's of the basic ones will do syntax highlighting (reccomended)* You create a python program or script file in the text editor and usually save it with a *.py extension* There are lots of programs out there that can do this and have fancy markup. * I'm still using emacs * List: https://wiki.python.org/moin/PythonEditors * Make sure it saves as raw text (and not rich text or something else) Last Thing: The Notebook* The jupyter Notebook is a powerful tool* You **will** want to use it.* To start it up from the terminal type`jupyter notebook`and a browser window should open that looks like this![notebook](iPython_Notebook.png) ###Code %matplotlib inline from matplotlib import pyplot as plt import numpy as np plt.xkcd() plt.figure(figsize=(16,8)) x = np.arange(10) plt.plot(x,x+0.5*x*x) plt.xlabel('Years Since Release') plt.ylabel('Interest in Python') plt.show() ###Output _____no_output_____ ###Markdown Why Are We Interested in RAPIDS? (and GPU, CUDA, Numba...) Let's start by taking a really straightforward look at GPU benefit without RAPIDSHere are 1 million numbers and their square roots in (regular) Python: ###Code import math numbers = list(range(1000000)) %%timeit s = [math.sqrt(x) for x in numbers] ###Output _____no_output_____ ###Markdown Using NumPy (https://numpy.org/) we can both vectorize our operation and leverage a native (C) implementation from Python.Don't know about NumPy? It's a core part of the SciPy stack, and provides an implementation of tensors (multi-dimensional array) and tensor math, where the underlying storage is native (not Python objects) and operations are implemented in native extenstion ... so it's Python-friendly, but much faster.The most common Python data science tools -- things like Pandas and Scikit-Learn -- are built on top of NumPy. ###Code import numpy as np np_numbers = np.array(numbers) %%timeit np_s = np.sqrt(np_numbers) ###Output _____no_output_____ ###Markdown That's pretty nice. Of course, maybe we just started out with Python as an easy target.Let's look at jitted compiled code with Numba.(Don't know about Numba? You're going to love it: a great JIT add-on that can target CPU as well as multiple flavors of GPU ... learn more at https://numba.pydata.org/) ###Code import numba @numba.jit def root(n): return np.sqrt(n) %%timeit numba_s = root(np_numbers) ###Output _____no_output_____ ###Markdown Not bad. But we're here for GPUs ... will the GPU help much?A few libraries make it easy to do matrix operations like this on GPU ... two of the most popular/famous are PyTorch and CuPy ###Code import cupy gpu_numbers = cupy.array(numbers) %%timeit gpu_squares = cupy.sqrt(gpu_numbers) ###Output _____no_output_____ ###Markdown Exploratory Multivariate Analysis of Geochemical DatasetsCompiled by [Morgan Williams](mailto:[email protected]) for C3DIS 2018 This collection of Jupyter notebooks illustrates some common simple problems encountered with geochemical data, and some solutions. They cover the majority of the workflow outlined below, but represent what is generally a work in progress. Associated data is sourced solely from the [EarthChem data portal](http://ecp.iedadata.org/), and is here stored in a S3 bucket for simplicity. The Workflow The data analysis workflow denoted below lists some common necessary tasks to derive useful insight from geochemical data. Much of this is common to any data science workflow, but due to the nature of the geochemical data itself, a few of these processes are still current research problems. Our research aims not to introduce radical change in methodology, but instead to simply streamline and standardise the process, such that we can use geochemistry in a robust way to address geological problems. ![Workflow Image](images/Workflow.png) The Problem Much has happened since our planet was a primitive ball of molten rock, including the origin of plate tectonics, the modern atmosphere and life. This extended geological history has been encoded into chemical signatures of rocks and minerals, which may then used to (partially) reconstruct the past.Inverting geochemistry to infer the geological past is commonly an underdetermined problem (especially prior to the advent of modern geochemical analysis instrumentation), and is hindered by complex geological histories.Modern analytical methods have higher throughput and greater sensitivity and precision. As a result, established publicly-accessible geochemical databases are growing steadily. However, the potential value of aggregating the increasing volume of high-quality data has not yet been fully realised. The Other Problems.. Before we can tackle the geological problems, we must first have a dataset which is consistently formatted and which contains relevant data of sufficient accuracy (lest we achieve simply *"garbage in, garbage out"*). These notebooks illustrate some of these processing steps, and demonstrate some approaches for the initial stages of data exploration. The Data If you wish to download a subset of the EarthChem data to this binder server (approx 300 MB as a sparse dataframe) such that it can be acessed in later notebooks, do so below. If you do not, it will instead be downloaded *on-run* as necessary. Please note this can take more than a minute even on a good day. ###Code %matplotlib inline %load_ext autoreload %load_ext memory_profiler %autoreload 2 %%time import sys sys.path.insert(0, './src') from datasource import download_data, load_df download_data('EarthChemData.pkl', 'EarthChemData.pkl') %%memit df = load_df('EarthChemData.pkl') df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1073034 entries, 0 to 2092330 Data columns (total 71 columns): SampleID 1073028 non-null object Source 1073034 non-null object Reference 1073034 non-null object CruiseID 180711 non-null object Latitude 1073034 non-null float64 Longitude 1073034 non-null float64 LocPrec 1073034 non-null float64 MinAge 614923 non-null float64 Age 607557 non-null float64 MaxAge 625776 non-null float64 Method 1073034 non-null object Material 1073034 non-null object Type 1073019 non-null object Composition 1073034 non-null object RockName 1073034 non-null object Na2O 378229 non-null float64 MgO 375983 non-null float64 Al2O3 375158 non-null float64 SiO2 381264 non-null float64 P2O5 343454 non-null float64 K2O 391758 non-null float64 CaO 375813 non-null float64 TiO2 375673 non-null float64 MnO 349445 non-null float64 FeOT 485685 non-null float64 Li 44788 non-null float64 Be 74981 non-null float64 B 42947 non-null float64 Mg 92342 non-null float64 Cl 37633 non-null float64 K 58797 non-null float64 Ca 103305 non-null float64 Sc 227228 non-null float64 Ti 109537 non-null float64 V 249099 non-null float64 Cr 278450 non-null float64 Mn 106043 non-null float64 Fe 120046 non-null float64 Co 209541 non-null float64 Ni 281268 non-null float64 Cu 228744 non-null float64 Zn 220164 non-null float64 Ga 126015 non-null float64 Rb 275938 non-null float64 Sr 367161 non-null float64 Y 308961 non-null float64 Zr 337013 non-null float64 Nb 240845 non-null float64 Mo 37700 non-null float64 Cs 95928 non-null float64 Ba 341793 non-null float64 La 264928 non-null float64 Ce 232241 non-null float64 Pr 89315 non-null float64 Nd 199149 non-null float64 Sm 175005 non-null float64 Eu 162006 non-null float64 Gd 117043 non-null float64 Tb 138647 non-null float64 Dy 104030 non-null float64 Ho 90438 non-null float64 Er 99464 non-null float64 Tm 86574 non-null float64 Yb 186035 non-null float64 Lu 143638 non-null float64 Hf 133165 non-null float64 Ta 121178 non-null float64 Pb 201956 non-null float64 Th 190403 non-null float64 U 147985 non-null float64 TotalAlkali 362866 non-null float64 dtypes: float64(62), object(9) memory usage: 589.4+ MB peak memory: 1527.42 MiB, increment: 1423.32 MiB
Filter/filter_in_list.ipynb
###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) Map.centerObject(selected, 6) Map.addLayer(ee.Image().paint(selected, 0, 2), {'palette': 'yellow'}, 'Selected') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for this first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) Map.centerObject(selected, 6) Map.addLayer(ee.Image().paint(selected, 0, 2), {'palette': 'yellow'}, 'Selected') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. Uncomment these lines if you are running this notebook for the first time. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for the first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) Map.centerObject(selected, 6) Map.addLayer(ee.Image().paint(selected, 0, 2), {'palette': 'yellow'}, 'Selected') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as geemap except: import geemap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) Map.centerObject(selected, 6) Map.addLayer(ee.Image().paint(selected, 0, 2), {'palette': 'yellow'}, 'Selected') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown Pydeck Earth Engine IntroductionThis is an introduction to using [Pydeck](https://pydeck.gl) and [Deck.gl](https://deck.gl) with [Google Earth Engine](https://earthengine.google.com/) in Jupyter Notebooks. If you wish to run this locally, you'll need to install some dependencies. Installing into a new Conda environment is recommended. To create and enter the environment, run:```conda create -n pydeck-ee -c conda-forge python jupyter notebook pydeck earthengine-api requests -ysource activate pydeck-eejupyter nbextension install --sys-prefix --symlink --overwrite --py pydeckjupyter nbextension enable --sys-prefix --py pydeck```then open Jupyter Notebook with `jupyter notebook`. Now in a Python Jupyter Notebook, let's first import required packages: ###Code from pydeck_earthengine_layers import EarthEngineLayer import pydeck as pdk import requests import ee ###Output _____no_output_____ ###Markdown AuthenticationUsing Earth Engine requires authentication. If you don't have a Google account approved for use with Earth Engine, you'll need to request access. For more information and to sign up, go to https://signup.earthengine.google.com/. If you haven't used Earth Engine in Python before, you'll need to run the following authentication command. If you've previously authenticated in Python or the command line, you can skip the next line.Note that this creates a prompt which waits for user input. If you don't see a prompt, you may need to authenticate on the command line with `earthengine authenticate` and then return here, skipping the Python authentication. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create MapNext it's time to create a map. Here we create an `ee.Image` object ###Code # Initialize objects ee_layers = [] view_state = pdk.ViewState(latitude=37.7749295, longitude=-122.4194155, zoom=10, bearing=0, pitch=45) # %% # Add Earth Engine dataset states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) ee_layers.append(EarthEngineLayer(ee_object=ee.Image().paint(selected,0,2), vis_params={'palette':'yellow'})) ###Output _____no_output_____ ###Markdown Then just pass these layers to a `pydeck.Deck` instance, and call `.show()` to create a map: ###Code r = pdk.Deck(layers=ee_layers, initial_view_state=view_state) r.show() ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://geemap.org). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet. ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('Installing geemap ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) import ee import geemap ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) Map.centerObject(selected, 6) Map.addLayer(ee.Image().paint(selected, 0, 2), {'palette': 'yellow'}, 'Selected') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The following script checks if the geehydro package has been installed. If not, it will install geehydro, which automatically install its dependencies, including earthengine-api and folium. ###Code import subprocess try: import geehydro except ImportError: print('geehydro package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geehydro']) ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) Map.centerObject(selected, 6) Map.addLayer(ee.Image().paint(selected, 0, 2), {'palette': 'yellow'}, 'Selected') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset states = ee.FeatureCollection('TIGER/2018/States') selected = states.filter(ee.Filter.inList("NAME", ['California', 'Nevada', 'Utah', 'Arizona'])) Map.centerObject(selected, 6) Map.addLayer(ee.Image().paint(selected, 0, 2), {'palette': 'yellow'}, 'Selected') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____
NoSQL/NetworkX/plot_labels_and_colors.ipynb
###Markdown Labels And ColorsDraw a graph with matplotlib, color by degree.You must have matplotlib for this to work. ###Code # Author: Aric Hagberg ([email protected]) import matplotlib.pyplot as plt import networkx as nx G = nx.cubical_graph() pos = nx.spring_layout(G) # positions for all nodes # nodes nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color='r', node_size=500, alpha=0.8) nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color='b', node_size=500, alpha=0.8) # edges nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) nx.draw_networkx_edges(G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)], width=8, alpha=0.5, edge_color='r') nx.draw_networkx_edges(G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], width=8, alpha=0.5, edge_color='b') # some math labels labels = {} labels[0] = r'$a$' labels[1] = r'$b$' labels[2] = r'$c$' labels[3] = r'$d$' labels[4] = r'$\alpha$' labels[5] = r'$\beta$' labels[6] = r'$\gamma$' labels[7] = r'$\delta$' nx.draw_networkx_labels(G, pos, labels, font_size=16) plt.axis('off') plt.show() ###Output _____no_output_____
03_DRL_Agent_en.ipynb
###Markdown Tutorial 3: Demonstration of developing original *Agent* with DRLThis tutorial demonstrate how to develop *Agent* with DRL algorithm by using ***KSPDRLAgent*** . *Agent* base classes are as follows: - `Agent`(used in **Tutorial 2**)- `KSPAgent`(used in **Tutorial 2**)- `PrioritizedKSPAgent`(used in **Tutorial 2**)- `KSPDRLAgent` ###Code !pip install git+https://github.com/Optical-Networks-Group/rsa-rl.git ###Output Collecting git+https://github.com/Optical-Networks-Group/rsa-rl.git Cloning https://github.com/Optical-Networks-Group/rsa-rl.git to c:\users\khuatduc\appdata\local\temp\pip-req-build-09phlp88 Resolved https://github.com/Optical-Networks-Group/rsa-rl.git to commit 4b82c519742fa47b1537204780174cdb0c2f4ae0 Requirement already satisfied: bitarray>=1.2.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (2.3.0) Requirement already satisfied: networkx>=2.5 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (2.5) Requirement already satisfied: tensorboard>=2.2.2 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (2.4.0) Requirement already satisfied: tensorboardX>=2.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (2.5) Requirement already satisfied: torch>=1.5.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (1.10.2) Requirement already satisfied: plotly>=4.9.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (5.6.0) Requirement already satisfied: dash>=1.14.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (2.2.0) Requirement already satisfied: dash-bootstrap-components>=0.10.7 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (1.0.3) Requirement already satisfied: pfrl>=0.1.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from rsarl==1.0.0) (0.3.0) Requirement already satisfied: Flask>=1.0.4 in c:\users\khuatduc\anaconda3\lib\site-packages (from dash>=1.14.0->rsarl==1.0.0) (1.1.2) Requirement already satisfied: dash-html-components==2.0.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from dash>=1.14.0->rsarl==1.0.0) (2.0.0) Requirement already satisfied: dash-table==5.0.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from dash>=1.14.0->rsarl==1.0.0) (5.0.0) Requirement already satisfied: flask-compress in c:\users\khuatduc\anaconda3\lib\site-packages (from dash>=1.14.0->rsarl==1.0.0) (1.11) Requirement already satisfied: dash-core-components==2.0.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from dash>=1.14.0->rsarl==1.0.0) (2.0.0) Requirement already satisfied: itsdangerous>=0.24 in c:\users\khuatduc\anaconda3\lib\site-packages (from Flask>=1.0.4->dash>=1.14.0->rsarl==1.0.0) (1.1.0) Requirement already satisfied: Jinja2>=2.10.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from Flask>=1.0.4->dash>=1.14.0->rsarl==1.0.0) (2.11.3) Requirement already satisfied: Werkzeug>=0.15 in c:\users\khuatduc\anaconda3\lib\site-packages (from Flask>=1.0.4->dash>=1.14.0->rsarl==1.0.0) (1.0.1) Requirement already satisfied: click>=5.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from Flask>=1.0.4->dash>=1.14.0->rsarl==1.0.0) (7.1.2) Requirement already satisfied: MarkupSafe>=0.23 in c:\users\khuatduc\anaconda3\lib\site-packages (from Jinja2>=2.10.1->Flask>=1.0.4->dash>=1.14.0->rsarl==1.0.0) (2.0.1) Requirement already satisfied: decorator>=4.3.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from networkx>=2.5->rsarl==1.0.0) (5.0.6) Requirement already satisfied: numpy>=1.10.4 in c:\users\khuatduc\anaconda3\lib\site-packages (from pfrl>=0.1.0->rsarl==1.0.0) (1.20.2) Requirement already satisfied: pillow in c:\users\khuatduc\anaconda3\lib\site-packages (from pfrl>=0.1.0->rsarl==1.0.0) (8.4.0) Requirement already satisfied: gym>=0.9.7 in c:\users\khuatduc\anaconda3\lib\site-packages (from pfrl>=0.1.0->rsarl==1.0.0) (0.21.0) Requirement already satisfied: filelock in c:\users\khuatduc\anaconda3\lib\site-packages (from pfrl>=0.1.0->rsarl==1.0.0) (3.4.2) Requirement already satisfied: cloudpickle>=1.2.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from gym>=0.9.7->pfrl>=0.1.0->rsarl==1.0.0) (1.6.0) Requirement already satisfied: importlib-metadata>=4.8.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from gym>=0.9.7->pfrl>=0.1.0->rsarl==1.0.0) (4.11.1) Requirement already satisfied: zipp>=0.5 in c:\users\khuatduc\anaconda3\lib\site-packages (from importlib-metadata>=4.8.1->gym>=0.9.7->pfrl>=0.1.0->rsarl==1.0.0) (3.4.1) Requirement already satisfied: typing-extensions>=3.6.4 in c:\users\khuatduc\anaconda3\lib\site-packages (from importlib-metadata>=4.8.1->gym>=0.9.7->pfrl>=0.1.0->rsarl==1.0.0) (3.7.4.3) Requirement already satisfied: six in c:\users\khuatduc\anaconda3\lib\site-packages (from plotly>=4.9.0->rsarl==1.0.0) (1.16.0) Requirement already satisfied: tenacity>=6.2.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from plotly>=4.9.0->rsarl==1.0.0) (8.0.1) Requirement already satisfied: markdown>=2.6.8 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (3.3.4) Requirement already satisfied: protobuf>=3.6.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (3.17.2) Requirement already satisfied: grpcio>=1.24.3 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (1.35.0) Requirement already satisfied: google-auth<2,>=1.6.3 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (1.21.3) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (0.4.4) Requirement already satisfied: requests<3,>=2.21.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (2.25.1) Requirement already satisfied: setuptools>=41.0.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (58.0.4) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (1.6.0) Requirement already satisfied: wheel>=0.26 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (0.36.2) Requirement already satisfied: absl-py>=0.4 in c:\users\khuatduc\anaconda3\lib\site-packages (from tensorboard>=2.2.2->rsarl==1.0.0) (0.13.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.2->rsarl==1.0.0) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.2->rsarl==1.0.0) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4 in c:\users\khuatduc\anaconda3\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.2->rsarl==1.0.0) (4.7.2) Requirement already satisfied: requests-oauthlib>=0.7.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.2->rsarl==1.0.0) (1.3.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in c:\users\khuatduc\anaconda3\lib\site-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard>=2.2.2->rsarl==1.0.0) (0.4.8) Requirement already satisfied: chardet<5,>=3.0.2 in c:\users\khuatduc\anaconda3\lib\site-packages (from requests<3,>=2.21.0->tensorboard>=2.2.2->rsarl==1.0.0) (4.0.0) Requirement already satisfied: certifi>=2017.4.17 in c:\users\khuatduc\anaconda3\lib\site-packages (from requests<3,>=2.21.0->tensorboard>=2.2.2->rsarl==1.0.0) (2021.10.8) Requirement already satisfied: idna<3,>=2.5 in c:\users\khuatduc\anaconda3\lib\site-packages (from requests<3,>=2.21.0->tensorboard>=2.2.2->rsarl==1.0.0) (2.10) Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\khuatduc\anaconda3\lib\site-packages (from requests<3,>=2.21.0->tensorboard>=2.2.2->rsarl==1.0.0) (1.26.8) Requirement already satisfied: oauthlib>=3.0.0 in c:\users\khuatduc\anaconda3\lib\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.2->rsarl==1.0.0) (3.1.1) Requirement already satisfied: brotli in c:\users\khuatduc\anaconda3\lib\site-packages (from flask-compress->dash>=1.14.0->rsarl==1.0.0) (1.0.9) ###Markdown Evaluation SettingsFor evaluation, prepare *Environment* and evaluation function. Please see **Tutorial 1** if you have not seen it. ###Code import functools import numpy as np from rsarl.envs import DeepRMSAEnv, make_multiprocess_vector_env from rsarl.requester import UniformRequester from rsarl.networks import SingleFiberNetwork from rsarl.evaluator import batch_warming_up, batch_evaluation, batch_summary # Set the device id to use GPU. To use CPU only, set it to -1. gpu = -1 # exp settings n_requests = 100 n_envs, seed = 2, 0 # build network net = SingleFiberNetwork("nsf", n_slot=60, is_weight=True) # build requester requester = UniformRequester( net.n_nodes, avg_service_time=10, avg_request_arrival_rate=12) # build env env = DeepRMSAEnv(net, requester) # envs for training and evaluation envs = make_multiprocess_vector_env(env, n_envs, seed, test=False) test_envs = make_multiprocess_vector_env(env, n_envs, seed, test=True) def _evaluation(envs, agent, n_requests): # start simulation envs.reset() # batch_warming_up(envs, agent, n_requests=3000) # evaluation experiences = batch_evaluation(envs, agent, n_requests=n_requests) # calc performance blocking_probs, avg_utils, total_rewards = batch_summary(experiences) for env_id, (blocking_prob, avg_util, total_reward) in enumerate(zip(blocking_probs, avg_utils, total_rewards)): print(f'[{env_id}-th ENV]Blocking Probability: {blocking_prob}') print(f'[{env_id}-th ENV]Avg. Slot-utilization: {avg_util}') print(f'[{env_id}-th ENV]Total Rewards: {total_reward}') # evaluation with test environments evaluation = functools.partial(_evaluation, envs=test_envs, n_requests=n_requests) ###Output _____no_output_____ ###Markdown Step1: Select DRL algorithm from PFRL*RSA-RL* assumes that DRL algorithm provided by [PFRL](https://github.com/pfnet/pfrl) library is used. ***PFRL*** is a DRL library that implements various state-of-the-art deep reinforcement algorithms in Python using[PyTorch](https://github.com/pytorch/pytorch). Discrete action algorithms are as follows: - ***DQN(Double DQN)***- ***Rainbow***- ***IQN***- ***A3C***, ***A2C***- ***ACER***- ***PPO***- ***TRPO***In this tutorial, we try to reproduct the prior [DeepRMSA](https://ieeexplore.ieee.org/document/8386173) that applies DRL to ***routing algorithm*** that selects one from the *k* shortest paths. This tutorial call it ***DeepRMSAv1***, and implement it by using ***Double DQN (DDQN)***. In the case of using DDQN, there are three steps:1. Build deep neural network (DNN) model2. Specify ***Explore*** and ***Replay Buffer***, e.g., epsilon greedy and prioritized replay buffer, respectively3. Build DDQNFirst, you develop a DNN that the number of outputs is *k*. ###Code import pfrl import torch import torch.nn as nn class DeepRMSAv1_DNN(torch.nn.Module): def __init__(self, SLOT: int, ICH: int, K: int, n_edges: int): super().__init__() self.SLOT = SLOT # CNN self.conv = nn.Sequential(*[ nn.Conv2d(ICH, 1, kernel_size=(1,1), stride=(1, 1)), nn.ReLU(), # 2 conv layers with16 filters nn.Conv2d(1, 16, kernel_size=(n_edges,1), stride=(1, 1)), nn.ReLU(), nn.Conv2d(16, 16, kernel_size=(1,1), stride=(1, 1)), nn.ReLU(), # 2 depthwise conv layers with 1 filter nn.ZeroPad2d((1, 0, 0, 0)), # left, right, top, bottom nn.Conv2d(16, 16, kernel_size=(1,2), stride=(1, 1), groups=16), nn.ReLU(), nn.ZeroPad2d((1, 0, 0, 0)), nn.Conv2d(16, 16, kernel_size=(1,2), stride=(1, 1), groups=16), nn.ReLU(), ]) # fc self.fc = nn.Sequential(*[ nn.Linear(SLOT*16, 128), nn.ReLU(), nn.Linear(128, 50), nn.ReLU(), nn.Linear(50, K), ]) def forward(self, x): h = x h = self.conv(h) h = h.view(-1, self.SLOT*16) h = self.fc(h) return pfrl.action_value.DiscreteActionValue(h) # Experimental Settings K = 5 # slot-table(1) + one-hot-node * 2 + bandwidth(1) ICH = 1 + 2 * net.n_nodes + 1 # build DNN for Q-function q_func = DeepRMSAv1_DNN( net.n_slot, ICH, K, net.n_edges) # Specify optimizer optimizer = torch.optim.Adam(q_func.parameters(), eps=1e-2) ###Output _____no_output_____ ###Markdown Specify *Explore* and *Replay Buffer*This tutorial selects ConstantEpsilonGreedy. If you want to use others, please refere *PFRL*'s documentation:- [explore](https://pfrl.readthedocs.io/en/latest/explorers.html)- [replay buffer](https://pfrl.readthedocs.io/en/latest/replay_buffers.html) ###Code def _action_sampler(k): return np.random.randint(0, k) # random action function action_sampler = functools.partial(_action_sampler, k=K) # Set the discount factor that discounts future rewards. gamma = 0.99 # Use epsilon-greedy for exploration explorer = pfrl.explorers.ConstantEpsilonGreedy( epsilon=0.1, random_action_func=action_sampler) # DQN uses Experience Replay. # Specify a replay buffer and its capacity. replay_buffer = pfrl.replay_buffers.ReplayBuffer(capacity=10 ** 6, num_steps=50) ###Output _____no_output_____ ###Markdown Build DDQNNOTE that since DeepRMSAv1 does not show sufficient information of hyper parameter, we cannot reproduct it precisely. ###Code # Now create an agent that will interact with the environment. DDQN = pfrl.agents.DQN( q_func, optimizer, replay_buffer, gamma, explorer, minibatch_size=50, update_interval=1, replay_start_size=500, target_update_interval=100, gpu=gpu, ) ###Output _____no_output_____ ###Markdown Step 2: Develop your algorithm by using *KSPDRLAgent**RSA-RL* provides ***KSPDRLAgent*** that is based on *KSPAgent* class, which means that ***k-shortest path table*** can be used. You need to override two methods: - `preprocess`: create *feature vector* from *observation*- `map_drlout_to_action`: map outputs of DRL algorithms to *Action* ###Code import numpy as np import networkx as nx from rsarl.data import Action from rsarl.agents import KSPDRLAgent from rsarl.utils import cal_slot, sort_tuple from rsarl.algorithms import SpectrumAssignment def vectorize(n_nodes: int, node_id: int): mp = np.eye(n_nodes, dtype=np.float32)[node_id].reshape(-1, 1, 1) return mp class DRLAgent(KSPDRLAgent): def preprocess(self, obs): """ """ net = obs.net source, destination, bandwidth, duration = obs.request # slot table whole_slot = np.array(list(nx.get_edge_attributes(net.G, name="slot").values())) whole_slot = whole_slot.reshape(1, net.n_edges, net.n_slot).astype(np.float32) # source, destination, bandwidth map smap = np.ones_like(whole_slot) * vectorize(net.n_nodes, source) dmap = np.ones_like(whole_slot) * vectorize(net.n_nodes, destination) bmap = np.ones_like(whole_slot) * bandwidth # concate: (1, ICH, #edges, #slots) fvec = np.concatenate([whole_slot, smap, dmap, bmap], axis=0) return fvec.astype(np.float32, copy=False) def map_drlout_to_action(self, obs, out): net = obs.net s, d, bandwidth, duration = obs.request paths = self.path_table[sort_tuple((s, d))] # map path = paths[out] #required slots path_len = net.distance(path) n_req_slot = cal_slot(bandwidth, path_len) #FF path_slot = net.path_slot(path) slot_index = SpectrumAssignment.first_fit(path_slot, n_req_slot) if slot_index is None: return None else: return Action(path, slot_index, n_req_slot, duration) agent = DRLAgent(k=5, drl=DDQN) # prepare path table agent.prepare_ksp_table(net) ###Output _____no_output_____ ###Markdown Step 3: Training and Evaluate *DRL Agent*Finally, let's training and evaluation! Interaction between *Agent* with *Environment* automatically trains *Agent*. NOTE that before evaluation, you should change DRL model to ***evaluation mode*** by `eval_mode` method that *explore* does not run. ###Code # Batch act obses = envs.reset() resets = [False for _ in range(len(obses))] for train_cnt in range(200000): acts = agent.batch_act(obses) obses, rews, dones, infos = envs.step(acts) agent.batch_observe(obses, rews, dones, resets) # Make mask(not_end). 0 if done/reset, 1 if pass not_end = np.logical_not(dones) obses = envs.reset(not_end) if train_cnt % 20000 == 0: print(f'[{train_cnt}-th EVAL]') test_envs.reset() with agent.drl.eval_mode(): evaluation(agent=agent) ###Output [0-th EVAL]
basics/second/Categorical Data.ipynb
###Markdown Categorical DataCategoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can takeon only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, socialclass, blood types, country affiliations, observation time or ratings via Likert scales.In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, ...) are not possible.All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexicalorder of the values.documentation: http://pandas.pydata.org/pandas-docs/stable/categorical.html ###Code import pandas as pd import numpy as np file_name_string = 'C:/Users/Charles Kelly/Desktop/Exercise Files/02_07/Begin/EmployeesWithGrades.xlsx' employees_df = pd.read_excel(file_name_string, 'Sheet1', index_col=None, na_values=['NA']) ###Output _____no_output_____ ###Markdown Change data typechange data type for "Grade" column to categorydocumentation for astype(): http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.astype.html ###Code employees_df["Grade"] = employees_df["Grade"].astype("category") ###Output _____no_output_____ ###Markdown Rename the categoriesRename the categories to more meaningful names (assigning to Series.cat.categories is inplace) ###Code employees_df["Grade"].cat.categories = ["excellent", "good", "acceptable", "poor", "unacceptable"] ###Output _____no_output_____ ###Markdown Values in data frame have not changed tabulate Department, Name, and YearsOfService, by Grade ###Code employees_df.groupby('Grade').count() ###Output _____no_output_____
tutorials/test_data_quality_at_scale.ipynb
###Markdown Test data quality at scale with PyDeequAuthors: Calvin Wang (calviwan@), Chris Ghyzel (cghyzel@), Joan Aoanan (jaoanan@), Veronika Megler (meglerv@) You generally write unit tests for your code, but do you also test your data? Incoming data quality can make or break your machine learning application. Incorrect, missing or malformed data can have a large impact on production systems. Examples of data quality issues are:* Missing values can lead to failures in production system that require non-null values (NullPointerException).* Changes in the distribution of data can lead to unexpected outputs of machine learning models.* Aggregations of incorrect data can lead to wrong business decisions.In this blog post, we introduce PyDeequ, an open source Python wrapper over [Deequ](https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/) (an open source tool developed and used at Amazon). While Deequ is written in Scala, PyDeequ allows you to use its data quality and testing capabilities from Python and PySpark, the language of choice of many data scientists. PyDeequ democratizes and extends the power of Deequ by allowing you to use it alongside the many data science libraries that are available in that language. Furthermore, PyDeequ allows for fluid interface with [Pandas](https://pandas.pydata.org/) DataFrame as opposed to restricting within Spark DataFrames. Deequ allows you to calculate data quality metrics on your dataset, define and verify data quality constraints, and be informed about changes in the data distribution. Instead of implementing checks and verification algorithms on your own, you can focus on describing how your data should look. Deequ supports you by suggesting checks for you. Deequ is implemented on top of [Apache Spark](https://spark.apache.org/) and is designed to scale with large datasets (think billions of rows) that typically live in a distributed filesystem or a data warehouse. PyDeequ gives you access to this capability, but also allows you to use it from the familiar environment of your Python Jupyter notebook. Deequ at Amazon Deequ is being used internally at Amazon for verifying the quality of many large production datasets. Dataset producers can add and edit data quality constraints. The system computes data quality metrics on a regular basis (with every new version of a dataset), verifies constraints defined by dataset producers, and publishes datasets to consumers in case of success. In error cases, dataset publication can be stopped, and producers are notified to take action. Data quality issues do not propagate to consumer data pipelines, reducing their blast radius. Deequ is also used within [Amazon SageMaker Model Monitor](https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.htmlmodel-monitor-how-it-works). Now with the availability of PyDeequ, it is finding its way into a broader set of environments - SageMaker Notebooks, AWS Glue, and more. Overview of PyDeequLet’s look at PyDeequ’s main components, and how they relate to Deequ (shown in Figure 1). * Metrics Computation — Deequ computes data quality metrics, that is, statistics such as completeness, maximum, or correlation. Deequ uses Spark to read from sources such as Amazon S3, and to compute metrics through an optimized set of aggregation queries. You have direct access to the raw metrics computed on the data.* Constraint Verification — As a user, you focus on defining a set of data quality constraints to be verified. Deequ takes care of deriving the required set of metrics to be computed on the data. Deequ generates a data quality report, which contains the result of the constraint verification.* Constraint Suggestion — You can choose to define your own custom data quality constraints, or use the automated constraint suggestion methods that profile the data to infer useful constraints.* Python wrappers — You can call each of the Deequ functions using Python syntax. The wrappers translate the commands to the underlying Deequ calls, and return their response.![image.png](../imgs/pydeequ_architecture.png)Figure 1. Overview of PyDeequ components. Example As a running example, we use [a customer review dataset provided by Amazon](https://s3.amazonaws.com/amazon-reviews-pds/readme.html) on Amazon S3. We have intentionally followed the example in the [Deequ blog](https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/), to show the similarity in functionality and execution. We begin the way many data science projects do: with initial data exploration and assessment in a Jupyter notebook. During the data exploration phase, you’d like to easily answer some basic questions about the data: * Are the fields that are supposed to contain unique values, really unique? Are there fields that are missing values? * How many distinct categories are there in the categorical fields?* Are there correlations between some key features?* If there are two supposedly similar datasets (different categories, or different time periods, say), are they really similar?Then, we’ll show you how to scale this approach to large-scale datasets, using the same code on an EMR cluster. This is how you’d likely do your ML training, and later as you move into a production setting. Setup: Start a PySpark Session in a SageMaker Notebook ###Code %%bash # install PyDeequ via pip pip install pydeequ from pyspark.sql import SparkSession, Row, DataFrame import json import pandas as pd import sagemaker_pyspark import pydeequ classpath = ":".join(sagemaker_pyspark.classpath_jars()) spark = (SparkSession .builder .config("spark.driver.extraClassPath", classpath) .config("spark.jars.packages", pydeequ.deequ_maven_coord) .config("spark.jars.excludes", pydeequ.f2j_maven_coord) .getOrCreate()) ###Output _____no_output_____ ###Markdown We will be using the Amazon Product Reviews dataset -- specifically the Electronics subset. ###Code df = spark.read.parquet("s3a://amazon-reviews-pds/parquet/product_category=Electronics/") df.printSchema() ###Output root |-- marketplace: string (nullable = true) |-- customer_id: string (nullable = true) |-- review_id: string (nullable = true) |-- product_id: string (nullable = true) |-- product_parent: string (nullable = true) |-- product_title: string (nullable = true) |-- star_rating: integer (nullable = true) |-- helpful_votes: integer (nullable = true) |-- total_votes: integer (nullable = true) |-- vine: string (nullable = true) |-- verified_purchase: string (nullable = true) |-- review_headline: string (nullable = true) |-- review_body: string (nullable = true) |-- review_date: date (nullable = true) |-- year: integer (nullable = true) ###Markdown Data Analysis Before we define checks on the data, we want to calculate some statistics on the dataset; we call them metrics. As with Deequ, PyDeequ supports a rich set of metrics (they are described in this blog (https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/) and in this Deequ package (https://github.com/awslabs/deequ/tree/master/src/main/scala/com/amazon/deequ/analyzers)). In the following example, we show how to use the _AnalysisRunner (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/analyzers/runners/AnalysisRunner.scala)_ to capture the metrics you are interested in. ###Code from pydeequ.analyzers import * analysisResult = AnalysisRunner(spark) \ .onData(df) \ .addAnalyzer(Size()) \ .addAnalyzer(Completeness("review_id")) \ .addAnalyzer(ApproxCountDistinct("review_id")) \ .addAnalyzer(Mean("star_rating")) \ .addAnalyzer(Compliance("top star_rating", "star_rating >= 4.0")) \ .addAnalyzer(Correlation("total_votes", "star_rating")) \ .addAnalyzer(Correlation("total_votes", "helpful_votes")) \ .run() analysisResult_df = AnalyzerContext.successMetricsAsDataFrame(spark, analysisResult) analysisResult_df.show() ###Output +-----------+--------------------+-------------------+--------------------+ | entity| instance| name| value| +-----------+--------------------+-------------------+--------------------+ | Column| review_id| Completeness| 1.0| | Column| review_id|ApproxCountDistinct| 3010972.0| |Mutlicolumn|total_votes,star_...| Correlation|-0.03451097996538765| | Dataset| *| Size| 3120938.0| | Column| star_rating| Mean| 4.036143941340712| | Column| top star_rating| Compliance| 0.7494070692849394| |Mutlicolumn|total_votes,helpf...| Correlation| 0.9936463809903863| +-----------+--------------------+-------------------+--------------------+ ###Markdown You can also get that result in a Pandas Dataframe!Passing `pandas=True` in any call for getting metrics as DataFrames will return the dataframe in Pandas form! We'll see more of it down the line! ###Code analysisResult_pd_df = AnalyzerContext.successMetricsAsDataFrame(spark, analysisResult, pandas=True) analysisResult_pd_df ###Output _____no_output_____ ###Markdown From this, we learn that: * review_id has no missing values and approximately 3,010,972 unique values. * 74.9% of reviews have a star_rating of 4 or higher * total_votes and star_rating are not correlated. * helpful_votes and total_votes are strongly correlated * the average star_rating is 4.0 * The dataset contains 3,120,938 reviews. Define and Run Tests for DataAfter analyzing and understanding the data, we want to verify that the properties we have derived also hold for new versions of the dataset. By defining assertions on the data distribution as part of a data pipeline, we can ensure that every processed dataset is of high quality, and that any application consuming the data can rely on it.For writing tests on data, we start with the _VerificationSuite (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/VerificationSuite.scala)_ and add _Checks (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/checks/Check.scala)_ on attributes of the data. In this example, we test for the following properties of our data:* There are at least 3 million rows in total. * review_id is never NULL.* review_id is unique. * star_rating has a minimum of 1.0 and maximum of 5.0. * marketplace only contains “US”, “UK”, “DE”, “JP”, or “FR”.* year does not contain negative values. This is the code that reflects the previous statements. For information about all available checks, see _this GitHub repository (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/checks/Check.scala)_. You can run this directly in the Spark shell as previously explained: ###Code from pydeequ.checks import * from pydeequ.verification import * check = Check(spark, CheckLevel.Warning, "Amazon Electronic Products Reviews") checkResult = VerificationSuite(spark) \ .onData(df) \ .addCheck( check.hasSize(lambda x: x >= 3000000) \ .hasMin("star_rating", lambda x: x == 1.0) \ .hasMax("star_rating", lambda x: x == 5.0) \ .isComplete("review_id") \ .isUnique("review_id") \ .isComplete("marketplace") \ .isContainedIn("marketplace", ["US", "UK", "DE", "JP", "FR"]) \ .isNonNegative("year")) \ .run() print(f"Verification Run Status: {checkResult.status}") checkResult_df = VerificationResult.checkResultsAsDataFrame(spark, checkResult, pandas=True) checkResult_df ###Output Python Callback server started! Verification Run Status: Warning ###Markdown After calling run(), PyDeequ translates your test description into Deequ, which in its turn translates it into a series of Spark jobs which are executed to compute metrics on the data. Afterwards, it invokes your assertion functions (e.g., lambda x: x == 1.0 for the minimum star-rating check) on these metrics to see if the constraints hold on the data. Interestingly, the review_id column is not unique, which resulted in a failure of the check on uniqueness. We can also look at all the metrics that Deequ computed for this check by running: ###Code checkResult_df = VerificationResult.successMetricsAsDataFrame(spark, checkResult, pandas=True) checkResult_df ###Output _____no_output_____ ###Markdown Automated Constraint Suggestion If you own a large number of datasets or if your dataset has many columns, it may be challenging for you to manually define appropriate constraints. Deequ can automatically suggest useful constraints based on the data distribution. Deequ first runs a data profiling method and then applies a set of rules on the result. For more information about how to run a data profiling method, see _this GitHub repository. (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/examples/data_profiling_example.md)_ ###Code from pydeequ.suggestions import * suggestionResult = ConstraintSuggestionRunner(spark) \ .onData(df) \ .addConstraintRule(DEFAULT()) \ .run() # Constraint Suggestions in JSON format print(json.dumps(suggestionResult, indent=2)) ###Output { "constraint_suggestions": [ { "constraint_name": "CompletenessConstraint(Completeness(review_id,None))", "column_name": "review_id", "current_value": "Completeness: 1.0", "description": "'review_id' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"review_id\")" }, { "constraint_name": "UniquenessConstraint(Uniqueness(List(review_id),None))", "column_name": "review_id", "current_value": "ApproxDistinctness: 0.9647650802419017", "description": "'review_id' is unique", "suggesting_rule": "UniqueIfApproximatelyUniqueRule()", "rule_description": "If the ratio of approximate num distinct values in a column is close to the number of records (within the error of the HLL sketch), we suggest a UNIQUE constraint", "code_for_constraint": ".isUnique(\"review_id\")" }, { "constraint_name": "CompletenessConstraint(Completeness(customer_id,None))", "column_name": "customer_id", "current_value": "Completeness: 1.0", "description": "'customer_id' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"customer_id\")" }, { "constraint_name": "ComplianceConstraint(Compliance('customer_id' has no negative values,customer_id >= 0,None))", "column_name": "customer_id", "current_value": "Minimum: 10005.0", "description": "'customer_id' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"customer_id\")" }, { "constraint_name": "AnalysisBasedConstraint(DataType(customer_id,None),<function1>,Some(<function1>),None)", "column_name": "customer_id", "current_value": "DataType: Integral", "description": "'customer_id' has type Integral", "suggesting_rule": "RetainTypeRule()", "rule_description": "If we detect a non-string type, we suggest a type constraint", "code_for_constraint": ".hasDataType(\"customer_id\", ConstrainableDataTypes.Integral)" }, { "constraint_name": "CompletenessConstraint(Completeness(review_date,None))", "column_name": "review_date", "current_value": "Completeness: 1.0", "description": "'review_date' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"review_date\")" }, { "constraint_name": "CompletenessConstraint(Completeness(helpful_votes,None))", "column_name": "helpful_votes", "current_value": "Completeness: 1.0", "description": "'helpful_votes' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"helpful_votes\")" }, { "constraint_name": "ComplianceConstraint(Compliance('helpful_votes' has no negative values,helpful_votes >= 0,None))", "column_name": "helpful_votes", "current_value": "Minimum: 0.0", "description": "'helpful_votes' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"helpful_votes\")" }, { "constraint_name": "CompletenessConstraint(Completeness(star_rating,None))", "column_name": "star_rating", "current_value": "Completeness: 1.0", "description": "'star_rating' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"star_rating\")" }, { "constraint_name": "ComplianceConstraint(Compliance('star_rating' has no negative values,star_rating >= 0,None))", "column_name": "star_rating", "current_value": "Minimum: 1.0", "description": "'star_rating' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"star_rating\")" }, { "constraint_name": "CompletenessConstraint(Completeness(year,None))", "column_name": "year", "current_value": "Completeness: 1.0", "description": "'year' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"year\")" }, { "constraint_name": "ComplianceConstraint(Compliance('year' has no negative values,year >= 0,None))", "column_name": "year", "current_value": "Minimum: 1999.0", "description": "'year' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"year\")" }, { "constraint_name": "CompletenessConstraint(Completeness(product_title,None))", "column_name": "product_title", "current_value": "Completeness: 1.0", "description": "'product_title' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"product_title\")" }, { "constraint_name": "CompletenessConstraint(Completeness(review_headline,None))", "column_name": "review_headline", "current_value": "Completeness: 0.9999987183340393", "description": "'review_headline' has less than 1% missing values", "suggesting_rule": "RetainCompletenessRule()", "rule_description": "If a column is incomplete in the sample, we model its completeness as a binomial variable, estimate a confidence interval and use this to define a lower bound for the completeness", "code_for_constraint": ".hasCompleteness(\"review_headline\", lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "CompletenessConstraint(Completeness(product_id,None))", "column_name": "product_id", "current_value": "Completeness: 1.0", "description": "'product_id' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"product_id\")" }, { "constraint_name": "CompletenessConstraint(Completeness(total_votes,None))", "column_name": "total_votes", "current_value": "Completeness: 1.0", "description": "'total_votes' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"total_votes\")" }, { "constraint_name": "ComplianceConstraint(Compliance('total_votes' has no negative values,total_votes >= 0,None))", "column_name": "total_votes", "current_value": "Minimum: 0.0", "description": "'total_votes' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"total_votes\")" }, { "constraint_name": "CompletenessConstraint(Completeness(product_parent,None))", "column_name": "product_parent", "current_value": "Completeness: 1.0", "description": "'product_parent' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"product_parent\")" }, { "constraint_name": "ComplianceConstraint(Compliance('product_parent' has no negative values,product_parent >= 0,None))", "column_name": "product_parent", "current_value": "Minimum: 6478.0", "description": "'product_parent' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"product_parent\")" }, { "constraint_name": "AnalysisBasedConstraint(DataType(product_parent,None),<function1>,Some(<function1>),None)", "column_name": "product_parent", "current_value": "DataType: Integral", "description": "'product_parent' has type Integral", "suggesting_rule": "RetainTypeRule()", "rule_description": "If we detect a non-string type, we suggest a type constraint", "code_for_constraint": ".hasDataType(\"product_parent\", ConstrainableDataTypes.Integral)" }, { "constraint_name": "CompletenessConstraint(Completeness(review_body,None))", "column_name": "review_body", "current_value": "Completeness: 0.9999724441818453", "description": "'review_body' has less than 1% missing values", "suggesting_rule": "RetainCompletenessRule()", "rule_description": "If a column is incomplete in the sample, we model its completeness as a binomial variable, estimate a confidence interval and use this to define a lower bound for the completeness", "code_for_constraint": ".hasCompleteness(\"review_body\", lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "ComplianceConstraint(Compliance('vine' has value range 'N', 'Y',`vine` IN ('N', 'Y'),None))", "column_name": "vine", "current_value": "Compliance: 1", "description": "'vine' has value range 'N', 'Y'", "suggesting_rule": "CategoricalRangeRule()", "rule_description": "If we see a categorical range for a column, we suggest an IS IN (...) constraint", "code_for_constraint": ".isContainedIn(\"vine\", [\"N\", \"Y\"])" }, { "constraint_name": "CompletenessConstraint(Completeness(vine,None))", "column_name": "vine", "current_value": "Completeness: 1.0", "description": "'vine' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"vine\")" }, { "constraint_name": "ComplianceConstraint(Compliance('vine' has value range 'N' for at least 99.0% of values,`vine` IN ('N'),None))", "column_name": "vine", "current_value": "Compliance: 0.9939271462617969", "description": "'vine' has value range 'N' for at least 99.0% of values", "suggesting_rule": "FractionalCategoricalRangeRule(0.9)", "rule_description": "If we see a categorical range for most values in a column, we suggest an IS IN (...) constraint that should hold for most values", "code_for_constraint": ".isContainedIn(\"vine\", [\"N\"], lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "ComplianceConstraint(Compliance('marketplace' has value range 'US', 'UK', 'DE', 'JP', 'FR',`marketplace` IN ('US', 'UK', 'DE', 'JP', 'FR'),None))", "column_name": "marketplace", "current_value": "Compliance: 1", "description": "'marketplace' has value range 'US', 'UK', 'DE', 'JP', 'FR'", "suggesting_rule": "CategoricalRangeRule()", "rule_description": "If we see a categorical range for a column, we suggest an IS IN (...) constraint", "code_for_constraint": ".isContainedIn(\"marketplace\", [\"US\", \"UK\", \"DE\", \"JP\", \"FR\"])" }, { "constraint_name": "CompletenessConstraint(Completeness(marketplace,None))", "column_name": "marketplace", "current_value": "Completeness: 1.0", "description": "'marketplace' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"marketplace\")" }, { "constraint_name": "ComplianceConstraint(Compliance('marketplace' has value range 'US' for at least 99.0% of values,`marketplace` IN ('US'),None))", "column_name": "marketplace", "current_value": "Compliance: 0.9949982985884372", "description": "'marketplace' has value range 'US' for at least 99.0% of values", "suggesting_rule": "FractionalCategoricalRangeRule(0.9)", "rule_description": "If we see a categorical range for most values in a column, we suggest an IS IN (...) constraint that should hold for most values", "code_for_constraint": ".isContainedIn(\"marketplace\", [\"US\"], lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "ComplianceConstraint(Compliance('verified_purchase' has value range 'Y', 'N',`verified_purchase` IN ('Y', 'N'),None))", "column_name": "verified_purchase", "current_value": "Compliance: 1", "description": "'verified_purchase' has value range 'Y', 'N'", "suggesting_rule": "CategoricalRangeRule()", "rule_description": "If we see a categorical range for a column, we suggest an IS IN (...) constraint", "code_for_constraint": ".isContainedIn(\"verified_purchase\", [\"Y\", \"N\"])" }, { "constraint_name": "CompletenessConstraint(Completeness(verified_purchase,None))", "column_name": "verified_purchase", "current_value": "Completeness: 1.0", "description": "'verified_purchase' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"verified_purchase\")" } ] } ###Markdown Test data quality at scale with PyDeequAuthors: Calvin Wang (calviwan@), Chris Ghyzel (cghyzel@), Joan Aoanan (jaoanan@), Veronika Megler (meglerv@) You generally write unit tests for your code, but do you also test your data? Incoming data quality can make or break your machine learning application. Incorrect, missing or malformed data can have a large impact on production systems. Examples of data quality issues are:* Missing values can lead to failures in production system that require non-null values (NullPointerException).* Changes in the distribution of data can lead to unexpected outputs of machine learning models.* Aggregations of incorrect data can lead to wrong business decisions.In this blog post, we introduce PyDeequ, an open source Python wrapper over [Deequ](https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/) (an open source tool developed and used at Amazon). While Deequ is written in Scala, PyDeequ allows you to use its data quality and testing capabilities from Python and PySpark, the language of choice of many data scientists. PyDeequ democratizes and extends the power of Deequ by allowing you to use it alongside the many data science libraries that are available in that language. Furthermore, PyDeequ allows for fluid interface with [Pandas](https://pandas.pydata.org/) DataFrame as opposed to restricting within Spark DataFrames. Deequ allows you to calculate data quality metrics on your dataset, define and verify data quality constraints, and be informed about changes in the data distribution. Instead of implementing checks and verification algorithms on your own, you can focus on describing how your data should look. Deequ supports you by suggesting checks for you. Deequ is implemented on top of [Apache Spark](https://spark.apache.org/) and is designed to scale with large datasets (think billions of rows) that typically live in a distributed filesystem or a data warehouse. PyDeequ gives you access to this capability, but also allows you to use it from the familiar environment of your Python Jupyter notebook. Deequ at Amazon Deequ is being used internally at Amazon for verifying the quality of many large production datasets. Dataset producers can add and edit data quality constraints. The system computes data quality metrics on a regular basis (with every new version of a dataset), verifies constraints defined by dataset producers, and publishes datasets to consumers in case of success. In error cases, dataset publication can be stopped, and producers are notified to take action. Data quality issues do not propagate to consumer data pipelines, reducing their blast radius. Deequ is also used within [Amazon SageMaker Model Monitor](https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.htmlmodel-monitor-how-it-works). Now with the availability of PyDeequ, it is finding its way into a broader set of environments - SageMaker Notebooks, AWS Glue, and more. Overview of PyDeequLet’s look at PyDeequ’s main components, and how they relate to Deequ (shown in Figure 1). * Metrics Computation — Deequ computes data quality metrics, that is, statistics such as completeness, maximum, or correlation. Deequ uses Spark to read from sources such as Amazon S3, and to compute metrics through an optimized set of aggregation queries. You have direct access to the raw metrics computed on the data.* Constraint Verification — As a user, you focus on defining a set of data quality constraints to be verified. Deequ takes care of deriving the required set of metrics to be computed on the data. Deequ generates a data quality report, which contains the result of the constraint verification.* Constraint Suggestion — You can choose to define your own custom data quality constraints, or use the automated constraint suggestion methods that profile the data to infer useful constraints.* Python wrappers — You can call each of the Deequ functions using Python syntax. The wrappers translate the commands to the underlying Deequ calls, and return their response.![image.png](attachment:image.png)Figure 1. Overview of PyDeequ components. Example As a running example, we use [a customer review dataset provided by Amazon](https://s3.amazonaws.com/amazon-reviews-pds/readme.html) on Amazon S3. We have intentionally followed the example in the [Deequ blog](https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/), to show the similarity in functionality and execution. We begin the way many data science projects do: with initial data exploration and assessment in a Jupyter notebook. During the data exploration phase, you’d like to easily answer some basic questions about the data: * Are the fields that are supposed to contain unique values, really unique? Are there fields that are missing values? * How many distinct categories are there in the categorical fields?* Are there correlations between some key features?* If there are two supposedly similar datasets (different categories, or different time periods, say), are they really similar?Then, we’ll show you how to scale this approach to large-scale datasets, using the same code on an EMR cluster. This is how you’d likely do your ML training, and later as you move into a production setting. Setup: Start a PySpark Session in a SageMaker Notebook ###Code %%bash # install PyDeequ via pip ! pip install pydeequ from pyspark.sql import SparkSession, Row, DataFrame import json import pandas as pd import sagemaker_pyspark import pydeequ classpath = ":".join(sagemaker_pyspark.classpath_jars()) spark = (SparkSession .builder .config("spark.driver.extraClassPath", classpath) .config("spark.jars.packages", pydeequ.deequ_maven_coord) .config("spark.jars.excludes", pydeequ.f2j_maven_coord) .getOrCreate()) ###Output _____no_output_____ ###Markdown We will be using the Amazon Product Reviews dataset -- specifically the Electronics subset. ###Code df = spark.read.parquet("s3a://amazon-reviews-pds/parquet/product_category=Electronics/") df.printSchema() ###Output root |-- marketplace: string (nullable = true) |-- customer_id: string (nullable = true) |-- review_id: string (nullable = true) |-- product_id: string (nullable = true) |-- product_parent: string (nullable = true) |-- product_title: string (nullable = true) |-- star_rating: integer (nullable = true) |-- helpful_votes: integer (nullable = true) |-- total_votes: integer (nullable = true) |-- vine: string (nullable = true) |-- verified_purchase: string (nullable = true) |-- review_headline: string (nullable = true) |-- review_body: string (nullable = true) |-- review_date: date (nullable = true) |-- year: integer (nullable = true) ###Markdown Data Analysis Before we define checks on the data, we want to calculate some statistics on the dataset; we call them metrics. As with Deequ, PyDeequ supports a rich set of metrics (they are described in this blog (https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/) and in this Deequ package (https://github.com/awslabs/deequ/tree/master/src/main/scala/com/amazon/deequ/analyzers)). In the following example, we show how to use the _AnalysisRunner (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/analyzers/runners/AnalysisRunner.scala)_ to capture the metrics you are interested in. ###Code from pydeequ.analyzers import * analysisResult = AnalysisRunner(spark) \ .onData(df) \ .addAnalyzer(Size()) \ .addAnalyzer(Completeness("review_id")) \ .addAnalyzer(ApproxCountDistinct("review_id")) \ .addAnalyzer(Mean("star_rating")) \ .addAnalyzer(Compliance("top star_rating", "star_rating >= 4.0")) \ .addAnalyzer(Correlation("total_votes", "star_rating")) \ .addAnalyzer(Correlation("total_votes", "helpful_votes")) \ .run() analysisResult_df = AnalyzerContext.successMetricsAsDataFrame(spark, analysisResult) analysisResult_df.show() ###Output +-----------+--------------------+-------------------+--------------------+ | entity| instance| name| value| +-----------+--------------------+-------------------+--------------------+ | Column| review_id| Completeness| 1.0| | Column| review_id|ApproxCountDistinct| 3010972.0| |Mutlicolumn|total_votes,star_...| Correlation|-0.03451097996538765| | Dataset| *| Size| 3120938.0| | Column| star_rating| Mean| 4.036143941340712| | Column| top star_rating| Compliance| 0.7494070692849394| |Mutlicolumn|total_votes,helpf...| Correlation| 0.9936463809903863| +-----------+--------------------+-------------------+--------------------+ ###Markdown You can also get that result in a Pandas Dataframe!Passing `pandas=True` in any call for getting metrics as DataFrames will return the dataframe in Pandas form! We'll see more of it down the line! ###Code analysisResult_pd_df = AnalyzerContext.successMetricsAsDataFrame(spark, analysisResult, pandas=True) analysisResult_pd_df ###Output _____no_output_____ ###Markdown From this, we learn that: * review_id has no missing values and approximately 3,010,972 unique values. * 74.9% of reviews have a star_rating of 4 or higher * total_votes and star_rating are not correlated. * helpful_votes and total_votes are strongly correlated * the average star_rating is 4.0 * The dataset contains 3,120,938 reviews. Define and Run Tests for DataAfter analyzing and understanding the data, we want to verify that the properties we have derived also hold for new versions of the dataset. By defining assertions on the data distribution as part of a data pipeline, we can ensure that every processed dataset is of high quality, and that any application consuming the data can rely on it.For writing tests on data, we start with the _VerificationSuite (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/VerificationSuite.scala)_ and add _Checks (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/checks/Check.scala)_ on attributes of the data. In this example, we test for the following properties of our data:* There are at least 3 million rows in total. * review_id is never NULL.* review_id is unique. * star_rating has a minimum of 1.0 and maximum of 5.0. * marketplace only contains “US”, “UK”, “DE”, “JP”, or “FR”.* year does not contain negative values. This is the code that reflects the previous statements. For information about all available checks, see _this GitHub repository (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/checks/Check.scala)_. You can run this directly in the Spark shell as previously explained: ###Code from pydeequ.checks import * from pydeequ.verification import * check = Check(spark, CheckLevel.Warning, "Amazon Electronic Products Reviews") checkResult = VerificationSuite(spark) \ .onData(df) \ .addCheck( check.hasSize(lambda x: x >= 3000000) \ .hasMin("star_rating", lambda x: x == 1.0) \ .hasMax("star_rating", lambda x: x == 5.0) \ .isComplete("review_id") \ .isUnique("review_id") \ .isComplete("marketplace") \ .isContainedIn("marketplace", ["US", "UK", "DE", "JP", "FR"]) \ .isNonNegative("year")) \ .run() print(f"Verification Run Status: {checkResult.status}") checkResult_df = VerificationResult.checkResultsAsDataFrame(spark, checkResult, pandas=True) checkResult_df ###Output Python Callback server started! Verification Run Status: Warning ###Markdown After calling run(), PyDeequ translates your test description into Deequ, which in its turn translates it into a series of Spark jobs which are executed to compute metrics on the data. Afterwards, it invokes your assertion functions (e.g., lambda x: x == 1.0 for the minimum star-rating check) on these metrics to see if the constraints hold on the data. Interestingly, the review_id column is not unique, which resulted in a failure of the check on uniqueness. We can also look at all the metrics that Deequ computed for this check by running: ###Code checkResult_df = VerificationResult.successMetricsAsDataFrame(spark, checkResult, pandas=True) checkResult_df ###Output _____no_output_____ ###Markdown Automated Constraint Suggestion If you own a large number of datasets or if your dataset has many columns, it may be challenging for you to manually define appropriate constraints. Deequ can automatically suggest useful constraints based on the data distribution. Deequ first runs a data profiling method and then applies a set of rules on the result. For more information about how to run a data profiling method, see _this GitHub repository. (https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/examples/data_profiling_example.md)_ ###Code from pydeequ.suggestions import * suggestionResult = ConstraintSuggestionRunner(spark) \ .onData(df) \ .addConstraintRule(DEFAULT()) \ .run() # Constraint Suggestions in JSON format print(json.dumps(suggestionResult, indent=2)) ###Output { "constraint_suggestions": [ { "constraint_name": "CompletenessConstraint(Completeness(review_id,None))", "column_name": "review_id", "current_value": "Completeness: 1.0", "description": "'review_id' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"review_id\")" }, { "constraint_name": "UniquenessConstraint(Uniqueness(List(review_id),None))", "column_name": "review_id", "current_value": "ApproxDistinctness: 0.9647650802419017", "description": "'review_id' is unique", "suggesting_rule": "UniqueIfApproximatelyUniqueRule()", "rule_description": "If the ratio of approximate num distinct values in a column is close to the number of records (within the error of the HLL sketch), we suggest a UNIQUE constraint", "code_for_constraint": ".isUnique(\"review_id\")" }, { "constraint_name": "CompletenessConstraint(Completeness(customer_id,None))", "column_name": "customer_id", "current_value": "Completeness: 1.0", "description": "'customer_id' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"customer_id\")" }, { "constraint_name": "ComplianceConstraint(Compliance('customer_id' has no negative values,customer_id >= 0,None))", "column_name": "customer_id", "current_value": "Minimum: 10005.0", "description": "'customer_id' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"customer_id\")" }, { "constraint_name": "AnalysisBasedConstraint(DataType(customer_id,None),<function1>,Some(<function1>),None)", "column_name": "customer_id", "current_value": "DataType: Integral", "description": "'customer_id' has type Integral", "suggesting_rule": "RetainTypeRule()", "rule_description": "If we detect a non-string type, we suggest a type constraint", "code_for_constraint": ".hasDataType(\"customer_id\", ConstrainableDataTypes.Integral)" }, { "constraint_name": "CompletenessConstraint(Completeness(review_date,None))", "column_name": "review_date", "current_value": "Completeness: 1.0", "description": "'review_date' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"review_date\")" }, { "constraint_name": "CompletenessConstraint(Completeness(helpful_votes,None))", "column_name": "helpful_votes", "current_value": "Completeness: 1.0", "description": "'helpful_votes' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"helpful_votes\")" }, { "constraint_name": "ComplianceConstraint(Compliance('helpful_votes' has no negative values,helpful_votes >= 0,None))", "column_name": "helpful_votes", "current_value": "Minimum: 0.0", "description": "'helpful_votes' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"helpful_votes\")" }, { "constraint_name": "CompletenessConstraint(Completeness(star_rating,None))", "column_name": "star_rating", "current_value": "Completeness: 1.0", "description": "'star_rating' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"star_rating\")" }, { "constraint_name": "ComplianceConstraint(Compliance('star_rating' has no negative values,star_rating >= 0,None))", "column_name": "star_rating", "current_value": "Minimum: 1.0", "description": "'star_rating' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"star_rating\")" }, { "constraint_name": "CompletenessConstraint(Completeness(year,None))", "column_name": "year", "current_value": "Completeness: 1.0", "description": "'year' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"year\")" }, { "constraint_name": "ComplianceConstraint(Compliance('year' has no negative values,year >= 0,None))", "column_name": "year", "current_value": "Minimum: 1999.0", "description": "'year' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"year\")" }, { "constraint_name": "CompletenessConstraint(Completeness(product_title,None))", "column_name": "product_title", "current_value": "Completeness: 1.0", "description": "'product_title' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"product_title\")" }, { "constraint_name": "CompletenessConstraint(Completeness(review_headline,None))", "column_name": "review_headline", "current_value": "Completeness: 0.9999987183340393", "description": "'review_headline' has less than 1% missing values", "suggesting_rule": "RetainCompletenessRule()", "rule_description": "If a column is incomplete in the sample, we model its completeness as a binomial variable, estimate a confidence interval and use this to define a lower bound for the completeness", "code_for_constraint": ".hasCompleteness(\"review_headline\", lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "CompletenessConstraint(Completeness(product_id,None))", "column_name": "product_id", "current_value": "Completeness: 1.0", "description": "'product_id' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"product_id\")" }, { "constraint_name": "CompletenessConstraint(Completeness(total_votes,None))", "column_name": "total_votes", "current_value": "Completeness: 1.0", "description": "'total_votes' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"total_votes\")" }, { "constraint_name": "ComplianceConstraint(Compliance('total_votes' has no negative values,total_votes >= 0,None))", "column_name": "total_votes", "current_value": "Minimum: 0.0", "description": "'total_votes' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"total_votes\")" }, { "constraint_name": "CompletenessConstraint(Completeness(product_parent,None))", "column_name": "product_parent", "current_value": "Completeness: 1.0", "description": "'product_parent' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"product_parent\")" }, { "constraint_name": "ComplianceConstraint(Compliance('product_parent' has no negative values,product_parent >= 0,None))", "column_name": "product_parent", "current_value": "Minimum: 6478.0", "description": "'product_parent' has no negative values", "suggesting_rule": "NonNegativeNumbersRule()", "rule_description": "If we see only non-negative numbers in a column, we suggest a corresponding constraint", "code_for_constraint": ".isNonNegative(\"product_parent\")" }, { "constraint_name": "AnalysisBasedConstraint(DataType(product_parent,None),<function1>,Some(<function1>),None)", "column_name": "product_parent", "current_value": "DataType: Integral", "description": "'product_parent' has type Integral", "suggesting_rule": "RetainTypeRule()", "rule_description": "If we detect a non-string type, we suggest a type constraint", "code_for_constraint": ".hasDataType(\"product_parent\", ConstrainableDataTypes.Integral)" }, { "constraint_name": "CompletenessConstraint(Completeness(review_body,None))", "column_name": "review_body", "current_value": "Completeness: 0.9999724441818453", "description": "'review_body' has less than 1% missing values", "suggesting_rule": "RetainCompletenessRule()", "rule_description": "If a column is incomplete in the sample, we model its completeness as a binomial variable, estimate a confidence interval and use this to define a lower bound for the completeness", "code_for_constraint": ".hasCompleteness(\"review_body\", lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "ComplianceConstraint(Compliance('vine' has value range 'N', 'Y',`vine` IN ('N', 'Y'),None))", "column_name": "vine", "current_value": "Compliance: 1", "description": "'vine' has value range 'N', 'Y'", "suggesting_rule": "CategoricalRangeRule()", "rule_description": "If we see a categorical range for a column, we suggest an IS IN (...) constraint", "code_for_constraint": ".isContainedIn(\"vine\", [\"N\", \"Y\"])" }, { "constraint_name": "CompletenessConstraint(Completeness(vine,None))", "column_name": "vine", "current_value": "Completeness: 1.0", "description": "'vine' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"vine\")" }, { "constraint_name": "ComplianceConstraint(Compliance('vine' has value range 'N' for at least 99.0% of values,`vine` IN ('N'),None))", "column_name": "vine", "current_value": "Compliance: 0.9939271462617969", "description": "'vine' has value range 'N' for at least 99.0% of values", "suggesting_rule": "FractionalCategoricalRangeRule(0.9)", "rule_description": "If we see a categorical range for most values in a column, we suggest an IS IN (...) constraint that should hold for most values", "code_for_constraint": ".isContainedIn(\"vine\", [\"N\"], lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "ComplianceConstraint(Compliance('marketplace' has value range 'US', 'UK', 'DE', 'JP', 'FR',`marketplace` IN ('US', 'UK', 'DE', 'JP', 'FR'),None))", "column_name": "marketplace", "current_value": "Compliance: 1", "description": "'marketplace' has value range 'US', 'UK', 'DE', 'JP', 'FR'", "suggesting_rule": "CategoricalRangeRule()", "rule_description": "If we see a categorical range for a column, we suggest an IS IN (...) constraint", "code_for_constraint": ".isContainedIn(\"marketplace\", [\"US\", \"UK\", \"DE\", \"JP\", \"FR\"])" }, { "constraint_name": "CompletenessConstraint(Completeness(marketplace,None))", "column_name": "marketplace", "current_value": "Completeness: 1.0", "description": "'marketplace' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"marketplace\")" }, { "constraint_name": "ComplianceConstraint(Compliance('marketplace' has value range 'US' for at least 99.0% of values,`marketplace` IN ('US'),None))", "column_name": "marketplace", "current_value": "Compliance: 0.9949982985884372", "description": "'marketplace' has value range 'US' for at least 99.0% of values", "suggesting_rule": "FractionalCategoricalRangeRule(0.9)", "rule_description": "If we see a categorical range for most values in a column, we suggest an IS IN (...) constraint that should hold for most values", "code_for_constraint": ".isContainedIn(\"marketplace\", [\"US\"], lambda x: x >= 0.99, \"It should be above 0.99!\")" }, { "constraint_name": "ComplianceConstraint(Compliance('verified_purchase' has value range 'Y', 'N',`verified_purchase` IN ('Y', 'N'),None))", "column_name": "verified_purchase", "current_value": "Compliance: 1", "description": "'verified_purchase' has value range 'Y', 'N'", "suggesting_rule": "CategoricalRangeRule()", "rule_description": "If we see a categorical range for a column, we suggest an IS IN (...) constraint", "code_for_constraint": ".isContainedIn(\"verified_purchase\", [\"Y\", \"N\"])" }, { "constraint_name": "CompletenessConstraint(Completeness(verified_purchase,None))", "column_name": "verified_purchase", "current_value": "Completeness: 1.0", "description": "'verified_purchase' is not null", "suggesting_rule": "CompleteIfCompleteRule()", "rule_description": "If a column is complete in the sample, we suggest a NOT NULL constraint", "code_for_constraint": ".isComplete(\"verified_purchase\")" } ] }
EDA&3models.ipynb
###Markdown COVID-19 World Vaccination Progress ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import itertools import math import pycaret.regression as caret from pycaret.time_series import * from sklearn.model_selection import TimeSeriesSplit from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error from statsmodels.tsa.arima.model import ARIMA import statsmodels from fbprophet import Prophet from fbprophet.diagnostics import cross_validation from fbprophet.diagnostics import performance_metrics from fbprophet.plot import plot_cross_validation_metric import itertools from matplotlib import pyplot as plt import seaborn as sns sns.set() import statsmodels.api as sm import scipy.stats as stats from sklearn.metrics import r2_score import warnings from typing import List from fbprophet import Prophet from fbprophet.diagnostics import cross_validation from fbprophet.diagnostics import performance_metrics from fbprophet.plot import plot_cross_validation_metric import itertools from typing import List import warnings import datetime from datetime import date , datetime , timedelta from statsmodels.tsa.stattools import adfuller from numpy import log ###Output _____no_output_____ ###Markdown EDA ###Code df = pd.read_csv("/Users/luomingni/Desktop/MS/first term/5220_SML/Project/archive/country_vaccinations copy.csv") df.head() df.shape df.info countries = df.country.unique() for country in countries: print(country,end = ":\n") print(df[df.country == country]['vaccines'].unique()[0] , end = "\n"+"_"*20+"\n\n") dict_vac_percentages = {} iso_list = df.iso_code.unique() for iso_code in iso_list: dict_vac_percentages[iso_code]=df[df.iso_code==iso_code]['people_fully_vaccinated_per_hundred'].max() df_vac_percentages = pd.DataFrame() df_vac_percentages['iso_code'] = dict_vac_percentages.keys() df_vac_percentages['fully vaccinated percentage'] = dict_vac_percentages.values() df_vac_percentages['country'] = countries map_full_percentage = px.choropleth(df_vac_percentages, locations="iso_code" , color="fully vaccinated percentage" , hover_name="country" , color_continuous_scale=px.colors.sequential.YlGn) map_full_percentage.show() plt.subplots(figsize=(8, 8)) sns.heatmap(df.corr(), annot=True, square=True) plt.show() ###Output _____no_output_____ ###Markdown Methods ###Code class DataModeler: def __init__(self): pass def _parametrized(dec): def layer(*args, **kwargs): def repl(f): return dec(f, *args, **kwargs) return repl return layer @staticmethod @_parametrized def logger(f, job): def aux(self, *xs, **kws): print(job + " - ", end='\t') res = f(self, *xs, **kws) print("Completed") return res return aux ###Output _____no_output_____ ###Markdown Preprocessing ###Code class DataPreprocessor(DataModeler): "Wrap the operations of data preprocessing." def __init__(self): super(DataPreprocessor, self).__init__() @DataModeler.logger("Transforming feature type") def _feature_transform(self, df:pd.DataFrame) -> List[pd.DataFrame]: """ Transform data type of some columns. @param df: raw data return: processed data """ df['date'] = pd.to_datetime(df['date'],format="%Y-%m-%d") return df @DataModeler.logger("Counting missing rate") def missing_value_counter(self,df:pd.DataFrame, cols:List[str]) -> pd.DataFrame: """ Count missing values in specified columns. @param df: dataframe @param cols: columns to be calculated return: summary information """ res = pd.DataFrame(cols, columns=['Feature']) na_cnts = [sum(df[col].isna()) for col in cols] res['NA Count'] = na_cnts res['NA Rate'] = res['NA Count'] / df.shape[0] res = res[res['NA Count'] != 0] res = res.sort_values(by='NA Count', ascending=False).reset_index(drop=True) return res @DataModeler.logger("Checking day interval") def check_day_interval(self,d0:date,d1:date): """ get internal day to check missing value """ #d0 = date(2020,12,20) #d1 = date(2021 , 10 , 26) delta = d1 - d0 days = delta.days + 1 print(days) #no missing value in 'date'! nice! return days @DataModeler.logger("Checking missing value") def missing_value(self,data): return data.isna().sum() @DataModeler.logger("filling missing value using the day ahead") def fill_missing_value(self,data,target:str): """ fill missing value by the value of last day """ for i in data[target][data[target].isna() == True].index: data[target][i] = data[target][i-1] return data @DataModeler.logger("Filtering useful columns") def _filter_data(self, df:pd.DataFrame) -> List[pd.DataFrame]: """ Select useful variables for the model @param df: raw data return: processed data """ df_filtered = df[['date','daily_vaccinations']] return df_filtered @DataModeler.logger("Filling missing value") def _fill_missing_value(self, df:pd.DataFrame) -> pd.DataFrame: """ Fill missing values in input data. param df: dataframe return: processed dataframe """ res = df.fillna(0.0) return res @DataModeler.logger("Sort data by date") def _sort_data(self, df:pd.DataFrame) -> List[pd.DataFrame]: """ Sort data by date @param df: raw data return: processed data """ df = df.sort_values(by='date') return df def preprocess(self, df:pd.DataFrame) -> pd.DataFrame: """ Preprocess raw data and modify the fields to get required columns. @param df: raw data return: combined clean vaccination data """ df = self._feature_transform(df) df = self._filter_data(df) df = self._fill_missing_value(df) df = self._sort_data(df) df = df.groupby(by=['date']).sum().reset_index() df['total_vaccinations'] = df['daily_vaccinations'].cumsum() df['percentage_people_vaccinated'] = (df['total_vaccinations']/(8032669179*2))*100 return df ###Output _____no_output_____ ###Markdown Feature Engineering ###Code class FeatureEngineer(DataModeler): "Wrap the operations of feature engineering." def __init__(self): super(FeatureEngineer, self).__init__() @DataModeler.logger("Generating date features") def _gen_date_feats(self, data1:pd.DataFrame): """ Extract date features from time of data return: dataframe with new features """ data1['Date'] = pd.to_datetime(data1['Date']) data1['Date'] = data1['Date'].dt.strftime('%d.%m.%Y') data1['year'] = pd.DatetimeIndex(data1['Date']).year data1['month'] = pd.DatetimeIndex(data1['Date']).month data1['day'] = pd.DatetimeIndex(data1['Date']).day data1['dayofyear'] = pd.DatetimeIndex(data1['Date']).dayofyear data1['weekofyear'] = pd.DatetimeIndex(data1['Date']).weekofyear data1['weekday'] = pd.DatetimeIndex(data1['Date']).weekday data1['quarter'] = pd.DatetimeIndex(data1['Date']).quarter data1['is_month_start'] = pd.DatetimeIndex(data1['Date']).is_month_start data1['is_month_end'] = pd.DatetimeIndex(data1['Date']).is_month_end print(data1.info()) return data1 @DataModeler.logger("Generating sliding window features") def gen_window(self,data1:pd.DataFrame,tar:str, width:str): """ Use sliding window to generate features return: dataframe with new features """ data1['Series'] = np.arange(1 , len(data1)+1) #define lag data1['Shift1'] = data1[tar].shift(1) # define Window = 7 #window_len = 7 data1['Window_mean'] = data1['Shift1'].rolling(window = width).mean() #remove missing value data1.dropna(inplace = True) data1.reset_index(drop = True , inplace=True) #df_X = data1[['Date', 'Series' , 'Window_mean' , 'Shift1' ]] #df_Y = data1[['Target']] return data1 ###Output _____no_output_____ ###Markdown Prophet model ###Code class MLModeler(DataModeler): "Wrap the operations of Prophet model." def __init__(self): super(MLModeler, self).__init__() @DataModeler.logger("Transforming feature type") def _train_test_split(self, df:pd.DataFrame,target_variable): """ Split data into training and validation dataset. @param df: processed data return: train and validation data """ df = df.rename(columns={'date':'ds',target_variable:'y'}) df['cap'] = 100 df['floor'] = 0 df_train = df[df['ds'] < datetime(2021,8,22)] df_val = df[df['ds'] >= datetime(2021,8,22)] return df_train,df_val @DataModeler.logger("Fit model on training data") def _fit_model(self, df:pd.DataFrame): """ Fit the model on training data @param df: raw data return: trained model """ m = Prophet() m.fit(df) return m @DataModeler.logger("Predict results on test data") def _predict_test(self, m) -> pd.DataFrame: """ Test the trained model. param m: trained return: dataframe containing forecasts """ future = m.make_future_dataframe(periods=90) forecast = m.predict(future) return forecast @DataModeler.logger("Plot predicted data") def _plot_forecast(self, m): """ Plot predicted data @param m: model return: none """ fig1 = m.plot(forecast) @DataModeler.logger("Plot components of predicted data") def _plot_components_forecast(self, m): """ Plot components of predicted data @param m: model return: none """ fig2 = m.plot_components(forecast) @DataModeler.logger("Plot cross validation metrics") def _plot_cross_validation_metrics(self, m): """ Plot cross validation metrics. @param m: trained model return: combined clean vaccination data """ df_cv = cross_validation(m, initial='165 days', period='100 days', horizon = '65 days') df_p = performance_metrics(df_cv) fig3 = plot_cross_validation_metric(df_cv, metric='mape') @DataModeler.logger("Calculate RMSE, MAE, MAPE on test data") def _calculate_metrics(self, m): """ Calculate RMSE on test data. @param m: trained model return: rmse """ df_cv = cross_validation(m, initial='165 days', period='100 days', horizon = '65 days') df_p = performance_metrics(df_cv) print('RMSE - ',df_p['rmse'].min()) print('MAE - ',df_p['mae'].min()) print('MAPE - ',df_p['mape'].min()) @DataModeler.logger("Tuning hyperparameters") def _hyperparameter_tuning(self, m, df): def create_param_combinations(**param_dict): param_iter = itertools.product(*param_dict.values()) params =[] for param in param_iter: params.append(param) params_df = pd.DataFrame(params, columns=list(param_dict.keys())) return params_df def single_cv_run(history_df, metrics, param_dict): m = Prophet(**param_dict) m.add_country_holidays(country_name='US') m.fit(history_df) df_cv = cross_validation(m, initial='165 days', period='100 days', horizon = '65 days') df_p = performance_metrics(df_cv).mean().to_frame().T df_p['params'] = str(param_dict) df_p = df_p.loc[:, metrics] return df_p param_grid = { 'changepoint_prior_scale': [0.005, 0.05, 0.5, 5], 'changepoint_range': [0.8, 0.9], 'seasonality_prior_scale':[0.1, 1, 10.0], 'holidays_prior_scale':[0.1, 1, 10.0], 'seasonality_mode': ['multiplicative', 'additive'], 'growth': ['linear', 'logistic'], 'yearly_seasonality': [5, 10, 20] } metrics = ['horizon', 'rmse', 'mape', 'params'] results = [] params_df = create_param_combinations(**param_grid) for param in params_df.values: param_dict = dict(zip(params_df.keys(), param)) cv_df = single_cv_run(df, metrics, param_dict) results.append(cv_df) results_df = pd.concat(results).reset_index(drop=True) return results_df.loc[results_df['rmse'] == min(results_df['rmse']), ['params']] ###Output _____no_output_____ ###Markdown ARIMA model ###Code class time_Series_Learner(): def __init__(self): super(time_Series_Learner, self).__init__() @DataModeler.logger("Hypothesis testing") def Hypothesis_test(self,df): result = adfuller(df.dropna()) print('ADF Statistic: %f' % result[0]) print('p-value: %f' % result[1]) @DataModeler.logger("Transforming feature type") def split_dataset(self,X, y, train_ratio=0.8): X_len = len(X) train_data_len = int(X_len * train_ratio) X_train = X[:train_data_len] y_train = y[:train_data_len] X_valid = X[train_data_len:] y_valid = y[train_data_len:] return X_train, X_valid, y_train, y_valid @DataModeler.logger("Training") def Univariate_Arima(self, train_Y,parameters:tuple,Y_valid): model = ARIMA(train_Y, order=parameters) # p,d,q parameters model_fit = model.fit() y_pred = model_fit.forecast(len(Y_valid)) # Calcuate metrics metrics = {} score_mae = mean_absolute_error(Y_valid, y_pred) metrics["mae"] = score_mae score_rmse = math.sqrt(mean_squared_error(Y_valid, y_pred)) metrics["rmse"] = score_rmse score_r2 = r2_score(Y_valid, y_pred) metrics["r2"] = score_r2 #print('RMSE: {}'.format(score_rmse)) return metrics, model_fit @DataModeler.logger("Tuning hyperparameters") def tune_parameters(self, parameters,y_train,y_valid): rmse, AIC = [], [] for parameters in pdq: warnings.filterwarnings("ignore") # specify to ignore warning messages score_rmse, model_fit = self.Univariate_Arima(y_train,parameters,y_valid) #rmse.append(score_rmse) AIC.append(model_fit.aic) final, index = min(AIC), AIC.index(min(AIC)) parameter = pdq[index] #print(AIC) print("suitable parameter:",parameter) print("result:",final) return parameter @DataModeler.logger("Predict results on test data") def valid_forcast(self, model_fit): y_pred = model_fit.forecast(66) return y_pred @DataModeler.logger("Plot predicted data") def plot_predict_test(self, X_valid, y_pred, y_valid ): fig = plt.figure(figsize=(15,4)) sns.lineplot(x=X_valid.index, y=y_pred, color='blue', label='predicted') #navajowhite sns.lineplot(x=X_valid.index, y=y_valid, color='orange', label='Ground truth') #navajowhite plt.xlabel(xlabel='Date', fontsize=14) plt.ylabel(ylabel='Percentage Vaccinations', fontsize=14) plt.xticks(rotation=-60) plt.show() @DataModeler.logger("Model diagonostic") def Model_diagonostic(self, model_fit): model_fit.plot_diagnostics(figsize=(15, 12)) plt.show() ###Output _____no_output_____ ###Markdown Regression model: preliminary result for choosing models ###Code class RF_Learner(DataModeler): "Wrap the operations of RF model." def __init__(self): super(RF_Learner, self).__init__() @DataModeler.logger("Transforming feature type") def split_dataset(self,X, y, train_ratio=0.8): X_len = len(X) train_data_len = int(X_len * train_ratio) X_train = X[:train_data_len] y_train = y[:train_data_len] X_valid = X[train_data_len:] y_valid = y[train_data_len:] return X_train, X_valid, y_train, y_valid @DataModeler.logger("Transforming feature type_2") def trim(self, stamp:List[str], x_train, x_valid): predictors_train = list(set(list(x_train.columns))-set(stamp)) x_train = x_train[predictors_train].values #y_train = x_train[target].values x_valid = x_valid[predictors_train].values #y_valid_ = df_test[target].values return x_train, x_valid @DataModeler.logger("Fit model on training data") def RF_train(self,x_train, y_train,x_valid): regressor = RandomForestRegressor(n_estimators=200, random_state=0) regressor.fit(x_train, y_train) y_pred = regressor.predict(x_valid) return y_pred @DataModeler.logger("Predict results on test data") def predict(self,y_pred,y_valid): # Calcuate metrics metrics = {} score_mae = mean_absolute_error(y_valid, y_pred) metrics["mae"] = score_mae score_rmse = math.sqrt(mean_squared_error(y_valid, y_pred)) metrics["rmse"] = score_rmse score_r2 = r2_score(y_valid, y_pred) metrics["r2"] = score_r2 return metrics ###Output _____no_output_____ ###Markdown ARIMA learner ###Code # loading data from univariate -- df_world = pd.read_csv("/Users/luomingni/Desktop/MS/first term/5220_SML/Project/world_filtered_data.csv") # define df_world1 = pd.DataFrame(df_world,columns = ['date','percentage_people_vaccinated']) df_world1.index = df_world1['date'] X = df_world1['date'] y = df_world1['percentage_people_vaccinated'] # ARIMA leaner ARIMA_leaner = time_Series_Learner() ARIMA_leaner.Hypothesis_test(df_world1.percentage_people_vaccinated) #grid search # Define the p, d and q parameters to take any value between 0 and 2 p = q = range(0, 4) d = range(0,2) # Generate all different combinations of p, q and q triplets pdq = list(itertools.product(p, d, q)) X_train, X_valid, y_train, y_valid = ARIMA_leaner.split_dataset(X,y) parameter = ARIMA_leaner.tune_parameters(pdq,y_train,y_valid) metrics, model_fit = ARIMA_leaner.Univariate_Arima(y_train,(2,1,2),y_valid) metrics y_pred = ARIMA_leaner.valid_forcast(model_fit) ARIMA_leaner.plot_predict_test(X_valid,y_pred,y_valid) ARIMA_leaner.Model_diagonostic(model_fit) ###Output Model diagonostic -
notebooks/results_outliers.ipynb
###Markdown Load data ###Code DATA_FILE = '../data/lda_data_8.pickle' METADATA_FILE = '../data/metadata.csv' dataset, ddf, w_dict = outliers.load_data(DATA_FILE, METADATA_FILE) X_list, Y, Yaudio = dataset X = np.concatenate(X_list, axis=1) ###Output _____no_output_____ ###Markdown Outliers at the recording level ###Code df_global, threshold, MD = outliers.get_outliers_df(X, Y, chi2thr=0.999) outliers.print_most_least_outliers_topN(df_global, N=10) tab_all = interactive_plot.plot_outliers_world_figure(MD, MD>threshold, ddf) print "n outliers " + str(len(np.where(MD>threshold)[0])) ###Output most outliers Country Outliers N_Country N_Outliers 136 Botswana 0.611111 90 55 72 Ivory Coast 0.600000 15 9 95 Chad 0.545455 11 6 43 Benin 0.538462 26 14 86 Gambia 0.500000 50 25 20 Pakistan 0.494505 91 45 106 Nepal 0.473684 95 45 78 El Salvador 0.454545 33 15 64 Mozambique 0.441176 34 15 135 French Guiana 0.428571 28 12 least outliers Country Outliers N_Country N_Outliers 1 Lithuania 0.000000 47 0 119 Denmark 0.000000 16 0 27 South Korea 0.000000 11 0 120 Kazakhstan 0.011364 88 1 31 Czech Republic 0.024390 41 1 15 Netherlands 0.029851 67 2 30 Afghanistan 0.041667 24 1 105 Sudan 0.044118 68 3 102 Nicaragua 0.047619 21 1 0 Canada 0.050000 100 5 n outliers 1706 ###Markdown Outliers for different sets of features ###Code # outliers for features feat = X_list feat_labels = ['rhythm', 'melody', 'timbre', 'harmony'] tabs_feat = [] for i in range(len(feat)): print 'outliers', feat_labels[i] XX = feat[i] df_feat, threshold, MD = outliers.get_outliers_df(XX, Y, chi2thr=0.999) outliers.print_most_least_outliers_topN(df_feat, N=5) tabs_feat.append(interactive_plot.plot_outliers_world_figure(MD, MD>threshold, ddf)) ###Output outliers rhythm most outliers Country Outliers N_Country N_Outliers 43 Benin 0.500000 26 13 136 Botswana 0.488889 90 44 106 Nepal 0.421053 95 40 84 Belize 0.418605 43 18 19 Yemen 0.416667 12 5 least outliers Country Outliers N_Country N_Outliers 28 Tajikistan 0 19 0 119 Denmark 0 16 0 96 Uruguay 0 31 0 25 Republic of Serbia 0 16 0 27 South Korea 0 11 0 outliers melody most outliers Country Outliers N_Country N_Outliers 117 Zimbabwe 0.533333 15 8 96 Uruguay 0.483871 31 15 68 Guinea 0.454545 11 5 63 Senegal 0.390244 41 16 86 Gambia 0.380000 50 19 least outliers Country Outliers N_Country N_Outliers 90 French Polynesia 0.000000 15 0 37 Rwanda 0.000000 17 0 119 Denmark 0.000000 16 0 18 New Zealand 0.000000 34 0 120 Kazakhstan 0.022727 88 2 outliers timbre most outliers Country Outliers N_Country N_Outliers 17 French Guiana 0.678571 28 19 136 Botswana 0.477778 90 43 72 Ivory Coast 0.400000 15 6 23 Azerbaijan 0.384615 13 5 106 Nepal 0.347368 95 33 least outliers Country Outliers N_Country N_Outliers 68 Guinea 0 11 0 55 Mali 0 17 0 77 Algeria 0 27 0 33 Saint Lucia 0 43 0 31 Czech Republic 0 41 0 outliers harmony most outliers Country Outliers N_Country N_Outliers 43 Benin 0.538462 26 14 20 Pakistan 0.461538 91 42 86 Gambia 0.360000 50 18 52 Indonesia 0.350000 100 35 136 Botswana 0.311111 90 28 least outliers Country Outliers N_Country N_Outliers 107 Kiribati 0 17 0 1 Lithuania 0 47 0 134 Paraguay 0 23 0 131 Tunisia 0 39 0 19 Yemen 0 12 0 ###Markdown Output the interactive plot of music outliers in .html. ###Code interactive_plot.plot_tabs(tab_all, tabs_feat, out_file="../demo/outliers.html") ###Output _____no_output_____ ###Markdown Outliers wrt spatial neighbourhoods ###Code df_local = outliers.get_local_outliers_df(X, Y, w_dict) outliers.print_most_least_outliers_topN(df_local, N=10) ###Output most outliers Country Outliers N_Country N_Outliers 46 China 0.260000 100 26 67 Brazil 0.240000 100 24 101 Colombia 0.211111 90 19 64 Mozambique 0.205882 34 7 76 Iran 0.188679 53 10 65 Uganda 0.176471 85 15 27 Kenya 0.164948 97 16 126 South Sudan 0.163043 92 15 24 Azerbaijan 0.153846 13 2 23 India 0.147368 95 14 least outliers Country Outliers N_Country N_Outliers 0 Canada 0 100 0 95 Portugal 0 100 0 94 Iraq 0 87 0 93 Grenada 0 37 0 90 French Polynesia 0 15 0 89 Croatia 0 31 0 88 Morocco 0 40 0 87 Philippines 0 100 0 86 Gambia 0 50 0 85 Sierra Leone 0 100 0 ###Markdown Outliers at the country level First, cluster recordings in K clusters (select best K based on silhouette score). ###Code centroids, cl_pred = outliers.get_country_clusters(X, bestncl=None, min_ncl=10, max_ncl=30) ddf['Clusters'] = cl_pred print len(np.unique(cl_pred)) outliers.print_clusters_metadata(ddf, cl_pred) ###Output \begin{tabular}{llll} \toprule {} & 0 & 1 & 2 \\ \midrule 0 & (Swaziland, 12) & (Ghana, 13) & (Botswana, 21) \\ 1 & (Pakistan, 17) & (Ireland, 21) & (Nepal, 32) \\ 2 & (Pakistan, 35) & (Turkey, 41) & (Iraq, 57) \\ 3 & (Portugal, 29) & (Switzerland, 32) & (Austria, 53) \\ 4 & (Nepal, 22) & (Cuba, 24) & (Zambia, 32) \\ 5 & (South Sudan, 36) & (Sierra Leone, 37) & (Lesotho, 45) \\ 6 & (Mexico, 40) & (Trinidad and Tobago, 53) & (Kazakhstan, 67) \\ 7 & (Japan, 34) & (Australia, 46) & (Solomon Islands, 54) \\ 8 & (South Sudan, 56) & (Canada, 59) & (Norway, 62) \\ 9 & (Russia, 34) & (Portugal, 38) & (Ukraine, 48) \\ \bottomrule \end{tabular} ###Markdown Get histogram of cluster mappings for each country. ###Code cluster_freq = utils.get_cluster_freq_linear(X, Y, centroids) cluster_freq.head() ###Output _____no_output_____
bonus-2-one-more-thing.ipynb
###Markdown We made a ton of really nice figures today, and I'd like to let you take home a personalized version as my way of saying thanks for attending. Please run the code cells below to generate your personalized ordering of the Circos plots we made. ###Code import hashlib import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np %matplotlib inline def make_image(name): integer = int(hashlib.sha1(bytes(name, 'utf-8')).hexdigest(), 16) digits = [int(i) for i in list(str(integer))] # Set the order of images. order = [] for d in digits: if d not in order: order.append(d) images = {0: 'seventh.png', 1: 'sociopatterns.png', 2: 'physicians.png', 3: 'divvy.png', 4: 'crime-person.png', 5: 'crime-crime.png'} imgs_read = [] for i in order: if i in images.keys(): imgs_read.append(mpimg.imread('images/{0}'.format(images[i]))) # Save the images to disk plt.imshow(np.hstack(imgs_read)) plt.axis('off') plt.savefig('images/custom-logo.png', dpi=900, bbox_inches='tight') plt.savefig('images/custom-logo-small.png', dpi=75, bbox_inches='tight') print('Thank you for attending, {0}!'.format(name)) print('Your hash-ordered image can be found in at "images/custom-logo.png".'.format(name)) # Change accordingly! :) make_image('Eric Ma') ###Output Thank you for attending, Eric Ma! Your hash-ordered image can be found in at "images/custom-logo.png". ###Markdown We made a ton of really nice figures today, and I'd like to let you take home a personalized version as my way of saying thanks for attending. Please run the code cells below to generate your personalized ordering of the Circos plots we made. ###Code import hashlib import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np %matplotlib inline def make_image(name): integer = int(hashlib.sha1(bytes(name, 'utf-8')).hexdigest(), 16) digits = [int(i) for i in list(str(integer))] # Set the order of images. order = [] for d in digits: if d not in order: order.append(d) images = {0: 'seventh.png', 1: 'sociopatterns.png', 2: 'physicians.png', 3: 'divvy.png', 4: 'crime-person.png', 5: 'crime-crime.png'} imgs_read = [] for i in order: if i in images.keys(): imgs_read.append(mpimg.imread('images/{0}'.format(images[i]))) # Save the images to disk plt.imshow(np.hstack(imgs_read)) plt.axis('off') plt.savefig('images/custom-logo.png', dpi=900, bbox_inches='tight') plt.savefig('images/custom-logo-small.png', dpi=75, bbox_inches='tight') print('Thank you for attending, {0}!'.format(name)) print('Your hash-ordered image can be found in at "images/custom-logo.png".'.format(name)) # Change accordingly! :) make_image('Eric Ma') ###Output Thank you for attending, Eric Ma! Your hash-ordered image can be found in at "images/custom-logo.png".
notebooks/while_input.ipynb
###Markdown While Loops and Input===While loops are really useful because they let your program run until a user decides to quit the program. They set up an infinite loop that runs until the user does something to end the loop. This section also introduces the first way to get input from your program's users. [Previous: If Statements](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/if_statements.ipynb) | [Home](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/index.ipynb) |[Next: Basic Terminal Apps](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/terminal_apps.ipynb) Contents===- [What is a `while` loop?](What-is-a-while-loop?) - [General syntax](General-syntax) - [Example](Example) - [Exercises](Exercises-while)- [Accepting user input](Accepting-user-input) - [General syntax](General-syntax-input) - [Example](Example-input) - [Accepting input in Python 2.7](Accepting-input-in-Python-2.7) - [Exercises](Exercises-input)- [Using while loops to keep your programs running](Using-while-loops-to-keep-your-programs-running) - [Exercises](Exercises-running)- [Using while loops to make menus](Using-while-loops-to-make-menus)- [Using while loops to process items in a list](Using-while-loops-to-process-items-in-a-list)- [Accidental Infinite loops](Accidental-Infinite-loops) - [Exercises](Exercises-infinite)- [Overall Challenges](Overall-Challenges) What is a while loop?===A while loop tests an initial condition. If that condition is true, the loop starts executing. Every time the loop finishes, the condition is reevaluated. As long as the condition remains true, the loop keeps executing. As soon as the condition becomes false, the loop stops executing. General syntax--- ###Code # Set an initial condition. game_active = True # Set up the while loop. while game_active: # Run the game. # At some point, the game ends and game_active will be set to False. # When that happens, the loop will stop executing. # Do anything else you want done after the loop runs. ###Output _____no_output_____ ###Markdown - Every while loop needs an initial condition that starts out true.- The `while` statement includes a condition to test.- All of the code in the loop will run as long as the condition remains true.- As soon as something in the loop changes the condition such that the test no longer passes, the loop stops executing.- Any code that is defined after the loop will run at this point. Example---Here is a simple example, showing how a game will stay active as long as the player has enough power. ###Code # The player's power starts out at 5. power = 5 # The player is allowed to keep playing as long as their power is over 0. while power > 0: print("You are still playing, because your power is %d." % power) # Your game code would go here, which includes challenges that make it # possible to lose power. # We can represent that by just taking away from the power. power = power - 1 print("\nOh no, your power dropped to 0! Game Over.") ###Output _____no_output_____ ###Markdown Exercises--- Growing Strength- Make a variable called strength, and set its initial value to 5.- Print a message reporting the player's strength.- Set up a while loop that runs until the player's strength increases to a value such as 10.- Inside the while loop, print a message that reports the player's current strength.- Inside the while loop, write a statement that increases the player's strength.- Outside the while loop, print a message reporting that the player has grown too strong, and that they have moved up to a new level of the game.- Bonus: Play around with different cutoff levels for the value of *strength*, and play around with different ways to increase the strength value within the while loop. Accepting user input===Almost all interesting programs accept input from the user at some point. You can start accepting user input in your programs by using the `input()` function. The input function displays a messaget to the user describing the kind of input you are looking for, and then it waits for the user to enter a value. When the user presses Enter, the value is passed to your variable. General syntax---The general case for accepting input looks something like this: ###Code # Get some input from the user. variable = input('Please enter a value: ') # Do something with the value that was entered. ###Output _____no_output_____ ###Markdown You need a variable that will hold whatever value the user enters, and you need a message that will be displayed to the user. Example---In the following example, we have a list of names. We ask the user for a name, and we add it to our list of names. ###Code # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output _____no_output_____ ###Markdown Accepting input in Python 2.7---In Python 3, you always use `input()`. In Python 2.7, you need to use `raw_input()`: ###Code # The same program, in Python 2.7 # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = raw_input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output _____no_output_____ ###Markdown The function `input()` will work in Python 2.7, but it's not good practice to use it. When you use the `input()` function in Python 2.7, Python runs the code that's entered. This is fine in controlled situations, but it's not a very safe practice overall.If you're using Python 3, you have to use `input()`. If you're using Python 2.7, use `raw_input()`. Exercises--- Game Preferences- Make a list that includes 3 or 4 games that you like to play.- Print a statement that tells the user what games you like.- Ask the user to tell you a game they like, and store the game in a variable such as `new_game`.- Add the user's game to your list.- Print a new statement that lists all of the games that we like to play (*we* means you and your user). Using while loops to keep your programs running===Most of the programs we use every day run until we tell them to quit, and in the background this is often done with a while loop. Here is an example of how to let the user enter an arbitrary number of names. ###Code # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output _____no_output_____ ###Markdown That worked, except we ended up with the name 'quit' in our list. We can use a simple `if` test to eliminate this bug: ###Code ###highlight=[15,16] # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. if new_name != 'quit': names.append(new_name) # Show that the name has been added to the list. print(names) ###Output _____no_output_____ ###Markdown This is pretty cool! We now have a way to accept input from users while our programs run, and we have a way to let our programs run until our users are finished working. Exercises--- Many Games- Modify *[Game Preferences](exercises_input)* so your user can add as many games as they like. Using while loops to make menus===You now have enough Python under your belt to offer users a set of choices, and then respond to those choices until they choose to quit. Let's look at a simple example, and then analyze the code: ###Code # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': print("\nHere's a bicycle. Have fun!\n") elif choice == '2': print("\nHere are some running shoes. Run fast!\n") elif choice == '3': print("\nHere's a map. Can you leave a trip plan for us?\n") elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output _____no_output_____ ###Markdown Our programs are getting rich enough now, that we could do many different things with them. Let's clean this up in one really useful way. There are three main choices here, so let's define a function for each of those items. This way, our menu code remains really simple even as we add more complicated code to the actions of riding a bicycle, going for a run, or climbing a mountain. ###Code ###highlight=[2,3,4,5,6,7,8,9,10,30,31,32,33,34,35] # Define the actions for each choice we want to offer. def ride_bicycle(): print("\nHere's a bicycle. Have fun!\n") def go_running(): print("\nHere are some running shoes. Run fast!\n") def climb_mountain(): print("\nHere's a map. Can you leave a trip plan for us?\n") # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': ride_bicycle() elif choice == '2': go_running() elif choice == '3': climb_mountain() elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output _____no_output_____ ###Markdown This is much cleaner code, and it gives us space to separate the details of taking an action from the act of choosing that action. Using while loops to process items in a list===In the section on Lists, you saw that we can `pop()` items from a list. You can use a while list to pop items one at a time from one list, and work with them in whatever way you need. Let's look at an example where we process a list of unconfirmed users. ###Code # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop() print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output _____no_output_____ ###Markdown This works, but let's make one small improvement. The current program always works with the most recently added user. If users are joining faster than we can confirm them, we will leave some users behind. If we want to work on a 'first come, first served' model, or a 'first in first out' model, we can pop the first item in the list each time. ###Code ###highlight=[10] # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop(0) print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output _____no_output_____ ###Markdown This is a little nicer, because we are sure to get to everyone, even when our program is running under a heavy load. We also preserve the order of people as they join our project. Notice that this all came about by adding *one character* to our program! Accidental Infinite loops===Sometimes we want a while loop to run until a defined action is completed, such as emptying out a list. Sometimes we want a loop to run for an unknown period of time, for example when we are allowing users to give as much input as they want. What we rarely want, however, is a true 'runaway' infinite loop.Take a look at the following example. Can you pick out why this loop will never stop? current_number = 1 Count up to 5, printing the number each time. while current_number <= 5: print(current_number) 1 1 1 1 1 ... I faked that output, because if I ran it the output would fill up the browser. You can try to run it on your computer, as long as you know how to interrupt runaway processes:- On most systems, Ctrl-C will interrupt the currently running program.- In Spyder or in a Jupyter notebook there is a 'Stop' button - similar to the stop button on a typical remote controlThe loop runs forever, because there is no way for the test condition to ever fail. The programmer probably meant to add a line that increments current_number by 1 each time through the loop: ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number + 1 ###Output _____no_output_____ ###Markdown You will certainly make some loops run infintely at some point. When you do, just interrupt the loop and figure out the logical error you made.Infinite loops will not be a real problem until you have users who run your programs on their machines. You won't want infinite loops then, because your users would have to shut down your program, and they would consider it buggy and unreliable. Learn to spot infinite loops, and make sure they don't pop up in your polished programs later on.Here is one more example of an accidental infinite loop: ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number - 1 ###Output _____no_output_____ ###Markdown While Loops and Input===While loops are really useful because they let your program run until a user decides to quit the program. They set up an infinite loop that runs until the user does something to end the loop. This section also introduces the first way to get input from your program's users. [Previous: If Statements](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/if_statements.ipynb) | [Home](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/index.ipynb) |[Next: Basic Terminal Apps](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/terminal_apps.ipynb) Contents===- [What is a `while` loop?](What-is-a-while-loop?) - [General syntax](General-syntax) - [Example](Example) - [Exercises](Exercises-while)- [Accepting user input](Accepting-user-input) - [General syntax](General-syntax-input) - [Example](Example-input) - [Accepting input in Python 2.7](Accepting-input-in-Python-2.7) - [Exercises](Exercises-input)- [Using while loops to keep your programs running](Using-while-loops-to-keep-your-programs-running) - [Exercises](Exercises-running)- [Using while loops to make menus](Using-while-loops-to-make-menus)- [Using while loops to process items in a list](Using-while-loops-to-process-items-in-a-list)- [Accidental Infinite loops](Accidental-Infinite-loops) - [Exercises](Exercises-infinite)- [Overall Challenges](Overall-Challenges) What is a while loop?===A while loop tests an initial condition. If that condition is true, the loop starts executing. Every time the loop finishes, the condition is reevaluated. As long as the condition remains true, the loop keeps executing. As soon as the condition becomes false, the loop stops executing. General syntax--- ###Code # Set an initial condition. game_active = True # Set up the while loop. while game_active: # Run the game. # At some point, the game ends and game_active will be set to False. # When that happens, the loop will stop executing. # Do anything else you want done after the loop runs. ###Output _____no_output_____ ###Markdown - Every while loop needs an initial condition that starts out true.- The `while` statement includes a condition to test.- All of the code in the loop will run as long as the condition remains true.- As soon as something in the loop changes the condition such that the test no longer passes, the loop stops executing.- Any code that is defined after the loop will run at this point. Example---Here is a simple example, showing how a game will stay active as long as the player has enough power. ###Code # The player's power starts out at 5. power = 5 # The player is allowed to keep playing as long as their power is over 0. while power > 0: print("You are still playing, because your power is %d." % power) # Your game code would go here, which includes challenges that make it # possible to lose power. # We can represent that by just taking away from the power. power = power - 1 print("\nOh no, your power dropped to 0! Game Over.") ###Output You are still playing, because your power is 5. You are still playing, because your power is 4. You are still playing, because your power is 3. You are still playing, because your power is 2. You are still playing, because your power is 1. Oh no, your power dropped to 0! Game Over. ###Markdown [top]() Exercises--- Growing Strength- Make a variable called strength, and set its initial value to 5.- Print a message reporting the player's strength.- Set up a while loop that runs until the player's strength increases to a value such as 10.- Inside the while loop, print a message that reports the player's current strength.- Inside the while loop, write a statement that increases the player's strength.- Outside the while loop, print a message reporting that the player has grown too strong, and that they have moved up to a new level of the game.- Bonus: Play around with different cutoff levels for the value of *strength*, and play around with different ways to increase the strength value within the while loop. [top]() Accepting user input===Almost all interesting programs accept input from the user at some point. You can start accepting user input in your programs by using the `input()` function. The input function displays a messaget to the user describing the kind of input you are looking for, and then it waits for the user to enter a value. When the user presses Enter, the value is passed to your variable. General syntax---The general case for accepting input looks something like this: ###Code # Get some input from the user. variable = input('Please enter a value: ') # Do something with the value that was entered. ###Output _____no_output_____ ###Markdown You need a variable that will hold whatever value the user enters, and you need a message that will be displayed to the user. Example---In the following example, we have a list of names. We ask the user for a name, and we add it to our list of names. ###Code # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown Accepting input in Python 2.7---In Python 3, you always use `input()`. In Python 2.7, you need to use `raw_input()`: ###Code # The same program, in Python 2.7 # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = raw_input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown The function `input()` will work in Python 2.7, but it's not good practice to use it. When you use the `input()` function in Python 2.7, Python runs the code that's entered. This is fine in controlled situations, but it's not a very safe practice overall.If you're using Python 3, you have to use `input()`. If you're using Python 2.7, use `raw_input()`. Exercises--- Game Preferences- Make a list that includes 3 or 4 games that you like to play.- Print a statement that tells the user what games you like.- Ask the user to tell you a game they like, and store the game in a variable such as `new_game`.- Add the user's game to your list.- Print a new statement that lists all of the games that we like to play (*we* means you and your user). [top]() Using while loops to keep your programs running===Most of the programs we use every day run until we tell them to quit, and in the background this is often done with a while loop. Here is an example of how to let the user enter an arbitrary number of names. ###Code # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim', 'quit'] ###Markdown That worked, except we ended up with the name 'quit' in our list. We can use a simple `if` test to eliminate this bug: ###Code ###highlight=[15,16] # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. if new_name != 'quit': names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim'] ###Markdown This is pretty cool! We now have a way to accept input from users while our programs run, and we have a way to let our programs run until our users are finished working. Exercises--- Many Games- Modify *[Game Preferences](exercises_input)* so your user can add as many games as they like. [top]() Using while loops to make menus===You now have enough Python under your belt to offer users a set of choices, and then respond to those choices until they choose to quit. Let's look at a simple example, and then analyze the code: ###Code # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': print("\nHere's a bicycle. Have fun!\n") elif choice == '2': print("\nHere are some running shoes. Run fast!\n") elif choice == '3': print("\nHere's a map. Can you leave a trip plan for us?\n") elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown Our programs are getting rich enough now, that we could do many different things with them. Let's clean this up in one really useful way. There are three main choices here, so let's define a function for each of those items. This way, our menu code remains really simple even as we add more complicated code to the actions of riding a bicycle, going for a run, or climbing a mountain. ###Code ###highlight=[2,3,4,5,6,7,8,9,10,30,31,32,33,34,35] # Define the actions for each choice we want to offer. def ride_bicycle(): print("\nHere's a bicycle. Have fun!\n") def go_running(): print("\nHere are some running shoes. Run fast!\n") def climb_mountain(): print("\nHere's a map. Can you leave a trip plan for us?\n") # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': ride_bicycle() elif choice == '2': go_running() elif choice == '3': climb_mountain() elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown This is much cleaner code, and it gives us space to separate the details of taking an action from the act of choosing that action. [top]() Using while loops to process items in a list===In the section on Lists, you saw that we can `pop()` items from a list. You can use a while list to pop items one at a time from one list, and work with them in whatever way you need. Let's look at an example where we process a list of unconfirmed users. ###Code # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop() print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Daria...confirmed! Confirming user Clarence...confirmed! Confirming user Billy...confirmed! Confirming user Ada...confirmed! Unconfirmed users: Confirmed users: - Daria - Clarence - Billy - Ada ###Markdown This works, but let's make one small improvement. The current program always works with the most recently added user. If users are joining faster than we can confirm them, we will leave some users behind. If we want to work on a 'first come, first served' model, or a 'first in first out' model, we can pop the first item in the list each time. ###Code ###highlight=[10] # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop(0) print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Ada...confirmed! Confirming user Billy...confirmed! Confirming user Clarence...confirmed! Confirming user Daria...confirmed! Unconfirmed users: Confirmed users: - Ada - Billy - Clarence - Daria ###Markdown This is a little nicer, because we are sure to get to everyone, even when our program is running under a heavy load. We also preserve the order of people as they join our project. Notice that this all came about by adding *one character* to our program! [top]() Accidental Infinite loops===Sometimes we want a while loop to run until a defined action is completed, such as emptying out a list. Sometimes we want a loop to run for an unknown period of time, for example when we are allowing users to give as much input as they want. What we rarely want, however, is a true 'runaway' infinite loop.Take a look at the following example. Can you pick out why this loop will never stop? ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) 1 1 1 1 1 ... ###Output _____no_output_____ ###Markdown I faked that output, because if I ran it the output would fill up the browser. You can try to run it on your computer, as long as you know how to interrupt runaway processes:- On most systems, Ctrl-C will interrupt the currently running program.- If you are using Geany, your output is displayed in a popup terminal window. You can either press Ctrl-C, or you can use your pointer to close the terminal window.The loop runs forever, because there is no way for the test condition to ever fail. The programmer probably meant to add a line that increments current_number by 1 each time through the loop: ###Code ###highlight=[7] current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number + 1 ###Output 1 2 3 4 5 ###Markdown You will certainly make some loops run infintely at some point. When you do, just interrupt the loop and figure out the logical error you made.Infinite loops will not be a real problem until you have users who run your programs on their machines. You won't want infinite loops then, because your users would have to shut down your program, and they would consider it buggy and unreliable. Learn to spot infinite loops, and make sure they don't pop up in your polished programs later on.Here is one more example of an accidental infinite loop: ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number - 1 1 0 -1 -2 -3 ... ###Output _____no_output_____ ###Markdown While Loops and Input===While loops are really useful because they let your program run until a user decides to quit the program. They set up an infinite loop that runs until the user does something to end the loop. This section also introduces the first way to get input from your program's users. [Previous: If Statements](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/if_statements.ipynb) | [Home](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/index.ipynb) |[Next: Basic Terminal Apps](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/terminal_apps.ipynb) Contents===- [What is a `while` loop?](What-is-a-while-loop?) - [General syntax](General-syntax) - [Example](Example) - [Exercises](Exercises-while)- [Accepting user input](Accepting-user-input) - [General syntax](General-syntax-input) - [Example](Example-input) - [Accepting input in Python 2.7](Accepting-input-in-Python-2.7) - [Exercises](Exercises-input)- [Using while loops to keep your programs running](Using-while-loops-to-keep-your-programs-running) - [Exercises](Exercises-running)- [Using while loops to make menus](Using-while-loops-to-make-menus)- [Using while loops to process items in a list](Using-while-loops-to-process-items-in-a-list)- [Accidental Infinite loops](Accidental-Infinite-loops) - [Exercises](Exercises-infinite)- [Overall Challenges](Overall-Challenges) What is a while loop?===A while loop tests an initial condition. If that condition is true, the loop starts executing. Every time the loop finishes, the condition is reevaluated. As long as the condition remains true, the loop keeps executing. As soon as the condition becomes false, the loop stops executing. General syntax--- ###Code # Set an initial condition. game_active = True # Set up the while loop. while game_active: # Run the game. # At some point, the game ends and game_active will be set to False. # When that happens, the loop will stop executing. # Do anything else you want done after the loop runs. ###Output _____no_output_____ ###Markdown - Every while loop needs an initial condition that starts out true.- The `while` statement includes a condition to test.- All of the code in the loop will run as long as the condition remains true.- As soon as something in the loop changes the condition such that the test no longer passes, the loop stops executing.- Any code that is defined after the loop will run at this point. Example---Here is a simple example, showing how a game will stay active as long as the player has enough power. ###Code # The player's power starts out at 5. power = 5 # The player is allowed to keep playing as long as their power is over 0. while power > 0: print("You are still playing, because your power is %d." % power) # Your game code would go here, which includes challenges that make it # possible to lose power. # We can represent that by just taking away from the power. power = power - 1 print("\nOh no, your power dropped to 0! Game Over.") ###Output You are still playing, because your power is 5. You are still playing, because your power is 4. You are still playing, because your power is 3. You are still playing, because your power is 2. You are still playing, because your power is 1. Oh no, your power dropped to 0! Game Over. ###Markdown [top]() Exercises--- Growing Strength- Make a variable called strength, and set its initial value to 5.- Print a message reporting the player's strength.- Set up a while loop that runs until the player's strength increases to a value such as 10.- Inside the while loop, print a message that reports the player's current strength.- Inside the while loop, write a statement that increases the player's strength.- Outside the while loop, print a message reporting that the player has grown too strong, and that they have moved up to a new level of the game.- Bonus: Play around with different cutoff levels for the value of *strength*, and play around with different ways to increase the strength value within the while loop. [top]() Accepting user input===Almost all interesting programs accept input from the user at some point. You can start accepting user input in your programs by using the `input()` function. The input function displays a messaget to the user describing the kind of input you are looking for, and then it waits for the user to enter a value. When the user presses Enter, the value is passed to your variable. General syntax---The general case for accepting input looks something like this: ###Code # Get some input from the user. variable = input('Please enter a value: ') # Do something with the value that was entered. ###Output _____no_output_____ ###Markdown You need a variable that will hold whatever value the user enters, and you need a message that will be displayed to the user. Example---In the following example, we have a list of names. We ask the user for a name, and we add it to our list of names. ###Code # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown Accepting input in Python 2.7---In Python 3, you always use `input()`. In Python 2.7, you need to use `raw_input()` when you want to accept text strings, and `input()` when you want to accept numerical data. ###Code # The same program, in Python 2.7 # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = raw_input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown Exercises--- Game Preferences- Make a list that includes 3 or 4 games that you like to play.- Print a statement that tells the user what games you like.- Ask the user to tell you a game they like, and store the game in a variable such as `new_game`.- Add the user's game to your list.- Print a new statement that lists all of the games that we like to play (*we* means you and your user). [top]() Using while loops to keep your programs running===Most of the programs we use every day run until we tell them to quit, and in the background this is often done with a while loop. Here is an example of how to let the user enter an arbitrary number of names. ###Code # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim', 'quit'] ###Markdown That worked, except we ended up with the name 'quit' in our list. We can use a simple `if` test to eliminate this bug: ###Code ###highlight=[15,16] # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. if new_name != 'quit': names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim'] ###Markdown This is pretty cool! We now have a way to accept input from users while our programs run, and we have a way to let our programs run until our users are finished working. Exercises--- Many Games- Modify *[Game Preferences](exercises_input)* so your user can add as many games as they like. [top]() Using while loops to make menus===You now have enough Python under your belt to offer users a set of choices, and then respond to those choices until they choose to quit. Let's look at a simple example, and then analyze the code: ###Code # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': print("\nHere's a bicycle. Have fun!\n") elif choice == '2': print("\nHere are some running shoes. Run fast!\n") elif choice == '3': print("\nHere's a map. Can you leave a trip plan for us?\n") elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown Our programs are getting rich enough now, that we could do many different things with them. Let's clean this up in one really useful way. There are three main choices here, so let's define a function for each of those items. This way, our menu code remains really simple even as we add more complicated code to the actions of riding a bicycle, going for a run, or climbing a mountain. ###Code ###highlight=[2,3,4,5,6,7,8,9,10,30,31,32,33,34,35] # Define the actions for each choice we want to offer. def ride_bicycle(): print("\nHere's a bicycle. Have fun!\n") def go_running(): print("\nHere are some running shoes. Run fast!\n") def climb_mountain(): print("\nHere's a map. Can you leave a trip plan for us?\n") # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': ride_bicycle() elif choice == '2': go_running() elif choice == '3': climb_mountain() elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown This is much cleaner code, and it gives us space to separate the details of taking an action from the act of choosing that action. [top]() Using while loops to process items in a list===In the section on Lists, you saw that we can `pop()` items from a list. You can use a while list to pop items one at a time from one list, and work with them in whatever way you need. Let's look at an example where we process a list of unconfirmed users. ###Code # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop() print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Daria...confirmed! Confirming user Clarence...confirmed! Confirming user Billy...confirmed! Confirming user Ada...confirmed! Unconfirmed users: Confirmed users: - Daria - Clarence - Billy - Ada ###Markdown This works, but let's make one small improvement. The current program always works with the most recently added user. If users are joining faster than we can confirm them, we will leave some users behind. If we want to work on a 'first come, first served' model, or a 'first in first out' model, we can pop the first item in the list each time. ###Code ###highlight=[10] # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop(0) print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Ada...confirmed! Confirming user Billy...confirmed! Confirming user Clarence...confirmed! Confirming user Daria...confirmed! Unconfirmed users: Confirmed users: - Ada - Billy - Clarence - Daria ###Markdown This is a little nicer, because we are sure to get to everyone, even when our program is running under a heavy load. We also preserve the order of people as they join our project. Notice that this all came about by adding *one character* to our program! [top]() Accidental Infinite loops===Sometimes we want a while loop to run until a defined action is completed, such as emptying out a list. Sometimes we want a loop to run for an unknown period of time, for example when we are allowing users to give as much input as they want. What we rarely want, however, is a true 'runaway' infinite loop.Take a look at the following example. Can you pick out why this loop will never stop? ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) 1 1 1 1 1 ... ###Output _____no_output_____ ###Markdown I faked that output, because if I ran it the output would fill up the browser. You can try to run it on your computer, as long as you know how to interrupt runaway processes:- On most systems, Ctrl-C will interrupt the currently running program.- If you are using Geany, your output is displayed in a popup terminal window. You can either press Ctrl-C, or you can use your pointer to close the terminal window.The loop runs forever, because there is no way for the test condition to ever fail. The programmer probably meant to add a line that increments current_number by 1 each time through the loop: ###Code ###highlight=[7] current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number + 1 ###Output 1 2 3 4 5 ###Markdown You will certainly make some loops run infintely at some point. When you do, just interrupt the loop and figure out the logical error you made.Infinite loops will not be a real problem until you have users who run your programs on their machines. You won't want infinite loops then, because your users would have to shut down your program, and they would consider it buggy and unreliable. Learn to spot infinite loops, and make sure they don't pop up in your polished programs later on.Here is one more example of an accidental infinite loop: ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number - 1 1 0 -1 -2 -3 ... ###Output _____no_output_____ ###Markdown While Loops and Input===While loops are really useful because they let your program run until a user decides to quit the program. They set up an infinite loop that runs until the user does something to end the loop. This section also introduces the first way to get input from your program's users. [Previous: If Statements](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/if_statements.ipynb) | [Home](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/index.ipynb) |[Next: Basic Terminal Apps](http://nbviewer.ipython.org/urls/raw.github.com/ehmatthes/intro_programming/master/notebooks/terminal_apps.ipynb) Contents===- [What is a `while` loop?](What-is-a-while-loop?) - [General syntax](General-syntax) - [Example](Example) - [Exercises](Exercises-while)- [Accepting user input](Accepting-user-input) - [General syntax](General-syntax-input) - [Example](Example-input) - [Accepting input in Python 2.7](Accepting-input-in-Python-2.7) - [Exercises](Exercises-input)- [Using while loops to keep your programs running](Using-while-loops-to-keep-your-programs-running) - [Exercises](Exercises-running)- [Using while loops to make menus](Using-while-loops-to-make-menus)- [Using while loops to process items in a list](Using-while-loops-to-process-items-in-a-list)- [Accidental Infinite loops](Accidental-Infinite-loops) - [Exercises](Exercises-infinite)- [Overall Challenges](Overall-Challenges) What is a while loop?===A while loop tests an initial condition. If that condition is true, the loop starts executing. Every time the loop finishes, the condition is reevaluated. As long as the condition remains true, the loop keeps executing. As soon as the condition becomes false, the loop stops executing. General syntax--- ###Code # Set an initial condition. game_active = True # Set up the while loop. while game_active: # Run the game. # At some point, the game ends and game_active will be set to False. # When that happens, the loop will stop executing. # Do anything else you want done after the loop runs. ###Output _____no_output_____ ###Markdown - Every while loop needs an initial condition that starts out true.- The `while` statement includes a condition to test.- All of the code in the loop will run as long as the condition remains true.- As soon as something in the loop changes the condition such that the test no longer passes, the loop stops executing.- Any code that is defined after the loop will run at this point. Example---Here is a simple example, showing how a game will stay active as long as the player has enough power. ###Code # The player's power starts out at 5. power = 5 # The player is allowed to keep playing as long as their power is over 0. while power > 0: print("You are still playing, because your power is %d." % power) # Your game code would go here, which includes challenges that make it # possible to lose power. # We can represent that by just taking away from the power. power = power - 1 print("\nOh no, your power dropped to 0! Game Over.") ###Output You are still playing, because your power is 5. You are still playing, because your power is 4. You are still playing, because your power is 3. You are still playing, because your power is 2. You are still playing, because your power is 1. Oh no, your power dropped to 0! Game Over. ###Markdown [top]() Exercises--- Growing Strength- Make a variable called strength, and set its initial value to 5.- Print a message reporting the player's strength.- Set up a while loop that runs until the player's strength increases to a value such as 10.- Inside the while loop, print a message that reports the player's current strength.- Inside the while loop, write a statement that increases the player's strength.- Outside the while loop, print a message reporting that the player has grown too strong, and that they have moved up to a new level of the game.- Bonus: Play around with different cutoff levels for the value of *strength*, and play around with different ways to increase the strength value within the while loop. [top]() Accepting user input===Almost all interesting programs accept input from the user at some point. You can start accepting user input in your programs by using the `input()` function. The input function displays a messaget to the user describing the kind of input you are looking for, and then it waits for the user to enter a value. When the user presses Enter, the value is passed to your variable. General syntax---The general case for accepting input looks something like this: ###Code # Get some input from the user. variable = input('Please enter a value: ') # Do something with the value that was entered. ###Output _____no_output_____ ###Markdown You need a variable that will hold whatever value the user enters, and you need a message that will be displayed to the user. Example---In the following example, we have a list of names. We ask the user for a name, and we add it to our list of names. ###Code # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown Accepting input in Python 2.7---In Python 3, you always use `input()`. In Python 2.7, you need to use `raw_input()`: ###Code # The same program, in Python 2.7 # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = raw_input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown The function `input()` will work in Python 2.7, but it's not good practice to use it. When you use the `input()` function in Python 2.7, Python runs the code that's entered. This is fine in controlled situations, but it's not a very safe practice overall.If you're using Python 3, you have to use `input()`. If you're using Python 2.7, use `raw_input()`. Exercises--- Game Preferences- Make a list that includes 3 or 4 games that you like to play.- Print a statement that tells the user what games you like.- Ask the user to tell you a game they like, and store the game in a variable such as `new_game`.- Add the user's game to your list.- Print a new statement that lists all of the games that we like to play (*we* means you and your user). [top]() Using while loops to keep your programs running===Most of the programs we use every day run until we tell them to quit, and in the background this is often done with a while loop. Here is an example of how to let the user enter an arbitrary number of names. ###Code # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim', 'quit'] ###Markdown That worked, except we ended up with the name 'quit' in our list. We can use a simple `if` test to eliminate this bug: ###Code ###highlight=[15,16] # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. if new_name != 'quit': names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim'] ###Markdown This is pretty cool! We now have a way to accept input from users while our programs run, and we have a way to let our programs run until our users are finished working. Exercises--- Many Games- Modify *[Game Preferences](exercises_input)* so your user can add as many games as they like. [top]() Using while loops to make menus===You now have enough Python under your belt to offer users a set of choices, and then respond to those choices until they choose to quit. Let's look at a simple example, and then analyze the code: ###Code # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': print("\nHere's a bicycle. Have fun!\n") elif choice == '2': print("\nHere are some running shoes. Run fast!\n") elif choice == '3': print("\nHere's a map. Can you leave a trip plan for us?\n") elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown Our programs are getting rich enough now, that we could do many different things with them. Let's clean this up in one really useful way. There are three main choices here, so let's define a function for each of those items. This way, our menu code remains really simple even as we add more complicated code to the actions of riding a bicycle, going for a run, or climbing a mountain. ###Code ###highlight=[2,3,4,5,6,7,8,9,10,30,31,32,33,34,35] # Define the actions for each choice we want to offer. def ride_bicycle(): print("\nHere's a bicycle. Have fun!\n") def go_running(): print("\nHere are some running shoes. Run fast!\n") def climb_mountain(): print("\nHere's a map. Can you leave a trip plan for us?\n") # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': ride_bicycle() elif choice == '2': go_running() elif choice == '3': climb_mountain() elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown This is much cleaner code, and it gives us space to separate the details of taking an action from the act of choosing that action. [top]() Using while loops to process items in a list===In the section on Lists, you saw that we can `pop()` items from a list. You can use a while list to pop items one at a time from one list, and work with them in whatever way you need. Let's look at an example where we process a list of unconfirmed users. ###Code # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop() print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Daria...confirmed! Confirming user Clarence...confirmed! Confirming user Billy...confirmed! Confirming user Ada...confirmed! Unconfirmed users: Confirmed users: - Daria - Clarence - Billy - Ada ###Markdown This works, but let's make one small improvement. The current program always works with the most recently added user. If users are joining faster than we can confirm them, we will leave some users behind. If we want to work on a 'first come, first served' model, or a 'first in first out' model, we can pop the first item in the list each time. ###Code ###highlight=[10] # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop(0) print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Ada...confirmed! Confirming user Billy...confirmed! Confirming user Clarence...confirmed! Confirming user Daria...confirmed! Unconfirmed users: Confirmed users: - Ada - Billy - Clarence - Daria ###Markdown This is a little nicer, because we are sure to get to everyone, even when our program is running under a heavy load. We also preserve the order of people as they join our project. Notice that this all came about by adding *one character* to our program! [top]() Accidental Infinite loops===Sometimes we want a while loop to run until a defined action is completed, such as emptying out a list. Sometimes we want a loop to run for an unknown period of time, for example when we are allowing users to give as much input as they want. What we rarely want, however, is a true 'runaway' infinite loop.Take a look at the following example. Can you pick out why this loop will never stop? ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) 1 1 1 1 1 ... ###Output _____no_output_____ ###Markdown I faked that output, because if I ran it the output would fill up the browser. You can try to run it on your computer, as long as you know how to interrupt runaway processes:- On most systems, Ctrl-C will interrupt the currently running program.- If you are using Geany, your output is displayed in a popup terminal window. You can either press Ctrl-C, or you can use your pointer to close the terminal window.The loop runs forever, because there is no way for the test condition to ever fail. The programmer probably meant to add a line that increments current_number by 1 each time through the loop: ###Code ###highlight=[7] current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number + 1 ###Output 1 2 3 4 5 ###Markdown You will certainly make some loops run infintely at some point. When you do, just interrupt the loop and figure out the logical error you made.Infinite loops will not be a real problem until you have users who run your programs on their machines. You won't want infinite loops then, because your users would have to shut down your program, and they would consider it buggy and unreliable. Learn to spot infinite loops, and make sure they don't pop up in your polished programs later on.Here is one more example of an accidental infinite loop: ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number - 1 1 0 -1 -2 -3 ... ###Output _____no_output_____ ###Markdown While Loops and Input===While loops are really useful because they let your program run until a user decides to quit the program. They set up an infinite loop that runs until the user does something to end the loop. This section also introduces the first way to get input from your program's users. [Previous: If Statements](if_statements.ipynb) | [Home](index.ipynb) |[Next: Basic Terminal Apps](terminal_apps.ipynb) Contents===- [What is a `while` loop?](What-is-a-while-loop?) - [General syntax](General-syntax) - [Example](Example) - [Exercises](Exercises-while)- [Accepting user input](Accepting-user-input) - [General syntax](General-syntax-input) - [Example](Example-input) - [Accepting input in Python 2.7](Accepting-input-in-Python-2.7) - [Exercises](Exercises-input)- [Using while loops to keep your programs running](Using-while-loops-to-keep-your-programs-running) - [Exercises](Exercises-running)- [Using while loops to make menus](Using-while-loops-to-make-menus)- [Using while loops to process items in a list](Using-while-loops-to-process-items-in-a-list)- [Accidental Infinite loops](Accidental-Infinite-loops) - [Exercises](Exercises-infinite)- [Overall Challenges](Overall-Challenges) What is a while loop?===A while loop tests an initial condition. If that condition is true, the loop starts executing. Every time the loop finishes, the condition is reevaluated. As long as the condition remains true, the loop keeps executing. As soon as the condition becomes false, the loop stops executing. General syntax--- ###Code # Set an initial condition. game_active = True # Set up the while loop. while game_active: # Run the game. # At some point, the game ends and game_active will be set to False. # When that happens, the loop will stop executing. # Do anything else you want done after the loop runs. ###Output _____no_output_____ ###Markdown - Every while loop needs an initial condition that starts out true.- The `while` statement includes a condition to test.- All of the code in the loop will run as long as the condition remains true.- As soon as something in the loop changes the condition such that the test no longer passes, the loop stops executing.- Any code that is defined after the loop will run at this point. Example---Here is a simple example, showing how a game will stay active as long as the player has enough power. ###Code # The player's power starts out at 5. power = 5 # The player is allowed to keep playing as long as their power is over 0. while power > 0: print("You are still playing, because your power is %d." % power) # Your game code would go here, which includes challenges that make it # possible to lose power. # We can represent that by just taking away from the power. power = power - 1 print("\nOh no, your power dropped to 0! Game Over.") ###Output You are still playing, because your power is 5. You are still playing, because your power is 4. You are still playing, because your power is 3. You are still playing, because your power is 2. You are still playing, because your power is 1. Oh no, your power dropped to 0! Game Over. ###Markdown [top]() Exercises--- Growing Strength- Make a variable called strength, and set its initial value to 5.- Print a message reporting the player's strength.- Set up a while loop that runs until the player's strength increases to a value such as 10.- Inside the while loop, print a message that reports the player's current strength.- Inside the while loop, write a statement that increases the player's strength.- Outside the while loop, print a message reporting that the player has grown too strong, and that they have moved up to a new level of the game.- Bonus: Play around with different cutoff levels for the value of *strength*, and play around with different ways to increase the strength value within the while loop. [top]() Accepting user input===Almost all interesting programs accept input from the user at some point. You can start accepting user input in your programs by using the `input()` function. The input function displays a messaget to the user describing the kind of input you are looking for, and then it waits for the user to enter a value. When the user presses Enter, the value is passed to your variable. General syntax---The general case for accepting input looks something like this: ###Code # Get some input from the user. variable = input('Please enter a value: ') # Do something with the value that was entered. ###Output _____no_output_____ ###Markdown You need a variable that will hold whatever value the user enters, and you need a message that will be displayed to the user. Example---In the following example, we have a list of names. We ask the user for a name, and we add it to our list of names. ###Code # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown Accepting input in Python 2.7---In Python 3, you always use `input()`. In Python 2.7, you need to use `raw_input()`: ###Code # The same program, in Python 2.7 # Start with a list containing several names. names = ['guido', 'tim', 'jesse'] # Ask the user for a name. new_name = raw_input("Please tell me someone I should know: ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know: jessica ['guido', 'tim', 'jesse', 'jessica'] ###Markdown The function `input()` will work in Python 2.7, but it's not good practice to use it. When you use the `input()` function in Python 2.7, Python runs the code that's entered. This is fine in controlled situations, but it's not a very safe practice overall.If you're using Python 3, you have to use `input()`. If you're using Python 2.7, use `raw_input()`. Exercises--- Game Preferences- Make a list that includes 3 or 4 games that you like to play.- Print a statement that tells the user what games you like.- Ask the user to tell you a game they like, and store the game in a variable such as `new_game`.- Add the user's game to your list.- Print a new statement that lists all of the games that we like to play (*we* means you and your user). [top]() Using while loops to keep your programs running===Most of the programs we use every day run until we tell them to quit, and in the background this is often done with a while loop. Here is an example of how to let the user enter an arbitrary number of names. ###Code # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim', 'quit'] ###Markdown That worked, except we ended up with the name 'quit' in our list. We can use a simple `if` test to eliminate this bug: ###Code ###highlight=[15,16] # Start with an empty list. You can 'seed' the list with # some predefined values if you like. names = [] # Set new_name to something other than 'quit'. new_name = '' # Start a loop that will run until the user enters 'quit'. while new_name != 'quit': # Ask the user for a name. new_name = input("Please tell me someone I should know, or enter 'quit': ") # Add the new name to our list. if new_name != 'quit': names.append(new_name) # Show that the name has been added to the list. print(names) ###Output Please tell me someone I should know, or enter 'quit': guido Please tell me someone I should know, or enter 'quit': jesse Please tell me someone I should know, or enter 'quit': jessica Please tell me someone I should know, or enter 'quit': tim Please tell me someone I should know, or enter 'quit': quit ['guido', 'jesse', 'jessica', 'tim'] ###Markdown This is pretty cool! We now have a way to accept input from users while our programs run, and we have a way to let our programs run until our users are finished working. Exercises--- Many Games- Modify *[Game Preferences](exercises_input)* so your user can add as many games as they like. [top]() Using while loops to make menus===You now have enough Python under your belt to offer users a set of choices, and then respond to those choices until they choose to quit. Let's look at a simple example, and then analyze the code: ###Code # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': print("\nHere's a bicycle. Have fun!\n") elif choice == '2': print("\nHere are some running shoes. Run fast!\n") elif choice == '3': print("\nHere's a map. Can you leave a trip plan for us?\n") elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown Our programs are getting rich enough now, that we could do many different things with them. Let's clean this up in one really useful way. There are three main choices here, so let's define a function for each of those items. This way, our menu code remains really simple even as we add more complicated code to the actions of riding a bicycle, going for a run, or climbing a mountain. ###Code ###highlight=[2,3,4,5,6,7,8,9,10,30,31,32,33,34,35] # Define the actions for each choice we want to offer. def ride_bicycle(): print("\nHere's a bicycle. Have fun!\n") def go_running(): print("\nHere are some running shoes. Run fast!\n") def climb_mountain(): print("\nHere's a map. Can you leave a trip plan for us?\n") # Give the user some context. print("\nWelcome to the nature center. What would you like to do?") # Set an initial value for choice other than the value for 'quit'. choice = '' # Start a loop that runs until the user enters the value for 'quit'. while choice != 'q': # Give all the choices in a series of print statements. print("\n[1] Enter 1 to take a bicycle ride.") print("[2] Enter 2 to go for a run.") print("[3] Enter 3 to climb a mountain.") print("[q] Enter q to quit.") # Ask for the user's choice. choice = input("\nWhat would you like to do? ") # Respond to the user's choice. if choice == '1': ride_bicycle() elif choice == '2': go_running() elif choice == '3': climb_mountain() elif choice == 'q': print("\nThanks for playing. See you later.\n") else: print("\nI don't understand that choice, please try again.\n") # Print a message that we are all finished. print("Thanks again, bye now.") ###Output Welcome to the nature center. What would you like to do? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 1 Here's a bicycle. Have fun! [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? 3 Here's a map. Can you leave a trip plan for us? [1] Enter 1 to take a bicycle ride. [2] Enter 2 to go for a run. [3] Enter 3 to climb a mountain. [q] Enter q to quit. What would you like to do? q Thanks for playing. See you later. Thanks again, bye now. ###Markdown This is much cleaner code, and it gives us space to separate the details of taking an action from the act of choosing that action. [top]() Using while loops to process items in a list===In the section on Lists, you saw that we can `pop()` items from a list. You can use a while list to pop items one at a time from one list, and work with them in whatever way you need. Let's look at an example where we process a list of unconfirmed users. ###Code # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop() print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Daria...confirmed! Confirming user Clarence...confirmed! Confirming user Billy...confirmed! Confirming user Ada...confirmed! Unconfirmed users: Confirmed users: - Daria - Clarence - Billy - Ada ###Markdown This works, but let's make one small improvement. The current program always works with the most recently added user. If users are joining faster than we can confirm them, we will leave some users behind. If we want to work on a 'first come, first served' model, or a 'first in first out' model, we can pop the first item in the list each time. ###Code ###highlight=[10] # Start with a list of unconfirmed users, and an empty list of confirmed users. unconfirmed_users = ['ada', 'billy', 'clarence', 'daria'] confirmed_users = [] # Work through the list, and confirm each user. while len(unconfirmed_users) > 0: # Get the latest unconfirmed user, and process them. current_user = unconfirmed_users.pop(0) print("Confirming user %s...confirmed!" % current_user.title()) # Move the current user to the list of confirmed users. confirmed_users.append(current_user) # Prove that we have finished confirming all users. print("\nUnconfirmed users:") for user in unconfirmed_users: print('- ' + user.title()) print("\nConfirmed users:") for user in confirmed_users: print('- ' + user.title()) ###Output Confirming user Ada...confirmed! Confirming user Billy...confirmed! Confirming user Clarence...confirmed! Confirming user Daria...confirmed! Unconfirmed users: Confirmed users: - Ada - Billy - Clarence - Daria ###Markdown This is a little nicer, because we are sure to get to everyone, even when our program is running under a heavy load. We also preserve the order of people as they join our project. Notice that this all came about by adding *one character* to our program! [top]() Accidental Infinite loops===Sometimes we want a while loop to run until a defined action is completed, such as emptying out a list. Sometimes we want a loop to run for an unknown period of time, for example when we are allowing users to give as much input as they want. What we rarely want, however, is a true 'runaway' infinite loop.Take a look at the following example. Can you pick out why this loop will never stop? ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) 1 1 1 1 1 ... ###Output _____no_output_____ ###Markdown I faked that output, because if I ran it the output would fill up the browser. You can try to run it on your computer, as long as you know how to interrupt runaway processes:- On most systems, Ctrl-C will interrupt the currently running program.- If you are using Geany, your output is displayed in a popup terminal window. You can either press Ctrl-C, or you can use your pointer to close the terminal window.The loop runs forever, because there is no way for the test condition to ever fail. The programmer probably meant to add a line that increments current_number by 1 each time through the loop: ###Code ###highlight=[7] current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number + 1 ###Output 1 2 3 4 5 ###Markdown You will certainly make some loops run infintely at some point. When you do, just interrupt the loop and figure out the logical error you made.Infinite loops will not be a real problem until you have users who run your programs on their machines. You won't want infinite loops then, because your users would have to shut down your program, and they would consider it buggy and unreliable. Learn to spot infinite loops, and make sure they don't pop up in your polished programs later on.Here is one more example of an accidental infinite loop: ###Code current_number = 1 # Count up to 5, printing the number each time. while current_number <= 5: print(current_number) current_number = current_number - 1 1 0 -1 -2 -3 ... ###Output _____no_output_____
sample-input/ipython-notebook/mox-assembly.ipynb
###Markdown Simulation Runtime Parameters ###Code num_threads = 4 track_spacing = 0.05 num_azim = 16 tolerance = 1E-5 max_iters = 50 ###Output _____no_output_____ ###Markdown Initialize Materials ###Code materials = materialize(filename='../c5g7-materials.h5') print materials.keys() ###Output [u'UO2', u'MOX-8.7%', u'Fission Chamber', u'MOX-4.3%', u'Water', u'MOX-7%', u'Control Rod', u'Guide Tube'] ###Markdown Create Bounding Surfaces ###Code # Create ZCylinder for the fuel as well as to discretize the moderator into rings fuel_radius = openmoc.ZCylinder(x=0.0, y=0.0, radius=0.54) moderator_inner_radius = openmoc.ZCylinder(x=0.0, y=0.0, radius=0.62) moderator_outer_radius = openmoc.ZCylinder(x=0.0, y=0.0, radius=0.58) # Create planes to bound the entire geometry left = openmoc.XPlane(x=-10.71, name='left') right = openmoc.XPlane(x=10.71, name='right') top = openmoc.YPlane(y=10.71, name='top') bottom = openmoc.YPlane(y=-10.71, name='bottom') left.setBoundaryType(openmoc.REFLECTIVE) right.setBoundaryType(openmoc.REFLECTIVE) top.setBoundaryType(openmoc.REFLECTIVE) bottom.setBoundaryType(openmoc.REFLECTIVE) ###Output _____no_output_____ ###Markdown Create Fuel Pins ###Code # 4.3% MOX pin cell mox43_cell = openmoc.Cell() mox43_cell.setFill(materials['MOX-4.3%']) mox43_cell.setNumRings(3) mox43_cell.setNumSectors(8) mox43_cell.addSurface(-1, fuel_radius) mox43 = openmoc.Universe(name='MOX-4.3%') mox43.addCell(mox43_cell) # 7% MOX pin cell mox7_cell = openmoc.Cell() mox7_cell.setFill(materials['MOX-7%']) mox7_cell.setNumRings(3) mox7_cell.setNumSectors(8) mox7_cell.addSurface(-1, fuel_radius) mox7 = openmoc.Universe(name='MOX-7%') mox7.addCell(mox7_cell) # 8.7% MOX pin cell mox87_cell = openmoc.Cell() mox87_cell.setFill(materials['MOX-8.7%']) mox87_cell.setNumRings(3) mox87_cell.setNumSectors(8) mox87_cell.addSurface(-1, fuel_radius) mox87 = openmoc.Universe(name='MOX-8.7%') mox87.addCell(mox87_cell) # Fission chamber pin cell fission_chamber_cell = openmoc.Cell() fission_chamber_cell.setFill(materials['Fission Chamber']) fission_chamber_cell.setNumRings(3) fission_chamber_cell.setNumSectors(8) fission_chamber_cell.addSurface(-1, fuel_radius) fission_chamber = openmoc.Universe(name='Fission Chamber') fission_chamber.addCell(fission_chamber_cell) # Guide tube pin cell guide_tube_cell = openmoc.Cell() guide_tube_cell.setFill(materials['Guide Tube']) guide_tube_cell.setNumRings(3) guide_tube_cell.setNumSectors(8) guide_tube_cell.addSurface(-1, fuel_radius) guide_tube = openmoc.Universe(name='Guide Tube') guide_tube.addCell(guide_tube_cell) # Moderator rings moderator_ring1 = openmoc.Cell() moderator_ring2 = openmoc.Cell() moderator_ring3 = openmoc.Cell() moderator_ring1.setNumSectors(8) moderator_ring2.setNumSectors(8) moderator_ring3.setNumSectors(8) moderator_ring1.setFill(materials['Water']) moderator_ring2.setFill(materials['Water']) moderator_ring3.setFill(materials['Water']) moderator_ring1.addSurface(+1, fuel_radius) moderator_ring1.addSurface(-1, moderator_inner_radius) moderator_ring2.addSurface(+1, moderator_inner_radius) moderator_ring2.addSurface(-1, moderator_outer_radius) moderator_ring3.addSurface(+1, moderator_outer_radius) # Add moderator rings to each pin cell pins = [mox43, mox7, mox87, fission_chamber, guide_tube] for pin in pins: pin.addCell(moderator_ring1) pin.addCell(moderator_ring2) pin.addCell(moderator_ring3) # CellFills for the assembly assembly1_cell = openmoc.Cell(name='Assembly 1') assembly1 = openmoc.Universe(name='Assembly 1') assembly1.addCell(assembly1_cell) ###Output _____no_output_____ ###Markdown Create Fuel Assembly ###Code # A mixed enrichment PWR MOX fuel assembly assembly = openmoc.Lattice(name='MOX Assembly') assembly.setWidth(width_x=1.26, width_y=1.26) # Create a template to map to pin cell types template = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] universes = {1 : mox43, 2 : mox7, 3 : mox87, 4 : guide_tube, 5 : fission_chamber} for i in range(17): for j in range(17): template[i][j] = universes[template[i][j]] assembly.setUniverses([template]) # Root Cell/Universe root_cell = openmoc.Cell(name='Full Geometry') root_cell.setFill(assembly) root_cell.addSurface(+1, left) root_cell.addSurface(-1, right) root_cell.addSurface(-1, top) root_cell.addSurface(+1, bottom) root_universe = openmoc.Universe(name='Root Universe') root_universe.addCell(root_cell) ###Output _____no_output_____ ###Markdown Initialize CMFD ###Code cmfd = openmoc.Cmfd() cmfd.setMOCRelaxationFactor(0.6) cmfd.setSORRelaxationFactor(1.5) cmfd.setLatticeStructure(17,17) cmfd.setGroupStructure([1,4,8]) cmfd.setKNearest(3) ###Output _____no_output_____ ###Markdown Initialize Geometry ###Code geometry = openmoc.Geometry() geometry.setRootUniverse(root_universe) geometry.setCmfd(cmfd) geometry.initializeFlatSourceRegions() # Plot the geometry color-coded by materials plotter.plot_materials(geometry, gridsize=500) # Load the figure into Matplotlib plt.imshow(plt.imread('plots/materials-z-0.0.png')) plt.axis('off') # Plot the geometry color-coded by cells plotter.plot_cells(geometry, gridsize=500) # Load the figure into Matplotlib plt.imshow(plt.imread('plots/cells-z-0.0.png')) plt.axis('off') ###Output [ NORMAL ] Plotting the cells... ###Markdown Initialize TrackGenerator ###Code track_generator = openmoc.TrackGenerator(geometry, num_azim, track_spacing) track_generator.setNumThreads(num_threads) track_generator.generateTracks() # Plot the geometry color-coded by flat source region plotter.plot_flat_source_regions(geometry, gridsize=500) # Load the figure into Matplotlib plt.imshow(plt.imread('plots/flat-source-regions-z-0.0.png')) plt.axis('off') # Plot the geometry color-coded by CMFD cells plotter.plot_cmfd_cells(geometry, cmfd, gridsize=500) # Load the figure into Matplotlib plt.imshow(plt.imread('plots/cmfd-cells.png')) plt.axis('off') ###Output [ NORMAL ] Plotting the CMFD cells... ###Markdown Run Simulation ###Code solver = openmoc.CPUSolver(track_generator) solver.setConvergenceThreshold(tolerance) solver.setNumThreads(num_threads) solver.computeEigenvalue(max_iters) plotter.plot_spatial_fluxes(solver, energy_groups=[1,3,7], gridsize=500) # Load fast flux figure into Matplotlib plt.imshow(plt.imread('plots/fsr-flux-group-1-z-0.0.png')) plt.axis('off') # Load epithermal flux figure into Matplotlib plt.imshow(plt.imread('plots/fsr-flux-group-3-z-0.0.png')) plt.axis('off') # Load thermal flux figure into Matplotlib plt.imshow(plt.imread('plots/fsr-flux-group-7-z-0.0.png')) plt.axis('off') plotter.plot_fission_rates(solver, gridsize=500) # Load FSR fission rates figure into Matplotlib plt.imshow(plt.imread('plots/fission-rates-z-0.0.png')) plt.axis('off') ###Output [ NORMAL ] Plotting the flat source region fission rates... ###Markdown Simulation Runtime Parameters ###Code num_threads = 4 azim_spacing = 0.05 num_azim = 16 tolerance = 1E-5 max_iters = 50 ###Output _____no_output_____ ###Markdown Initialize Materials ###Code materials = load_from_hdf5(filename='c5g7-mgxs.h5', directory='..') print(materials.keys()) ###Output dict_keys(['MOX-7%', 'Water', 'Fission Chamber', 'Control Rod', 'UO2', 'MOX-8.7%', 'Guide Tube', 'MOX-4.3%']) ###Markdown Create Bounding Surfaces ###Code # Create ZCylinder for the fuel fuel_radius = openmoc.ZCylinder(x=0.0, y=0.0, radius=0.54) # Create planes to bound the entire geometry boundary = openmoc.RectangularPrism(21.32, 21.32) boundary.setBoundaryType(openmoc.REFLECTIVE) ###Output _____no_output_____ ###Markdown Create Fuel Pins ###Code # 4.3% MOX pin cell mox43_cell = openmoc.Cell() mox43_cell.setFill(materials['MOX-4.3%']) mox43_cell.setNumRings(3) mox43_cell.setNumSectors(8) mox43_cell.addSurface(-1, fuel_radius) mox43 = openmoc.Universe(name='MOX-4.3%') mox43.addCell(mox43_cell) # 7% MOX pin cell mox7_cell = openmoc.Cell() mox7_cell.setFill(materials['MOX-7%']) mox7_cell.setNumRings(3) mox7_cell.setNumSectors(8) mox7_cell.addSurface(-1, fuel_radius) mox7 = openmoc.Universe(name='MOX-7%') mox7.addCell(mox7_cell) # 8.7% MOX pin cell mox87_cell = openmoc.Cell() mox87_cell.setFill(materials['MOX-8.7%']) mox87_cell.setNumRings(3) mox87_cell.setNumSectors(8) mox87_cell.addSurface(-1, fuel_radius) mox87 = openmoc.Universe(name='MOX-8.7%') mox87.addCell(mox87_cell) # Fission chamber pin cell fission_chamber_cell = openmoc.Cell() fission_chamber_cell.setFill(materials['Fission Chamber']) fission_chamber_cell.setNumRings(3) fission_chamber_cell.setNumSectors(8) fission_chamber_cell.addSurface(-1, fuel_radius) fission_chamber = openmoc.Universe(name='Fission Chamber') fission_chamber.addCell(fission_chamber_cell) # Guide tube pin cell guide_tube_cell = openmoc.Cell() guide_tube_cell.setFill(materials['Guide Tube']) guide_tube_cell.setNumRings(3) guide_tube_cell.setNumSectors(8) guide_tube_cell.addSurface(-1, fuel_radius) guide_tube = openmoc.Universe(name='Guide Tube') guide_tube.addCell(guide_tube_cell) # Moderator rings moderator = openmoc.Cell() moderator.setFill(materials['Water']) moderator.addSurface(+1, fuel_radius) moderator.setNumRings(3) moderator.setNumSectors(8) # Add moderator rings to each pin cell pins = [mox43, mox7, mox87, fission_chamber, guide_tube] for pin in pins: pin.addCell(moderator) # CellFills for the assembly assembly1_cell = openmoc.Cell(name='Assembly 1') assembly1 = openmoc.Universe(name='Assembly 1') assembly1.addCell(assembly1_cell) ###Output _____no_output_____ ###Markdown Create Fuel Assembly ###Code # A mixed enrichment PWR MOX fuel assembly assembly = openmoc.Lattice(name='MOX Assembly') assembly.setWidth(width_x=1.26, width_y=1.26) # Create a template to map to pin cell types template = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] universes = {1 : mox43, 2 : mox7, 3 : mox87, 4 : guide_tube, 5 : fission_chamber} for i in range(17): for j in range(17): template[i][j] = universes[template[i][j]] assembly.setUniverses([template]) # Root Cell/Universe root_cell = openmoc.Cell(name='Full Geometry') root_cell.setFill(assembly) root_cell.setRegion(boundary) root_universe = openmoc.Universe(name='Root Universe') root_universe.addCell(root_cell) ###Output _____no_output_____ ###Markdown Initialize CMFD ###Code cmfd = openmoc.Cmfd() cmfd.setSORRelaxationFactor(1.5) cmfd.setLatticeStructure(17,17) cmfd.setGroupStructure([[1,2,3], [4,5,6,7]]) cmfd.setKNearest(3) ###Output _____no_output_____ ###Markdown Initialize Geometry ###Code geometry = openmoc.Geometry() geometry.setRootUniverse(root_universe) geometry.setCmfd(cmfd) # Plot the geometry color-coded by materials fig = plotter.plot_materials(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by cells fig = plotter.plot_cells(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the cells... ###Markdown Initialize TrackGenerator ###Code track_generator = openmoc.TrackGenerator(geometry, num_azim, azim_spacing) track_generator.setNumThreads(num_threads) track_generator.generateTracks() # Plot the geometry color-coded by flat source region fig = plotter.plot_flat_source_regions(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by CMFD cells fig = plotter.plot_cmfd_cells(geometry, cmfd, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the CMFD cells... ###Markdown Run Simulation ###Code solver = openmoc.CPUSolver(track_generator) solver.setConvergenceThreshold(tolerance) solver.setNumThreads(num_threads) solver.computeEigenvalue(max_iters) # Plot fast, epithermal and thermal flux figures = plotter.plot_spatial_fluxes(solver, energy_groups=[1,3,7], gridsize=500, get_figure=True) map(lambda fig: fig.set_figheight(4), figures) plt.show() # Plots FSR fission rates fig = plotter.plot_fission_rates(solver, gridsize=250, norm=True, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the flat source region fission rates... ###Markdown Simulation Runtime Parameters ###Code num_threads = 4 track_spacing = 0.05 num_azim = 16 tolerance = 1E-5 max_iters = 50 ###Output _____no_output_____ ###Markdown Initialize Materials ###Code materials = load_from_hdf5(filename='c5g7-mgxs.h5', directory='..') print materials.keys() ###Output ['UO2', 'MOX-8.7%', 'Fission Chamber', 'MOX-4.3%', 'Water', 'MOX-7%', 'Control Rod', 'Guide Tube'] ###Markdown Create Bounding Surfaces ###Code # Create ZCylinder for the fuel fuel_radius = openmoc.ZCylinder(x=0.0, y=0.0, radius=0.54) # Create planes to bound the entire geometry left = openmoc.XPlane(x=-10.71, name='left') right = openmoc.XPlane(x=10.71, name='right') top = openmoc.YPlane(y=10.71, name='top') bottom = openmoc.YPlane(y=-10.71, name='bottom') left.setBoundaryType(openmoc.REFLECTIVE) right.setBoundaryType(openmoc.REFLECTIVE) top.setBoundaryType(openmoc.REFLECTIVE) bottom.setBoundaryType(openmoc.REFLECTIVE) ###Output _____no_output_____ ###Markdown Create Fuel Pins ###Code # 4.3% MOX pin cell mox43_cell = openmoc.Cell() mox43_cell.setFill(materials['MOX-4.3%']) mox43_cell.setNumRings(3) mox43_cell.setNumSectors(8) mox43_cell.addSurface(-1, fuel_radius) mox43 = openmoc.Universe(name='MOX-4.3%') mox43.addCell(mox43_cell) # 7% MOX pin cell mox7_cell = openmoc.Cell() mox7_cell.setFill(materials['MOX-7%']) mox7_cell.setNumRings(3) mox7_cell.setNumSectors(8) mox7_cell.addSurface(-1, fuel_radius) mox7 = openmoc.Universe(name='MOX-7%') mox7.addCell(mox7_cell) # 8.7% MOX pin cell mox87_cell = openmoc.Cell() mox87_cell.setFill(materials['MOX-8.7%']) mox87_cell.setNumRings(3) mox87_cell.setNumSectors(8) mox87_cell.addSurface(-1, fuel_radius) mox87 = openmoc.Universe(name='MOX-8.7%') mox87.addCell(mox87_cell) # Fission chamber pin cell fission_chamber_cell = openmoc.Cell() fission_chamber_cell.setFill(materials['Fission Chamber']) fission_chamber_cell.setNumRings(3) fission_chamber_cell.setNumSectors(8) fission_chamber_cell.addSurface(-1, fuel_radius) fission_chamber = openmoc.Universe(name='Fission Chamber') fission_chamber.addCell(fission_chamber_cell) # Guide tube pin cell guide_tube_cell = openmoc.Cell() guide_tube_cell.setFill(materials['Guide Tube']) guide_tube_cell.setNumRings(3) guide_tube_cell.setNumSectors(8) guide_tube_cell.addSurface(-1, fuel_radius) guide_tube = openmoc.Universe(name='Guide Tube') guide_tube.addCell(guide_tube_cell) # Moderator rings moderator = openmoc.Cell() moderator.setFill(materials['Water']) moderator.addSurface(+1, fuel_radius) moderator.setNumRings(3) moderator.setNumSectors(8) # Add moderator rings to each pin cell pins = [mox43, mox7, mox87, fission_chamber, guide_tube] for pin in pins: pin.addCell(moderator) # CellFills for the assembly assembly1_cell = openmoc.Cell(name='Assembly 1') assembly1 = openmoc.Universe(name='Assembly 1') assembly1.addCell(assembly1_cell) ###Output _____no_output_____ ###Markdown Create Fuel Assembly ###Code # A mixed enrichment PWR MOX fuel assembly assembly = openmoc.Lattice(name='MOX Assembly') assembly.setWidth(width_x=1.26, width_y=1.26) # Create a template to map to pin cell types template = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] universes = {1 : mox43, 2 : mox7, 3 : mox87, 4 : guide_tube, 5 : fission_chamber} for i in range(17): for j in range(17): template[i][j] = universes[template[i][j]] assembly.setUniverses([template]) # Root Cell/Universe root_cell = openmoc.Cell(name='Full Geometry') root_cell.setFill(assembly) root_cell.addSurface(+1, left) root_cell.addSurface(-1, right) root_cell.addSurface(-1, top) root_cell.addSurface(+1, bottom) root_universe = openmoc.Universe(name='Root Universe') root_universe.addCell(root_cell) ###Output _____no_output_____ ###Markdown Initialize CMFD ###Code cmfd = openmoc.Cmfd() cmfd.setSORRelaxationFactor(1.5) cmfd.setLatticeStructure(17,17) cmfd.setGroupStructure([1,4,8]) cmfd.setKNearest(3) ###Output _____no_output_____ ###Markdown Initialize Geometry ###Code geometry = openmoc.Geometry() geometry.setRootUniverse(root_universe) geometry.setCmfd(cmfd) # Plot the geometry color-coded by materials fig = plotter.plot_materials(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by cells fig = plotter.plot_cells(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the cells... ###Markdown Initialize TrackGenerator ###Code track_generator = openmoc.TrackGenerator(geometry, num_azim, track_spacing) track_generator.setNumThreads(num_threads) track_generator.generateTracks() # Plot the geometry color-coded by flat source region fig = plotter.plot_flat_source_regions(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by CMFD cells fig = plotter.plot_cmfd_cells(geometry, cmfd, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the CMFD cells... ###Markdown Run Simulation ###Code solver = openmoc.CPUSolver(track_generator) solver.setConvergenceThreshold(tolerance) solver.setNumThreads(num_threads) solver.computeEigenvalue(max_iters) # Plot fast, epithermal and thermal flux figures = plotter.plot_spatial_fluxes(solver, energy_groups=[1,3,7], gridsize=500, get_figure=True) map(lambda fig: fig.set_figheight(4), figures) plt.show() # Plots FSR fission rates fig = plotter.plot_fission_rates(solver, gridsize=250, norm=True, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the flat source region fission rates... ###Markdown Simulation Runtime Parameters ###Code num_threads = 4 azim_spacing = 0.05 num_azim = 16 tolerance = 1E-5 max_iters = 50 ###Output _____no_output_____ ###Markdown Initialize Materials ###Code materials = load_from_hdf5(filename='c5g7-mgxs.h5', directory='..') print materials.keys() ###Output ['UO2', 'MOX-8.7%', 'Fission Chamber', 'MOX-4.3%', 'Water', 'MOX-7%', 'Control Rod', 'Guide Tube'] ###Markdown Create Bounding Surfaces ###Code # Create ZCylinder for the fuel fuel_radius = openmoc.ZCylinder(x=0.0, y=0.0, radius=0.54) # Create planes to bound the entire geometry left = openmoc.XPlane(x=-10.71, name='left') right = openmoc.XPlane(x=10.71, name='right') top = openmoc.YPlane(y=10.71, name='top') bottom = openmoc.YPlane(y=-10.71, name='bottom') left.setBoundaryType(openmoc.REFLECTIVE) right.setBoundaryType(openmoc.REFLECTIVE) top.setBoundaryType(openmoc.REFLECTIVE) bottom.setBoundaryType(openmoc.REFLECTIVE) ###Output _____no_output_____ ###Markdown Create Fuel Pins ###Code # 4.3% MOX pin cell mox43_cell = openmoc.Cell() mox43_cell.setFill(materials['MOX-4.3%']) mox43_cell.setNumRings(3) mox43_cell.setNumSectors(8) mox43_cell.addSurface(-1, fuel_radius) mox43 = openmoc.Universe(name='MOX-4.3%') mox43.addCell(mox43_cell) # 7% MOX pin cell mox7_cell = openmoc.Cell() mox7_cell.setFill(materials['MOX-7%']) mox7_cell.setNumRings(3) mox7_cell.setNumSectors(8) mox7_cell.addSurface(-1, fuel_radius) mox7 = openmoc.Universe(name='MOX-7%') mox7.addCell(mox7_cell) # 8.7% MOX pin cell mox87_cell = openmoc.Cell() mox87_cell.setFill(materials['MOX-8.7%']) mox87_cell.setNumRings(3) mox87_cell.setNumSectors(8) mox87_cell.addSurface(-1, fuel_radius) mox87 = openmoc.Universe(name='MOX-8.7%') mox87.addCell(mox87_cell) # Fission chamber pin cell fission_chamber_cell = openmoc.Cell() fission_chamber_cell.setFill(materials['Fission Chamber']) fission_chamber_cell.setNumRings(3) fission_chamber_cell.setNumSectors(8) fission_chamber_cell.addSurface(-1, fuel_radius) fission_chamber = openmoc.Universe(name='Fission Chamber') fission_chamber.addCell(fission_chamber_cell) # Guide tube pin cell guide_tube_cell = openmoc.Cell() guide_tube_cell.setFill(materials['Guide Tube']) guide_tube_cell.setNumRings(3) guide_tube_cell.setNumSectors(8) guide_tube_cell.addSurface(-1, fuel_radius) guide_tube = openmoc.Universe(name='Guide Tube') guide_tube.addCell(guide_tube_cell) # Moderator rings moderator = openmoc.Cell() moderator.setFill(materials['Water']) moderator.addSurface(+1, fuel_radius) moderator.setNumRings(3) moderator.setNumSectors(8) # Add moderator rings to each pin cell pins = [mox43, mox7, mox87, fission_chamber, guide_tube] for pin in pins: pin.addCell(moderator) # CellFills for the assembly assembly1_cell = openmoc.Cell(name='Assembly 1') assembly1 = openmoc.Universe(name='Assembly 1') assembly1.addCell(assembly1_cell) ###Output _____no_output_____ ###Markdown Create Fuel Assembly ###Code # A mixed enrichment PWR MOX fuel assembly assembly = openmoc.Lattice(name='MOX Assembly') assembly.setWidth(width_x=1.26, width_y=1.26) # Create a template to map to pin cell types template = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] universes = {1 : mox43, 2 : mox7, 3 : mox87, 4 : guide_tube, 5 : fission_chamber} for i in range(17): for j in range(17): template[i][j] = universes[template[i][j]] assembly.setUniverses([template]) # Root Cell/Universe root_cell = openmoc.Cell(name='Full Geometry') root_cell.setFill(assembly) root_cell.addSurface(+1, left) root_cell.addSurface(-1, right) root_cell.addSurface(-1, top) root_cell.addSurface(+1, bottom) root_universe = openmoc.Universe(name='Root Universe') root_universe.addCell(root_cell) ###Output _____no_output_____ ###Markdown Initialize CMFD ###Code cmfd = openmoc.Cmfd() cmfd.setSORRelaxationFactor(1.5) cmfd.setLatticeStructure(17,17) cmfd.setGroupStructure([[1,2,3], [4,5,6,7]]) cmfd.setKNearest(3) ###Output _____no_output_____ ###Markdown Initialize Geometry ###Code geometry = openmoc.Geometry() geometry.setRootUniverse(root_universe) geometry.setCmfd(cmfd) # Plot the geometry color-coded by materials fig = plotter.plot_materials(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by cells fig = plotter.plot_cells(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the cells... ###Markdown Initialize TrackGenerator ###Code track_generator = openmoc.TrackGenerator(geometry, num_azim, azim_spacing) track_generator.setNumThreads(num_threads) track_generator.generateTracks() # Plot the geometry color-coded by flat source region fig = plotter.plot_flat_source_regions(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by CMFD cells fig = plotter.plot_cmfd_cells(geometry, cmfd, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the CMFD cells... ###Markdown Run Simulation ###Code solver = openmoc.CPUSolver(track_generator) solver.setConvergenceThreshold(tolerance) solver.setNumThreads(num_threads) solver.computeEigenvalue(max_iters) # Plot fast, epithermal and thermal flux figures = plotter.plot_spatial_fluxes(solver, energy_groups=[1,3,7], gridsize=500, get_figure=True) map(lambda fig: fig.set_figheight(4), figures) plt.show() # Plots FSR fission rates fig = plotter.plot_fission_rates(solver, gridsize=250, norm=True, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the flat source region fission rates... ###Markdown Simulation Runtime Parameters ###Code num_threads = 4 azim_spacing = 0.05 num_azim = 16 tolerance = 1E-5 max_iters = 50 ###Output _____no_output_____ ###Markdown Initialize Materials ###Code materials = load_from_hdf5(filename='c5g7-mgxs.h5', directory='..') print(materials.keys()) ###Output dict_keys(['MOX-7%', 'Water', 'Fission Chamber', 'Control Rod', 'UO2', 'MOX-8.7%', 'Guide Tube', 'MOX-4.3%']) ###Markdown Create Bounding Surfaces ###Code # Create ZCylinder for the fuel fuel_radius = openmoc.ZCylinder(x=0.0, y=0.0, radius=0.54) # Create planes to bound the entire geometry boundary = openmoc.RectangularPrism(21.32, 21.32) boundary.setBoundaryType(openmoc.REFLECTIVE) ###Output _____no_output_____ ###Markdown Create Fuel Pins ###Code # 4.3% MOX pin cell mox43_cell = openmoc.Cell() mox43_cell.setFill(materials['MOX-4.3%']) mox43_cell.setNumRings(3) mox43_cell.setNumSectors(8) mox43_cell.addSurface(-1, fuel_radius) mox43 = openmoc.Universe(name='MOX-4.3%') mox43.addCell(mox43_cell) # 7% MOX pin cell mox7_cell = openmoc.Cell() mox7_cell.setFill(materials['MOX-7%']) mox7_cell.setNumRings(3) mox7_cell.setNumSectors(8) mox7_cell.addSurface(-1, fuel_radius) mox7 = openmoc.Universe(name='MOX-7%') mox7.addCell(mox7_cell) # 8.7% MOX pin cell mox87_cell = openmoc.Cell() mox87_cell.setFill(materials['MOX-8.7%']) mox87_cell.setNumRings(3) mox87_cell.setNumSectors(8) mox87_cell.addSurface(-1, fuel_radius) mox87 = openmoc.Universe(name='MOX-8.7%') mox87.addCell(mox87_cell) # Fission chamber pin cell fission_chamber_cell = openmoc.Cell() fission_chamber_cell.setFill(materials['Fission Chamber']) fission_chamber_cell.setNumRings(3) fission_chamber_cell.setNumSectors(8) fission_chamber_cell.addSurface(-1, fuel_radius) fission_chamber = openmoc.Universe(name='Fission Chamber') fission_chamber.addCell(fission_chamber_cell) # Guide tube pin cell guide_tube_cell = openmoc.Cell() guide_tube_cell.setFill(materials['Guide Tube']) guide_tube_cell.setNumRings(3) guide_tube_cell.setNumSectors(8) guide_tube_cell.addSurface(-1, fuel_radius) guide_tube = openmoc.Universe(name='Guide Tube') guide_tube.addCell(guide_tube_cell) # Moderator rings moderator = openmoc.Cell() moderator.setFill(materials['Water']) moderator.addSurface(+1, fuel_radius) moderator.setNumRings(3) moderator.setNumSectors(8) # Add moderator rings to each pin cell pins = [mox43, mox7, mox87, fission_chamber, guide_tube] for pin in pins: pin.addCell(moderator) # CellFills for the assembly assembly1_cell = openmoc.Cell(name='Assembly 1') assembly1 = openmoc.Universe(name='Assembly 1') assembly1.addCell(assembly1_cell) ###Output _____no_output_____ ###Markdown Create Fuel Assembly ###Code # A mixed enrichment PWR MOX fuel assembly assembly = openmoc.Lattice(name='MOX Assembly') assembly.setWidth(width_x=1.26, width_y=1.26) # Create a template to map to pin cell types template = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1], [1, 2, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 1], [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1], [1, 2, 2, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 2, 1], [1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 1], [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] universes = {1 : mox43, 2 : mox7, 3 : mox87, 4 : guide_tube, 5 : fission_chamber} for i in range(17): for j in range(17): template[i][j] = universes[template[i][j]] assembly.setUniverses([template]) # Root Cell/Universe root_cell = openmoc.Cell(name='Full Geometry') root_cell.setFill(assembly) root_cell.setRegion(boundary) root_universe = openmoc.Universe(name='Root Universe') root_universe.addCell(root_cell) ###Output _____no_output_____ ###Markdown Initialize CMFD ###Code cmfd = openmoc.Cmfd() cmfd.setCMFDRelaxationFactor(0.7) cmfd.setLatticeStructure(17,17) cmfd.setGroupStructure([[1,2,3], [4,5,6,7]]) cmfd.setKNearest(3) ###Output _____no_output_____ ###Markdown Initialize Geometry ###Code geometry = openmoc.Geometry() geometry.setRootUniverse(root_universe) geometry.setCmfd(cmfd) geometry.initializeFlatSourceRegions() # Plot the geometry color-coded by materials fig = plotter.plot_materials(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by cells fig = plotter.plot_cells(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the cells... ###Markdown Initialize TrackGenerator ###Code track_generator = openmoc.TrackGenerator(geometry, num_azim, azim_spacing) track_generator.setNumThreads(num_threads) track_generator.generateTracks() # Plot the geometry color-coded by flat source region fig = plotter.plot_flat_source_regions(geometry, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() # Plot the geometry color-coded by CMFD cells fig = plotter.plot_cmfd_cells(geometry, cmfd, gridsize=500, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the CMFD cells... ###Markdown Run Simulation ###Code solver = openmoc.CPUSolver(track_generator) solver.setConvergenceThreshold(tolerance) solver.setNumThreads(num_threads) solver.computeEigenvalue(max_iters) # Plot fast, epithermal and thermal flux figures = plotter.plot_spatial_fluxes(solver, energy_groups=[1,3,7], gridsize=500, get_figure=True) map(lambda fig: fig.set_figheight(4), figures) plt.show() # Plots FSR fission rates fig = plotter.plot_fission_rates(solver, gridsize=250, norm=True, get_figure=True) fig.set_figheight(4) plt.show() ###Output [ NORMAL ] Plotting the flat source region fission rates...
demos/transforming_annos-Copy1.ipynb
###Markdown Importing Dependencies Instance Segmentation of Powder Particles and SatellitesThis example is used to generate a visualization of an individual image ###Code ## regular module imports import cv2 import json import matplotlib.pyplot as plt import numpy as np import os from pathlib import Path import pickle import skimage.io import sys ## detectron2 from detectron2 import model_zoo from detectron2.config import get_cfg from detectron2.data import ( DatasetCatalog, MetadataCatalog, ) from detectron2.engine import DefaultTrainer, DefaultPredictor from detectron2.structures import BoxMode #from detectron2.evaluation import coco_evaluation from detectron2.data.datasets.coco import convert_to_coco_json from detectron2.evaluation.coco_evaluation import instances_to_coco_json from detectron2.utils.visualizer import GenericMask import pycocotools.mask as mask_util from skimage import measure from imantics import Polygons, Mask ###Output _____no_output_____ ###Markdown Setting System Path ###Code root = '../' sys.path.append(root) from sat_helpers import data_utils, visualize, export_anno EXPERIMENT_NAME = 'satellite' # can be 'particles' or 'satellite' ###Output _____no_output_____ ###Markdown Establishing Methods ###Code def flip_save_image(name, horizontally, vertically, save=True): new_name = name img_path = Path('Auto_annotate_images', image_name +'.png') img = cv2.imread(str(img_path)) if horizontally: new_name += 'x' img = cv2.flip(img, 1) if vertically: new_name += 'y' img = cv2.flip(img, 0) new_img_path = Path('Auto_annotate_images', new_name +'.png') if save: cv2.imwrite(str(new_img_path), img) return new_name def invert_list(input_list, list_range): output_list = [] for i in input_list: output_list.append(i) for i in range(len(output_list)): output_list[i] = list_range - output_list[i] return output_list def invert_shape(input_dict, img_width, img_height, horizontal, vertical): if horizontal: input_dict['shape_attributes']['all_points_x'] = invert_list(input_dict['shape_attributes']['all_points_x'], img_width) if vertical: input_dict['shape_attributes']['all_points_y'] = invert_list(input_dict['shape_attributes']['all_points_y'], img_height) return input_dict def invert_x_y_regions(input_list, img_width, img_height, horizontal, vertical): output_list = [] for i in input_list: output_list.append(invert_shape(i, img_width, img_height, horizontal, vertical)) return output_list ###TODO: Finish up this method. The name of the image must be changed, including the additional image size ###Then these methods must be created for both horizontal and verticle shifts ###Create an automated program to create all of the neccesary images and test http://www.learningaboutelectronics.com/Articles/How-to-flip-an-image-horizontally-vertically-in-Python-OpenCV.php#:~:text=To%20horizontally%20flip%20an%20image,1%20(for%20horizontal%20flipping). ###Import new docs into VIA and see how they look def flip_and_save(name, horizontally, vertically, save=True): new_name = name img_path = Path(root, '..', 'SEM_Images', 'initial_paper_complete_set', name +'.png') img = cv2.imread(str(img_path)) if horizontally: new_name += 'X' img = cv2.flip(img, 1) if vertically: new_name += 'Y' img = cv2.flip(img, 0) new_img_path = Path(root, '..', 'SEM_Images', 'initial_paper_complete_set', 'geometric', new_name +'.png') if save: cv2.imwrite(str(new_img_path), img) return new_name print('') def color_and_save(name, transformation): #transformation: 0-1 = darker, 1 = no change, 1+ = lighter im = Image.open(root + '../SEM_Images/initial_paper_complete_set/geometric/' + name + '.png') enhancer = ImageEnhance.Brightness(im) factor = transformation im_output = enhancer.enhance(factor) name_change = name if factor < 1: name_change += 'd' elif factor > 1: name_change += 'b' else: name_change += 's' im_output.save(root + '../SEM_Images/initial_paper_complete_set/photometric/' + name_change + '.png') image_name = "S02_02_SE1_300X18" img_path = Path(root, 'data', 'SEM', image_name +'.png') image_size = os.path.getsize(img_path) print(image_size) import PIL image = PIL.Image.open(img_path) width, height = image.size print(width, height) ###Output 491805 1024 768 ###Markdown Transforming AnnotationsBelow are procedures to transform annotations to adhere to data augmentation. These transformations will be saved as JSON files. You should take the JSON file and load import it into VIA. From here, load in a couple images just to verify that the satellite locations of annotations are matching the satellite location in the image itself. Add in any settings you wish to have and save as a VIA project. This may now be used as a training file. Collecting Image InformationKnowing the pixel resolution and size of file is imperative towards creating new annotations for augmented images. Loading in annotations ###Code json_path_train = Path('..', 'data', 'VIA', f'{EXPERIMENT_NAME}_training.json') # path to training data assert json_path_train.is_file(), 'training file not found!' f = open(json_path_train) data = json.load(f) ###Output _____no_output_____ ###Markdown Transforming Annotations for Photometric and Geometric Transformations [In Progress of Editing] ###Code new_annos = [] new_dict = {} for i in data['_via_img_metadata']: image_names = [] image_sizes = [] img_name = i.split('.')[0] image_names.append(img_name+'s') #Standard: Unchanged Photo or Geo image_names.append(img_name+'d') #Darker: Unchanged Geo, darkened image image_names.append(img_name+'b') #Brighter: Unchanged Geo, Brightened Image image_names.append(img_name+'Xb') image_names.append(img_name+'Xd') image_names.append(img_name+'Xs') image_names.append(img_name+'Yb') image_names.append(img_name+'Yd') image_names.append(img_name+'Ys') image_names.append(img_name+'XYs') image_names.append(img_name+'XYb') image_names.append(img_name+'XYd') for j in image_names: image_sizes.append(os.path.getsize(Path(root, 'data', 'SEM', 'photometric', j +'.png'))) writable_dict = {'regions': data['_via_img_metadata'][i]['regions']} with open('temp_dict1.json', 'w') as t: json.dump(writable_dict, t) with open('temp_dict2.json', 'w') as t: json.dump(writable_dict, t) with open('temp_dict3.json', 'w') as t: json.dump(writable_dict, t) with open('temp_dict4.json', 'w') as t: json.dump(writable_dict, t) json_temp_path1 = Path('temp_dict1.json') json_temp1 = open(json_temp_path1) initial = json.load(json_temp1) json_temp_path2 = Path('temp_dict2.json') json_temp2 = open(json_temp_path2) inverted_x = json.load(json_temp2) json_temp_path3 = Path('temp_dict3.json') json_temp3 = open(json_temp_path3) inverted_y = json.load(json_temp3) json_temp_path4 = Path('temp_dict4.json') json_temp4 = open(json_temp_path4) inverted_xy = json.load(json_temp4) inverted_x['regions'] = invert_x_y_regions(inverted_x['regions'], 1024, 768, False, True) inverted_y['regions'] = invert_x_y_regions(inverted_y['regions'], 1024, 768, True, False) inverted_xy['regions'] = invert_x_y_regions(inverted_xy['regions'], 1024, 768, True, True) print('-'*30) for k in range(len(image_names)): temp_dict = {} temp_dict['filename'] = image_names[k] + '.png' temp_dict['size'] = image_sizes[k] if k < 3: temp_dict['regions'] = initial['regions'] elif k < 6: temp_dict['regions'] = inverted_y['regions'] elif k < 9: temp_dict['regions'] = inverted_x['regions'] elif k < 12: temp_dict['regions'] = inverted_xy['regions'] new_dict[image_names[k] +'.png' + str(image_sizes[k])] = temp_dict ###Output _____no_output_____ ###Markdown Saving Annotations ###Code with open(ocean_images + '/satellite_auto_training_v2.6.json', 'w') as f: json.dump(new_dict, f) #print("Number of Images", str(len(new_annos))) #print(new_dict) ###Output _____no_output_____ ###Markdown Transforming Annotations for Geometric Transformations ###Code new_annos = [] new_dict = {} for i in data['_via_img_metadata']: image_names = [] image_sizes = [] img_name = i.split('.')[0] image_names.append(img_name) image_names.append(img_name+'X') #Augmented Over X Axis image_names.append(img_name+'Y') #Augmented Over y Axis image_names.append(img_name+'XY')#Augmented Over X and Y Axis for j in image_names: image_sizes.append(os.path.getsize(Path(ocean_images, 'geometric', j +'.png'))) #print(data['_via_img_metadata'][i]) writable_dict = {'regions': data['_via_img_metadata'][i]['regions']} #print(writable_dict) with open(ocean_images + '/temp_dict1.json', 'w') as t: json.dump(writable_dict, t) with open(ocean_images + '/temp_dict2.json', 'w') as t: json.dump(writable_dict, t) with open(ocean_images + '/temp_dict3.json', 'w') as t: json.dump(writable_dict, t) with open(ocean_images + '/temp_dict4.json', 'w') as t: json.dump(writable_dict, t) json_temp_path1 = Path(ocean_images, 'temp_dict1.json') json_temp1 = open(json_temp_path1) initial = json.load(json_temp1) json_temp_path2 = Path(ocean_images, 'temp_dict2.json') json_temp2 = open(json_temp_path2) inverted_x = json.load(json_temp2) json_temp_path3 = Path(ocean_images, 'temp_dict3.json') json_temp3 = open(json_temp_path3) inverted_y = json.load(json_temp3) json_temp_path4 = Path(ocean_images, 'temp_dict4.json') json_temp4 = open(json_temp_path4) inverted_xy = json.load(json_temp4) inverted_x['regions'] = invert_x_y_regions(inverted_x['regions'], 1024, 768, False, True) inverted_y['regions'] = invert_x_y_regions(inverted_y['regions'], 1024, 768, True, False) inverted_xy['regions'] = invert_x_y_regions(inverted_xy['regions'], 1024, 768, True, True) print('-'*30) for k in range(len(image_names)): temp_dict = {} temp_dict['filename'] = image_names[k] + '.png' temp_dict['size'] = image_sizes[k] if k == 0: temp_dict['regions'] = initial['regions'] elif k == 1: temp_dict['regions'] = inverted_y['regions'] elif k == 2: temp_dict['regions'] = inverted_x['regions'] elif k == 3: temp_dict['regions'] = inverted_xy['regions'] new_dict[image_names[k] +'.png' + str(image_sizes[k])] = temp_dict ###Output ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ###Markdown Saving Annotations ###Code with open(ocean_images + '/satellite_auto_training_v3.6.json', 'w') as f: json.dump(new_dict, f) #print("Number of Images", str(len(new_annos))) #print(new_dict) ###Output _____no_output_____ ###Markdown Transforming Annotations for Photometric Transformations ###Code new_annos = [] new_dict = {} for i in data['_via_img_metadata']: image_names = [] image_sizes = [] img_name = i.split('.')[0] image_names.append(img_name+'s') #Unchanged image_names.append(img_name+'b') #Brightened image_names.append(img_name+'d') #Darkened for j in image_names: image_sizes.append(os.path.getsize(Path(ocean_images, 'photometric', j +'.png'))) print('-'*30) for k in range(len(image_names)): temp_dict = {} temp_dict['filename'] = image_names[k] + '.png' temp_dict['size'] = image_sizes[k] temp_dict['regions'] = data['_via_img_metadata'][i]['regions'] new_dict[image_names[k] +'.png' + str(image_sizes[k])] = temp_dict ###Output ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ------------------------------ ###Markdown Saving Annotations ###Code with open(ocean_images + '/satellite_auto_training_v4.6.json', 'w') as f: json.dump(new_dict, f) #print("Number of Images", str(len(new_annos))) #print(new_dict) ###Output _____no_output_____
Lab3-Opt1/bring-custom-script.ipynb
###Markdown Lab: Bring your own script with Amazon SageMaker TensorFlow script mode training and servingScript mode is a training script format for TensorFlow that lets you execute any TensorFlow training script in SageMaker with minimal modification. The [SageMaker Python SDK](https://github.com/aws/sagemaker-python-sdk) handles transferring your script to a SageMaker training instance. On the training instance, SageMaker's native TensorFlow support sets up training-related environment variables and executes your training script. In this tutorial, we use the SageMaker Python SDK to launch a training job and deploy the trained model.Script mode supports training with a Python script, a Python module, or a shell script. In this example, we use a Python script to train a classification model on the [MNIST dataset](http://yann.lecun.com/exdb/mnist/). In this example, we will show how easily you can train a SageMaker using TensorFlow 1.x and TensorFlow 2.0 scripts with SageMaker Python SDK. In addition, this notebook demonstrates how to perform real time inference with the [SageMaker TensorFlow Serving container](https://github.com/aws/sagemaker-tensorflow-serving-container). The TensorFlow Serving container is the default inference method for script mode. For full documentation on the TensorFlow Serving container, please visit [here](https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/deploying_tensorflow_serving.rst). Set up the environmentLet's start by setting up the environment: ###Code # cell 01 import os import sagemaker from sagemaker import get_execution_role sagemaker_session = sagemaker.Session() role = get_execution_role() region = sagemaker_session.boto_session.region_name ###Output _____no_output_____ ###Markdown Training DataThe MNIST dataset has been loaded to the public S3 buckets `sagemaker-sample-data-` under the prefix `tensorflow/mnist`. There are four .npy file under this prefix:- train_data.npy- eval_data.npy- train_labels.npy- eval_labels.npy ###Code # cell 02 training_data_uri = 's3://sagemaker-sample-data-{}/tensorflow/mnist'.format(region) ###Output _____no_output_____ ###Markdown Construct a script for distributed trainingThis tutorial's training script was adapted from TensorFlow's official [CNN MNIST example](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/layers/cnn_mnist.py). We have modified it to handle the `model_dir` parameter passed in by SageMaker. This is an S3 path which can be used for data sharing during distributed training and checkpointing and/or model persistence. We have also added an argument-parsing function to handle processing training-related variables.At the end of the training job we have added a step to export the trained model to the path stored in the environment variable `SM_MODEL_DIR`, which always points to `/opt/ml/model`. This is critical because SageMaker uploads all the model artifacts in this folder to S3 at end of training.Here is the entire script: ###Code # cell 03 !pygmentize 'mnist.py' # TensorFlow 2.1 script !pygmentize 'mnist-2.py' ###Output # Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Convolutional Neural Network Estimator for MNIST, built with tf.layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import os import json import argparse from tensorflow.python.platform import tf_logging import logging as _logging import sys as _sys def cnn_model_fn(features, labels, mode): """Model function for CNN.""" # Input Layer # Reshape X to 4-D tensor: [batch_size, width, height, channels] # MNIST images are 28x28 pixels, and have one color channel input_layer = tf.reshape(features["x"], [-1, 28, 28, 1]) # Convolutional Layer #1 # Computes 32 features using a 5x5 filter with ReLU activation. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 28, 28, 1] # Output Tensor Shape: [batch_size, 28, 28, 32] conv1 = tf.layers.conv2d( inputs=input_layer, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #1 # First max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 28, 28, 32] # Output Tensor Shape: [batch_size, 14, 14, 32] pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # Convolutional Layer #2 # Computes 64 features using a 5x5 filter. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 14, 14, 32] # Output Tensor Shape: [batch_size, 14, 14, 64] conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #2 # Second max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 14, 14, 64] # Output Tensor Shape: [batch_size, 7, 7, 64] pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # Flatten tensor into a batch of vectors # Input Tensor Shape: [batch_size, 7, 7, 64] # Output Tensor Shape: [batch_size, 7 * 7 * 64] pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64]) # Dense Layer # Densely connected layer with 1024 neurons # Input Tensor Shape: [batch_size, 7 * 7 * 64] # Output Tensor Shape: [batch_size, 1024] dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) # Add dropout operation; 0.6 probability that element will be kept dropout = tf.layers.dropout( inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN) # Logits layer # Input Tensor Shape: [batch_size, 1024] # Output Tensor Shape: [batch_size, 10] logits = tf.layers.dense(inputs=dropout, units=10) predictions = { # Generate predictions (for PREDICT and EVAL mode) "classes": tf.argmax(input=logits, axis=1), # Add `softmax_tensor` to the graph. It is used for PREDICT and by the # `logging_hook`. "probabilities": tf.nn.softmax(logits, name="softmax_tensor") } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Calculate Loss (for both TRAIN and EVAL modes) loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) # Configure the Training Op (for TRAIN mode) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) train_op = optimizer.minimize( loss=loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) # Add evaluation metrics (for EVAL mode) eval_metric_ops = { "accuracy": tf.metrics.accuracy( labels=labels, predictions=predictions["classes"])} return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def _load_training_data(base_dir): x_train = np.load(os.path.join(base_dir, 'train_data.npy')) y_train = np.load(os.path.join(base_dir, 'train_labels.npy')) return x_train, y_train def _load_testing_data(base_dir): x_test = np.load(os.path.join(base_dir, 'eval_data.npy')) y_test = np.load(os.path.join(base_dir, 'eval_labels.npy')) return x_test, y_test def _parse_args(): parser = argparse.ArgumentParser() # Data, model, and output directories # model_dir is always passed in from SageMaker. By default this is a S3 path under the default bucket. parser.add_argument('--model_dir', type=str) parser.add_argument('--sm-model-dir', type=str, default=os.environ.get('SM_MODEL_DIR')) parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAINING')) parser.add_argument('--hosts', type=list, default=json.loads(os.environ.get('SM_HOSTS'))) parser.add_argument('--current-host', type=str, default=os.environ.get('SM_CURRENT_HOST')) return parser.parse_known_args() def serving_input_fn(): inputs = {'x': tf.placeholder(tf.float32, [None, 784])} return tf.estimator.export.ServingInputReceiver(inputs, inputs) if __name__ == "__main__": args, unknown = _parse_args() train_data, train_labels = _load_training_data(args.train) eval_data, eval_labels = _load_testing_data(args.train) # Create the Estimator mnist_classifier = tf.estimator.Estimator( model_fn=cnn_model_fn, model_dir=args.model_dir) # Set up logging for predictions # Log the values in the "Softmax" tensor with label "probabilities" tensors_to_log = {"probabilities": "softmax_tensor"} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=50) # Train the model train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": train_data}, y=train_labels, batch_size=100, num_epochs=None, shuffle=True) # Evaluate the model and print results eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False) train_spec = tf.estimator.TrainSpec(train_input_fn, max_steps=20000) eval_spec = tf.estimator.EvalSpec(eval_input_fn) tf.estimator.train_and_evaluate(mnist_classifier, train_spec, eval_spec) if args.current_host == args.hosts[0]: mnist_classifier.export_savedmodel(args.sm_model_dir, serving_input_fn) # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License.import tensorflow as tf import tensorflow as tf import argparse import os import numpy as np import json def model(x_train, y_train, x_test, y_test): """Generate a simple model""" model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024, activation=tf.nn.relu), tf.keras.layers.Dropout(0.4), tf.keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train) model.evaluate(x_test, y_test) return model def _load_training_data(base_dir): """Load MNIST training data""" x_train = np.load(os.path.join(base_dir, 'train_data.npy')) y_train = np.load(os.path.join(base_dir, 'train_labels.npy')) return x_train, y_train def _load_testing_data(base_dir): """Load MNIST testing data""" x_test = np.load(os.path.join(base_dir, 'eval_data.npy')) y_test = np.load(os.path.join(base_dir, 'eval_labels.npy')) return x_test, y_test def _parse_args(): parser = argparse.ArgumentParser() # Data, model, and output directories # model_dir is always passed in from SageMaker. By default this is a S3 path under the default bucket. parser.add_argument('--model_dir', type=str) parser.add_argument('--sm-model-dir', type=str, default=os.environ.get('SM_MODEL_DIR')) parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAINING')) parser.add_argument('--hosts', type=list, default=json.loads(os.environ.get('SM_HOSTS'))) parser.add_argument('--current-host', type=str, default=os.environ.get('SM_CURRENT_HOST')) return parser.parse_known_args() if __name__ == "__main__": args, unknown = _parse_args() train_data, train_labels = _load_training_data(args.train) eval_data, eval_labels = _load_testing_data(args.train) mnist_classifier = model(train_data, train_labels, eval_data, eval_labels) if args.current_host == args.hosts[0]: # save model to an S3 directory with version number '00000001' in Tensorflow SavedModel Format # To export the model as h5 format use model.save('my_model.h5') mnist_classifier.save(os.path.join(args.sm_model_dir, '000000001')) ###Markdown Create a training job using the TensorFlow estimatorThe `sagemaker.tensorflow.TensorFlow` estimator handles locating the script mode container, uploading your script to a S3 location and creating a SageMaker training job. Let's call out a couple important parameters here:`py_version` is set to `'py3'` to indicate that we are using script mode since legacy mode supports only Python 2. Though Python 2 will be deprecated soon, you can use script mode with Python 2 by setting py_version to `py2` and `script_mode` to True.`distribution` is used to configure the distributed training setup. It's required only if you are doing distributed training either across a cluster of instances or across multiple GPUs. Here we are using parameter servers as the distributed training schema. SageMaker training jobs run on homogeneous clusters. To make parameter server more performant in the SageMaker setup, we run a parameter server on every instance in the cluster, so there is no need to specify the number of parameter servers to launch. Script mode also supports distributed training with [Horovod](https://github.com/horovod/horovod). You can find the full documentation on how to configure distributions [here](https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/tensorflowdistributed-training). ###Code # cell 04 from sagemaker.tensorflow import TensorFlow mnist_estimator = TensorFlow(entry_point='mnist.py', role=role, instance_count=2, instance_type='ml.p3.2xlarge', framework_version='1.15.2', py_version='py3', distribution={'parameter_server': {'enabled': True}}) ###Output _____no_output_____ ###Markdown You can also initiate an estimator to train with TensorFlow 2.1 script. The only things that you will need to change are the script name and `framework_version` ###Code # cell 05 mnist_estimator2 = TensorFlow(entry_point='mnist-2.py', role=role, instance_count=2, instance_type='ml.p3.2xlarge', framework_version='2.1.0', py_version='py3', distribution={'parameter_server': {'enabled': True}}) ###Output _____no_output_____ ###Markdown Calling `fit`To start a training job, we call `estimator.fit(training_data_uri)`.An S3 location is used here as the input. fit creates a default channel named 'training', which points to this S3 location. In the training script we can then access the training data from the location stored in SM_CHANNEL_TRAINING. fit accepts a couple other types of input as well. See the API doc [here](https://sagemaker.readthedocs.io/en/stable/estimators.htmlsagemaker.estimator.EstimatorBase.fit) for details.When training starts, the TensorFlow container executes mnist.py, passing hyperparameters and model_dir from the estimator as script arguments. Because we didn't define either in this example, no hyperparameters are passed, and model_dir defaults to `s3:///`, so the script execution is as follows:`python mnist.py --model_dir s3:///`When training is complete, the training job will upload the saved model for TensorFlow serving. ###Code # cell 06 mnist_estimator.fit(training_data_uri) ###Output 2021-09-16 20:06:48 Starting - Starting the training job... 2021-09-16 20:06:57 Starting - Launching requested ML instancesProfilerReport-1631822807: InProgress ......... 2021-09-16 20:08:39 Starting - Preparing the instances for training......... 2021-09-16 20:10:19 Downloading - Downloading input data... 2021-09-16 20:10:40 Training - Downloading the training image..WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/__init__.py:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.  2021-09-16 20:10:58,409 sagemaker-containers INFO Imported framework sagemaker_tensorflow_container.training 2021-09-16 20:10:58,698 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers 2021-09-16 20:10:58,698 sagemaker_tensorflow_container.training INFO Launching parameter server process 2021-09-16 20:10:58,699 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:99: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.  2021-09-16 20:10:58,699 tensorflow WARNING From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:99: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.  WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:101: The name tf.train.Server is deprecated. Please use tf.distribute.Server instead.  2021-09-16 20:10:58,699 tensorflow WARNING From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:101: The name tf.train.Server is deprecated. Please use tf.distribute.Server instead.  WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/__init__.py:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.  2021-09-16 20:10:57,169 sagemaker-containers INFO Imported framework sagemaker_tensorflow_container.training 2021-09-16 20:10:57,504 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers 2021-09-16 20:10:57,504 sagemaker_tensorflow_container.training INFO Launching parameter server process 2021-09-16 20:10:57,504 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:99: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.  2021-09-16 20:10:57,505 tensorflow WARNING From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:99: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.  WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:101: The name tf.train.Server is deprecated. Please use tf.distribute.Server instead.  2021-09-16 20:10:57,505 tensorflow WARNING From /usr/local/lib/python3.6/dist-packages/sagemaker_tensorflow_container/training.py:101: The name tf.train.Server is deprecated. Please use tf.distribute.Server instead.  2021-09-16 20:10:58,365 sagemaker_tensorflow_container.training INFO Launching worker process 2021-09-16 20:10:58,598 sagemaker-containers INFO Invoking user script  Training Env:  { "additional_framework_parameters": { "sagemaker_parameter_server_enabled": true }, "channel_input_dirs": { "training": "/opt/ml/input/data/training" }, "current_host": "algo-1", "framework_module": "sagemaker_tensorflow_container.training:main", "hosts": [ "algo-1", "algo-2" ], "hyperparameters": { "model_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model" }, "input_config_dir": "/opt/ml/input/config", "input_data_config": { "training": { "TrainingInputMode": "File", "S3DistributionType": "FullyReplicated", "RecordWrapperType": "None" } }, "input_dir": "/opt/ml/input", "is_master": true, "job_name": "tensorflow-training-2021-09-16-20-06-47-336", "log_level": 20, "master_hostname": "algo-1", "model_dir": "/opt/ml/model", "module_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/source/sourcedir.tar.gz", "module_name": "mnist", "network_interface_name": "eth0", "num_cpus": 8, "num_gpus": 1, "output_data_dir": "/opt/ml/output/data", "output_dir": "/opt/ml/output", "output_intermediate_dir": "/opt/ml/output/intermediate", "resource_config": { "current_host": "algo-1", "hosts": [ "algo-1", "algo-2" ], "network_interface_name": "eth0" }, "user_entry_point": "mnist.py" }  Environment variables:  SM_HOSTS=["algo-1","algo-2"] SM_NETWORK_INTERFACE_NAME=eth0 SM_HPS={"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model"} SM_USER_ENTRY_POINT=mnist.py SM_FRAMEWORK_PARAMS={"sagemaker_parameter_server_enabled":true} SM_RESOURCE_CONFIG={"current_host":"algo-1","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"} SM_INPUT_DATA_CONFIG={"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}} SM_OUTPUT_DATA_DIR=/opt/ml/output/data SM_CHANNELS=["training"] SM_CURRENT_HOST=algo-1 SM_MODULE_NAME=mnist SM_LOG_LEVEL=20 SM_FRAMEWORK_MODULE=sagemaker_tensorflow_container.training:main SM_INPUT_DIR=/opt/ml/input SM_INPUT_CONFIG_DIR=/opt/ml/input/config SM_OUTPUT_DIR=/opt/ml/output SM_NUM_CPUS=8 SM_NUM_GPUS=1 SM_MODEL_DIR=/opt/ml/model SM_MODULE_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/source/sourcedir.tar.gz SM_TRAINING_ENV={"additional_framework_parameters":{"sagemaker_parameter_server_enabled":true},"channel_input_dirs":{"training":"/opt/ml/input/data/training"},"current_host":"algo-1","framework_module":"sagemaker_tensorflow_container.training:main","hosts":["algo-1","algo-2"],"hyperparameters":{"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model"},"input_config_dir":"/opt/ml/input/config","input_data_config":{"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}},"input_dir":"/opt/ml/input","is_master":true,"job_name":"tensorflow-training-2021-09-16-20-06-47-336","log_level":20,"master_hostname":"algo-1","model_dir":"/opt/ml/model","module_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/source/sourcedir.tar.gz","module_name":"mnist","network_interface_name":"eth0","num_cpus":8,"num_gpus":1,"output_data_dir":"/opt/ml/output/data","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/output/intermediate","resource_config":{"current_host":"algo-1","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"},"user_entry_point":"mnist.py"} SM_USER_ARGS=["--model_dir","s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model"] SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate SM_CHANNEL_TRAINING=/opt/ml/input/data/training SM_HP_MODEL_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model TF_CONFIG={"cluster": {"master": ["algo-1:2222"], "ps": ["algo-1:2223", "algo-2:2223"], "worker": ["algo-2:2222"]}, "environment": "cloud", "task": {"index": 0, "type": "master"}} PYTHONPATH=/opt/ml/code:/usr/local/bin:/usr/lib/python36.zip:/usr/lib/python3.6:/usr/lib/python3.6/lib-dynload:/usr/local/lib/python3.6/dist-packages:/usr/lib/python3/dist-packages  Invoking script with the following command:  /usr/bin/python3 mnist.py --model_dir s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model  2021-09-16 20:10:59,565 sagemaker_tensorflow_container.training INFO Launching worker process WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/__init__.py:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.  WARNING:tensorflow:From mnist.py:161: The name tf.train.LoggingTensorHook is deprecated. Please use tf.estimator.LoggingTensorHook instead.  WARNING:tensorflow:From mnist.py:165: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead.  2021-09-16 20:11:00,246 sagemaker-containers INFO Invoking user script  Training Env:  { "additional_framework_parameters": { "sagemaker_parameter_server_enabled": true }, "channel_input_dirs": { "training": "/opt/ml/input/data/training" }, "current_host": "algo-2", "framework_module": "sagemaker_tensorflow_container.training:main", "hosts": [ "algo-1", "algo-2" ], "hyperparameters": { "model_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model" }, "input_config_dir": "/opt/ml/input/config", "input_data_config": { "training": { "TrainingInputMode": "File", "S3DistributionType": "FullyReplicated", "RecordWrapperType": "None" } }, "input_dir": "/opt/ml/input", "is_master": false, "job_name": "tensorflow-training-2021-09-16-20-06-47-336", "log_level": 20, "master_hostname": "algo-1", "model_dir": "/opt/ml/model", "module_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/source/sourcedir.tar.gz", "module_name": "mnist", "network_interface_name": "eth0", "num_cpus": 8, "num_gpus": 1, "output_data_dir": "/opt/ml/output/data", "output_dir": "/opt/ml/output", "output_intermediate_dir": "/opt/ml/output/intermediate", "resource_config": { "current_host": "algo-2", "hosts": [ "algo-1", "algo-2" ], "network_interface_name": "eth0" }, "user_entry_point": "mnist.py" }  Environment variables:  SM_HOSTS=["algo-1","algo-2"] SM_NETWORK_INTERFACE_NAME=eth0 SM_HPS={"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model"} SM_USER_ENTRY_POINT=mnist.py SM_FRAMEWORK_PARAMS={"sagemaker_parameter_server_enabled":true} SM_RESOURCE_CONFIG={"current_host":"algo-2","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"} SM_INPUT_DATA_CONFIG={"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}} SM_OUTPUT_DATA_DIR=/opt/ml/output/data SM_CHANNELS=["training"] SM_CURRENT_HOST=algo-2 SM_MODULE_NAME=mnist SM_LOG_LEVEL=20 SM_FRAMEWORK_MODULE=sagemaker_tensorflow_container.training:main SM_INPUT_DIR=/opt/ml/input SM_INPUT_CONFIG_DIR=/opt/ml/input/config SM_OUTPUT_DIR=/opt/ml/output SM_NUM_CPUS=8 SM_NUM_GPUS=1 SM_MODEL_DIR=/opt/ml/model SM_MODULE_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/source/sourcedir.tar.gz SM_TRAINING_ENV={"additional_framework_parameters":{"sagemaker_parameter_server_enabled":true},"channel_input_dirs":{"training":"/opt/ml/input/data/training"},"current_host":"algo-2","framework_module":"sagemaker_tensorflow_container.training:main","hosts":["algo-1","algo-2"],"hyperparameters":{"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model"},"input_config_dir":"/opt/ml/input/config","input_data_config":{"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}},"input_dir":"/opt/ml/input","is_master":false,"job_name":"tensorflow-training-2021-09-16-20-06-47-336","log_level":20,"master_hostname":"algo-1","model_dir":"/opt/ml/model","module_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/source/sourcedir.tar.gz","module_name":"mnist","network_interface_name":"eth0","num_cpus":8,"num_gpus":1,"output_data_dir":"/opt/ml/output/data","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/output/intermediate","resource_config":{"current_host":"algo-2","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"},"user_entry_point":"mnist.py"} SM_USER_ARGS=["--model_dir","s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model"] SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate SM_CHANNEL_TRAINING=/opt/ml/input/data/training SM_HP_MODEL_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model TF_CONFIG={"cluster": {"master": ["algo-1:2222"], "ps": ["algo-1:2223", "algo-2:2223"], "worker": ["algo-2:2222"]}, "environment": "cloud", "task": {"index": 0, "type": "worker"}} PYTHONPATH=/opt/ml/code:/usr/local/bin:/usr/lib/python36.zip:/usr/lib/python3.6:/usr/lib/python3.6/lib-dynload:/usr/local/lib/python3.6/dist-packages:/usr/lib/python3/dist-packages  Invoking script with the following command:  /usr/bin/python3 mnist.py --model_dir s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model  WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:62: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:62: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:500: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:500: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From mnist.py:46: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.keras.layers.Conv2D` instead. WARNING:tensorflow:From mnist.py:46: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.keras.layers.Conv2D` instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:424: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:424: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. WARNING:tensorflow:From mnist.py:52: max_pooling2d (from tensorflow.python.layers.pooling) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead. WARNING:tensorflow:From mnist.py:52: max_pooling2d (from tensorflow.python.layers.pooling) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead. WARNING:tensorflow:From mnist.py:81: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead. WARNING:tensorflow:From mnist.py:81: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead. WARNING:tensorflow:From mnist.py:85: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead. WARNING:tensorflow:From mnist.py:85: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead. WARNING:tensorflow:From mnist.py:103: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.  WARNING:tensorflow:From mnist.py:103: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.  WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/losses/losses_impl.py:121: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/losses/losses_impl.py:121: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From mnist.py:107: The name tf.train.GradientDescentOptimizer is deprecated. Please use tf.compat.v1.train.GradientDescentOptimizer instead.  WARNING:tensorflow:From mnist.py:107: The name tf.train.GradientDescentOptimizer is deprecated. Please use tf.compat.v1.train.GradientDescentOptimizer instead.  WARNING:tensorflow:From mnist.py:110: The name tf.train.get_global_step is deprecated. Please use tf.compat.v1.train.get_global_step instead.  WARNING:tensorflow:From mnist.py:110: The name tf.train.get_global_step is deprecated. Please use tf.compat.v1.train.get_global_step instead.  INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py:888: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py:888: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/__init__.py:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.  WARNING:tensorflow:From mnist.py:161: The name tf.train.LoggingTensorHook is deprecated. Please use tf.estimator.LoggingTensorHook instead.  WARNING:tensorflow:From mnist.py:165: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead.  INFO:tensorflow:Saving checkpoints for 0 into s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt. 2021-09-16 20:11:20 Training - Training image download completed. Training in progress.WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:62: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:62: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:500: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:500: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From mnist.py:46: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.keras.layers.Conv2D` instead. WARNING:tensorflow:From mnist.py:46: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.keras.layers.Conv2D` instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:424: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:424: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. WARNING:tensorflow:From mnist.py:52: max_pooling2d (from tensorflow.python.layers.pooling) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead. WARNING:tensorflow:From mnist.py:52: max_pooling2d (from tensorflow.python.layers.pooling) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.MaxPooling2D instead. WARNING:tensorflow:From mnist.py:81: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead. WARNING:tensorflow:From mnist.py:81: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead. WARNING:tensorflow:From mnist.py:85: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead. WARNING:tensorflow:From mnist.py:85: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead. WARNING:tensorflow:From mnist.py:103: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.  WARNING:tensorflow:From mnist.py:103: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.  WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/losses/losses_impl.py:121: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/losses/losses_impl.py:121: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From mnist.py:107: The name tf.train.GradientDescentOptimizer is deprecated. Please use tf.compat.v1.train.GradientDescentOptimizer instead.  WARNING:tensorflow:From mnist.py:107: The name tf.train.GradientDescentOptimizer is deprecated. Please use tf.compat.v1.train.GradientDescentOptimizer instead.  WARNING:tensorflow:From mnist.py:110: The name tf.train.get_global_step is deprecated. Please use tf.compat.v1.train.get_global_step instead.  WARNING:tensorflow:From mnist.py:110: The name tf.train.get_global_step is deprecated. Please use tf.compat.v1.train.get_global_step instead.  INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:loss = 2.2954834, step = 0 INFO:tensorflow:loss = 2.2954834, step = 0 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py:888: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py:888: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:loss = 2.2745461, step = 100 (5.838 sec) INFO:tensorflow:loss = 2.2745461, step = 100 (5.838 sec) INFO:tensorflow:loss = 2.2926042, step = 48 INFO:tensorflow:loss = 2.2926042, step = 48 INFO:tensorflow:global_step/sec: 51.4906 INFO:tensorflow:global_step/sec: 51.4906 INFO:tensorflow:loss = 2.2561707, step = 253 (2.950 sec) INFO:tensorflow:loss = 2.2561707, step = 253 (2.950 sec) INFO:tensorflow:global_step/sec: 53.5832 INFO:tensorflow:global_step/sec: 53.5832 INFO:tensorflow:loss = 2.2436347, step = 405 (5.795 sec) INFO:tensorflow:loss = 2.2436347, step = 405 (5.795 sec) INFO:tensorflow:loss = 2.2361007, step = 397 (2.594 sec) INFO:tensorflow:loss = 2.2361007, step = 397 (2.594 sec) INFO:tensorflow:global_step/sec: 55.6111 INFO:tensorflow:global_step/sec: 55.6111 INFO:tensorflow:global_step/sec: 56.9572 INFO:tensorflow:global_step/sec: 56.9572 INFO:tensorflow:loss = 2.2011986, step = 541 (2.514 sec) INFO:tensorflow:loss = 2.2011986, step = 541 (2.514 sec) INFO:tensorflow:global_step/sec: 57.771 INFO:tensorflow:global_step/sec: 57.771 INFO:tensorflow:loss = 2.127076, step = 685 (2.552 sec) INFO:tensorflow:loss = 2.127076, step = 685 (2.552 sec) INFO:tensorflow:loss = 2.074747, step = 733 (5.780 sec) INFO:tensorflow:loss = 2.074747, step = 733 (5.780 sec) INFO:tensorflow:global_step/sec: 55.7782 INFO:tensorflow:global_step/sec: 55.7782 INFO:tensorflow:global_step/sec: 56.1525 INFO:tensorflow:global_step/sec: 56.1525 INFO:tensorflow:loss = 2.0147517, step = 829 (2.573 sec) INFO:tensorflow:loss = 2.0147517, step = 829 (2.573 sec) INFO:tensorflow:global_step/sec: 56.9316 INFO:tensorflow:global_step/sec: 56.9316 INFO:tensorflow:loss = 1.9200367, step = 972 (2.482 sec) INFO:tensorflow:loss = 1.9200367, step = 972 (2.482 sec) INFO:tensorflow:global_step/sec: 57.2994 INFO:tensorflow:global_step/sec: 57.2994 INFO:tensorflow:global_step/sec: 56.4243 INFO:tensorflow:global_step/sec: 56.4243 INFO:tensorflow:loss = 1.7404916, step = 1115 (2.524 sec) INFO:tensorflow:loss = 1.7404916, step = 1115 (2.524 sec) INFO:tensorflow:global_step/sec: 56.6605 INFO:tensorflow:global_step/sec: 56.6605 INFO:tensorflow:loss = 1.7871726, step = 1063 (5.832 sec) INFO:tensorflow:loss = 1.7871726, step = 1063 (5.832 sec) INFO:tensorflow:loss = 1.4855206, step = 1258 (2.499 sec) INFO:tensorflow:loss = 1.4855206, step = 1258 (2.499 sec) INFO:tensorflow:global_step/sec: 57.5519 INFO:tensorflow:global_step/sec: 57.5519 INFO:tensorflow:loss = 1.2466033, step = 1398 (5.863 sec) INFO:tensorflow:loss = 1.2466033, step = 1398 (5.863 sec) INFO:tensorflow:loss = 1.2739695, step = 1400 (2.496 sec) INFO:tensorflow:loss = 1.2739695, step = 1400 (2.496 sec) INFO:tensorflow:global_step/sec: 57.1537 INFO:tensorflow:global_step/sec: 57.1537 INFO:tensorflow:global_step/sec: 56.7678 INFO:tensorflow:global_step/sec: 56.7678 INFO:tensorflow:loss = 1.0284219, step = 1543 (2.516 sec) INFO:tensorflow:loss = 1.0284219, step = 1543 (2.516 sec) INFO:tensorflow:global_step/sec: 57.1591 INFO:tensorflow:global_step/sec: 57.1591 INFO:tensorflow:loss = 1.0724763, step = 1686 (2.500 sec) INFO:tensorflow:loss = 1.0724763, step = 1686 (2.500 sec) INFO:tensorflow:global_step/sec: 57.0078 INFO:tensorflow:global_step/sec: 57.0078 INFO:tensorflow:loss = 1.0590838, step = 1730 (5.822 sec) INFO:tensorflow:loss = 1.0590838, step = 1730 (5.822 sec) INFO:tensorflow:global_step/sec: 58.312 INFO:tensorflow:global_step/sec: 58.312 INFO:tensorflow:loss = 0.7005032, step = 1828 (2.467 sec) INFO:tensorflow:loss = 0.7005032, step = 1828 (2.467 sec) INFO:tensorflow:global_step/sec: 57.5212 INFO:tensorflow:global_step/sec: 57.5212 INFO:tensorflow:loss = 0.7522633, step = 1971 (2.452 sec) INFO:tensorflow:loss = 0.7522633, step = 1971 (2.452 sec) INFO:tensorflow:global_step/sec: 58.1853 INFO:tensorflow:global_step/sec: 58.1853 INFO:tensorflow:loss = 0.6497122, step = 2065 (5.794 sec) INFO:tensorflow:loss = 0.6497122, step = 2065 (5.794 sec) INFO:tensorflow:global_step/sec: 57.0309 INFO:tensorflow:global_step/sec: 57.0309 INFO:tensorflow:loss = 0.60943335, step = 2115 (2.513 sec) INFO:tensorflow:loss = 0.60943335, step = 2115 (2.513 sec) INFO:tensorflow:global_step/sec: 55.6189 INFO:tensorflow:global_step/sec: 55.6189 INFO:tensorflow:loss = 0.5678159, step = 2257 (2.515 sec) INFO:tensorflow:loss = 0.5678159, step = 2257 (2.515 sec) INFO:tensorflow:global_step/sec: 57.4011 INFO:tensorflow:global_step/sec: 57.4011 INFO:tensorflow:loss = 0.50929654, step = 2396 (5.807 sec) INFO:tensorflow:loss = 0.50929654, step = 2396 (5.807 sec) INFO:tensorflow:loss = 0.53587013, step = 2400 (2.493 sec) INFO:tensorflow:loss = 0.53587013, step = 2400 (2.493 sec) INFO:tensorflow:global_step/sec: 57.7177 INFO:tensorflow:global_step/sec: 57.7177 INFO:tensorflow:global_step/sec: 57.9098 INFO:tensorflow:global_step/sec: 57.9098 INFO:tensorflow:loss = 0.5242331, step = 2542 (2.471 sec) INFO:tensorflow:loss = 0.5242331, step = 2542 (2.471 sec) INFO:tensorflow:global_step/sec: 56.1542 INFO:tensorflow:global_step/sec: 56.1542 INFO:tensorflow:loss = 0.52879256, step = 2686 (2.560 sec) INFO:tensorflow:loss = 0.52879256, step = 2686 (2.560 sec) INFO:tensorflow:loss = 0.5177074, step = 2726 (5.839 sec) INFO:tensorflow:loss = 0.5177074, step = 2726 (5.839 sec) INFO:tensorflow:global_step/sec: 55.6859 INFO:tensorflow:global_step/sec: 55.6859 INFO:tensorflow:global_step/sec: 57.1356 INFO:tensorflow:global_step/sec: 57.1356 INFO:tensorflow:loss = 0.5711662, step = 2829 (2.525 sec) INFO:tensorflow:loss = 0.5711662, step = 2829 (2.525 sec) INFO:tensorflow:global_step/sec: 55.7502 INFO:tensorflow:global_step/sec: 55.7502 INFO:tensorflow:loss = 0.6014549, step = 2972 (2.586 sec) INFO:tensorflow:loss = 0.6014549, step = 2972 (2.586 sec) INFO:tensorflow:global_step/sec: 54.6768 INFO:tensorflow:global_step/sec: 54.6768 INFO:tensorflow:loss = 0.4224535, step = 3056 (5.899 sec) INFO:tensorflow:loss = 0.4224535, step = 3056 (5.899 sec) INFO:tensorflow:loss = 0.41673452, step = 3115 (2.571 sec) INFO:tensorflow:loss = 0.41673452, step = 3115 (2.571 sec) INFO:tensorflow:global_step/sec: 56.685 INFO:tensorflow:global_step/sec: 56.685 INFO:tensorflow:global_step/sec: 57.8721 INFO:tensorflow:global_step/sec: 57.8721 INFO:tensorflow:loss = 0.47405872, step = 3257 (2.461 sec) INFO:tensorflow:loss = 0.47405872, step = 3257 (2.461 sec) INFO:tensorflow:global_step/sec: 58.1034 INFO:tensorflow:global_step/sec: 58.1034 INFO:tensorflow:loss = 0.46215898, step = 3399 (2.445 sec) INFO:tensorflow:loss = 0.46215898, step = 3399 (2.445 sec) INFO:tensorflow:global_step/sec: 57.5289 INFO:tensorflow:global_step/sec: 57.5289 INFO:tensorflow:loss = 0.62549764, step = 3393 (5.843 sec) INFO:tensorflow:loss = 0.62549764, step = 3393 (5.843 sec) INFO:tensorflow:global_step/sec: 56.936 INFO:tensorflow:global_step/sec: 56.936 INFO:tensorflow:loss = 0.37619048, step = 3541 (2.504 sec) INFO:tensorflow:loss = 0.37619048, step = 3541 (2.504 sec) INFO:tensorflow:global_step/sec: 56.1533 INFO:tensorflow:global_step/sec: 56.1533 INFO:tensorflow:loss = 0.42665356, step = 3685 (2.521 sec) INFO:tensorflow:loss = 0.42665356, step = 3685 (2.521 sec) INFO:tensorflow:loss = 0.48706517, step = 3724 (5.823 sec) INFO:tensorflow:loss = 0.48706517, step = 3724 (5.823 sec) INFO:tensorflow:global_step/sec: 57.3555 INFO:tensorflow:global_step/sec: 57.3555 INFO:tensorflow:global_step/sec: 57.7266 INFO:tensorflow:global_step/sec: 57.7266 INFO:tensorflow:loss = 0.41680586, step = 3828 (2.481 sec) INFO:tensorflow:loss = 0.41680586, step = 3828 (2.481 sec) INFO:tensorflow:global_step/sec: 56.5655 INFO:tensorflow:global_step/sec: 56.5655 INFO:tensorflow:loss = 0.300087, step = 3970 (2.511 sec) INFO:tensorflow:loss = 0.300087, step = 3970 (2.511 sec) INFO:tensorflow:global_step/sec: 57.5497 INFO:tensorflow:global_step/sec: 57.5497 INFO:tensorflow:loss = 0.45476463, step = 4057 (5.813 sec) INFO:tensorflow:loss = 0.45476463, step = 4057 (5.813 sec) INFO:tensorflow:loss = 0.4062317, step = 4113 (2.478 sec) INFO:tensorflow:loss = 0.4062317, step = 4113 (2.478 sec) INFO:tensorflow:global_step/sec: 57.2274 INFO:tensorflow:global_step/sec: 57.2274 INFO:tensorflow:global_step/sec: 56.3875 INFO:tensorflow:global_step/sec: 56.3875 INFO:tensorflow:loss = 0.5309701, step = 4257 (2.550 sec) INFO:tensorflow:loss = 0.5309701, step = 4257 (2.550 sec) INFO:tensorflow:global_step/sec: 56.8925 INFO:tensorflow:global_step/sec: 56.8925 INFO:tensorflow:loss = 0.21458116, step = 4389 (5.821 sec) INFO:tensorflow:loss = 0.21458116, step = 4389 (5.821 sec) INFO:tensorflow:loss = 0.36624157, step = 4400 (2.500 sec) INFO:tensorflow:loss = 0.36624157, step = 4400 (2.500 sec) INFO:tensorflow:global_step/sec: 57.556 INFO:tensorflow:global_step/sec: 57.556 INFO:tensorflow:global_step/sec: 57.2521 INFO:tensorflow:global_step/sec: 57.2521 INFO:tensorflow:loss = 0.49583623, step = 4543 (2.499 sec) INFO:tensorflow:loss = 0.49583623, step = 4543 (2.499 sec) INFO:tensorflow:global_step/sec: 56.8395 INFO:tensorflow:global_step/sec: 56.8395 INFO:tensorflow:loss = 0.46379796, step = 4687 (2.528 sec) INFO:tensorflow:loss = 0.46379796, step = 4687 (2.528 sec) INFO:tensorflow:loss = 0.44374493, step = 4720 (5.801 sec) INFO:tensorflow:loss = 0.44374493, step = 4720 (5.801 sec) INFO:tensorflow:global_step/sec: 56.949 INFO:tensorflow:global_step/sec: 56.949 INFO:tensorflow:loss = 0.30171025, step = 4830 (2.540 sec) INFO:tensorflow:loss = 0.30171025, step = 4830 (2.540 sec) INFO:tensorflow:global_step/sec: 55.9343 INFO:tensorflow:global_step/sec: 55.9343 INFO:tensorflow:global_step/sec: 41.3833 INFO:tensorflow:global_step/sec: 41.3833 INFO:tensorflow:loss = 0.28367224, step = 4981 (3.728 sec) INFO:tensorflow:loss = 0.28367224, step = 4981 (3.728 sec) INFO:tensorflow:loss = 0.27646813, step = 5033 (6.606 sec) INFO:tensorflow:loss = 0.27646813, step = 5033 (6.606 sec) INFO:tensorflow:global_step/sec: 46.4105 INFO:tensorflow:global_step/sec: 46.4105 INFO:tensorflow:loss = 0.29159746, step = 5124 (2.510 sec) INFO:tensorflow:loss = 0.29159746, step = 5124 (2.510 sec) INFO:tensorflow:global_step/sec: 57.0166 INFO:tensorflow:global_step/sec: 57.0166 INFO:tensorflow:global_step/sec: 56.9185 INFO:tensorflow:global_step/sec: 56.9185 INFO:tensorflow:loss = 0.18128662, step = 5269 (2.674 sec) INFO:tensorflow:loss = 0.18128662, step = 5269 (2.674 sec) INFO:tensorflow:global_step/sec: 49.8195 INFO:tensorflow:global_step/sec: 49.8195 INFO:tensorflow:loss = 0.35507596, step = 5416 (2.708 sec) INFO:tensorflow:loss = 0.35507596, step = 5416 (2.708 sec) INFO:tensorflow:global_step/sec: 56.6874 INFO:tensorflow:global_step/sec: 56.6874 INFO:tensorflow:loss = 0.37173232, step = 5353 (5.871 sec) INFO:tensorflow:loss = 0.37173232, step = 5353 (5.871 sec) INFO:tensorflow:global_step/sec: 56.3806 INFO:tensorflow:global_step/sec: 56.3806 INFO:tensorflow:loss = 0.34065664, step = 5559 (2.536 sec) INFO:tensorflow:loss = 0.34065664, step = 5559 (2.536 sec) INFO:tensorflow:global_step/sec: 57.5542 INFO:tensorflow:global_step/sec: 57.5542 INFO:tensorflow:loss = 0.3344571, step = 5684 (5.798 sec) INFO:tensorflow:loss = 0.3344571, step = 5684 (5.798 sec) INFO:tensorflow:loss = 0.30168325, step = 5702 (2.481 sec) INFO:tensorflow:loss = 0.30168325, step = 5702 (2.481 sec) INFO:tensorflow:global_step/sec: 58.4561 INFO:tensorflow:global_step/sec: 58.4561 INFO:tensorflow:global_step/sec: 57.7019 INFO:tensorflow:global_step/sec: 57.7019 INFO:tensorflow:loss = 0.2911222, step = 5845 (2.455 sec) INFO:tensorflow:loss = 0.2911222, step = 5845 (2.455 sec) INFO:tensorflow:global_step/sec: 57.0253 INFO:tensorflow:global_step/sec: 57.0253 INFO:tensorflow:loss = 0.21680266, step = 5988 (2.508 sec) INFO:tensorflow:loss = 0.21680266, step = 5988 (2.508 sec) INFO:tensorflow:global_step/sec: 56.6847 INFO:tensorflow:global_step/sec: 56.6847 INFO:tensorflow:loss = 0.35249835, step = 6018 (5.818 sec) INFO:tensorflow:loss = 0.35249835, step = 6018 (5.818 sec) INFO:tensorflow:loss = 0.3836916, step = 6131 (2.571 sec) INFO:tensorflow:loss = 0.3836916, step = 6131 (2.571 sec) INFO:tensorflow:global_step/sec: 55.4508 INFO:tensorflow:global_step/sec: 55.4508 INFO:tensorflow:global_step/sec: 56.7366 INFO:tensorflow:global_step/sec: 56.7366 INFO:tensorflow:loss = 0.24565752, step = 6275 (2.540 sec) INFO:tensorflow:loss = 0.24565752, step = 6275 (2.540 sec) INFO:tensorflow:loss = 0.29038733, step = 6346 (5.899 sec) INFO:tensorflow:loss = 0.29038733, step = 6346 (5.899 sec) INFO:tensorflow:global_step/sec: 54.7091 INFO:tensorflow:global_step/sec: 54.7091 INFO:tensorflow:loss = 0.30838695, step = 6418 (2.604 sec) INFO:tensorflow:loss = 0.30838695, step = 6418 (2.604 sec) INFO:tensorflow:global_step/sec: 55.9708 INFO:tensorflow:global_step/sec: 55.9708 INFO:tensorflow:global_step/sec: 57.3198 INFO:tensorflow:global_step/sec: 57.3198 INFO:tensorflow:loss = 0.4008826, step = 6566 (2.746 sec) INFO:tensorflow:loss = 0.4008826, step = 6566 (2.746 sec) INFO:tensorflow:global_step/sec: 52.0119 INFO:tensorflow:global_step/sec: 52.0119 INFO:tensorflow:loss = 0.23975208, step = 6709 (2.513 sec) INFO:tensorflow:loss = 0.23975208, step = 6709 (2.513 sec) INFO:tensorflow:global_step/sec: 56.5885 INFO:tensorflow:global_step/sec: 56.5885 INFO:tensorflow:global_step/sec: 57.5071 INFO:tensorflow:global_step/sec: 57.5071 INFO:tensorflow:loss = 0.30594742, step = 6853 (2.526 sec) INFO:tensorflow:loss = 0.30594742, step = 6853 (2.526 sec) INFO:tensorflow:loss = 0.19532168, step = 6669 (5.840 sec) INFO:tensorflow:loss = 0.19532168, step = 6669 (5.840 sec) INFO:tensorflow:global_step/sec: 58.2491 INFO:tensorflow:global_step/sec: 58.2491 INFO:tensorflow:loss = 0.2506567, step = 6995 (2.478 sec) INFO:tensorflow:loss = 0.2506567, step = 6995 (2.478 sec) INFO:tensorflow:loss = 0.14033364, step = 7000 (5.797 sec) INFO:tensorflow:loss = 0.14033364, step = 7000 (5.797 sec) INFO:tensorflow:global_step/sec: 56.6462 INFO:tensorflow:global_step/sec: 56.6462 INFO:tensorflow:loss = 0.2734958, step = 7138 (2.478 sec) INFO:tensorflow:loss = 0.2734958, step = 7138 (2.478 sec) INFO:tensorflow:global_step/sec: 57.3654 INFO:tensorflow:global_step/sec: 57.3654 INFO:tensorflow:global_step/sec: 57.9321 INFO:tensorflow:global_step/sec: 57.9321 INFO:tensorflow:loss = 0.1888851, step = 7281 (2.487 sec) INFO:tensorflow:loss = 0.1888851, step = 7281 (2.487 sec) INFO:tensorflow:global_step/sec: 57.7036 INFO:tensorflow:global_step/sec: 57.7036 INFO:tensorflow:loss = 0.26898587, step = 7423 (2.467 sec) INFO:tensorflow:loss = 0.26898587, step = 7423 (2.467 sec) INFO:tensorflow:global_step/sec: 57.4708 INFO:tensorflow:global_step/sec: 57.4708 INFO:tensorflow:loss = 0.22412702, step = 7334 (5.788 sec) INFO:tensorflow:loss = 0.22412702, step = 7334 (5.788 sec) INFO:tensorflow:global_step/sec: 57.0941 INFO:tensorflow:global_step/sec: 57.0941 INFO:tensorflow:loss = 0.34000534, step = 7567 (2.510 sec) INFO:tensorflow:loss = 0.34000534, step = 7567 (2.510 sec) INFO:tensorflow:loss = 0.22982903, step = 7667 (5.805 sec) INFO:tensorflow:loss = 0.22982903, step = 7667 (5.805 sec) INFO:tensorflow:global_step/sec: 57.2274 INFO:tensorflow:global_step/sec: 57.2274 INFO:tensorflow:loss = 0.30206588, step = 7709 (2.488 sec) INFO:tensorflow:loss = 0.30206588, step = 7709 (2.488 sec) INFO:tensorflow:global_step/sec: 56.8791 INFO:tensorflow:global_step/sec: 56.8791 INFO:tensorflow:global_step/sec: 58.4431 INFO:tensorflow:global_step/sec: 58.4431 INFO:tensorflow:loss = 0.26828128, step = 7852 (2.489 sec) INFO:tensorflow:loss = 0.26828128, step = 7852 (2.489 sec) INFO:tensorflow:global_step/sec: 56.5834 INFO:tensorflow:global_step/sec: 56.5834 INFO:tensorflow:loss = 0.16675243, step = 7999 (5.808 sec) INFO:tensorflow:loss = 0.16675243, step = 7999 (5.808 sec) INFO:tensorflow:loss = 0.25512514, step = 7996 (2.520 sec) INFO:tensorflow:loss = 0.25512514, step = 7996 (2.520 sec) INFO:tensorflow:global_step/sec: 57.2225 INFO:tensorflow:global_step/sec: 57.2225 INFO:tensorflow:loss = 0.27602226, step = 8138 (2.473 sec) INFO:tensorflow:loss = 0.27602226, step = 8138 (2.473 sec) INFO:tensorflow:global_step/sec: 57.372 INFO:tensorflow:global_step/sec: 57.372 INFO:tensorflow:global_step/sec: 58.2008 INFO:tensorflow:global_step/sec: 58.2008 INFO:tensorflow:loss = 0.11981669, step = 8281 (2.460 sec) INFO:tensorflow:loss = 0.11981669, step = 8281 (2.460 sec) INFO:tensorflow:global_step/sec: 58.009 INFO:tensorflow:global_step/sec: 58.009 INFO:tensorflow:loss = 0.17542213, step = 8335 (5.803 sec) INFO:tensorflow:loss = 0.17542213, step = 8335 (5.803 sec) INFO:tensorflow:loss = 0.19444342, step = 8422 (2.430 sec) INFO:tensorflow:loss = 0.19444342, step = 8422 (2.430 sec) INFO:tensorflow:global_step/sec: 57.6761 INFO:tensorflow:global_step/sec: 57.6761 INFO:tensorflow:global_step/sec: 57.7402 INFO:tensorflow:global_step/sec: 57.7402 INFO:tensorflow:loss = 0.27100074, step = 8565 (2.489 sec) INFO:tensorflow:loss = 0.27100074, step = 8565 (2.489 sec) INFO:tensorflow:global_step/sec: 57.0671 INFO:tensorflow:global_step/sec: 57.0671 INFO:tensorflow:loss = 0.16941744, step = 8669 (5.829 sec) INFO:tensorflow:loss = 0.16941744, step = 8669 (5.829 sec) INFO:tensorflow:loss = 0.19395807, step = 8708 (2.495 sec) INFO:tensorflow:loss = 0.19395807, step = 8708 (2.495 sec) INFO:tensorflow:global_step/sec: 57.4812 INFO:tensorflow:global_step/sec: 57.4812 INFO:tensorflow:loss = 0.20495605, step = 8850 (2.477 sec) INFO:tensorflow:loss = 0.20495605, step = 8850 (2.477 sec) INFO:tensorflow:global_step/sec: 57.4315 INFO:tensorflow:global_step/sec: 57.4315 INFO:tensorflow:global_step/sec: 57.7804 INFO:tensorflow:global_step/sec: 57.7804 INFO:tensorflow:loss = 0.2844035, step = 8993 (2.486 sec) INFO:tensorflow:loss = 0.2844035, step = 8993 (2.486 sec) INFO:tensorflow:loss = 0.22306198, step = 9005 (5.843 sec) INFO:tensorflow:loss = 0.22306198, step = 9005 (5.843 sec) INFO:tensorflow:global_step/sec: 56.7109 INFO:tensorflow:global_step/sec: 56.7109 INFO:tensorflow:loss = 0.2006827, step = 9137 (2.535 sec) INFO:tensorflow:loss = 0.2006827, step = 9137 (2.535 sec) INFO:tensorflow:global_step/sec: 56.6586 INFO:tensorflow:global_step/sec: 56.6586 INFO:tensorflow:global_step/sec: 57.6252 INFO:tensorflow:global_step/sec: 57.6252 INFO:tensorflow:loss = 0.2524469, step = 9280 (2.505 sec) INFO:tensorflow:loss = 0.2524469, step = 9280 (2.505 sec) INFO:tensorflow:loss = 0.17755957, step = 9334 (5.787 sec) INFO:tensorflow:loss = 0.17755957, step = 9334 (5.787 sec) INFO:tensorflow:global_step/sec: 55.9586 INFO:tensorflow:global_step/sec: 55.9586 INFO:tensorflow:loss = 0.10439791, step = 9424 (2.562 sec) INFO:tensorflow:loss = 0.10439791, step = 9424 (2.562 sec) INFO:tensorflow:global_step/sec: 56.3665 INFO:tensorflow:global_step/sec: 56.3665 INFO:tensorflow:global_step/sec: 56.3458 INFO:tensorflow:global_step/sec: 56.3458 INFO:tensorflow:loss = 0.23072785, step = 9568 (2.558 sec) INFO:tensorflow:loss = 0.23072785, step = 9568 (2.558 sec) INFO:tensorflow:global_step/sec: 56.7732 INFO:tensorflow:global_step/sec: 56.7732 INFO:tensorflow:loss = 0.34461078, step = 9710 (2.523 sec) INFO:tensorflow:loss = 0.34461078, step = 9710 (2.523 sec) INFO:tensorflow:global_step/sec: 54.9482 INFO:tensorflow:global_step/sec: 54.9482 INFO:tensorflow:loss = 0.3046969, step = 9665 (5.876 sec) INFO:tensorflow:loss = 0.3046969, step = 9665 (5.876 sec) INFO:tensorflow:loss = 0.22720785, step = 9855 (2.662 sec) INFO:tensorflow:loss = 0.22720785, step = 9855 (2.662 sec) INFO:tensorflow:global_step/sec: 54.8926 INFO:tensorflow:global_step/sec: 54.8926 INFO:tensorflow:global_step/sec: 57.0332 INFO:tensorflow:global_step/sec: 57.0332 INFO:tensorflow:loss = 0.32701835, step = 9994 (5.881 sec) INFO:tensorflow:loss = 0.32701835, step = 9994 (5.881 sec) INFO:tensorflow:loss = 0.24437013, step = 9998 (2.481 sec) INFO:tensorflow:loss = 0.24437013, step = 9998 (2.481 sec) INFO:tensorflow:global_step/sec: 56.9883 INFO:tensorflow:global_step/sec: 56.9883 INFO:tensorflow:loss = 0.20211881, step = 10141 (2.492 sec) INFO:tensorflow:loss = 0.20211881, step = 10141 (2.492 sec) INFO:tensorflow:global_step/sec: 58.1278 INFO:tensorflow:global_step/sec: 58.1278 INFO:tensorflow:global_step/sec: 57.5975 INFO:tensorflow:global_step/sec: 57.5975 INFO:tensorflow:loss = 0.14256616, step = 10283 (2.473 sec) INFO:tensorflow:loss = 0.14256616, step = 10283 (2.473 sec) INFO:tensorflow:global_step/sec: 57.4659 INFO:tensorflow:global_step/sec: 57.4659 INFO:tensorflow:loss = 0.15586074, step = 10426 (2.511 sec) INFO:tensorflow:loss = 0.15586074, step = 10426 (2.511 sec) INFO:tensorflow:loss = 0.21184765, step = 10328 (5.803 sec) INFO:tensorflow:loss = 0.21184765, step = 10328 (5.803 sec) INFO:tensorflow:global_step/sec: 57.3838 INFO:tensorflow:global_step/sec: 57.3838 INFO:tensorflow:global_step/sec: 57.8238 INFO:tensorflow:global_step/sec: 57.8238 INFO:tensorflow:loss = 0.24844013, step = 10569 (2.476 sec) INFO:tensorflow:loss = 0.24844013, step = 10569 (2.476 sec) INFO:tensorflow:loss = 0.17391844, step = 10661 (5.805 sec) INFO:tensorflow:loss = 0.17391844, step = 10661 (5.805 sec) INFO:tensorflow:global_step/sec: 56.9204 INFO:tensorflow:global_step/sec: 56.9204 INFO:tensorflow:loss = 0.2034304, step = 10712 (2.489 sec) INFO:tensorflow:loss = 0.2034304, step = 10712 (2.489 sec) INFO:tensorflow:global_step/sec: 57.0607 INFO:tensorflow:global_step/sec: 57.0607 INFO:tensorflow:loss = 0.27913177, step = 10855 (2.465 sec) INFO:tensorflow:loss = 0.27913177, step = 10855 (2.465 sec) INFO:tensorflow:global_step/sec: 58.3037 INFO:tensorflow:global_step/sec: 58.3037 INFO:tensorflow:global_step/sec: 57.0916 INFO:tensorflow:global_step/sec: 57.0916 INFO:tensorflow:loss = 0.12128683, step = 10997 (2.499 sec) INFO:tensorflow:loss = 0.12128683, step = 10997 (2.499 sec) INFO:tensorflow:loss = 0.16105618, step = 10994 (5.816 sec) INFO:tensorflow:loss = 0.16105618, step = 10994 (5.816 sec) INFO:tensorflow:global_step/sec: 57.1513 INFO:tensorflow:global_step/sec: 57.1513 INFO:tensorflow:loss = 0.1999646, step = 11140 (2.456 sec) INFO:tensorflow:loss = 0.1999646, step = 11140 (2.456 sec) INFO:tensorflow:global_step/sec: 57.7283 INFO:tensorflow:global_step/sec: 57.7283 INFO:tensorflow:global_step/sec: 57.6759 INFO:tensorflow:global_step/sec: 57.6759 INFO:tensorflow:loss = 0.18620001, step = 11283 (2.496 sec) INFO:tensorflow:loss = 0.18620001, step = 11283 (2.496 sec) INFO:tensorflow:loss = 0.20600975, step = 11329 (5.798 sec) INFO:tensorflow:loss = 0.20600975, step = 11329 (5.798 sec) INFO:tensorflow:global_step/sec: 57.7883 INFO:tensorflow:global_step/sec: 57.7883 INFO:tensorflow:loss = 0.18061455, step = 11426 (2.491 sec) INFO:tensorflow:loss = 0.18061455, step = 11426 (2.491 sec) INFO:tensorflow:global_step/sec: 56.849 INFO:tensorflow:global_step/sec: 56.849 INFO:tensorflow:global_step/sec: 57.9571 INFO:tensorflow:global_step/sec: 57.9571 INFO:tensorflow:loss = 0.2227596, step = 11568 (2.479 sec) INFO:tensorflow:loss = 0.2227596, step = 11568 (2.479 sec) INFO:tensorflow:loss = 0.14307758, step = 11663 (5.827 sec) INFO:tensorflow:loss = 0.14307758, step = 11663 (5.827 sec) INFO:tensorflow:global_step/sec: 57.6302 INFO:tensorflow:global_step/sec: 57.6302 INFO:tensorflow:loss = 0.25797403, step = 11711 (2.473 sec) INFO:tensorflow:loss = 0.25797403, step = 11711 (2.473 sec) INFO:tensorflow:global_step/sec: 56.6268 INFO:tensorflow:global_step/sec: 56.6268 INFO:tensorflow:loss = 0.17914896, step = 11853 (2.494 sec) INFO:tensorflow:loss = 0.17914896, step = 11853 (2.494 sec) INFO:tensorflow:global_step/sec: 57.1401 INFO:tensorflow:global_step/sec: 57.1401 INFO:tensorflow:global_step/sec: 57.7868 INFO:tensorflow:global_step/sec: 57.7868 INFO:tensorflow:loss = 0.160532, step = 11997 (5.842 sec) INFO:tensorflow:loss = 0.160532, step = 11997 (5.842 sec) INFO:tensorflow:loss = 0.12292495, step = 11996 (2.510 sec) INFO:tensorflow:loss = 0.12292495, step = 11996 (2.510 sec) INFO:tensorflow:global_step/sec: 57.4663 INFO:tensorflow:global_step/sec: 57.4663 INFO:tensorflow:loss = 0.20030466, step = 12139 (2.475 sec) INFO:tensorflow:loss = 0.20030466, step = 12139 (2.475 sec) INFO:tensorflow:global_step/sec: 57.8347 INFO:tensorflow:global_step/sec: 57.8347 INFO:tensorflow:global_step/sec: 56.612 INFO:tensorflow:global_step/sec: 56.612 INFO:tensorflow:loss = 0.10235819, step = 12282 (2.503 sec) INFO:tensorflow:loss = 0.10235819, step = 12282 (2.503 sec) INFO:tensorflow:global_step/sec: 57.2927 INFO:tensorflow:global_step/sec: 57.2927 INFO:tensorflow:loss = 0.21848847, step = 12424 (2.487 sec) INFO:tensorflow:loss = 0.21848847, step = 12424 (2.487 sec) INFO:tensorflow:global_step/sec: 57.5386 INFO:tensorflow:global_step/sec: 57.5386 INFO:tensorflow:loss = 0.15582989, step = 12332 (5.832 sec) INFO:tensorflow:loss = 0.15582989, step = 12332 (5.832 sec) INFO:tensorflow:loss = 0.10917436, step = 12567 (2.473 sec) INFO:tensorflow:loss = 0.10917436, step = 12567 (2.473 sec) INFO:tensorflow:global_step/sec: 57.3351 INFO:tensorflow:global_step/sec: 57.3351 INFO:tensorflow:loss = 0.23116527, step = 12666 (5.817 sec) INFO:tensorflow:loss = 0.23116527, step = 12666 (5.817 sec) INFO:tensorflow:global_step/sec: 57.6542 INFO:tensorflow:global_step/sec: 57.6542 INFO:tensorflow:loss = 0.16368721, step = 12710 (2.491 sec) INFO:tensorflow:loss = 0.16368721, step = 12710 (2.491 sec) INFO:tensorflow:global_step/sec: 56.7453 INFO:tensorflow:global_step/sec: 56.7453 INFO:tensorflow:loss = 0.18820876, step = 12853 (2.522 sec) INFO:tensorflow:loss = 0.18820876, step = 12853 (2.522 sec) INFO:tensorflow:global_step/sec: 57.0306 INFO:tensorflow:global_step/sec: 57.0306 INFO:tensorflow:global_step/sec: 55.7452 INFO:tensorflow:global_step/sec: 55.7452 INFO:tensorflow:loss = 0.24909233, step = 12996 (2.544 sec) INFO:tensorflow:loss = 0.24909233, step = 12996 (2.544 sec) INFO:tensorflow:global_step/sec: 56.6961 INFO:tensorflow:global_step/sec: 56.6961 INFO:tensorflow:loss = 0.18483959, step = 12998 (5.871 sec) INFO:tensorflow:loss = 0.18483959, step = 12998 (5.871 sec) INFO:tensorflow:loss = 0.08217529, step = 13138 (2.500 sec) INFO:tensorflow:loss = 0.08217529, step = 13138 (2.500 sec) INFO:tensorflow:global_step/sec: 56.4307 INFO:tensorflow:global_step/sec: 56.4307 INFO:tensorflow:global_step/sec: 55.9983 INFO:tensorflow:global_step/sec: 55.9983 INFO:tensorflow:loss = 0.11268627, step = 13281 (2.573 sec) INFO:tensorflow:loss = 0.11268627, step = 13281 (2.573 sec) INFO:tensorflow:loss = 0.31167662, step = 13332 (5.908 sec) INFO:tensorflow:loss = 0.31167662, step = 13332 (5.908 sec) INFO:tensorflow:global_step/sec: 56.3075 INFO:tensorflow:global_step/sec: 56.3075 INFO:tensorflow:loss = 0.17678915, step = 13425 (2.515 sec) INFO:tensorflow:loss = 0.17678915, step = 13425 (2.515 sec) INFO:tensorflow:global_step/sec: 52.1279 INFO:tensorflow:global_step/sec: 52.1279 INFO:tensorflow:loss = 0.14223203, step = 13572 (2.762 sec) INFO:tensorflow:loss = 0.14223203, step = 13572 (2.762 sec) INFO:tensorflow:global_step/sec: 56.8755 INFO:tensorflow:global_step/sec: 56.8755 INFO:tensorflow:loss = 0.20779502, step = 13655 (5.817 sec) INFO:tensorflow:loss = 0.20779502, step = 13655 (5.817 sec) INFO:tensorflow:global_step/sec: 59.3596 INFO:tensorflow:global_step/sec: 59.3596 INFO:tensorflow:loss = 0.19207956, step = 13713 (2.393 sec) INFO:tensorflow:loss = 0.19207956, step = 13713 (2.393 sec) INFO:tensorflow:global_step/sec: 58.4543 INFO:tensorflow:global_step/sec: 58.4543 INFO:tensorflow:loss = 0.19355455, step = 13856 (2.474 sec) INFO:tensorflow:loss = 0.19355455, step = 13856 (2.474 sec) INFO:tensorflow:global_step/sec: 57.0694 INFO:tensorflow:global_step/sec: 57.0694 INFO:tensorflow:loss = 0.14230403, step = 13993 (5.810 sec) INFO:tensorflow:loss = 0.14230403, step = 13993 (5.810 sec) INFO:tensorflow:global_step/sec: 58.2833 INFO:tensorflow:global_step/sec: 58.2833 INFO:tensorflow:loss = 0.24801956, step = 13998 (2.447 sec) INFO:tensorflow:loss = 0.24801956, step = 13998 (2.447 sec) INFO:tensorflow:global_step/sec: 58.3727 INFO:tensorflow:global_step/sec: 58.3727 INFO:tensorflow:loss = 0.055497225, step = 14140 (2.436 sec) INFO:tensorflow:loss = 0.055497225, step = 14140 (2.436 sec) INFO:tensorflow:global_step/sec: 58.4596 INFO:tensorflow:global_step/sec: 58.4596 INFO:tensorflow:global_step/sec: 58.5227 INFO:tensorflow:global_step/sec: 58.5227 INFO:tensorflow:loss = 0.24672821, step = 14282 (2.425 sec) INFO:tensorflow:loss = 0.24672821, step = 14282 (2.425 sec) INFO:tensorflow:loss = 0.16653611, step = 14331 (5.819 sec) INFO:tensorflow:loss = 0.16653611, step = 14331 (5.819 sec) INFO:tensorflow:global_step/sec: 57.1089 INFO:tensorflow:global_step/sec: 57.1089 INFO:tensorflow:loss = 0.15520479, step = 14425 (2.503 sec) INFO:tensorflow:loss = 0.15520479, step = 14425 (2.503 sec) INFO:tensorflow:global_step/sec: 57.8254 INFO:tensorflow:global_step/sec: 57.8254 INFO:tensorflow:loss = 0.09654978, step = 14567 (2.448 sec) INFO:tensorflow:loss = 0.09654978, step = 14567 (2.448 sec) INFO:tensorflow:global_step/sec: 57.4113 INFO:tensorflow:global_step/sec: 57.4113 INFO:tensorflow:loss = 0.23944193, step = 14665 (5.809 sec) INFO:tensorflow:loss = 0.23944193, step = 14665 (5.809 sec) INFO:tensorflow:global_step/sec: 57.0789 INFO:tensorflow:global_step/sec: 57.0789 INFO:tensorflow:loss = 0.1262199, step = 14710 (2.526 sec) INFO:tensorflow:loss = 0.1262199, step = 14710 (2.526 sec) INFO:tensorflow:global_step/sec: 56.7052 INFO:tensorflow:global_step/sec: 56.7052 INFO:tensorflow:loss = 0.08927595, step = 14853 (2.476 sec) INFO:tensorflow:loss = 0.08927595, step = 14853 (2.476 sec) INFO:tensorflow:global_step/sec: 57.9999 INFO:tensorflow:global_step/sec: 57.9999 INFO:tensorflow:global_step/sec: 57.6417 INFO:tensorflow:global_step/sec: 57.6417 INFO:tensorflow:loss = 0.16157451, step = 14995 (2.467 sec) INFO:tensorflow:loss = 0.16157451, step = 14995 (2.467 sec) INFO:tensorflow:loss = 0.10740583, step = 15000 (5.821 sec) INFO:tensorflow:loss = 0.10740583, step = 15000 (5.821 sec) INFO:tensorflow:global_step/sec: 56.8354 INFO:tensorflow:global_step/sec: 56.8354 INFO:tensorflow:loss = 0.1930085, step = 15139 (2.536 sec) INFO:tensorflow:loss = 0.1930085, step = 15139 (2.536 sec) INFO:tensorflow:global_step/sec: 57.3141 INFO:tensorflow:global_step/sec: 57.3141 INFO:tensorflow:loss = 0.15453514, step = 15281 (2.472 sec) INFO:tensorflow:loss = 0.15453514, step = 15281 (2.472 sec) INFO:tensorflow:global_step/sec: 57.6998 INFO:tensorflow:global_step/sec: 57.6998 INFO:tensorflow:global_step/sec: 56.9341 INFO:tensorflow:global_step/sec: 56.9341 INFO:tensorflow:loss = 0.10112428, step = 15331 (5.806 sec) INFO:tensorflow:loss = 0.10112428, step = 15331 (5.806 sec) INFO:tensorflow:loss = 0.09991829, step = 15424 (2.483 sec) INFO:tensorflow:loss = 0.09991829, step = 15424 (2.483 sec) INFO:tensorflow:global_step/sec: 57.7352 INFO:tensorflow:global_step/sec: 57.7352 INFO:tensorflow:loss = 0.16043451, step = 15566 (2.452 sec) INFO:tensorflow:loss = 0.16043451, step = 15566 (2.452 sec) INFO:tensorflow:global_step/sec: 58.5107 INFO:tensorflow:global_step/sec: 58.5107 INFO:tensorflow:loss = 0.1015558, step = 15668 (5.816 sec) INFO:tensorflow:loss = 0.1015558, step = 15668 (5.816 sec) INFO:tensorflow:global_step/sec: 57.6283 INFO:tensorflow:global_step/sec: 57.6283 INFO:tensorflow:loss = 0.12172205, step = 15709 (2.462 sec) INFO:tensorflow:loss = 0.12172205, step = 15709 (2.462 sec) INFO:tensorflow:global_step/sec: 57.042 INFO:tensorflow:global_step/sec: 57.042 INFO:tensorflow:loss = 0.15883157, step = 15852 (2.533 sec) INFO:tensorflow:loss = 0.15883157, step = 15852 (2.533 sec) INFO:tensorflow:global_step/sec: 57.1021 INFO:tensorflow:global_step/sec: 57.1021 INFO:tensorflow:loss = 0.17166412, step = 16000 (5.846 sec) INFO:tensorflow:loss = 0.17166412, step = 16000 (5.846 sec) INFO:tensorflow:global_step/sec: 55.8067 INFO:tensorflow:global_step/sec: 55.8067 INFO:tensorflow:loss = 0.15792176, step = 15995 (2.534 sec) INFO:tensorflow:loss = 0.15792176, step = 15995 (2.534 sec) INFO:tensorflow:global_step/sec: 58.0208 INFO:tensorflow:global_step/sec: 58.0208 INFO:tensorflow:loss = 0.20665689, step = 16137 (2.457 sec) INFO:tensorflow:loss = 0.20665689, step = 16137 (2.457 sec) INFO:tensorflow:global_step/sec: 57.6965 INFO:tensorflow:global_step/sec: 57.6965 INFO:tensorflow:loss = 0.2217081, step = 16280 (2.492 sec) INFO:tensorflow:loss = 0.2217081, step = 16280 (2.492 sec) INFO:tensorflow:global_step/sec: 56.7769 INFO:tensorflow:global_step/sec: 56.7769 INFO:tensorflow:loss = 0.20729604, step = 16335 (5.837 sec) INFO:tensorflow:loss = 0.20729604, step = 16335 (5.837 sec) INFO:tensorflow:global_step/sec: 55.1868 INFO:tensorflow:global_step/sec: 55.1868 INFO:tensorflow:loss = 0.17344408, step = 16424 (2.575 sec) INFO:tensorflow:loss = 0.17344408, step = 16424 (2.575 sec) INFO:tensorflow:global_step/sec: 57.897 INFO:tensorflow:global_step/sec: 57.897 INFO:tensorflow:loss = 0.1898638, step = 16566 (2.513 sec) INFO:tensorflow:loss = 0.1898638, step = 16566 (2.513 sec) INFO:tensorflow:global_step/sec: 55.5644 INFO:tensorflow:global_step/sec: 55.5644 INFO:tensorflow:global_step/sec: 55.0371 INFO:tensorflow:global_step/sec: 55.0371 INFO:tensorflow:loss = 0.18384063, step = 16710 (2.589 sec) INFO:tensorflow:loss = 0.18384063, step = 16710 (2.589 sec) INFO:tensorflow:global_step/sec: 58.2667 INFO:tensorflow:global_step/sec: 58.2667 INFO:tensorflow:loss = 0.17657202, step = 16665 (5.940 sec) INFO:tensorflow:loss = 0.17657202, step = 16665 (5.940 sec) INFO:tensorflow:loss = 0.21803997, step = 16852 (2.484 sec) INFO:tensorflow:loss = 0.21803997, step = 16852 (2.484 sec) INFO:tensorflow:global_step/sec: 56.8801 INFO:tensorflow:global_step/sec: 56.8801 INFO:tensorflow:loss = 0.21366791, step = 16996 (2.528 sec) INFO:tensorflow:loss = 0.21366791, step = 16996 (2.528 sec) INFO:tensorflow:global_step/sec: 55.9829 INFO:tensorflow:global_step/sec: 55.9829 INFO:tensorflow:loss = 0.15419021, step = 16999 (5.846 sec) INFO:tensorflow:loss = 0.15419021, step = 16999 (5.846 sec) INFO:tensorflow:global_step/sec: 56.0736 INFO:tensorflow:global_step/sec: 56.0736 INFO:tensorflow:loss = 0.2296798, step = 17139 (2.575 sec) INFO:tensorflow:loss = 0.2296798, step = 17139 (2.575 sec) INFO:tensorflow:global_step/sec: 56.1833 INFO:tensorflow:global_step/sec: 56.1833 INFO:tensorflow:loss = 0.08553794, step = 17282 (2.495 sec) INFO:tensorflow:loss = 0.08553794, step = 17282 (2.495 sec) INFO:tensorflow:loss = 0.15850148, step = 17327 (5.804 sec) INFO:tensorflow:loss = 0.15850148, step = 17327 (5.804 sec) INFO:tensorflow:global_step/sec: 57.0872 INFO:tensorflow:global_step/sec: 57.0872 INFO:tensorflow:global_step/sec: 57.5813 INFO:tensorflow:global_step/sec: 57.5813 INFO:tensorflow:loss = 0.11419461, step = 17425 (2.504 sec) INFO:tensorflow:loss = 0.11419461, step = 17425 (2.504 sec) INFO:tensorflow:global_step/sec: 57.1697 INFO:tensorflow:global_step/sec: 57.1697 INFO:tensorflow:loss = 0.08663907, step = 17568 (2.482 sec) INFO:tensorflow:loss = 0.08663907, step = 17568 (2.482 sec) INFO:tensorflow:global_step/sec: 57.6704 INFO:tensorflow:global_step/sec: 57.6704 INFO:tensorflow:loss = 0.13845807, step = 17660 (5.792 sec) INFO:tensorflow:loss = 0.13845807, step = 17660 (5.792 sec) INFO:tensorflow:global_step/sec: 57.9172 INFO:tensorflow:global_step/sec: 57.9172 INFO:tensorflow:loss = 0.15934029, step = 17710 (2.466 sec) INFO:tensorflow:loss = 0.15934029, step = 17710 (2.466 sec) INFO:tensorflow:global_step/sec: 57.1304 INFO:tensorflow:global_step/sec: 57.1304 INFO:tensorflow:loss = 0.22709247, step = 17853 (2.514 sec) INFO:tensorflow:loss = 0.22709247, step = 17853 (2.514 sec) INFO:tensorflow:global_step/sec: 56.8482 INFO:tensorflow:global_step/sec: 56.8482 INFO:tensorflow:loss = 0.13299839, step = 17992 (5.847 sec) INFO:tensorflow:loss = 0.13299839, step = 17992 (5.847 sec) INFO:tensorflow:loss = 0.21900745, step = 17997 (2.580 sec) INFO:tensorflow:loss = 0.21900745, step = 17997 (2.580 sec) INFO:tensorflow:global_step/sec: 55.2587 INFO:tensorflow:global_step/sec: 55.2587 INFO:tensorflow:global_step/sec: 54.9711 INFO:tensorflow:global_step/sec: 54.9711 INFO:tensorflow:loss = 0.082070276, step = 18142 (2.599 sec) INFO:tensorflow:loss = 0.082070276, step = 18142 (2.599 sec) INFO:tensorflow:global_step/sec: 56.9162 INFO:tensorflow:global_step/sec: 56.9162 INFO:tensorflow:loss = 0.083548754, step = 18286 (2.576 sec) INFO:tensorflow:loss = 0.083548754, step = 18286 (2.576 sec) INFO:tensorflow:global_step/sec: 55.3074 INFO:tensorflow:global_step/sec: 55.3074 INFO:tensorflow:loss = 0.12091987, step = 18317 (5.896 sec) INFO:tensorflow:loss = 0.12091987, step = 18317 (5.896 sec) INFO:tensorflow:global_step/sec: 32.1533 INFO:tensorflow:global_step/sec: 32.1533 INFO:tensorflow:loss = 0.148964, step = 18437 (4.037 sec) INFO:tensorflow:loss = 0.148964, step = 18437 (4.037 sec) INFO:tensorflow:global_step/sec: 56.2621 INFO:tensorflow:global_step/sec: 56.2621 INFO:tensorflow:loss = 0.20415884, step = 18580 (2.539 sec) INFO:tensorflow:loss = 0.20415884, step = 18580 (2.539 sec) INFO:tensorflow:global_step/sec: 56.8285 INFO:tensorflow:global_step/sec: 56.8285 INFO:tensorflow:loss = 0.12795177, step = 18628 (6.793 sec) INFO:tensorflow:loss = 0.12795177, step = 18628 (6.793 sec) INFO:tensorflow:global_step/sec: 57.1354 INFO:tensorflow:global_step/sec: 57.1354 INFO:tensorflow:loss = 0.1973075, step = 18723 (2.491 sec) INFO:tensorflow:loss = 0.1973075, step = 18723 (2.491 sec) INFO:tensorflow:global_step/sec: 58.2353 INFO:tensorflow:global_step/sec: 58.2353 INFO:tensorflow:loss = 0.14648238, step = 18866 (2.467 sec) INFO:tensorflow:loss = 0.14648238, step = 18866 (2.467 sec) INFO:tensorflow:global_step/sec: 57.3719 INFO:tensorflow:global_step/sec: 57.3719 INFO:tensorflow:global_step/sec: 57.754 INFO:tensorflow:global_step/sec: 57.754 INFO:tensorflow:loss = 0.093736105, step = 19008 (2.471 sec) INFO:tensorflow:loss = 0.093736105, step = 19008 (2.471 sec) INFO:tensorflow:loss = 0.20427212, step = 18962 (5.810 sec) INFO:tensorflow:loss = 0.20427212, step = 18962 (5.810 sec) INFO:tensorflow:global_step/sec: 57.4019 INFO:tensorflow:global_step/sec: 57.4019 INFO:tensorflow:loss = 0.1464021, step = 19150 (2.458 sec) INFO:tensorflow:loss = 0.1464021, step = 19150 (2.458 sec) INFO:tensorflow:global_step/sec: 58.2388 INFO:tensorflow:global_step/sec: 58.2388 INFO:tensorflow:loss = 0.13492624, step = 19301 (5.864 sec) INFO:tensorflow:loss = 0.13492624, step = 19301 (5.864 sec) INFO:tensorflow:loss = 0.24031706, step = 19292 (2.453 sec) INFO:tensorflow:loss = 0.24031706, step = 19292 (2.453 sec) INFO:tensorflow:global_step/sec: 57.6565 INFO:tensorflow:global_step/sec: 57.6565 INFO:tensorflow:global_step/sec: 56.3794 INFO:tensorflow:global_step/sec: 56.3794 INFO:tensorflow:loss = 0.22467005, step = 19435 (2.517 sec) INFO:tensorflow:loss = 0.22467005, step = 19435 (2.517 sec) INFO:tensorflow:global_step/sec: 57.4037 INFO:tensorflow:global_step/sec: 57.4037 INFO:tensorflow:loss = 0.15721545, step = 19578 (2.496 sec) INFO:tensorflow:loss = 0.15721545, step = 19578 (2.496 sec) INFO:tensorflow:global_step/sec: 57.331 INFO:tensorflow:global_step/sec: 57.331 INFO:tensorflow:loss = 0.07191126, step = 19634 (5.850 sec) INFO:tensorflow:loss = 0.07191126, step = 19634 (5.850 sec) INFO:tensorflow:global_step/sec: 55.2166 INFO:tensorflow:global_step/sec: 55.2166 INFO:tensorflow:loss = 0.114803344, step = 19721 (2.560 sec) INFO:tensorflow:loss = 0.114803344, step = 19721 (2.560 sec) INFO:tensorflow:global_step/sec: 57.1237 INFO:tensorflow:global_step/sec: 57.1237 INFO:tensorflow:loss = 0.118882746, step = 19865 (2.590 sec) INFO:tensorflow:loss = 0.118882746, step = 19865 (2.590 sec) INFO:tensorflow:global_step/sec: 54.1728 INFO:tensorflow:global_step/sec: 54.1728 INFO:tensorflow:loss = 0.12659298, step = 19961 (5.925 sec) INFO:tensorflow:loss = 0.12659298, step = 19961 (5.925 sec) INFO:tensorflow:Saving checkpoints for 20002 into s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt. INFO:tensorflow:Saving checkpoints for 20002 into s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt. INFO:tensorflow:Loss for final step: 0.10822134. INFO:tensorflow:Loss for final step: 0.10822134. 2021-09-16 20:17:08,900 sagemaker_tensorflow_container.training INFO master algo-1 is still up, waiting for it to exit INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From mnist.py:115: The name tf.metrics.accuracy is deprecated. Please use tf.compat.v1.metrics.accuracy instead.  WARNING:tensorflow:From mnist.py:115: The name tf.metrics.accuracy is deprecated. Please use tf.compat.v1.metrics.accuracy instead.  INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2021-09-16T20:17:09Z INFO:tensorflow:Starting evaluation at 2021-09-16T20:17:09Z INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt-20002 INFO:tensorflow:Restoring parameters from s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt-20002 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [10/100] INFO:tensorflow:Evaluation [10/100] INFO:tensorflow:Evaluation [20/100] INFO:tensorflow:Evaluation [20/100] INFO:tensorflow:Evaluation [30/100] INFO:tensorflow:Evaluation [30/100] INFO:tensorflow:Evaluation [40/100] INFO:tensorflow:Evaluation [40/100] INFO:tensorflow:Evaluation [50/100] INFO:tensorflow:Evaluation [50/100] INFO:tensorflow:Evaluation [60/100] INFO:tensorflow:Evaluation [60/100] INFO:tensorflow:Evaluation [70/100] INFO:tensorflow:Evaluation [70/100] INFO:tensorflow:Finished evaluation at 2021-09-16-20:17:10 INFO:tensorflow:Finished evaluation at 2021-09-16-20:17:10 INFO:tensorflow:Saving dict for global step 20002: accuracy = 0.9696, global_step = 20002, loss = 0.1032469 INFO:tensorflow:Saving dict for global step 20002: accuracy = 0.9696, global_step = 20002, loss = 0.1032469 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20002: s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt-20002 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20002: s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt-20002 INFO:tensorflow:Loss for final step: 0.07562591. INFO:tensorflow:Loss for final step: 0.07562591. WARNING:tensorflow:From mnist.py:184: Estimator.export_savedmodel (from tensorflow_estimator.python.estimator.estimator) is deprecated and will be removed in a future version. Instructions for updating: This function has been renamed, use `export_saved_model` instead. WARNING:tensorflow:From mnist.py:184: Estimator.export_savedmodel (from tensorflow_estimator.python.estimator.estimator) is deprecated and will be removed in a future version. Instructions for updating: This function has been renamed, use `export_saved_model` instead. WARNING:tensorflow:From mnist.py:145: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.  WARNING:tensorflow:From mnist.py:145: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.  INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default'] INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default'] INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Restoring parameters from s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt-20002 INFO:tensorflow:Restoring parameters from s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-06-47-336/model/model.ckpt-20002 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. INFO:tensorflow:SavedModel written to: /opt/ml/model/temp-1631823432/saved_model.pb INFO:tensorflow:SavedModel written to: /opt/ml/model/temp-1631823432/saved_model.pb 2021-09-16 20:17:13,584 sagemaker-containers INFO Reporting training SUCCESS 2021-09-16 20:19:29 Uploading - Uploading generated training model2021-09-16 20:19:28,641 sagemaker_tensorflow_container.training INFO master algo-1 is down, stopping parameter server 2021-09-16 20:19:28,642 sagemaker_tensorflow_container.training WARNING No model artifact is saved under path /opt/ml/model. Your training job will not save any model files to S3. For details of how to construct your training script see: https://sagemaker.readthedocs.io/en/stable/using_tf.html#adapting-your-local-tensorflow-script 2021-09-16 20:19:28,642 sagemaker-containers INFO Reporting training SUCCESS 2021-09-16 20:19:42 Completed - Training job completed ProfilerReport-1631822807: IssuesFound Training seconds: 1118 Billable seconds: 1118 ###Markdown Calling fit to train a model with TensorFlow 2.1 script. ###Code # cell 07 mnist_estimator2.fit(training_data_uri) ###Output 2021-09-16 20:20:22 Starting - Starting the training job... 2021-09-16 20:20:46 Starting - Launching requested ML instancesProfilerReport-1631823622: InProgress ......... 2021-09-16 20:22:06 Starting - Preparing the instances for training......... 2021-09-16 20:23:49 Downloading - Downloading input data 2021-09-16 20:23:49 Training - Downloading the training image........2021-09-16 20:25:05,511 sagemaker-containers INFO Imported framework sagemaker_tensorflow_container.training 2021-09-16 20:25:05,862 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers 2021-09-16 20:25:05,863 sagemaker_tensorflow_container.training INFO Launching parameter server process 2021-09-16 20:25:05,863 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers 2021-09-16 20:25:06,767 sagemaker_tensorflow_container.training INFO Launching worker process 2021-09-16 20:25:07,227 sagemaker-containers INFO Invoking user script  Training Env:  { "additional_framework_parameters": { "sagemaker_parameter_server_enabled": true }, "channel_input_dirs": { "training": "/opt/ml/input/data/training" }, "current_host": "algo-1", "framework_module": "sagemaker_tensorflow_container.training:main", "hosts": [ "algo-1", "algo-2" ], "hyperparameters": { "model_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model" }, "input_config_dir": "/opt/ml/input/config", "input_data_config": { "training": { "TrainingInputMode": "File", "S3DistributionType": "FullyReplicated", "RecordWrapperType": "None" } }, "input_dir": "/opt/ml/input", "is_master": true, "job_name": "tensorflow-training-2021-09-16-20-20-22-213", "log_level": 20, "master_hostname": "algo-1", "model_dir": "/opt/ml/model", "module_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/source/sourcedir.tar.gz", "module_name": "mnist-2", "network_interface_name": "eth0", "num_cpus": 8, "num_gpus": 1, "output_data_dir": "/opt/ml/output/data", "output_dir": "/opt/ml/output", "output_intermediate_dir": "/opt/ml/output/intermediate", "resource_config": { "current_host": "algo-1", "hosts": [ "algo-1", "algo-2" ], "network_interface_name": "eth0" }, "user_entry_point": "mnist-2.py" }  Environment variables:  SM_HOSTS=["algo-1","algo-2"] SM_NETWORK_INTERFACE_NAME=eth0 SM_HPS={"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model"} SM_USER_ENTRY_POINT=mnist-2.py SM_FRAMEWORK_PARAMS={"sagemaker_parameter_server_enabled":true} SM_RESOURCE_CONFIG={"current_host":"algo-1","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"} SM_INPUT_DATA_CONFIG={"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}} SM_OUTPUT_DATA_DIR=/opt/ml/output/data SM_CHANNELS=["training"] SM_CURRENT_HOST=algo-1 SM_MODULE_NAME=mnist-2 SM_LOG_LEVEL=20 SM_FRAMEWORK_MODULE=sagemaker_tensorflow_container.training:main SM_INPUT_DIR=/opt/ml/input SM_INPUT_CONFIG_DIR=/opt/ml/input/config SM_OUTPUT_DIR=/opt/ml/output SM_NUM_CPUS=8 SM_NUM_GPUS=1 SM_MODEL_DIR=/opt/ml/model SM_MODULE_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/source/sourcedir.tar.gz SM_TRAINING_ENV={"additional_framework_parameters":{"sagemaker_parameter_server_enabled":true},"channel_input_dirs":{"training":"/opt/ml/input/data/training"},"current_host":"algo-1","framework_module":"sagemaker_tensorflow_container.training:main","hosts":["algo-1","algo-2"],"hyperparameters":{"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model"},"input_config_dir":"/opt/ml/input/config","input_data_config":{"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}},"input_dir":"/opt/ml/input","is_master":true,"job_name":"tensorflow-training-2021-09-16-20-20-22-213","log_level":20,"master_hostname":"algo-1","model_dir":"/opt/ml/model","module_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/source/sourcedir.tar.gz","module_name":"mnist-2","network_interface_name":"eth0","num_cpus":8,"num_gpus":1,"output_data_dir":"/opt/ml/output/data","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/output/intermediate","resource_config":{"current_host":"algo-1","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"},"user_entry_point":"mnist-2.py"} SM_USER_ARGS=["--model_dir","s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model"] SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate SM_CHANNEL_TRAINING=/opt/ml/input/data/training SM_HP_MODEL_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model TF_CONFIG={"cluster": {"master": ["algo-1:2222"], "ps": ["algo-1:2223", "algo-2:2223"], "worker": ["algo-2:2222"]}, "environment": "cloud", "task": {"index": 0, "type": "master"}} PYTHONPATH=/opt/ml/code:/usr/local/bin:/usr/lib/python36.zip:/usr/lib/python3.6:/usr/lib/python3.6/lib-dynload:/usr/local/lib/python3.6/dist-packages:/usr/lib/python3/dist-packages  Invoking script with the following command:  /usr/bin/python3 mnist-2.py --model_dir s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model  2021-09-16 20:25:04,650 sagemaker-containers INFO Imported framework sagemaker_tensorflow_container.training 2021-09-16 20:25:04,915 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers 2021-09-16 20:25:04,916 sagemaker_tensorflow_container.training INFO Launching parameter server process 2021-09-16 20:25:04,916 sagemaker_tensorflow_container.training INFO Running distributed training job with parameter servers 2021-09-16 20:25:05,821 sagemaker_tensorflow_container.training INFO Launching worker process 2021-09-16 20:25:06,084 sagemaker-containers INFO Invoking user script  Training Env:  { "additional_framework_parameters": { "sagemaker_parameter_server_enabled": true }, "channel_input_dirs": { "training": "/opt/ml/input/data/training" }, "current_host": "algo-2", "framework_module": "sagemaker_tensorflow_container.training:main", "hosts": [ "algo-1", "algo-2" ], "hyperparameters": { "model_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model" }, "input_config_dir": "/opt/ml/input/config", "input_data_config": { "training": { "TrainingInputMode": "File", "S3DistributionType": "FullyReplicated", "RecordWrapperType": "None" } }, "input_dir": "/opt/ml/input", "is_master": false, "job_name": "tensorflow-training-2021-09-16-20-20-22-213", "log_level": 20, "master_hostname": "algo-1", "model_dir": "/opt/ml/model", "module_dir": "s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/source/sourcedir.tar.gz", "module_name": "mnist-2", "network_interface_name": "eth0", "num_cpus": 8, "num_gpus": 1, "output_data_dir": "/opt/ml/output/data", "output_dir": "/opt/ml/output", "output_intermediate_dir": "/opt/ml/output/intermediate", "resource_config": { "current_host": "algo-2", "hosts": [ "algo-1", "algo-2" ], "network_interface_name": "eth0" }, "user_entry_point": "mnist-2.py" }  Environment variables:  SM_HOSTS=["algo-1","algo-2"] SM_NETWORK_INTERFACE_NAME=eth0 SM_HPS={"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model"} SM_USER_ENTRY_POINT=mnist-2.py SM_FRAMEWORK_PARAMS={"sagemaker_parameter_server_enabled":true} SM_RESOURCE_CONFIG={"current_host":"algo-2","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"} SM_INPUT_DATA_CONFIG={"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}} SM_OUTPUT_DATA_DIR=/opt/ml/output/data SM_CHANNELS=["training"] SM_CURRENT_HOST=algo-2 SM_MODULE_NAME=mnist-2 SM_LOG_LEVEL=20 SM_FRAMEWORK_MODULE=sagemaker_tensorflow_container.training:main SM_INPUT_DIR=/opt/ml/input SM_INPUT_CONFIG_DIR=/opt/ml/input/config SM_OUTPUT_DIR=/opt/ml/output SM_NUM_CPUS=8 SM_NUM_GPUS=1 SM_MODEL_DIR=/opt/ml/model SM_MODULE_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/source/sourcedir.tar.gz SM_TRAINING_ENV={"additional_framework_parameters":{"sagemaker_parameter_server_enabled":true},"channel_input_dirs":{"training":"/opt/ml/input/data/training"},"current_host":"algo-2","framework_module":"sagemaker_tensorflow_container.training:main","hosts":["algo-1","algo-2"],"hyperparameters":{"model_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model"},"input_config_dir":"/opt/ml/input/config","input_data_config":{"training":{"RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}},"input_dir":"/opt/ml/input","is_master":false,"job_name":"tensorflow-training-2021-09-16-20-20-22-213","log_level":20,"master_hostname":"algo-1","model_dir":"/opt/ml/model","module_dir":"s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/source/sourcedir.tar.gz","module_name":"mnist-2","network_interface_name":"eth0","num_cpus":8,"num_gpus":1,"output_data_dir":"/opt/ml/output/data","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/output/intermediate","resource_config":{"current_host":"algo-2","hosts":["algo-1","algo-2"],"network_interface_name":"eth0"},"user_entry_point":"mnist-2.py"} SM_USER_ARGS=["--model_dir","s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model"] SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate SM_CHANNEL_TRAINING=/opt/ml/input/data/training SM_HP_MODEL_DIR=s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model TF_CONFIG={"cluster": {"master": ["algo-1:2222"], "ps": ["algo-1:2223", "algo-2:2223"], "worker": ["algo-2:2222"]}, "environment": "cloud", "task": {"index": 0, "type": "worker"}} PYTHONPATH=/opt/ml/code:/usr/local/bin:/usr/lib/python36.zip:/usr/lib/python3.6:/usr/lib/python3.6/lib-dynload:/usr/local/lib/python3.6/dist-packages:/usr/lib/python3/dist-packages  Invoking script with the following command:  /usr/bin/python3 mnist-2.py --model_dir s3://sagemaker-us-east-1-051018513262/tensorflow-training-2021-09-16-20-20-22-213/model  Train on 55000 samples Train on 55000 samples 2021-09-16 20:25:27 Uploading - Uploading generated training model#015 32/55000 [..............................] - ETA: 29:40 - loss: 2.5009 - accuracy: 0.1250#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 736/55000 [..............................] - ETA: 1:20 - loss: 1.2955 - accuracy: 0.5910 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 1472/55000 [..............................] - ETA: 41s - loss: 0.9084 - accuracy: 0.7194 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 2208/55000 [>.............................] - ETA: 28s - loss: 0.7612 - accuracy: 0.7582#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 2944/55000 [>.............................] - ETA: 21s - loss: 0.6797 - accuracy: 0.7874#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 3680/55000 [=>............................] - ETA: 18s - loss: 0.6420 - accuracy: 0.7997#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 4384/55000 [=>............................] - ETA: 15s - loss: 0.6002 - accuracy: 0.8148#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 5120/55000 [=>............................] - ETA: 13s - loss: 0.5672 - accuracy: 0.8258#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 5856/55000 [==>...........................] - ETA: 12s - loss: 0.5433 - accuracy: 0.8344#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 6592/55000 [==>...........................] - ETA: 11s - loss: 0.5168 - accuracy: 0.8436#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 7328/55000 [==>...........................] - ETA: 10s - loss: 0.4974 - accuracy: 0.8515#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 8064/55000 [===>..........................] - ETA: 9s - loss: 0.4802 - accuracy: 0.8555 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 8800/55000 [===>..........................] - ETA: 8s - loss: 0.4610 - accuracy: 0.8610#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 9536/55000 [====>.........................] - ETA: 8s - loss: 0.4489 - accuracy: 0.8650#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01510272/55000 [====>.........................] - ETA: 7s - loss: 0.4369 - accuracy: 0.8680#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01511008/55000 [=====>........................] - ETA: 7s - loss: 0.4225 - accuracy: 0.8724#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01511744/55000 [=====>........................] - ETA: 6s - loss: 0.4129 - accuracy: 0.8750#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01512480/55000 [=====>........................] - ETA: 6s - loss: 0.4036 - accuracy: 0.8772#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01513216/55000 [======>.......................] - ETA: 6s - loss: 0.3950 - accuracy: 0.8801#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01513952/55000 [======>.......................] - ETA: 5s - loss: 0.3890 - accuracy: 0.8817#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01514688/55000 [=======>......................] - ETA: 5s - loss: 0.3838 - accuracy: 0.8832#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01515424/55000 [=======>......................] - ETA: 5s - loss: 0.3752 - accuracy: 0.8856#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01516160/55000 [=======>......................] - ETA: 5s - loss: 0.3676 - accuracy: 0.8884#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01516896/55000 [========>.....................] - ETA: 5s - loss: 0.3618 - accuracy: 0.8901#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01517632/55000 [========>.....................] - ETA: 4s - loss: 0.3571 - accuracy: 0.8917#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01518368/55000 [=========>....................] - ETA: 4s - loss: 0.3523 - accuracy: 0.8933#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01519040/55000 [=========>....................] - ETA: 4s - loss: 0.3495 - accuracy: 0.8946#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01519776/55000 [=========>....................] - ETA: 4s - loss: 0.3442 - accuracy: 0.8963#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01520512/55000 [==========>...................] - ETA: 4s - loss: 0.3386 - accuracy: 0.8979#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01521248/55000 [==========>...................] - ETA: 4s - loss: 0.3358 - accuracy: 0.8987#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01521984/55000 [==========>...................] - ETA: 3s - loss: 0.3319 - accuracy: 0.9000#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01522720/55000 [===========>..................] - ETA: 3s - loss: 0.3281 - accuracy: 0.9010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01523424/55000 [===========>..................] - ETA: 3s - loss: 0.3254 - accuracy: 0.9016#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01524160/55000 [============>.................] - ETA: 3s - loss: 0.3220 - accuracy: 0.9025#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01524896/55000 [============>.................] - ETA: 3s - loss: 0.3182 - accuracy: 0.9038#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01525632/55000 [============>.................] - ETA: 3s - loss: 0.3139 - accuracy: 0.9050#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01526368/55000 [=============>................] - ETA: 3s - loss: 0.3107 - accuracy: 0.9059#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01527104/55000 [=============>................] - ETA: 3s - loss: 0.3079 - accuracy: 0.9068#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01527840/55000 [==============>...............] - ETA: 2s - loss: 0.3049 - accuracy: 0.9077#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01528576/55000 [==============>...............] - ETA: 2s - loss: 0.3023 - accuracy: 0.9085#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01529312/55000 [==============>...............] - ETA: 2s - loss: 0.3011 - accuracy: 0.9091#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01530048/55000 [===============>..............] - ETA: 2s - loss: 0.2982 - accuracy: 0.9100#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01530784/55000 [===============>..............] - ETA: 2s - loss: 0.2953 - accuracy: 0.9110#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01531520/55000 [================>.............] - ETA: 2s - loss: 0.2919 - accuracy: 0.9119#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01532256/55000 [================>.............] - ETA: 2s - loss: 0.2886 - accuracy: 0.9130#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01532992/55000 [================>.............] - ETA: 2s - loss: 0.2846 - accuracy: 0.9142#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01533696/55000 [=================>............] - ETA: 2s - loss: 0.2828 - accuracy: 0.9148#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01534432/55000 [=================>............] - ETA: 2s - loss: 0.2797 - accuracy: 0.9156#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01535168/55000 [==================>...........] - ETA: 1s - loss: 0.2771 - accuracy: 0.9164#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01535904/55000 [==================>...........] - ETA: 1s - loss: 0.2756 - accuracy: 0.9168#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01536640/55000 [==================>...........] - ETA: 1s - loss: 0.2741 - accuracy: 0.9174#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01537376/55000 [===================>..........] - ETA: 1s - loss: 0.2714 - accuracy: 0.9182#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01538048/55000 [===================>..........] - ETA: 1s - loss: 0.2695 - accuracy: 0.9189#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01538720/55000 [====================>.........] - ETA: 1s - loss: 0.2671 - accuracy: 0.9194#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01539456/55000 [====================>.........] - ETA: 1s - loss: 0.2656 - accuracy: 0.9196#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01540192/55000 [====================>.........] - ETA: 1s - loss: 0.2634 - accuracy: 0.9202#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01540928/55000 [=====================>........] - ETA: 1s - loss: 0.2613 - accuracy: 0.9208#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01541664/55000 [=====================>........] - ETA: 1s - loss: 0.2598 - accuracy: 0.9213#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01542400/55000 [======================>.......] - ETA: 1s - loss: 0.2571 - accuracy: 0.9221#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01543136/55000 [======================>.......] - ETA: 1s - loss: 0.2555 - accuracy: 0.9225#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01543872/55000 [======================>.......] - ETA: 1s - loss: 0.2540 - accuracy: 0.9229#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01544608/55000 [=======================>......] - ETA: 0s - loss: 0.2525 - accuracy: 0.9235#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01545344/55000 [=======================>......] - ETA: 0s - loss: 0.2503 - accuracy: 0.9242#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01546080/55000 [========================>.....] - ETA: 0s - loss: 0.2487 - accuracy: 0.9246#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01546816/55000 [========================>.....] - ETA: 0s - loss: 0.2474 - accuracy: 0.9250#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01547520/55000 [========================>.....] - ETA: 0s - loss: 0.2465 - accuracy: 0.9253#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01548256/55000 [=========================>....] - ETA: 0s - loss: 0.2453 - accuracy: 0.9256#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01548992/55000 [=========================>....] - ETA: 0s - loss: 0.2440 - accuracy: 0.9260#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01549728/55000 [==========================>...] - ETA: 0s - loss: 0.2423 - accuracy: 0.9265#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01550432/55000 [==========================>...] - ETA: 0s - loss: 0.2407 - accuracy: 0.9271#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01551168/55000 [==========================>...] - ETA: 0s - loss: 0.2395 - accuracy: 0.9275#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01551904/55000 [===========================>..] - ETA: 0s - loss: 0.2388 - accuracy: 0.9279#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01552640/55000 [===========================>..] - ETA: 0s - loss: 0.2374 - accuracy: 0.9283#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01553376/55000 [============================>.] - ETA: 0s - loss: 0.2361 - accuracy: 0.9287#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01554112/55000 [============================>.] - ETA: 0s - loss: 0.2352 - accuracy: 0.9289#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01554848/55000 [============================>.] - ETA: 0s - loss: 0.2347 - accuracy: 0.9292#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01555000/55000 [==============================] - 5s 89us/sample - loss: 0.2345 - accuracy: 0.9293 #015 32/55000 [..............................] - ETA: 30:18 - loss: 2.3007 - accuracy: 0.1562#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 736/55000 [..............................] - ETA: 1:21 - loss: 1.2338 - accuracy: 0.6182 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 1472/55000 [..............................] - ETA: 42s - loss: 0.9143 - accuracy: 0.7310 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 2176/55000 [>.............................] - ETA: 29s - loss: 0.7825 - accuracy: 0.7665#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 2912/55000 [>.............................] - ETA: 22s - loss: 0.6947 - accuracy: 0.7940#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 3648/55000 [>.............................] - ETA: 18s - loss: 0.6519 - accuracy: 0.8092#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 4384/55000 [=>............................] - ETA: 15s - loss: 0.6076 - accuracy: 0.8221#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 5120/55000 [=>............................] - ETA: 13s - loss: 0.5783 - accuracy: 0.8297#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 5856/55000 [==>...........................] - ETA: 12s - loss: 0.5481 - accuracy: 0.8398#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 6560/55000 [==>...........................] - ETA: 11s - loss: 0.5254 - accuracy: 0.8460#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 7296/55000 [==>...........................] - ETA: 10s - loss: 0.5035 - accuracy: 0.8521#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 8000/55000 [===>..........................] - ETA: 9s - loss: 0.4876 - accuracy: 0.8560 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 8736/55000 [===>..........................] - ETA: 8s - loss: 0.4693 - accuracy: 0.8615#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 9440/55000 [====>.........................] - ETA: 8s - loss: 0.4579 - accuracy: 0.8646#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01510112/55000 [====>.........................] - ETA: 7s - loss: 0.4458 - accuracy: 0.8689#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01510816/55000 [====>.........................] - ETA: 7s - loss: 0.4368 - accuracy: 0.8708#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01511520/55000 [=====>........................] - ETA: 7s - loss: 0.4282 - accuracy: 0.8734#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01512256/55000 [=====>........................] - ETA: 6s - loss: 0.4185 - accuracy: 0.8763#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01512992/55000 [======>.......................] - ETA: 6s - loss: 0.4078 - accuracy: 0.8797#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01513696/55000 [======>.......................] - ETA: 6s - loss: 0.3995 - accuracy: 0.8820#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01514400/55000 [======>.......................] - ETA: 5s - loss: 0.3918 - accuracy: 0.8846#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01515104/55000 [=======>......................] - ETA: 5s - loss: 0.3839 - accuracy: 0.8867#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01515808/55000 [=======>......................] - ETA: 5s - loss: 0.3768 - accuracy: 0.8887#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01516512/55000 [========>.....................] - ETA: 5s - loss: 0.3680 - accuracy: 0.8912#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01517216/55000 [========>.....................] - ETA: 5s - loss: 0.3620 - accuracy: 0.8928#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01517920/55000 [========>.....................] - ETA: 4s - loss: 0.3553 - accuracy: 0.8948#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01518624/55000 [=========>....................] - ETA: 4s - loss: 0.3504 - accuracy: 0.8961#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01519328/55000 [=========>....................] - ETA: 4s - loss: 0.3457 - accuracy: 0.8976#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01520064/55000 [=========>....................] - ETA: 4s - loss: 0.3406 - accuracy: 0.8992#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01520800/55000 [==========>...................] - ETA: 4s - loss: 0.3365 - accuracy: 0.9003#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01521536/55000 [==========>...................] - ETA: 4s - loss: 0.3328 - accuracy: 0.9012#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01522272/55000 [===========>..................] - ETA: 3s - loss: 0.3294 - accuracy: 0.9025#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01522976/55000 [===========>..................] - ETA: 3s - loss: 0.3259 - accuracy: 0.9036#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01523680/55000 [===========>..................] - ETA: 3s - loss: 0.3212 - accuracy: 0.9047#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01524320/55000 [============>.................] - ETA: 3s - loss: 0.3200 - accuracy: 0.9055#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01525024/55000 [============>.................] - ETA: 3s - loss: 0.3170 - accuracy: 0.9064#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01525728/55000 [=============>................] - ETA: 3s - loss: 0.3131 - accuracy: 0.9071#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01526464/55000 [=============>................] - ETA: 3s - loss: 0.3086 - accuracy: 0.9083#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01527200/55000 [=============>................] - ETA: 3s - loss: 0.3053 - accuracy: 0.9091#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01527904/55000 [==============>...............] - ETA: 2s - loss: 0.3033 - accuracy: 0.9095#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01528640/55000 [==============>...............] - ETA: 2s - loss: 0.2997 - accuracy: 0.9106#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01529376/55000 [===============>..............] - ETA: 2s - loss: 0.2979 - accuracy: 0.9114#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01530112/55000 [===============>..............] - ETA: 2s - loss: 0.2954 - accuracy: 0.9121#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01530848/55000 [===============>..............] - ETA: 2s - loss: 0.2924 - accuracy: 0.9130#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01531584/55000 [================>.............] - ETA: 2s - loss: 0.2893 - accuracy: 0.9138#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01532320/55000 [================>.............] - ETA: 2s - loss: 0.2868 - accuracy: 0.9148#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01533056/55000 [=================>............] - ETA: 2s - loss: 0.2842 - accuracy: 0.9155#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01533792/55000 [=================>............] - ETA: 2s - loss: 0.2810 - accuracy: 0.9164#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01534496/55000 [=================>............] - ETA: 2s - loss: 0.2779 - accuracy: 0.9172#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01535232/55000 [==================>...........] - ETA: 1s - loss: 0.2759 - accuracy: 0.9177#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01535968/55000 [==================>...........] - ETA: 1s - loss: 0.2738 - accuracy: 0.9183#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01536704/55000 [===================>..........] - ETA: 1s - loss: 0.2715 - accuracy: 0.9191#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01537440/55000 [===================>..........] - ETA: 1s - loss: 0.2696 - accuracy: 0.9199#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01538176/55000 [===================>..........] - ETA: 1s - loss: 0.2672 - accuracy: 0.9206#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01538880/55000 [====================>.........] - ETA: 1s - loss: 0.2653 - accuracy: 0.9213#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01539616/55000 [====================>.........] - ETA: 1s - loss: 0.2629 - accuracy: 0.9220#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01540352/55000 [=====================>........] - ETA: 1s - loss: 0.2608 - accuracy: 0.9226#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01541088/55000 [=====================>........] - ETA: 1s - loss: 0.2599 - accuracy: 0.9231#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01541824/55000 [=====================>........] - ETA: 1s - loss: 0.2578 - accuracy: 0.9237#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01542560/55000 [======================>.......] - ETA: 1s - loss: 0.2563 - accuracy: 0.9240#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01543296/55000 [======================>.......] - ETA: 1s - loss: 0.2548 - accuracy: 0.9246#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01544000/55000 [=======================>......] - ETA: 1s - loss: 0.2527 - accuracy: 0.9251#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01544736/55000 [=======================>......] - ETA: 0s - loss: 0.2521 - accuracy: 0.9253#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01545472/55000 [=======================>......] - ETA: 0s - loss: 0.2509 - accuracy: 0.9254#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01546176/55000 [========================>.....] - ETA: 0s - loss: 0.2499 - accuracy: 0.9258#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01546912/55000 [========================>.....] - ETA: 0s - loss: 0.2481 - accuracy: 0.9262#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01547648/55000 [========================>.....] - ETA: 0s - loss: 0.2468 - accuracy: 0.9264#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01548320/55000 [=========================>....] - ETA: 0s - loss: 0.2459 - accuracy: 0.9266#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01548992/55000 [=========================>....] - ETA: 0s - loss: 0.2444 - accuracy: 0.9271#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01549600/55000 [==========================>...] - ETA: 0s - loss: 0.2432 - accuracy: 0.9274#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01550304/55000 [==========================>...] - ETA: 0s - loss: 0.2421 - accuracy: 0.9277#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01551040/55000 [==========================>...] - ETA: 0s - loss: 0.2405 - accuracy: 0.9282#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01551744/55000 [===========================>..] - ETA: 0s - loss: 0.2393 - accuracy: 0.9285#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01552352/55000 [===========================>..] - ETA: 0s - loss: 0.2383 - accuracy: 0.9287#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01553056/55000 [===========================>..] - ETA: 0s - loss: 0.2373 - accuracy: 0.9288#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01553760/55000 [============================>.] - ETA: 0s - loss: 0.2358 - accuracy: 0.9292#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01554464/55000 [============================>.] - ETA: 0s - loss: 0.2349 - accuracy: 0.9295#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01555000/55000 [==============================] - 5s 91us/sample - loss: 0.2343 - accuracy: 0.9297 #015 32/10000 [..............................] - ETA: 23s - loss: 0.0526 - accuracy: 0.9688#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 992/10000 [=>............................] - ETA: 1s - loss: 0.1147 - accuracy: 0.9617 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 1952/10000 [====>.........................] - ETA: 0s - loss: 0.1368 - accuracy: 0.9600#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 2912/10000 [=======>......................] - ETA: 0s - loss: 0.1448 - accuracy: 0.9574#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 3872/10000 [==========>...................] - ETA: 0s - loss: 0.1446 - accuracy: 0.9566#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 4864/10000 [=============>................] - ETA: 0s - loss: 0.1460 - accuracy: 0.9544#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 5824/10000 [================>.............] - ETA: 0s - loss: 0.1341 - accuracy: 0.9583#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 6752/10000 [===================>..........] - ETA: 0s - loss: 0.1326 - accuracy: 0.9587#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 7648/10000 [=====================>........] - ETA: 0s - loss: 0.1219 - accuracy: 0.9625#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 8608/10000 [========================>.....] - ETA: 0s - loss: 0.1150 - accuracy: 0.9647#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 9568/10000 [===========================>..] - ETA: 0s - loss: 0.1070 - accuracy: 0.9673#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01510000/10000 [==============================] - 1s 61us/sample - loss: 0.1111 - accuracy: 0.9661 2021-09-16 20:25:17,107 sagemaker_tensorflow_container.training INFO master algo-1 is down, stopping parameter server 2021-09-16 20:25:17,108 sagemaker_tensorflow_container.training WARNING No model artifact is saved under path /opt/ml/model. Your training job will not save any model files to S3. For details of how to construct your training script see: https://sagemaker.readthedocs.io/en/stable/using_tf.html#adapting-your-local-tensorflow-script 2021-09-16 20:25:17,108 sagemaker-containers INFO Reporting training SUCCESS #015 32/10000 [..............................] - ETA: 23s - loss: 0.0388 - accuracy: 0.9688#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 992/10000 [=>............................] - ETA: 1s - loss: 0.0971 - accuracy: 0.9748 #010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 1952/10000 [====>.........................] - ETA: 0s - loss: 0.1308 - accuracy: 0.9647#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 2880/10000 [=======>......................] - ETA: 0s - loss: 0.1345 - accuracy: 0.9618#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 3840/10000 [==========>...................] - ETA: 0s - loss: 0.1327 - accuracy: 0.9609#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 4768/10000 [=============>................] - ETA: 0s - loss: 0.1359 - accuracy: 0.9602#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 5696/10000 [================>.............] - ETA: 0s - loss: 0.1269 - accuracy: 0.9631#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 6624/10000 [==================>...........] - ETA: 0s - loss: 0.1223 - accuracy: 0.9641#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 7584/10000 [=====================>........] - ETA: 0s - loss: 0.1126 - accuracy: 0.9673#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 8544/10000 [========================>.....] - ETA: 0s - loss: 0.1064 - accuracy: 0.9690#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#015 9472/10000 [===========================>..] - ETA: 0s - loss: 0.0998 - accuracy: 0.9712#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#010#01510000/10000 [==============================] - 1s 61us/sample - loss: 0.1030 - accuracy: 0.9701 2021-09-16 20:25:18.012594: W tensorflow/python/util/util.cc:319] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. INFO:tensorflow:Assets written to: /opt/ml/model/000000001/assets INFO:tensorflow:Assets written to: /opt/ml/model/000000001/assets 2021-09-16 20:25:18,986 sagemaker-containers INFO Reporting training SUCCESS 2021-09-16 20:25:47 Completed - Training job completed ProfilerReport-1631823622: NoIssuesFound Training seconds: 224 Billable seconds: 224 ###Markdown Deploy the trained model to an endpointThe `deploy()` method creates a SageMaker model, which is then deployed to an endpoint to serve prediction requests in real time. We will use the TensorFlow Serving container for the endpoint, because we trained with script mode. This serving container runs an implementation of a web server that is compatible with SageMaker hosting protocol. The [Using your own inference code](https://render.githubusercontent.com/view/ipynb?color_mode=auto&commit=a5c9a21e6ed70fd51ab5178f3a35461473f7b379&enc_url=68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6177732f616d617a6f6e2d736167656d616b65722d6578616d706c65732f613563396132316536656437306664353161623531373866336133353436313437336637623337392f736167656d616b65722d707974686f6e2d73646b2f74656e736f72666c6f775f7363726970745f6d6f64655f747261696e696e675f616e645f73657276696e672f74656e736f72666c6f775f7363726970745f6d6f64655f747261696e696e675f616e645f73657276696e672e6970796e62&nwo=aws%2Famazon-sagemaker-examples&path=sagemaker-python-sdk%2Ftensorflow_script_mode_training_and_serving%2Ftensorflow_script_mode_training_and_serving.ipynb&repository_id=107937815&repository_type=Repository) document explains how SageMaker runs inference containers. ###Code # cell 08 predictor = mnist_estimator.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') ###Output update_endpoint is a no-op in sagemaker>=2. See: https://sagemaker.readthedocs.io/en/stable/v2.html for details. ###Markdown Deployed the trained TensorFlow 2.1 model to an endpoint. ###Code # cell 09 predictor2 = mnist_estimator2.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') ###Output update_endpoint is a no-op in sagemaker>=2. See: https://sagemaker.readthedocs.io/en/stable/v2.html for details. ###Markdown Invoke the endpointLet's download the training data and use that as input for inference. ###Code # cell 10 import numpy as np !aws --region {region} s3 cp s3://sagemaker-sample-data-{region}/tensorflow/mnist/train_data.npy train_data.npy !aws --region {region} s3 cp s3://sagemaker-sample-data-{region}/tensorflow/mnist/train_labels.npy train_labels.npy train_data = np.load('train_data.npy') train_labels = np.load('train_labels.npy') ###Output download: s3://sagemaker-sample-data-us-east-1/tensorflow/mnist/train_data.npy to ./train_data.npy download: s3://sagemaker-sample-data-us-east-1/tensorflow/mnist/train_labels.npy to ./train_labels.npy ###Markdown The formats of the input and the output data correspond directly to the request and response formats of the Predict method in the [TensorFlow Serving REST API](https://www.tensorflow.org/serving/api_rest). SageMaker's TensforFlow Serving endpoints can also accept additional input formats that are not part of the TensorFlow REST API, including the simplified JSON format, line-delimited JSON objects ("jsons" or "jsonlines"), and CSV data.In this example we are using a numpy array as input, which will be serialized into the simplified JSON format. In addtion, TensorFlow serving can also process multiple items at once as you can see in the following code. You can find the complete documentation on how to make predictions against a TensorFlow serving SageMaker endpoint [here](https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/deploying_tensorflow_serving.rstmaking-predictions-against-a-sagemaker-endpoint). ###Code # cell 11 predictions = predictor.predict(train_data[:50]) for i in range(0, 50): prediction = predictions['predictions'][i]['classes'] label = train_labels[i] print('prediction is {}, label is {}, matched: {}'.format(prediction, label, prediction == label)) ###Output prediction is 7, label is 7, matched: True prediction is 3, label is 3, matched: True prediction is 4, label is 4, matched: True prediction is 6, label is 6, matched: True prediction is 1, label is 1, matched: True prediction is 8, label is 8, matched: True prediction is 1, label is 1, matched: True prediction is 0, label is 0, matched: True prediction is 9, label is 9, matched: True prediction is 8, label is 8, matched: True prediction is 0, label is 0, matched: True prediction is 3, label is 3, matched: True prediction is 1, label is 1, matched: True prediction is 2, label is 2, matched: True prediction is 7, label is 7, matched: True prediction is 0, label is 0, matched: True prediction is 2, label is 2, matched: True prediction is 9, label is 9, matched: True prediction is 6, label is 6, matched: True prediction is 0, label is 0, matched: True prediction is 1, label is 1, matched: True prediction is 6, label is 6, matched: True prediction is 7, label is 7, matched: True prediction is 1, label is 1, matched: True prediction is 9, label is 9, matched: True prediction is 7, label is 7, matched: True prediction is 6, label is 6, matched: True prediction is 5, label is 5, matched: True prediction is 5, label is 5, matched: True prediction is 8, label is 8, matched: True prediction is 8, label is 8, matched: True prediction is 3, label is 3, matched: True prediction is 4, label is 4, matched: True prediction is 4, label is 4, matched: True prediction is 8, label is 8, matched: True prediction is 7, label is 7, matched: True prediction is 3, label is 3, matched: True prediction is 6, label is 6, matched: True prediction is 4, label is 4, matched: True prediction is 6, label is 6, matched: True prediction is 6, label is 6, matched: True prediction is 3, label is 3, matched: True prediction is 1, label is 8, matched: False prediction is 8, label is 8, matched: True prediction is 9, label is 9, matched: True prediction is 9, label is 9, matched: True prediction is 4, label is 4, matched: True prediction is 4, label is 4, matched: True prediction is 0, label is 0, matched: True prediction is 7, label is 7, matched: True ###Markdown Examine the prediction result from the TensorFlow 2.1 model. ###Code # cell 12 predictions2 = predictor2.predict(train_data[:50]) for i in range(0, 50): prediction = np.argmax(predictions2['predictions'][i]) label = train_labels[i] print('prediction is {}, label is {}, matched: {}'.format(prediction, label, prediction == label)) ###Output prediction is 3, label is 7, matched: False prediction is 3, label is 3, matched: True prediction is 9, label is 4, matched: False prediction is 6, label is 6, matched: True prediction is 1, label is 1, matched: True prediction is 8, label is 8, matched: True prediction is 1, label is 1, matched: True prediction is 0, label is 0, matched: True prediction is 9, label is 9, matched: True prediction is 8, label is 8, matched: True prediction is 0, label is 0, matched: True prediction is 3, label is 3, matched: True prediction is 1, label is 1, matched: True prediction is 3, label is 2, matched: False prediction is 7, label is 7, matched: True prediction is 0, label is 0, matched: True prediction is 2, label is 2, matched: True prediction is 9, label is 9, matched: True prediction is 6, label is 6, matched: True prediction is 0, label is 0, matched: True prediction is 1, label is 1, matched: True prediction is 6, label is 6, matched: True prediction is 7, label is 7, matched: True prediction is 1, label is 1, matched: True prediction is 9, label is 9, matched: True prediction is 7, label is 7, matched: True prediction is 6, label is 6, matched: True prediction is 5, label is 5, matched: True prediction is 5, label is 5, matched: True prediction is 8, label is 8, matched: True prediction is 8, label is 8, matched: True prediction is 3, label is 3, matched: True prediction is 4, label is 4, matched: True prediction is 4, label is 4, matched: True prediction is 8, label is 8, matched: True prediction is 7, label is 7, matched: True prediction is 3, label is 3, matched: True prediction is 6, label is 6, matched: True prediction is 4, label is 4, matched: True prediction is 6, label is 6, matched: True prediction is 6, label is 6, matched: True prediction is 3, label is 3, matched: True prediction is 8, label is 8, matched: True prediction is 8, label is 8, matched: True prediction is 9, label is 9, matched: True prediction is 9, label is 9, matched: True prediction is 4, label is 4, matched: True prediction is 4, label is 4, matched: True prediction is 0, label is 0, matched: True prediction is 7, label is 7, matched: True ###Markdown Delete the endpointLet's delete the endpoint we just created to prevent incurring any extra costs and then [verify](https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-cleanup.html) ###Code # cell 13 predictor.delete_endpoint() # cell 14 predictor2.delete_endpoint() ###Output _____no_output_____
in-class-exercises/week-4 in-class exercises functions.ipynb
###Markdown Week 3 - Functions The real power in any programming language is the **Function**.A function is:* a little block of script (one line or many) that performs specific task or a series of tasks.* reusable and helps us make our code DRY.* triggered when something "invokes" or "calls" it.* ideally modular – it performs a narrow task and you call several functions to perform more complex tasks. ###Code def myFunction(number1, number2): print(f"My first input is {number1} and the second number is {number2}.") total = number1 + number2 print(f"The total is {total}!") ## Call myFunction using 4 and 5 as the arguments myFunction ## Call myFunction using 10 and 2 as the arguments ## you might forget what arguments are needed for the function to work. ## you can add notes that appear on shift-tab as you call the function. ## call the function using 3 and 4 as arguments ###Output _____no_output_____ ###Markdown To use or not use functions?Let's compare the two options with a simple example: ###Code ## You have a list of numbers. mylist1 = [1, -5, 22, -44.2, 33, -45] ## Turn each number into an absolute number. ## a for loop works perfectly fine here. ## The problem is that your project keeps generating more lists. ## Each list of numbers has to be turned into absolute numbers mylist2 = [-56, -34, -75, -111, -22] mylist3 = [-100, -200, 100, -300, -100] mylist4 = [-23, -89, -11, -45, -27] mylist5 = [0, 1, 2, 3, 4, 5] ###Output _____no_output_____ ###Markdown DRY Do you keep writing for loops for each list? No, that's a lot of repetition! DRY stands for "Don't Repeat Yourself" ###Code ## Instead we write a function that takes a list, ## converts each list item to an absolute number, ## and prints out the number ## Try swapping out different lists into the function: ###Output _____no_output_____ ###Markdown Timesaver Imagine for a moment that your editor tells you that the calculation needs to be updated. Instead of needing the absolute number, you need the absolute number minus 5. Having used multiple for loops, you'd have to change each one. What if you miss one or two? Either way, it's a chore. With functions, you just revise the function and the update runs everywhere. ###Code ## You scrape a site and each datapoint is stored in different lists firstName = ["Irene", "Ursula", "Elon", "Tim"] lastName = ["Rosenfeld", "Burns", "Musk", "Cook"] title = ["Chairman and CEO", "Chairman and CEO", "CEO", "CEO"] company = ["Kraft Foods", "Xerox", "Tesla", "Apple"] industry = ["Food and Beverage", "Process and Document Management", "Auto Manufacturing", "Consumer Technology"] ## Zip all the lists into a dictionary using a for loop bio_list = [] for (fname, lname, rank, field) in zip(firstName, lastName, title, industry ): bio_dict = {"first_name": fname, "last_name": lname, "title": rank, "industry": field} bio_list.append(bio_dict) print(bio_list) ## Convert it into a function: ## Call the function ###Output _____no_output_____ ###Markdown Return Statements So far we have only printed out values processed by a function. But we really want to retain the value the function creates. We can then pass that value to other parts of our calculations and code. ###Code ## Simple example ## A function that adds two numbers together and prints the value: ## call the function with the numbers 2 and 4 ## let's try to save it in a variable called myCalc ## Print myCalc. What does it hold? ###Output _____no_output_____ ###Markdown The return Statement ###Code ## Tweak our function by adding return statement ## instead of printing a value we want to return a value(or values). ## call the function add_numbers_ret ## and store in variable called myCalc ## print myCalc ## What type is myCalc? ###Output _____no_output_____ ###Markdown Let's revise our earlier absolute values converter with a return statement Here is the earlier version: ###Code ## revised with for loop ## Let's test it by storing the return value in variable x ## What type of data object is it? ## Let's actually make that a list comprehension version of the function: ## Let run the function on a list and store the absolute values in variable y ###Output _____no_output_____ ###Markdown Functions that call other funcions ###Code ## Two lists of values ## Our goal here is to convert these to absolute numbers and then sum each list. ## We'll do this in steps someNumbers = [0,1,2,3,4,-5] # total added up is 5; absolute value total 15 negNumbers = [0,-1,-2,-3,-4, 5, -20] # total added up is -25; absolute value total 35 ###Output _____no_output_____ ###Markdown We already have a function called return_absolutes_lc that returns the absolute values in a list ###Code ## Let's write a function that returns the total of the items in a list ## Actually let's tweak that functions to be more efficient ## test it on our two two basic lists ###Output _____no_output_____ ###Markdown Each function works as expected. addAllNumbers - Returns the sum of a list. return_absolutes_lc - Returns the absolute values in a list. We can have a function ** call ** another function: ###Code ## Let's have addAlladdAllNumbers calls returnabsolute_returns_lc on the someNumbers list ## Let's have addAlladdAllNumbers calls returnabsolute_returns_lc on the negNumbers list ###Output _____no_output_____
.ipynb_checkpoints/Tarea1-checkpoint.ipynb
###Markdown Cargar base de datos ###Code pilotos = pd.read_csv('basepilotos.txt', sep = '\t', index_col = 0) pilotos.head() vuelos = pd.read_csv('basevuelos.txt', sep = '\t', index_col=0) vuelos.head() ###Output _____no_output_____ ###Markdown Crear modelo ###Code modeloA = Model("ModeloA") Hola ###Output _____no_output_____
HeroesOfPymoli/main.ipynb
###Markdown Note* If charts are not rendered properly, please follow this link to an alternative notebook viewer. https://nbviewer.jupyter.org/github/loganbonsignore/pandas-challenge/blob/master/HeroesOfPymoli/main.ipynb ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) file_to_load = "Resources/purchase_data.csv" # Read Purchasing File and store into Pandas data frame purchase_data = pd.read_csv(file_to_load) purchase_data.head() ###Output _____no_output_____ ###Markdown Player Count * Display the total number of players ###Code # calculate total players total_count = len(purchase_data["SN"].unique()) print(f"Total Players: {total_count}") ###Output Total Players: 576 ###Markdown Purchasing Analysis (Total) * Run basic calculations to obtain number of unique items, average price, etc.* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code # calculations unique_items = len(purchase_data["Item Name"].unique()) avg_price = purchase_data["Price"].mean() purchases = len(purchase_data["Purchase ID"]) revenue = purchase_data["Price"].sum() # create dataframe with new data summary_df = pd.DataFrame({ "Number of Items":[unique_items], "Average Purchase Price":["${:,.2f}".format(avg_price)], "Number of Purchases":[purchases], "Total Revenue":["${:,.2f}".format(revenue)] }) summary_df ###Output _____no_output_____ ###Markdown Gender Demographics * Percentage and Count of Male Players* Percentage and Count of Female Players* Percentage and Count of Other / Non-Disclosed ###Code # create new dataframes based on Gender male_df = purchase_data.loc[purchase_data["Gender"] == "Male",:] female_df = purchase_data.loc[purchase_data["Gender"] == "Female",:] other_df = purchase_data.loc[(purchase_data["Gender"] != "Male") & (purchase_data["Gender"] != "Female"),:] # calculations male_count = len(male_df["SN"].unique()) female_count = len(female_df["SN"].unique()) other_count = len(other_df["SN"].unique()) # format outputs males_pct = "{:.2%}".format((male_count / total_count)) female_pct = "{:.2%}".format((female_count / total_count)) other_pct = "{:.2%}".format((other_count / total_count)) # create dataframe with new data data = { "Total Count":[male_count, female_count, other_count], "Percent of User":[males_pct, female_pct, other_pct] } df = pd.DataFrame(data, index=["Males","Females","Other/Non-Disclosed"],columns=["Total Count","Percent of User"]) df ###Output _____no_output_____ ###Markdown Purchasing Analysis (Gender) * Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code # calculate avg purchase price per gender avg_purchase_male = male_df["Price"].mean() avg_purchase_female = female_df["Price"].mean() avg_purchase_other = other_df["Price"].mean() # calculate total purchase value per gender total_male = male_df["Price"].sum() total_female = female_df["Price"].sum() total_other = other_df["Price"].sum() # calculate avg total purchase per person per gender avg_total_male = total_male / len(male_df["SN"].unique()) avg_total_female = total_female / len(female_df["SN"].unique()) avg_total_other = total_other / len(other_df["SN"].unique()) #create dataframe with new data data = { "Purchase Count":[len(male_df), len(female_df), len(other_df)], "Average Purchase Price":["${:,.2f}".format(avg_purchase_male), "${:,.2f}".format(avg_purchase_female), "${:,.2f}".format(avg_purchase_other)], "Total Purchase Value":["${:,.2f}".format(total_male), "${:,.2f}".format(total_female), "${:,.2f}".format(total_other)], "Avg Total Purchase Per Person":["${:,.2f}".format(avg_total_male),"${:,.2f}".format(avg_total_female),"${:,.2f}".format(avg_total_other)] } gender_summary_df = pd.DataFrame(data, index=["Males","Females","Other/Non-Disclosed"]) gender_summary_df ###Output _____no_output_____ ###Markdown Age Demographics * Establish bins for ages* Categorize the existing players using the age bins. Hint: use pd.cut()* Calculate the numbers and percentages by age group* Create a summary data frame to hold the results* Optional: round the percentage column to two decimal points* Display Age Demographics Table ###Code # create bins and labels bins = [0,9,14,19,24,29,34,39,200] labels = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"] # slice data into bins, group by new bins purchase_data["Age Ranges"] = pd.cut(purchase_data["Age"],bins=bins,labels=labels) duplicates_dropped_df = purchase_data.drop_duplicates("SN") pd_gb = duplicates_dropped_df.groupby("Age Ranges") # calculations count = pd_gb["Age Ranges"].count() pct = pd_gb["SN"].count() / pd_gb["SN"].count().sum() pct = pct.map("{:.2%}".format) # create dataframe with new data data = { "Total Count":count, "Percentage of Players":pct } age_demo_summary = pd.DataFrame(data) age_demo_summary ###Output _____no_output_____ ###Markdown Purchasing Analysis (Age) * Bin the purchase_data data frame by age* Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code # create bins and labels bins = [0,9,14,19,24,29,34,39,200] labels = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"] # slice data into bins, group by Age Ranges purchase_data["Age Ranges"] = pd.cut(purchase_data["Age"],bins=bins,labels=labels) age_gb = purchase_data.groupby("Age Ranges") # calculations pur_count = age_gb["Age Ranges"].count() avg_pur = age_gb["Price"].mean() total_pur = age_gb["Price"].sum() avg_purchase_person = total_pur / pd_gb["Age Ranges"].count() # format outputs avg_pur = avg_pur.map("${:,.2f}".format) total_pur = total_pur.map("${:,.2f}".format) avg_purchase_person = avg_purchase_person.map("${:,.2f}".format) # create dataframe with new data data = { "Purchase Count":pur_count, "Average Purchase Price":avg_pur, "Total Purchase Value":total_pur, "Average Total Purchase Per Person":avg_purchase_person } age_demo_df = pd.DataFrame(data) age_demo_df ###Output _____no_output_____ ###Markdown Top Spenders * Run basic calculations to obtain the results in the table below* Create a summary data frame to hold the results* Sort the total purchase value column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code # create groupby on "SN" names_gb = purchase_data.groupby("SN") # calculations purchase_counts = purchase_data["SN"].value_counts() avg_purchase_price = names_gb["Price"].mean() total_purchase_price = names_gb["Price"].sum() # create dataframe with new data data = { "Purchase Counts":purchase_counts, "Average Purchase Price":avg_purchase_price, "Total Purchase Price":total_purchase_price } df = pd.DataFrame(data) # sort and format data df = df.sort_values("Total Purchase Price",ascending=False) df["Average Purchase Price"] = df["Average Purchase Price"].map("${:,.2f}".format) df["Total Purchase Price"] = df["Total Purchase Price"].map("${:,.2f}".format) df.head() ###Output _____no_output_____ ###Markdown Most Popular Items * Retrieve the Item ID, Item Name, and Item Price columns* Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value* Create a summary data frame to hold the results* Sort the purchase count column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code # retrieve needed columns, create groupby pop_df = purchase_data.loc[:,["Item ID","Item Name","Price"]] pop_gb = pop_df.groupby(["Item ID","Item Name"]) # calculate and sort variables total_count = pop_gb.count().sort_values("Price",ascending=False) item_price = pop_gb.mean() total_purchase_value = pop_gb.sum().sort_values("Price",ascending=False) #rename columns total_count = total_count.rename(columns={"Price":"Purchase Count"}) item_price = item_price.rename(columns={"Price":"Item Price"}) total_purchase_value = total_purchase_value.rename(columns={"Price":"Total Purchase Value"}) # format currency values item_price = item_price["Item Price"].map("${:.2f}".format) total_purchase_value = total_purchase_value["Total Purchase Value"].map("${:.2f}".format) # create dataframe with new data summary_table = pd.concat([total_count,item_price,total_purchase_value],axis=1) popular_items = summary_table.sort_values("Purchase Count",ascending=False) popular_items.head() ###Output _____no_output_____ ###Markdown Most Profitable Items * Sort the above table by total purchase value in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the data frame ###Code # retrieve needed columns, create groupby pop_df = purchase_data.loc[:,["Item ID","Item Name","Price"]] pop_gb = pop_df.groupby(["Item ID","Item Name"]) # calculate variables total_count = pop_gb.count().sort_values("Price",ascending=False) total_purchase_value = pop_gb.sum().sort_values("Price",ascending=False) item_price = pop_gb.mean() # rename columns, format "item price" series total_count = total_count.rename(columns={"Price":"Purchase Count"}) total_purchase_value = total_purchase_value.rename(columns={"Price":"Total Purchase Value"}) item_price = item_price.rename(columns={"Price":"Item Price"}) item_price = item_price["Item Price"].map("${:.2f}".format) # create dataframe sorted by Total Purchase Value summary_table = pd.concat([total_count,item_price,total_purchase_value],axis=1) popular_items = summary_table.sort_values("Total Purchase Value",ascending=False) popular_items["Total Purchase Value"] = popular_items["Total Purchase Value"].map("${:.2f}".format) popular_items.head() ###Output _____no_output_____ ###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd import os # File to Load (Remember to Change These) file_to_load = os.path.join("..","Resources","purchase_data.csv") # Read Purchasing File and store into Pandas data frame purchase_data = pd.read_csv(file_to_load) purchase_data.head() ###Output _____no_output_____ ###Markdown Player Count * Display the total number of players ###Code #Used unique function to give me the unique values. This turns the dataframe to a dict group_number_of_players = purchase_data["SN"].nunique() #Create data frame to display data df_player = pd.DataFrame({ "Total Players": [group_number_of_players] }) df_player ###Output _____no_output_____ ###Markdown Purchasing Analysis (Total) * Run basic calculations to obtain number of unique items, average price, etc.* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code #Unique Items unique_items = purchase_data["Item ID"].value_counts() unique_items = unique_items.count() #Average Price total_avg_price = purchase_data["Price"].mean() #Number of Purchases total_num_of_pur = purchase_data["Item Name"].count() #Total Revenue total_rev = purchase_data["Price"].sum() #creating a summary dataframe summary_df = pd.DataFrame({ 'Number of Unique Items': [unique_items], 'Average Price': "${:.2f}".format(total_avg_price), 'Number of Purchases': [total_num_of_pur], 'Total Revenue': "${:,.2f}".format(total_rev) }) summary_df ###Output _____no_output_____ ###Markdown Gender Demographics * Percentage and Count of Male Players* Percentage and Count of Female Players* Percentage and Count of Other / Non-Disclosed ###Code #creating a copy of the data frame gender = purchase_data[["SN", "Gender"]].copy() #drop duplicate SN to have the true amount of gender gender.drop_duplicates("SN", keep = "first", inplace = True) #The count of Gender gender_count_df = gender["Gender"].value_counts() # #Find the percentage of Genders within the DF gender_per_df = gender_count_df/gender["Gender"].count() # #Creating a data frame summary demographics_summary = pd.DataFrame ({ "Total Count":gender_count_df, 'Percentage of Players': gender_per_df.map("{:.2%}".format) }) demographics_summary ###Output _____no_output_____ ###Markdown Purchasing Analysis (Gender) * Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code #a copy of purchase data to drop duplicates form column SN purchase_date_copy = purchase_data.copy() #drop duplicate SN to have the true amount of gender purchase_date_copy.drop_duplicates("SN", keep = "first", inplace = True) #group copy by gender grouped_gender_df_copy = purchase_date_copy.groupby(["Gender"]) #group by gender grouped_gender_df = purchase_data.groupby(["Gender"]) #Purchase count gender_purchase_count = grouped_gender_df["Price"].count() #Average purchase gender_avg_purchase = grouped_gender_df["Price"].mean() #Total purchase price gender_total_purchase_value = grouped_gender_df["Price"].sum() #Average total purchase per person gender_avg_total = grouped_gender_df["Price"].sum()/grouped_gender_df_copy["Gender"].count() #DF for Purchase Analysis purchasing_analysis = pd.DataFrame ({ "Purchase Count":gender_purchase_count, 'Average Purchase Price': gender_avg_purchase.map("${:,.2f}".format), 'Total Purchase Value': gender_total_purchase_value.map("${:,.2f}".format), 'Avg Total Purchase per Person': gender_avg_total.map("${:,.2f}".format) }) purchasing_analysis ###Output _____no_output_____ ###Markdown Age Demographics * Establish bins for ages* Categorize the existing players using the age bins. Hint: use pd.cut()* Calculate the numbers and percentages by age group* Create a summary data frame to hold the results* Optional: round the percentage column to two decimal points* Display Age Demographics Table ###Code #Defining my bin bins = [0, 9, 14, 19, 24, 29, 34, 39, 99] #Defining my loabel that is going on my bin, Label always has one less then bin age_range_label = ["< 10","10-14","15-19","20-24","25-29","30-34","35-39","40 +"] #Using the cut function to create age range column, that adds the bin corelating with the age purchase_date_copy["Age Range"] = pd.cut(purchase_date_copy["Age"], bins, labels = age_range_label) #Count the bins that the ages are stored in demographics_total_count = purchase_date_copy["Age Range"].value_counts() #Divide each age count value with the total age amount of to get the percentage demographics_percentage = demographics_total_count/purchase_date_copy["Age Range"].count() #Add the data into a dataframe and format to round to the nearest two decimal place demographics_table = pd.DataFrame ({ "Total Count": demographics_total_count, "Percentage of Players": demographics_percentage.map("{:.2%}".format) }) #Sorting the index from ascending order demographics_table = demographics_table.sort_index() demographics_table ###Output _____no_output_____ ###Markdown Purchasing Analysis (Age) * Bin the purchase_data data frame by age* Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below* Create a summary data frame to hold the results* Optional: give the displayed data cleaner formatting* Display the summary data frame ###Code #Create a copy of purchase data that has duplicate SN, which also has all price invoices purchase_analysis_data = purchase_data.copy() #Using the cut function to create age range column, that adds the bin corelating with the age purchase_analysis_data["Age Range"] = pd.cut(purchase_analysis_data["Age"], bins, labels = age_range_label) #Group the data frame by column Age Range grouped_analysis_data = purchase_analysis_data.groupby(["Age Range"]) #Find purchase count of price age_purchasing_count = grouped_analysis_data["Price"].count() #Find the average purchase price age_avg_purchasing_price = grouped_analysis_data["Price"].mean() #Find the total value for each age range age_total_purchase_value = grouped_analysis_data["Price"].sum() #using the purchase data copy from previous since duplicate SN are not there, create a count of price per_person_count = purchase_date_copy.groupby(["Age Range"])["Price"].count() #Find the age total per person by dividing sum with count per person age_total_purchase_per_person = age_total_purchase_value/per_person_count #Create a data frame age_purchas_analysis = pd.DataFrame ({ "Purchase Count": age_purchasing_count, "Average Purchase Price": age_avg_purchasing_price.map("${:,.2f}".format), "Total Purchase Value": age_total_purchase_value.map("${:,.2f}".format), "Avg Total Purchase per Person": age_total_purchase_per_person.map("${:,.2f}".format) }) age_purchas_analysis ###Output _____no_output_____ ###Markdown Top Spenders * Run basic calculations to obtain the results in the table below* Create a summary data frame to hold the results* Sort the total purchase value column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code #Group by SN top_spenders = purchase_data.groupby(["SN"]) #Count the number of users spent spender_count = top_spenders["Price"].count() #Average Purchase Price spender_avg_purchase_price = top_spenders["Price"].mean() #Total Purchase Value spender_tot_purchase_value = top_spenders["Price"].sum() #Created a summary data frame top_spenders_summary = pd.DataFrame({ "Purchase Count" : spender_count, "Average Purchase Price": spender_avg_purchase_price.map("${:,.2f}".format), "Total Purchase Value": spender_tot_purchase_value }) #sort the Top SPender Summary by descedning order sort_top_spenders_summary = top_spenders_summary.sort_values("Total Purchase Value", ascending = False) #After sorting format the column Total Purchase Value. If you format before, it changes the descending order sort_top_spenders_summary["Total Purchase Value"] = sort_top_spenders_summary["Total Purchase Value"].map("${:,.2f}".format) #print head sort_top_spenders_summary.head() ###Output _____no_output_____ ###Markdown Most Popular Items * Retrieve the Item ID, Item Name, and Item Price columns* Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value* Create a summary data frame to hold the results* Sort the purchase count column in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the summary data frame ###Code #Retrieve the Item ID, Item Name, and Item Price columns popular_items = purchase_data[["Item ID", "Item Name", "Price"]] #Group by Item ID and Item Name group_popular_items = popular_items.groupby(["Item ID","Item Name"]) #Count of items and rename data so no scalar values error occurs popular_purchas_count = group_popular_items.count() #Mean Avg of items and rename data so no scalar values error occurs popular_item_price = group_popular_items.mean() #Sum of items and rename data so no scalar values error occurs popular_item_sum = group_popular_items.sum() #Create a Data frame most_popular_items = pd.DataFrame({ "Purchase Count":popular_purchas_count["Price"], "Item Price": popular_item_price["Price"], "Total Purchase Value": popular_item_sum["Price"] }) #Formatting the item price and total purchase value most_popular_items["Item Price"] = most_popular_items["Item Price"].map("${:,.2f}".format) most_popular_items["Total Purchase Value"] = most_popular_items["Total Purchase Value"].map("${:,.2f}".format) #Sort values from descending purchase count sort_most_popular_items = most_popular_items.sort_values("Purchase Count", ascending = False) sort_most_popular_items.head() ###Output _____no_output_____ ###Markdown Most Profitable Items * Sort the above table by total purchase value in descending order* Optional: give the displayed data cleaner formatting* Display a preview of the data frame ###Code #Create a function to convert string currency to float #remove $, commas, and convert to float def convert_cur(val): if type(val) == str: new_val = val.replace(',','').replace('$', '') else: return float(val) return float(new_val) #Apply the function to the Total Purchase Value most_popular_items["Total Purchase Value"] = most_popular_items["Total Purchase Value"].apply(convert_cur) #Sort column Total Purchase Value sort_total_purchase_items = most_popular_items.sort_values("Total Purchase Value", ascending = False) #Applu curency to Total Purchas Value sort_total_purchase_items["Total Purchase Value"] = sort_total_purchase_items["Total Purchase Value"].map("${:,.2f}".format) sort_total_purchase_items.head() ###Output _____no_output_____
endsem/.ipynb_checkpoints/genetic_algorithms-checkpoint.ipynb
###Markdown Using Elitism Average Results: Minimum Value of fitness is between -8.7 and -9.50. Most of the time it is near -8.7. It also depends on the population size, with higher population size like >1000, it sometimes reached to a value of -9.7. ###Code function_val_epoch_elitism = [] RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = 1000 GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 CROSSOVER_PROB = 0.1 h = 1e-7 X_SIZE = 5 np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): global CROSSOVER_PROB child_chromosome = [] for gp1 , gp2 in zip(self.chromosome , par2.chromosome): child_part_chromosome = [] # print(gp1) for i in range(len(gp1)): probability_of_crossover = random.random() if (probability_of_crossover > CROSSOVER_PROB): # do crossover probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) else: # do mutation child_part_chromosome.append(self.mutate(i)) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X # TARGET_LENGTH = determine_target_length(RANGE_OF_X) generation = 1 count = 1000 population = [] for _ in range(POPULATION_SIZE): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*POPULATION_SIZE) new_generation.extend(population[:s]) s = int(0.90*POPULATION_SIZE) for _ in range(s): parent1 = random.choice(population[:POPULATION_SIZE//2]) parent2 = random.choice(population[:POPULATION_SIZE//2]) child = parent1.mate(parent2) new_generation.append(child) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_elitism.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {}\tMinimimum Value: {}".format(generation, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_elitism)) , function_val_epoch_elitism , "k--") ###Output Gen: 5 X: [-0.8, -0.76, -0.09, -0.06, -0.4] Fit: -5.1163667428183 Gen: 10 X: [-0.8, -0.76, -0.09, -0.06, -0.4] Fit: -5.1163667428183 Gen: 15 X: [-0.8, -0.76, -0.09, -0.06, -0.4] Fit: -5.1163667428183 Gen: 20 X: [-0.8, -0.76, -0.09, -0.06, -0.4] Fit: -5.1163667428183 Gen: 25 X: [-0.7, -0.11, -0.61, -0.17, -0.19] Fit: -5.879661700246153 Gen: 30 X: [-0.7, -0.11, -0.61, -0.17, -0.19] Fit: -5.879661700246153 Gen: 35 X: [-0.44, -0.02, -0.16, -0.34, -0.02] Fit: -6.570418404404528 Gen: 40 X: [-0.05, -0.16, -0.23, -0.39, -0.09] Fit: -6.822674138367253 Gen: 45 X: [-0.05, -0.16, -0.23, -0.39, -0.09] Fit: -6.822674138367253 Gen: 50 X: [-0.09, -0.76, -0.05, -0.11, -0.04] Fit: -6.891377926732752 Gen: 55 X: [-0.09, -0.76, -0.05, -0.11, -0.04] Fit: -6.891377926732752 Gen: 60 X: [-0.06, -0.57, -0.39, -0.31, -0.17] Fit: -7.043979757113863 Gen: 65 X: [-1.02, -0.14, -0.23, -0.31, -0.01] Fit: -7.286555813344302 Gen: 70 X: [-0.25, -0.05, -0.34, -0.21, -0.2] Fit: -7.361184462392697 Gen: 75 X: [-0.23, -0.13, -0.06, -0.02, -0.1] Fit: -7.444378431826655 Gen: 80 X: [-0.23, -0.13, -0.06, -0.02, -0.1] Fit: -7.444378431826655 Gen: 85 X: [-0.23, -0.13, -0.06, -0.02, -0.1] Fit: -7.444378431826655 Gen: 90 X: [-0.23, -0.13, -0.06, -0.02, -0.1] Fit: -7.444378431826655 Gen: 95 X: [-0.22, -0.14, -0.17, -0.14, -0.13] Fit: -7.9914511773812755 Gen: 100 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 105 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 110 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 115 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 120 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 125 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 130 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 135 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 140 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 145 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 150 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 155 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 160 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 165 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 170 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 175 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 180 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 185 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 190 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 195 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 200 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 205 X: [-0.09, -0.37, -0.15, -0.06, -0.03] Fit: -8.514878086370487 Gen: 210 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 215 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 220 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 225 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 230 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 235 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 240 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 245 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 250 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 255 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 260 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 265 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 270 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 275 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 280 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 285 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 290 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 295 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 300 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 305 X: [-1.05, -0.15, -0.35, -0.23, -0.14] Fit: -8.78976048757957 Gen: 310 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 315 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 320 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 325 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 330 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 335 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 340 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 345 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 350 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 355 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 360 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 365 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 370 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 375 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 380 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 385 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 390 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 395 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 400 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 405 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 410 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 415 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 420 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 425 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 430 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 435 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 440 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 445 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 450 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 455 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 460 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 465 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 470 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 475 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 480 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 485 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 490 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 495 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 500 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 505 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 510 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 515 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 520 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 525 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 530 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 535 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 540 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 545 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 550 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 555 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 560 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 565 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 570 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 575 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 580 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 585 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 590 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 595 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 600 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 605 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 610 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 615 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 620 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 625 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 630 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 635 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 640 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 645 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 650 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 655 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 660 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 665 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 670 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 675 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 680 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 685 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 690 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 695 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 700 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 705 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 710 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 715 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 720 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 725 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 730 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 735 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 740 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 745 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 750 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 755 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 760 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 765 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 770 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 775 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 780 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 785 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 790 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 795 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 800 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 805 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 810 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 815 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 820 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 825 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 830 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 835 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 840 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 845 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 850 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 855 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 860 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 865 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 870 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 875 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 880 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 885 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 890 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 895 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 900 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 905 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 910 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 915 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 920 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 925 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 930 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 935 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 940 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 945 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 950 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 955 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 960 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 965 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 970 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 975 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 980 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 985 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 990 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 995 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 1000 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Fit: -9.023994382165274 Gen: 1001 X: [-0.16, -0.17, -0.05, -0.21, -0.08] Minimimum Value: -9.023994382165274 ###Markdown Using Basic Genetic Algorithm The minimum value of fitness achieved is between -8.4 to -9.0. ###Code function_val_epoch_basic_genetic = [] RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = 1000 GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 CROSSOVER_PROB = 0.1 h = 1e-7 X_SIZE = 5 np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): child_chromosome = [] global CROSSOVER_PROB for gp1 , gp2 in zip(self.chromosome , par2.chromosome): child_part_chromosome = [] # print(gp1) for i in range(len(gp1)): probability_of_crossover = random.random() if (probability_of_crossover > CROSSOVER_PROB): # do crossover probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) else: # do mutation child_part_chromosome.append(self.mutate(i)) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X # TARGET_LENGTH = determine_target_length(RANGE_OF_X) generation = 1 count = 1000 population = [] for _ in range(POPULATION_SIZE): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*POPULATION_SIZE) new_generation.extend(population[:s]) s = int(0.90*POPULATION_SIZE) for _ in range(s): # no elitism parent1 = random.choice(population[:POPULATION_SIZE]) parent2 = random.choice(population[:POPULATION_SIZE]) child = parent1.mate(parent2) new_generation.append(child) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_basic_genetic.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {}\tMinimimum Value: {}".format(generation, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_basic_genetic)) , function_val_epoch_basic_genetic , "k--") ###Output Gen: 5 X: [-0.43, 0.09, -0.06, -0.04, 0.05] Fit: -3.7865567921665204 Gen: 10 X: [-0.48, 0.64, -0.35, -0.11, -0.38] Fit: -5.0429321164847725 Gen: 15 X: [-0.48, 0.64, -0.35, -0.11, -0.38] Fit: -5.0429321164847725 Gen: 20 X: [-0.48, 0.64, -0.35, -0.11, -0.38] Fit: -5.0429321164847725 Gen: 25 X: [-0.48, 0.64, -0.35, -0.11, -0.38] Fit: -5.0429321164847725 Gen: 30 X: [-0.48, 0.64, -0.35, -0.11, -0.38] Fit: -5.0429321164847725 Gen: 35 X: [-0.48, 0.64, -0.35, -0.11, -0.38] Fit: -5.0429321164847725 Gen: 40 X: [-0.48, 0.64, -0.35, -0.11, -0.38] Fit: -5.0429321164847725 Gen: 45 X: [-0.3, -0.23, 0.57, -0.05, -0.36] Fit: -5.482656471541309 Gen: 50 X: [-0.3, -0.23, 0.57, -0.05, -0.36] Fit: -5.482656471541309 Gen: 55 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 60 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 65 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 70 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 75 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 80 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 85 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 90 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 95 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 100 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 105 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 110 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 115 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 120 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 125 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 130 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 135 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 140 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 145 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 150 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 155 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 160 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 165 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 170 X: [-0.48, -0.31, -0.33, -0.15, -0.13] Fit: -6.622905122564039 Gen: 175 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 180 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 185 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 190 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 195 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 200 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 205 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 210 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 215 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 220 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 225 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 230 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 235 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 240 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 245 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 250 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 255 X: [-0.44, -0.19, 0.01, -0.5, -0.28] Fit: -6.986517360260253 Gen: 260 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 265 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 270 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 275 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 280 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 285 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 290 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 295 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 300 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 305 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 310 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 315 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 320 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 325 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 330 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 335 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 340 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 345 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 350 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 355 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 360 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 365 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 370 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 375 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 380 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 385 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 390 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 395 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 400 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 405 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 410 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 415 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 420 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 425 X: [-0.4, -0.59, -0.3, -0.01, -0.23] Fit: -7.843382617785142 Gen: 430 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 435 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 440 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 445 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 450 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 455 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 460 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 465 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 470 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 475 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 480 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 485 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 490 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 495 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 500 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 505 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 510 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 515 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 520 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 525 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 530 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 535 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 540 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 545 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 550 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 555 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 560 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 565 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 570 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 575 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 580 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 585 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 590 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 595 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 600 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 605 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 610 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 615 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 620 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 625 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 630 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 635 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 640 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 645 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 650 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 655 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 660 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 665 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 670 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 675 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 680 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 685 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 690 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 695 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 700 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 705 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 710 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 715 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 720 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 725 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 730 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 735 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 740 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 745 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 750 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 755 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 760 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 765 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 770 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 775 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 780 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 785 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 790 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 795 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 800 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 805 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 810 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 815 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 820 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 825 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 830 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 835 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 840 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 845 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 850 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 855 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 860 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 865 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 870 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 875 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 880 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 885 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 890 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 895 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 900 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 905 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 910 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 915 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 920 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 925 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 930 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 935 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 940 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 945 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 950 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 955 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 960 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 965 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 970 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 975 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 980 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 985 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 990 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 995 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 1000 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Fit: -8.121080937869879 Gen: 1001 X: [-0.23, -0.06, -0.03, -0.07, -0.27] Minimimum Value: -8.121080937869879 ###Markdown Using Diversity: ###Code function_val_epoch_diversity = [] RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = 1000 GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 h = 1e-7 X_SIZE = 5 DIVERSITY_PERCENT = 50 np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): global DIVERSITY_PERCENT tot = len(self.chromosome) diversity_idx_arr = np.random.choice(range(tot) , replace=False , size=int(DIVERSITY_PERCENT*tot / 100)) child_chromosome = [] for j , gp1 , gp2 in zip(range(tot) , self.chromosome , par2.chromosome): child_part_chromosome = [] for i in range(len(gp1)): if (j*tot+i) in diversity_idx_arr: child_part_chromosome.append(self.mutate(i)) else: probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X # TARGET_LENGTH = determine_target_length(RANGE_OF_X) generation = 1 count = 1000 population = [] for _ in range(POPULATION_SIZE): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*POPULATION_SIZE) new_generation.extend(population[:s]) s = int(0.90*POPULATION_SIZE) for _ in range(s): # no elitism parent1 = random.choice(population[:POPULATION_SIZE]) parent2 = random.choice(population[:POPULATION_SIZE]) child = parent1.mate(parent2) new_generation.append(child) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_diversity.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {}\tMinimimum Value: {}".format(generation, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_diversity)) , function_val_epoch_diversity , "k--") ###Output Gen: 5 X: [-0.02, -0.1, -0.02, -0.24, -0.61] Fit: -3.937674329374512 Gen: 10 X: [-1.54, -0.15, -0.4, -0.29, -0.27] Fit: -4.312514106136908 Gen: 15 X: [-1.54, -0.15, -0.4, -0.29, -0.27] Fit: -4.312514106136908 Gen: 20 X: [-0.26, -0.82, -0.22, -0.57, -0.37] Fit: -4.964899514920933 Gen: 25 X: [-0.26, -0.82, -0.22, -0.57, -0.37] Fit: -4.964899514920933 Gen: 30 X: [0.68, -0.07, -0.12, -0.54, -0.27] Fit: -5.289523224350354 Gen: 35 X: [0.68, -0.07, -0.12, -0.54, -0.27] Fit: -5.289523224350354 Gen: 40 X: [-0.42, -0.1, -0.02, -0.36, -0.14] Fit: -5.527993746677225 Gen: 45 X: [-0.42, -0.1, -0.02, -0.36, -0.14] Fit: -5.527993746677225 Gen: 50 X: [-0.42, -0.1, -0.02, -0.36, -0.14] Fit: -5.527993746677225 Gen: 55 X: [-1.12, -0.41, -0.35, -0.37, -0.55] Fit: -6.05226898572454 Gen: 60 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 65 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 70 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 75 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 80 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 85 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 90 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 95 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 100 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 105 X: [0.12, -0.11, -0.41, -0.27, -0.1] Fit: -6.453007986388743 Gen: 110 X: [-1.31, -0.12, -0.27, -0.17, -0.15] Fit: -6.581034658487475 Gen: 115 X: [0.14, -0.11, -0.02, -0.22, -0.18] Fit: -7.0339500201100496 Gen: 120 X: [0.14, -0.11, -0.02, -0.22, -0.18] Fit: -7.0339500201100496 Gen: 125 X: [0.14, -0.11, -0.02, -0.22, -0.18] Fit: -7.0339500201100496 Gen: 130 X: [-0.14, -0.17, -0.23, -0.35, -0.11] Fit: -7.168568732811705 Gen: 135 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 140 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 145 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 150 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 155 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 160 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 165 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 170 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 175 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 180 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 185 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 190 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 195 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 200 X: [-0.31, -0.51, -0.09, -0.3, -0.17] Fit: -7.755133476096957 Gen: 205 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 210 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 215 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 220 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 225 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 230 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 235 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 240 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 245 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 250 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 255 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 260 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 265 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 270 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 275 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 280 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 285 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 290 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 295 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 300 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 305 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 310 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 315 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 320 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 325 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 330 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 335 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 340 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 345 X: [-1.03, -0.18, -0.01, -0.06, -0.08] Fit: -7.8096676130693465 Gen: 350 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 355 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 360 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 365 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 370 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 375 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 380 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 385 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 390 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 395 X: [-0.41, -0.2, -0.01, -0.03, -0.19] Fit: -7.87288705220368 Gen: 400 X: [-1.27, -0.11, -0.21, -0.14, -0.29] Fit: -8.23279646265678 Gen: 405 X: [-1.27, -0.11, -0.21, -0.14, -0.29] Fit: -8.23279646265678 Gen: 410 X: [-1.27, -0.11, -0.21, -0.14, -0.29] Fit: -8.23279646265678 Gen: 415 X: [-1.27, -0.11, -0.21, -0.14, -0.29] Fit: -8.23279646265678 Gen: 420 X: [-1.27, -0.11, -0.21, -0.14, -0.29] Fit: -8.23279646265678 Gen: 425 X: [-1.27, -0.11, -0.21, -0.14, -0.29] Fit: -8.23279646265678 Gen: 430 X: [-1.27, -0.11, -0.21, -0.14, -0.29] Fit: -8.23279646265678 Gen: 435 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 440 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 445 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 450 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 455 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 460 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 465 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 470 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 475 X: [-0.08, -0.07, -0.09, -0.11, -0.15] Fit: -8.368935459960822 Gen: 480 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 485 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 490 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 495 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 500 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 505 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 510 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 515 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 520 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 525 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 530 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 535 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 540 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 545 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 550 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 555 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 560 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 565 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 570 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 575 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 580 X: [-1.13, -0.17, -0.22, -0.02, -0.06] Fit: -8.522227663008454 Gen: 585 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 590 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 595 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 600 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 605 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 610 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 615 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 620 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 625 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 630 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 635 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 640 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 645 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 650 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 655 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 660 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 665 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 670 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 675 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 680 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 685 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 690 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 695 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 700 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 705 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 710 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 715 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 720 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 725 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 730 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 735 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 740 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 745 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 750 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 755 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 760 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 765 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 770 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 775 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 780 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 785 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 790 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 795 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 800 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 805 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 810 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 815 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 820 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 825 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 830 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 835 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 840 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 845 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 850 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 855 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 860 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 865 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 870 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 875 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 880 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 885 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 890 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 895 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 900 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 905 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 910 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 915 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 920 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 925 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 930 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 935 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 940 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 945 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 950 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 955 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 960 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 965 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 970 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 975 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 980 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 985 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 990 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 995 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 1000 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Fit: -8.535805733231442 Gen: 1001 X: [-0.4, -0.14, -0.09, -0.17, -0.03] Minimimum Value: -8.535805733231442 ###Markdown Using Random Search ###Code function_val_epoch_random_search = [] RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = 1000 GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 h = 1e-7 X_SIZE = 5 np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): child_chromosome = [] for gp1 , gp2 in zip(self.chromosome , par2.chromosome): child_part_chromosome = [] # print(gp1) for i in range(len(gp1)): probability_of_crossover = random.random() if (probability_of_crossover > 0.1): # do crossover probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) else: # do mutation child_part_chromosome.append(self.mutate(i)) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X # TARGET_LENGTH = determine_target_length(RANGE_OF_X) generation = 1 count = 1000 population = [] for _ in range(POPULATION_SIZE): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*POPULATION_SIZE) new_generation.extend(population[:s]) s = int(0.90*POPULATION_SIZE) for _ in range(s): # Random Search gnome = Individual.create_gnome() new_generation.append(Individual(gnome)) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_random_search.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Gen: {} X: {}\tMinimimum Value: {}".format(generation, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_random_search)) , function_val_epoch_random_search , "k--") ###Output Gen: 5 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 10 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 15 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 20 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 25 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 30 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 35 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 40 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 45 X: [0.4, -0.44, -0.3, 0.49, -0.06] Fit: -4.566818798489114 Gen: 50 X: [-1.02, -0.16, -0.26, -0.03, -0.37] Fit: -4.972204275695288 Gen: 55 X: [-1.02, -0.16, -0.26, -0.03, -0.37] Fit: -4.972204275695288 Gen: 60 X: [-1.02, -0.16, -0.26, -0.03, -0.37] Fit: -4.972204275695288 Gen: 65 X: [-1.02, -0.16, -0.26, -0.03, -0.37] Fit: -4.972204275695288 Gen: 70 X: [-1.02, -0.16, -0.26, -0.03, -0.37] Fit: -4.972204275695288 Gen: 75 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 80 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 85 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 90 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 95 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 100 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 105 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 110 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 115 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 120 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 125 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 130 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 135 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 140 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 145 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 150 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 155 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 160 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 165 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 170 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 175 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 180 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 185 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 190 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 195 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 200 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 205 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 210 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 215 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 220 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 225 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 230 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 235 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 240 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 245 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 250 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 255 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 260 X: [0.2, -0.32, -0.34, -0.01, -0.06] Fit: -5.003549236136931 Gen: 265 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 270 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 275 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 280 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 285 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 290 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 295 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 300 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 305 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 310 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 315 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 320 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 325 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 330 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 335 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 340 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 345 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 350 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 355 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 360 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 365 X: [-0.77, -0.26, -0.29, -0.31, 0.25] Fit: -5.064618362666242 Gen: 370 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 375 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 380 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 385 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 390 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 395 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 400 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 405 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 410 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 415 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 420 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 425 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 430 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 435 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 440 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 445 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 450 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 455 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 460 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 465 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 470 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 475 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 480 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 485 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 490 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 495 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 500 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 505 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 510 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 515 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 520 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 525 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 530 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 535 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 540 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 545 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 550 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 555 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 560 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 565 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 570 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 575 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 580 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 585 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 590 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 595 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 600 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 605 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 610 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 615 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 620 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 625 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 630 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 635 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 640 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 645 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 650 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 655 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 660 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 665 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 670 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 675 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 680 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 685 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 690 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 695 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 700 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 705 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 710 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 715 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 720 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 725 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 730 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 735 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 740 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 745 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 750 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 755 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 760 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 765 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 770 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 775 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 780 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 785 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 790 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 795 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 800 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 805 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 810 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 815 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 820 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 825 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 830 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 835 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 840 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 845 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 850 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 855 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 860 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 865 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 870 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 875 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 880 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 885 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 890 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 895 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 900 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 905 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 910 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 915 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 920 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 925 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 930 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 935 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 940 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 945 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 950 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 955 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 960 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 965 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 970 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 975 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 980 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 985 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 990 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 995 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 1000 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Fit: -6.075811704644703 Gen: 1001 X: [-1.73, -0.5, -0.23, -0.44, -0.25] Minimimum Value: -6.075811704644703 ###Markdown Comparison: ###Code plt.plot(range(len(function_val_epoch_elitism)) , function_val_epoch_elitism , "k--") plt.plot(range(len(function_val_epoch_basic_genetic)) , function_val_epoch_basic_genetic , "b--") plt.plot(range(len(function_val_epoch_diversity)) , function_val_epoch_diversity , "r--") plt.plot(range(len(function_val_epoch_random_search)) , function_val_epoch_random_search , "g--") plt.legend(["with elitism" , "basic-genetic" , "with diversity" , "random search"]) ###Output _____no_output_____ ###Markdown Clearly, Random Search is worst approach for this kind of the problems, it's complete luck. Elitism: with different sample count ###Code RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = [50 ,100 , 500 , 1000] GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 CROSSOVER_PROB = 0.1 h = 1e-7 X_SIZE = 5 np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): global CROSSOVER_PROB child_chromosome = [] for gp1 , gp2 in zip(self.chromosome , par2.chromosome): child_part_chromosome = [] # print(gp1) for i in range(len(gp1)): probability_of_crossover = random.random() if (probability_of_crossover > CROSSOVER_PROB): # do crossover probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) else: # do mutation child_part_chromosome.append(self.mutate(i)) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X color = ["k--" , "b--" , "r--" , "g--" , "y--"] legend = [] for N, c in zip(POPULATION_SIZE , color): np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) function_val_epoch_elitism = [] generation = 1 count = 1000 population = [] for _ in range(N): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*N) new_generation.extend(population[:s]) s = int(0.90*N) for _ in range(s): parent1 = random.choice(population[:N//2]) parent2 = random.choice(population[:N//2]) child = parent1.mate(parent2) new_generation.append(child) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) #print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_elitism.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Population: {} X: {}\tMinimimum Value: {}".format(N, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_elitism)) , function_val_epoch_elitism , c) legend.append("N = {}".format(N)) plt.legend(legend) ###Output Population: 50 X: [-0.71, -0.03, -0.05, -0.24, -0.05] Minimimum Value: -7.423175616939729 Population: 100 X: [-0.15, -0.36, -0.03, -0.23, -0.04] Minimimum Value: -8.358071308792296 Population: 500 X: [-0.08, -0.02, -0.08, -0.01, -0.13] Minimimum Value: -8.776798931437748 Population: 1000 X: [-0.01, -0.11, -0.18, -0.23, -0.27] Minimimum Value: -8.948559792465993 ###Markdown The result above is as expected for a genetic algorithm with elitism. The more the size of the population the diversity and the fitness is maintained at the same time, which in principle yields (most of the time) a better result on increasing the size of the population with a suitable number of epochs. Basic Genetic Algorithm : with different sample count ###Code function_val_epoch_basic_genetic = [] RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = [50, 100, 500, 1000] GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 CROSSOVER_PROB = 0.1 h = 1e-7 X_SIZE = 5 def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): child_chromosome = [] global CROSSOVER_PROB for gp1 , gp2 in zip(self.chromosome , par2.chromosome): child_part_chromosome = [] # print(gp1) for i in range(len(gp1)): probability_of_crossover = random.random() if (probability_of_crossover > CROSSOVER_PROB): # do crossover probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) else: # do mutation child_part_chromosome.append(self.mutate(i)) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X # TARGET_LENGTH = determine_target_length(RANGE_OF_X) color = ["k--" , "b--" , "r--" , "g--" , "y--"] legend = [] for N, c in zip(POPULATION_SIZE , color): np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) function_val_epoch_basic_genetic = [] generation = 1 count = 1000 population = [] for _ in range(N): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*N) new_generation.extend(population[:s]) s = int(0.90*N) for _ in range(s): # no elitism parent1 = random.choice(population[:N]) parent2 = random.choice(population[:N]) child = parent1.mate(parent2) new_generation.append(child) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) #print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_basic_genetic.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Population: {} X: {}\tMinimimum Value: {}".format(N, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_basic_genetic)) , function_val_epoch_basic_genetic , c) legend.append("N = {}".format(N)) plt.legend(legend) ###Output Population: 50 X: [-0.32, -0.25, -0.26, -0.24, -0.03] Minimimum Value: -7.314303773893771 Population: 100 X: [0.14, -0.04, -0.23, -0.35, -0.21] Minimimum Value: -6.909335612272095 Population: 500 X: [-0.26, -0.56, -0.04, -0.24, -0.08] Minimimum Value: -8.875460202474713 Population: 1000 X: [-0.08, -0.46, -0.16, -0.19, -0.05] Minimimum Value: -7.921433360804886 ###Markdown Unlike genetic algorithm with elitism, in basic genetic algorithm the complete population get the chance to mate(crossover and mutation) which may or may not improve the results on increasing the size of the population, because increasing the size of the population also expose us to the risk that elite members will not get chance to mate. Diversity: with the different sample counts ###Code function_val_epoch_diversity = [] RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = [50 , 100 , 500 , 1000] GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 h = 1e-7 X_SIZE = 5 DIVERSITY_PERCENT = 50 np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): global DIVERSITY_PERCENT tot = len(self.chromosome) diversity_idx_arr = np.random.choice(range(tot) , replace=False , size=int(DIVERSITY_PERCENT*tot / 100)) child_chromosome = [] for j , gp1 , gp2 in zip(range(tot) , self.chromosome , par2.chromosome): child_part_chromosome = [] for i in range(len(gp1)): if (j*tot+i) in diversity_idx_arr: child_part_chromosome.append(self.mutate(i)) else: probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X # TARGET_LENGTH = determine_target_length(RANGE_OF_X) color = ["k--" , "b--" , "r--" , "g--" , "y--"] legend = [] for N, c in zip(POPULATION_SIZE , color): np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) function_val_epoch_diversity = [] generation = 1 count = 1000 population = [] for _ in range(N): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*N) new_generation.extend(population[:s]) s = int(0.90*N) for _ in range(s): # no elitism parent1 = random.choice(population[:N]) parent2 = random.choice(population[:N]) child = parent1.mate(parent2) new_generation.append(child) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) #print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_diversity.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Population: {} X: {}\tMinimimum Value: {}".format(N, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_diversity)) , function_val_epoch_diversity , c) legend.append("N = {}".format(N)) plt.legend(legend) ###Output Population: 50 X: [-0.39, -0.2, -0.13, -0.01, -0.3] Minimimum Value: -8.002973851495726 Population: 100 X: [-0.07, -0.16, -0.05, -0.22, -0.34] Minimimum Value: -7.915400920312548 Population: 500 X: [-1.08, -0.1, -0.35, -0.02, -0.18] Minimimum Value: -9.177451964813589 Population: 1000 X: [-0.05, -0.04, -0.11, -0.24, -0.04] Minimimum Value: -9.030058205773974 ###Markdown I don't even need to state that this is the best results by far we have got. Just like the elitism it is also affected by increasing the population size and the overall trend is that the performance(on an average) increases. Random Search : with different sample counts ###Code function_val_epoch_random_search = [] RANGE_OF_X = [-2.04 , 2.04] POPULATION_SIZE = [50, 100, 500, 1000] GENES = ["01" , "012" , "0123456789", "0123456789"] TARGET_LENGTH = 4 h = 1e-7 X_SIZE = 5 np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) def f1(X): return np.sum(np.square(X)) def f2(X): return np.sum(np.floor(X)) def f3(X): return np.sum(np.multiply(np.arange(len(X)) , np.power(X , 4) ) ) + np.random.standard_normal(1)[0] def g(X): return f1(X) + f2(X) + f3(X) def determine_target_length(range_of_x): n = max(range_of_x) return int(np.ceil(np.log(n)/np.log(2))) def getNum(l): num_str="" if l[0] == "1": num_str+="-" num_str += "{}.{}{}".format(l[1] , l[2], l[3]) return float(num_str) def inRange(l , range_of_x): num = getNum(l) return min(range_of_x)<= num <= max(range_of_x) class Individual(object): def __init__(self,chromosome): self.chromosome = chromosome self.fitness = self.calculate_fitness() @classmethod def mutate(self , digit_num:int): global GENES return random.choice(GENES[digit_num]) @classmethod def create_gnome(self): global TARGET_LENGTH global RANGE_OF_X global X_SIZE gnome = [] for i in range(X_SIZE): while True: l = [self.mutate(i) for i in range(TARGET_LENGTH)] if (inRange(l , RANGE_OF_X)): gnome.append(l) break return gnome def mate(self , par2): child_chromosome = [] for gp1 , gp2 in zip(self.chromosome , par2.chromosome): child_part_chromosome = [] # print(gp1) for i in range(len(gp1)): probability_of_crossover = random.random() if (probability_of_crossover > 0.1): # do crossover probability_of_p1_gene = random.random() if probability_of_p1_gene > 0.5: child_part_chromosome.append(gp1[i]) else: child_part_chromosome.append(gp2[i]) else: # do mutation child_part_chromosome.append(self.mutate(i)) child_chromosome.append(child_part_chromosome) return Individual(child_chromosome) def calculate_fitness(self): global TARGET_LENGTH X = [] for s in self.chromosome: #print(s) #s = ''.join(map(str, self.chromosome)) x = getNum(s) X.append(x) return g(X) global POPULATION_SIZE global TARGET_LENGTH global RANGE_OF_X # TARGET_LENGTH = determine_target_length(RANGE_OF_X) color = ["k--" , "b--" , "r--" , "g--" , "y--"] legend = [] for N, c in zip(POPULATION_SIZE , color): np.random.seed(np.random.randint(low=0 , high=100)) random.seed(np.random.randint(low=0 , high=100)) function_val_epoch_random_search = [] generation = 1 count = 1000 population = [] for _ in range(N): gnome = Individual.create_gnome() population.append(Individual(gnome)) while count!=0: count-=1 population = sorted(population , key = lambda x:x.fitness) # performing elitism new_generation = [] s = int(0.10*N) new_generation.extend(population[:s]) s = int(0.90*N) for _ in range(s): # Random Search gnome = Individual.create_gnome() new_generation.append(Individual(gnome)) if generation % 5 ==0: population = new_generation get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) # print("Gen: {} X: {} Fit: {}".format(generation, get_num_arr, population[0].fitness)) function_val_epoch_random_search.append(population[0].fitness) generation += 1 get_num_arr = [] for l in population[0].chromosome: get_num_arr.append(getNum(l)) print("Population: {} X: {}\tMinimimum Value: {}".format(N, get_num_arr, population[0].fitness)) plt.plot(range(len(function_val_epoch_random_search)) , function_val_epoch_random_search , c) legend.append("N = {}".format(N)) plt.legend(legend) ###Output Population: 50 X: [-1.07, -0.59, -0.18, -0.09, 0.61] Minimimum Value: -4.150216119472115 Population: 100 X: [-1.34, -0.38, -0.14, -0.11, 0.34] Minimimum Value: -5.247213375510198 Population: 500 X: [-0.11, -0.57, -0.12, -0.1, 0.18] Minimimum Value: -6.707476516282099 Population: 1000 X: [-1.32, -0.42, -0.01, -0.27, -0.19] Minimimum Value: -5.635770854849166
examples/Tutorial 4.ipynb
###Markdown Riskfolio-Lib Tutorial: __[Financionerioncios](https://financioneroncios.wordpress.com)____[Orenji](https://www.orenj-i.net)____[Riskfolio-Lib](https://riskfolio-lib.readthedocs.io/en/latest/)____[Dany Cajas](https://www.linkedin.com/in/dany-cajas/)__ Tutorial 4: Bond Portfolio Optimization and ImmunizationIf you want to know more about the mathematics behind this model you can check the following posts: __[Valorización de Bonos con Python parte II](https://financioneroncios.wordpress.com/2018/05/23/valorizacion-de-bonos-con-python-parte-ii/)__, __[Fixed Income Portfolio Optimization with Python](https://financioneroncios.wordpress.com/2020/01/09/fixed-income-portfolio-optimization-with-python/)__ 1. Uploading the data: ###Code ######################################################################## # Uploading Data ######################################################################## import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore") # Interest Rates Data kr = pd.read_excel('KeyRates.xlsx', engine='openpyxl', index_col=0, header=0)/100 # Prices Data assets = pd.read_excel('Assets.xlsx', engine='openpyxl', index_col=0, header=0) # Find common dates a = pd.merge(left=assets, right=kr, how='inner', on='Date') dates = a.index # Calculate interest rates returns kr_returns = kr.loc[dates,:].sort_index().diff().dropna() kr_returns.sort_index(ascending=False, inplace=True) # List of instruments equity = ['APA','CMCSA','CNP','HPQ','PSA','SEE','ZION'] bonds = ['PEP11900D031', 'PEP13000D012', 'PEP13000M088', 'PEP23900M103','PEP70101M530','PEP70101M571', 'PEP70310M156'] # Calculate assets returns assets_returns = assets.loc[dates, equity + bonds] assets_returns = assets_returns.sort_index().pct_change().dropna() assets_returns.sort_index(ascending=False, inplace=True) # Show tables display(kr_returns.head().style.format("{:.4%}")) display(assets_returns.head().style.format("{:.4%}")) ######################################################################## # Uploading Duration and Convexity Matrixes ######################################################################## durations = pd.read_excel('durations.xlsx', index_col=0, header=0) convexity = pd.read_excel('convexity.xlsx', index_col=0, header=0) print('Durations Matrix') display(durations.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) print('') print('Convexity Matrix') display(convexity.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output Durations Matrix ###Markdown 2. Estimating Mean Variance Portfolio 2.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building The Loadings Matrix ######################################################################## loadings = pd.concat([-1.0 * durations, 0.5 * convexity], axis = 1) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ######################################################################## # Building the risk factors returns matrix ######################################################################## kr_returns_2 = kr_returns ** 2 cols = loadings.columns X = pd.concat([kr_returns, kr_returns_2], axis=1) X.columns = cols display(X.head().style.format("{:.4%}")) ######################################################################## # Building the asset returns matrix ######################################################################## Y = assets_returns[loadings.index] display(Y.head()) ###Output _____no_output_____ ###Markdown 2.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## import riskfolio as rp # Building the portfolio object port = rp.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3. Optimization with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 3.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:9,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:9].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating durations constraints ######################################################################## constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3], 'Relative Factor': ['', '', '']} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 3.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate duration constraints ######################################################################## C, D = rp.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown We can see that with this constraints the weights of the portfolio are more spread along all assets. To show that the portfolio full fill all constraints we will calculate the sensitivities of the portfolio. ###Code ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4. Estimating Mean Variance Portfolio 4.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building the risk factors returns matrix ######################################################################## # Removing bond returns from factors matrix cols = assets_returns.columns cols = ~cols.isin(loadings.index) cols = assets_returns.columns[cols] # Other approach for removing bond returns from factors matrix cols = [col for col in assets_returns.columns if col not in loadings.index] X = pd.concat([assets_returns[cols], X], axis=1) display(X.head()) ######################################################################## # Building the asset returns matrix ######################################################################## Y = pd.concat([assets_returns[cols], Y], axis=1) display(Y.head()) ######################################################################## # Building The Loadings Matrix ######################################################################## a = np.identity(len(cols)) a = pd.DataFrame(a, index=cols, columns=cols) loadings = pd.concat([a, loadings], axis = 1) loadings.fillna(0, inplace=True) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## port = rp.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5. Optimization of Equity and Bond Portfolio with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 5.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:16,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:16].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating key rate durations constraints ######################################################################## constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3], 'Relative Factor': ['', '', '']} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 5.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate durations constraints ######################################################################## C, D = rp.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown Riskfolio-Lib Tutorial: __[Financionerioncios](https://financioneroncios.wordpress.com)____[Orenji](https://www.orenj-i.net)____[Riskfolio-Lib](https://riskfolio-lib.readthedocs.io/en/latest/)____[Dany Cajas](https://www.linkedin.com/in/dany-cajas/)__ Tutorial 4: Bond Portfolio Optimization and ImmunizationIf you want to know more about the mathematics behind this model you can check the following posts: __[Valorización de Bonos con Python parte II](https://financioneroncios.wordpress.com/2018/05/23/valorizacion-de-bonos-con-python-parte-ii/)__, __[Fixed Income Portfolio Optimization with Python](https://financioneroncios.wordpress.com/2020/01/09/fixed-income-portfolio-optimization-with-python/)__ 1. Uploading the data: ###Code ######################################################################## # Uploading Data ######################################################################## import pandas as pd import numpy as np # Interest Rates Data kr = pd.read_excel('KeyRates.xlsx', engine='openpyxl', index_col=0, header=0)/100 # Prices Data assets = pd.read_excel('Assets.xlsx', engine='openpyxl', index_col=0, header=0) # Find common dates a = pd.merge(left=assets, right=kr, how='inner', on='Date') dates = a.index # Calculate interest rates returns kr_returns = kr.loc[dates,:].sort_index().diff().dropna() kr_returns.sort_index(ascending=False, inplace=True) # List of instruments equity = ['APA','CMCSA','CNP','HPQ','PSA','SEE','ZION'] bonds = ['PEP11900D031', 'PEP13000D012', 'PEP13000M088', 'PEP23900M103','PEP70101M530','PEP70101M571', 'PEP70310M156'] # Calculate assets returns assets_returns = assets.loc[dates, equity + bonds] assets_returns = assets_returns.sort_index().pct_change().dropna() assets_returns.sort_index(ascending=False, inplace=True) # Show tables display(kr_returns.head().style.format("{:.4%}")) display(assets_returns.head().style.format("{:.4%}")) ######################################################################## # Uploading Duration and Convexity Matrixes ######################################################################## durations = pd.read_excel('durations.xlsx', index_col=0, header=0) convexity = pd.read_excel('convexity.xlsx', index_col=0, header=0) print('Durations Matrix') display(durations.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) print('') print('Convexity Matrix') display(convexity.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output Durations Matrix ###Markdown 2. Estimating Mean Variance Portfolio 2.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building The Loadings Matrix ######################################################################## loadings = pd.concat([-1.0 * durations, 0.5 * convexity], axis = 1) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ######################################################################## # Building the risk factors returns matrix ######################################################################## kr_returns_2 = kr_returns ** 2 cols = loadings.columns X = pd.concat([kr_returns, kr_returns_2], axis=1) X.columns = cols display(X.head().style.format("{:.4%}")) ######################################################################## # Building the asset returns matrix ######################################################################## Y = assets_returns[loadings.index] display(Y.head()) ###Output _____no_output_____ ###Markdown 2.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## import riskfolio.Portfolio as pf # Building the portfolio object port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3. Optimization with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 3.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:9,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:9].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating durations constraints ######################################################################## import riskfolio.ConstraintsFunctions as cf constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3], 'Relative Factor': ['', '', '']} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 3.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate duration constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown We can see that with this constraints the weights of the portfolio are more spread along all assets. To show that the portfolio full fill all constraints we will calculate the sensitivities of the portfolio. ###Code ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4. Estimating Mean Variance Portfolio 4.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building the risk factors returns matrix ######################################################################## # Removing bond returns from factors matrix cols = assets_returns.columns cols = ~cols.isin(loadings.index) cols = assets_returns.columns[cols] # Other approach for removing bond returns from factors matrix cols = [col for col in assets_returns.columns if col not in loadings.index] X = pd.concat([assets_returns[cols], X], axis=1) display(X.head()) ######################################################################## # Building the asset returns matrix ######################################################################## Y = pd.concat([assets_returns[cols], Y], axis=1) display(Y.head()) ######################################################################## # Building The Loadings Matrix ######################################################################## a = np.identity(len(cols)) a = pd.DataFrame(a, index=cols, columns=cols) loadings = pd.concat([a, loadings], axis = 1) loadings.fillna(0, inplace=True) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5. Optimization of Equity and Bond Portfolio with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 5.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:16,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:16].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating key rate durations constraints ######################################################################## constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3], 'Relative Factor': ['', '', '']} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 5.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate durations constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown Riskfolio-Lib Tutorial: __[Financionerioncios](https://financioneroncios.wordpress.com)____[Orenji](https://www.orenj-i.net)____[Riskfolio-Lib](https://riskfolio-lib.readthedocs.io/en/latest/)____[Dany Cajas](https://www.linkedin.com/in/dany-cajas/)__ Part IV: Bond Portfolio Optimization and ImmunizationIf you want to know more about the mathematics behind this model you can check the following posts: __[Valorización de Bonos con Python parte II](https://financioneroncios.wordpress.com/2018/05/23/valorizacion-de-bonos-con-python-parte-ii/)__, __[Fixed Income Portfolio Optimization with Python](https://financioneroncios.wordpress.com/2020/01/09/fixed-income-portfolio-optimization-with-python/)__ 1. Uploading the data: ###Code ######################################################################## # Uploading Data ######################################################################## import pandas as pd import numpy as np # Interest Rates Data kr = pd.read_excel('KeyRates.xlsx', index_col=0, header=0)/100 # Prices Data assets = pd.read_excel('Assets.xlsx', index_col=0, header=0) # Find common dates a = pd.merge(left=assets, right=kr, how='inner', on='Date') dates = a.index # Calculate interest rates returns kr_returns = kr.loc[dates,:].sort_index().diff().dropna() kr_returns.sort_index(ascending=False, inplace=True) # Calculate assets returns assets_returns = assets.loc[dates,:].sort_index().pct_change().dropna() assets_returns.sort_index(ascending=False, inplace=True) # Show tables display(kr_returns.head().style.format("{:.4%}")) display(assets_returns.head().style.format("{:.4%}")) ######################################################################## # Uploading Duration and Convexity Matrixes ######################################################################## durations = pd.read_excel('durations.xlsx', index_col=0, header=0) convexity = pd.read_excel('convexity.xlsx', index_col=0, header=0) print('Durations Matrix') display(durations.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) print('') print('Convexity Matrix') display(convexity.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output Durations Matrix ###Markdown 2. Estimating Mean Variance Portfolio 2.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building The Loadings Matrix ######################################################################## loadings = pd.concat([-1.0 * durations, 0.5 * convexity], axis = 1) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ######################################################################## # Building the risk factors returns matrix ######################################################################## kr_returns_2 = kr_returns ** 2 cols = loadings.columns X = pd.concat([kr_returns, kr_returns_2], axis=1) X.columns = cols display(X.head().style.format("{:.4%}")) ######################################################################## # Building the asset returns matrix ######################################################################## Y = assets_returns[loadings.index] display(Y.head()) ###Output _____no_output_____ ###Markdown 2.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## import riskfolio.Portfolio as pf # Building the portfolio object port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3. Optimization with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 3.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:9,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:9].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating durations constraints ######################################################################## import riskfolio.ConstraintsFunctions as cf constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3],} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 3.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate duration constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown We can see that with this constraints the weights of the portfolio are more spread along all assets. To show that the portfolio full fill all constraints we will calculate the sensitivities of the portfolio. ###Code ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4. Estimating Mean Variance Portfolio 4.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building the risk factors returns matrix ######################################################################## # Removing bond returns from factors matrix cols = assets_returns.columns cols = ~cols.isin(loadings.index) cols = assets_returns.columns[cols] # Other approach for removing bond returns from factors matrix cols = [col for col in assets_returns.columns if col not in loadings.index] X = pd.concat([assets_returns[cols], X], axis=1) display(X.head()) ######################################################################## # Building the asset returns matrix ######################################################################## Y = pd.concat([assets_returns[cols], Y], axis=1) display(Y.head()) ######################################################################## # Building The Loadings Matrix ######################################################################## a = np.identity(len(cols)) a = pd.DataFrame(a, index=cols, columns=cols) loadings = pd.concat([a, loadings], axis = 1) loadings.fillna(0, inplace=True) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5. Optimization of Equity and Bond Portfolio with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 5.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:16,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:16].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating key rate durations constraints ######################################################################## constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3],} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 5.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate durations constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown Riskfolio-Lib Tutorial: __[Financionerioncios](https://financioneroncios.wordpress.com)____[Orenji](https://www.orenj-i.net)____[Riskfolio-Lib](https://riskfolio-lib.readthedocs.io/en/latest/)____[Dany Cajas](https://www.linkedin.com/in/dany-cajas/)__ Part IV: Bond Portfolio Optimization and ImmunizationIf you want to know more about the mathematics behind this model you can check the following posts: __[Valorización de Bonos con Python parte II](https://financioneroncios.wordpress.com/2018/05/23/valorizacion-de-bonos-con-python-parte-ii/)__, __[Fixed Income Portfolio Optimization with Python](https://financioneroncios.wordpress.com/2020/01/09/fixed-income-portfolio-optimization-with-python/)__ 1. Uploading the data: ###Code ######################################################################## # Uploading Data ######################################################################## import pandas as pd import numpy as np # Interest Rates Data kr = pd.read_excel('KeyRates.xlsx', index_col=0, header=0)/100 # Prices Data assets = pd.read_excel('Assets.xlsx', index_col=0, header=0) # Find common dates a = pd.merge(left=assets, right=kr, how='inner', on='Date') dates = a.index # Calculate interest rates returns kr_returns = kr.loc[dates,:].sort_index().diff().dropna() kr_returns.sort_index(ascending=False, inplace=True) # Calculate assets returns assets_returns = assets.loc[dates,:].sort_index().pct_change().dropna() assets_returns.sort_index(ascending=False, inplace=True) # Show tables display(kr_returns.head().style.format("{:.4%}")) display(assets_returns.head().style.format("{:.4%}")) ######################################################################## # Uploading Duration and Convexity Matrixes ######################################################################## durations = pd.read_excel('durations.xlsx', index_col=0, header=0) convexity = pd.read_excel('convexity.xlsx', index_col=0, header=0) print('Durations Matrix') display(durations.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) print('') print('Convexity Matrix') display(convexity.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output Durations Matrix ###Markdown 2. Estimating Mean Variance Portfolio 2.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building The Loadings Matrix ######################################################################## loadings = pd.concat([-1.0 * durations, 0.5 * convexity], axis = 1) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ######################################################################## # Building the risk factors returns matrix ######################################################################## kr_returns_2 = kr_returns ** 2 cols = loadings.columns X = pd.concat([kr_returns, kr_returns_2], axis=1) X.columns = cols display(X.head().style.format("{:.4%}")) ######################################################################## # Building the asset returns matrix ######################################################################## Y = assets_returns[loadings.index] display(Y.head()) ###Output _____no_output_____ ###Markdown 2.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## import riskfolio.Portfolio as pf # Building the portfolio object port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3. Optimization with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 3.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:9,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:9].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating durations constraints ######################################################################## import riskfolio.ConstraintsFunctions as cf constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3],} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 3.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate duration constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown We can see that with this constraints the weights of the portfolio are more spread along all assets. To show that the portfolio full fill all constraints we will calculate the sensitivities of the portfolio. ###Code ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4. Estimating Mean Variance Portfolio 4.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building the risk factors returns matrix ######################################################################## # Removing bond returns from factors matrix cols = assets_returns.columns cols = ~cols.isin(loadings.index) cols = assets_returns.columns[cols] # Other approach for removing bond returns from factors matrix cols = [col for col in assets_returns.columns if col not in loadings.index] X = pd.concat([assets_returns[cols], X], axis=1) display(X.head()) ######################################################################## # Building the asset returns matrix ######################################################################## Y = pd.concat([assets_returns[cols], Y], axis=1) display(Y.head()) ######################################################################## # Building The Loadings Matrix ######################################################################## a = np.identity(len(cols)) a = pd.DataFrame(a, index=cols, columns=cols) loadings = pd.concat([a, loadings], axis = 1) loadings.fillna(0, inplace=True) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5. Optimization of Equity and Bond Portfolio with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 5.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:16,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:16].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating key rate durations constraints ######################################################################## constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3],} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 5.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate durations constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown Riskfolio-Lib Tutorial: __[Financionerioncios](https://financioneroncios.wordpress.com)____[Orenji](https://www.orenj-i.com)____[Riskfolio-Lib](https://riskfolio-lib.readthedocs.io/en/latest/)____[Dany Cajas](https://www.linkedin.com/in/dany-cajas/)__ Part IV: Bond Portfolio Optimization and ImmunizationIf you want to know more about the mathematics behind this model you can check the following posts: __[Valorización de Bonos con Python parte II](https://financioneroncios.wordpress.com/2018/05/23/valorizacion-de-bonos-con-python-parte-ii/)__, __[Fixed Income Portfolio Optimization with Python](https://financioneroncios.wordpress.com/2020/01/09/fixed-income-portfolio-optimization-with-python/)__ 1. Uploading the data: ###Code ######################################################################## # Uploading Data ######################################################################## import pandas as pd import numpy as np # Interest Rates Data kr = pd.read_excel('KeyRates.xlsx', index_col=0, header=0)/100 # Prices Data assets = pd.read_excel('Assets.xlsx', index_col=0, header=0) # Find common dates a = pd.merge(left=assets, right=kr, how='inner', on='Date') dates = a.index # Calculate interest rates returns kr_returns = kr.loc[dates,:].sort_index().diff().dropna() kr_returns.sort_index(ascending=False, inplace=True) # Calculate assets returns assets_returns = assets.loc[dates,:].sort_index().pct_change().dropna() assets_returns.sort_index(ascending=False, inplace=True) # Show tables display(kr_returns.head().style.format("{:.4%}")) display(assets_returns.head().style.format("{:.4%}")) ######################################################################## # Uploading Duration and Convexity Matrixes ######################################################################## durations = pd.read_excel('durations.xlsx', index_col=0, header=0) convexity = pd.read_excel('convexity.xlsx', index_col=0, header=0) print('Durations Matrix') display(durations.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) print('') print('Convexity Matrix') display(convexity.head().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output Durations Matrix ###Markdown 2. Estimating Mean Variance Portfolio 2.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building The Loadings Matrix ######################################################################## loadings = pd.concat([-1.0 * durations, 0.5 * convexity], axis = 1) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ######################################################################## # Building the risk factors returns matrix ######################################################################## kr_returns_2 = kr_returns ** 2 cols = loadings.columns X = pd.concat([kr_returns, kr_returns_2], axis=1) X.columns = cols display(X.head().style.format("{:.4%}")) ######################################################################## # Building the asset returns matrix ######################################################################## Y = assets_returns[loadings.index] display(Y.head()) ###Output _____no_output_____ ###Markdown 2.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## import riskfolio.Portfolio as pf # Building the portfolio object port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3. Optimization with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 3.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:9,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:9].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 3.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating durations constraints ######################################################################## import riskfolio.ConstraintsFunctions as cf constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3],} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 3.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate duration constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown We can see that with this constraints the weights of the portfolio are more spread along all assets. To show that the portfolio full fill all constraints we will calculate the sensitivities of the portfolio. ###Code ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4. Estimating Mean Variance Portfolio 4.1 Building the loadings matrix and risk factors returns.This part shows how to build a personalized loadings matrix that will be used by __Riskfolio-Lib__ to calculate the expected returns and covariance matrix. ###Code ######################################################################## # Building the risk factors returns matrix ######################################################################## # Removing bond returns from factors matrix cols = assets_returns.columns cols = ~cols.isin(loadings.index) cols = assets_returns.columns[cols] # Other approach for removing bond returns from factors matrix cols = [col for col in assets_returns.columns if col not in loadings.index] X = pd.concat([assets_returns[cols], X], axis=1) display(X.head()) ######################################################################## # Building the asset returns matrix ######################################################################## Y = pd.concat([assets_returns[cols], Y], axis=1) display(Y.head()) ######################################################################## # Building The Loadings Matrix ######################################################################## a = np.identity(len(cols)) a = pd.DataFrame(a, index=cols, columns=cols) loadings = pd.concat([a, loadings], axis = 1) loadings.fillna(0, inplace=True) display(loadings.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 4.2 Calculating the portfolio that maximizes Sharpe ratio. ###Code ######################################################################## # Calculating optimum portfolio ######################################################################## port = pf.Portfolio(returns=Y) # Select method and estimate input parameters: method_mu='hist' # Method to estimate expected returns based on historical data. method_cov='hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) port.factors = X port.factors_stats(method_mu=method_mu, method_cov=method_cov, d=0.94, B=loadings) # Estimate optimal portfolio: model='FM' # Factor Model rm = 'MV' # Risk measure used, this time will be variance obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = False # Use historical scenarios for risk measures that depend on scenarios rf = 0 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5. Optimization of Equity and Bond Portfolio with Key Rate Durations ConstraintsThis part shows how __Riskfolio-Lib__ can be used to build immunized portfolios using __duration matching__ and __convexity matching__, however the example only use duration matching. More information about inmunization theory can be found in this __[link](https://www.investopedia.com/terms/i/immunization.asp)__. 5.1 Statistics of Risk Factors ###Code ######################################################################## # Displaying factors statistics ######################################################################## table = pd.concat([loadings.min(), loadings.max()], axis=1) table.columns = ['min', 'max'] display(table.iloc[:16,:].style.format("{:.4f}").background_gradient(cmap='YlGn')) display(X.iloc[:,:16].corr().style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____ ###Markdown 5.2 Creating Constraints on Key Rate DurationsIn this example we are going to put a limit on the maximum duration that the portfolio can reach. The key rate durations of portfolio for 1800, 3600 and 7200 days will be lower than -2, -2 and -3. ###Code ######################################################################## # Creating key rate durations constraints ######################################################################## constraints = {'Disabled': [False, False, False], 'Factor': ['R 1800', 'R 3600', 'R 7200'], 'Sign': ['<=', '<=', '<='], 'Value': [-2, -2, -3],} constraints = pd.DataFrame(constraints) display(constraints) ###Output _____no_output_____ ###Markdown 5.3 Estimating Optimum Portfolio with Key Rate Durations Constraints ###Code ######################################################################## # Estimating optimum portfolio with key rate durations constraints ######################################################################## C, D = cf.factors_constraints(constraints, loadings) port.ainequality = C port.binequality = D w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) display(w.style.format("{:.4%}").background_gradient(cmap='YlGn')) ######################################################################## # Calculating portfolio sensitivities for each risk factor ######################################################################## d_ = np.matrix(loadings).T * np.matrix(w) d_ = pd.DataFrame(d_, index=loadings.columns, columns=['Values']) display(d_.style.format("{:.4f}").background_gradient(cmap='YlGn')) ###Output _____no_output_____
notebooks/text-autoencoders_aae_train.ipynb
###Markdown DATA ###Code !bash download_data.sh ###Output --2021-07-25 06:11:06-- http://people.csail.mit.edu/tianxiao/data/yelp.zip Resolving people.csail.mit.edu (people.csail.mit.edu)... 128.30.2.133 Connecting to people.csail.mit.edu (people.csail.mit.edu)|128.30.2.133|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 3676642 (3.5M) [application/zip] Saving to: ‘yelp.zip’ yelp.zip 100%[===================>] 3.51M --.-KB/s in 0.1s 2021-07-25 06:11:06 (33.5 MB/s) - ‘yelp.zip’ saved [3676642/3676642] Archive: yelp.zip creating: yelp/ creating: yelp/tense/ inflating: yelp/tense/valid.past inflating: yelp/tense/valid.present inflating: yelp/tense/test.past inflating: yelp/tense/test.present creating: yelp/sentiment/ inflating: yelp/sentiment/100.neg inflating: yelp/sentiment/100.pos inflating: yelp/sentiment/1000.neg inflating: yelp/sentiment/1000.pos inflating: yelp/test.txt inflating: yelp/train.txt inflating: yelp/valid.txt creating: yelp/interpolate/ inflating: yelp/interpolate/example.long inflating: yelp/interpolate/example.short --2021-07-25 06:11:07-- http://people.csail.mit.edu/tianxiao/data/yahoo.zip Resolving people.csail.mit.edu (people.csail.mit.edu)... 128.30.2.133 Connecting to people.csail.mit.edu (people.csail.mit.edu)|128.30.2.133|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 11962156 (11M) [application/zip] Saving to: ‘yahoo.zip’ yahoo.zip 100%[===================>] 11.41M 56.7MB/s in 0.2s 2021-07-25 06:11:07 (56.7 MB/s) - ‘yahoo.zip’ saved [11962156/11962156] Archive: yahoo.zip creating: yahoo/ inflating: yahoo/test.txt inflating: yahoo/train.txt inflating: yahoo/valid.txt ###Markdown Training the AAE model for 30 epochs ###Code NUM_EPOCHS = 30 !python train.py --epochs $NUM_EPOCHS --train data/yelp/train.txt --valid data/yelp/valid.txt --model_type aae --lambda_adv 10 --noise 0.3,0,0,0 --save-dir checkpoints/yelp/daae !zip -r /content/text-autoencoders/checkpoints.zip /content/text-autoencoders/checkpoints/ !cp /content/text-autoencoders/checkpoints.zip /content/drive/MyDrive/checkpoints ###Output _____no_output_____
sessions/05_weather/exploration.ipynb
###Markdown Temperatur in Würzburg ###Code library(tidyverse) library(lubridate) theme_set(theme_light()) data <- read_csv("data/data_OBS_DEU_PT1H_T2M.csv") head(data) station <- read_csv("data/sdo_OBS_DEU_PT1H_T2M.csv") station data <- data %>% mutate(SDO_ID = if_else(SDO_ID==2600, "Kitzingen", "Würzburg")) ###Output _____no_output_____ ###Markdown **Diesesmal schauen wir uns nur Daten aus Würzburg an** ###Code data <- data %>% filter(SDO_ID=="Würzburg") ###Output _____no_output_____ ###Markdown Fragestellungen- Was und wann war die wärmste/kälteste Temperatur die je in Würzburg gemessen wurde?- Wann war der wärmste/kälteste Tag/Woche/Monat/Jahr in Würzburg?- Was war die extremste Temperaturdifferenz innerhalb von 24h?- Gibt es einen langfristigen Trend in den Temperaturdaten über die Zeit?- Gibt es einen Hinweis darauf, dass sich die Jahreszeiten verschieben? Wärmste/kälteste Temperatur ###Code data %>% arrange(-Wert) %>% head ###Output _____no_output_____ ###Markdown Die heißeste gemessene Temparatur in Würzburg gab es mit 39,3°C am 7. August 2015 ###Code data %>% arrange(Wert) %>% head ###Output _____no_output_____ ###Markdown Die kälteste gemessene Temparatur in Würzburg gab es mit -23,4°C am 10. Februar 1956 Wärmster/kältester Tag/Woche/Monat/Jahr Tag ###Code data %>% mutate(tag = floor_date(Zeitstempel, unit="day")) %>% group_by(tag) %>% summarize(Wert=mean(Wert)) %>% arrange(-Wert) %>% head ###Output _____no_output_____ ###Markdown Der heißeste Tag war mit einer Tagesdurchschnittstemperatur von 30,3°C der 7. August 2015. ###Code data %>% mutate(tag = floor_date(Zeitstempel, unit="day")) %>% group_by(tag) %>% summarize(Wert=mean(Wert)) %>% arrange(Wert) %>% head ###Output _____no_output_____ ###Markdown Der kälteste Tag war mit einer Tagesdurchschnittstemperatur von -18,2°C der 1. Februar 1956. Größte Temperaturdifferenz in 24h Erstmal innerhalb eines Tages (also von 0 bis 24Uhr) ###Code data %>% mutate(tag = floor_date(Zeitstempel, unit="day")) %>% group_by(tag) %>% summarize(span=diff(range(Wert))) %>% arrange(-span) %>% head ###Output _____no_output_____ ###Markdown Am 14. Januar 1968 gab es innerhalb eines Tages einen Temperatur Unterschied von 24,9°C, wow! ###Code data %>% filter(year(Zeitstempel)==1968, month(Zeitstempel)==1, day(Zeitstempel)==14) %>% ggplot(aes(Zeitstempel, Wert)) + geom_line() ###Output _____no_output_____ ###Markdown Jetzt ordentlich in einem Sliding Window von 24h ###Code library(slider) data %>% mutate(span_last_24h = slide_index_dbl(Wert, Zeitstempel, ~diff(range(.x)), .before = lubridate::hours(23), .complete=TRUE)) %>% arrange(-span_last_24h) data %>% filter(Zeitstempel<ymd("1979-01-02"), Zeitstempel>=ymd("1978-12-31")) %>% ggplot(aes(Zeitstempel, Wert)) + geom_line() ###Output _____no_output_____ ###Markdown Die größte Differenz gab es an Neujahr 1979 als die Temperatur über Nacht von fast 10°C um 26,1°C auf -16,8°C fiel. Dagegen ist die angeblich geringste Differenz innerhalb eines Tages am 10. September 2019 (0,0°C Schwankung) ein Artefakt auf Grund fehlender Daten. ###Code data %>% filter(Zeitstempel<ymd("2019-09-11"), Zeitstempel>=ymd("2019-09-08")) %>% ggplot(aes(Zeitstempel, Wert)) + geom_line() ###Output _____no_output_____
notebooks/CSC2018 - Pandas.ipynb
###Markdown Exploring Stack ExchanceWhile everyone *loves* a fun dataset to explore, good data is expensive. It costs a significant amount of resources to generate, accurately curate, securely store, and provide robust access to. For instance, our cold-storage tape archive, [Ranch](https://www.tacc.utexas.edu/systems/ranch), grows at a rate of 8.5PB (~5.3%) per year. Despite these costs, data is often invaluable to both users and administrators.Today, we will be exploring data from Stack Exchange. While this is probably not the kind of data you interact with on a daily basis, everyone at this camp should have some familiarity from interacting with *at least* one [Stack Exchange Community](https://stackexchange.com/sites):- StackOverflow- Super User- TeX - LaTeX- ...and moreToday, you will be using python to explore question and answer history from the Stack Exchange site of your choice. This data will be accessed over their public API. This is their **actual** data, and these methods can be extended to a variety of other datasets and websites. Objectives- Use python [requests](http://docs.python-requests.org/en/master/) to download data- Import data into [Pandas](http://pandas.pydata.org/)- Explore data - Inspect and summarize data - Group records - Select and subset records - Visualize selection - Join two datasets together DependenciesWe will be using the following non-standard python libraries:- [**requests** library](http://docs.python-requests.org/en/master/) *\(Already Installed\)*- [**pandas** library](http://pandas.pydata.org/) *\(Already Installed\)* ###Code # Import necessary Libraries import requests, json import pandas as pd # Render matplotlib in the notebook %matplotlib inline ###Output _____no_output_____ ###Markdown Stack Exchange QuestionsStack Exchange has a [well documented API](https://api.stackexchange.com/), which contains enpoints for **each site**. You can perform any graphical interaction through the API while authenticated, but general information can also be retrieved anonymously. Just make sure you do not make more than 10,000 requests per day. (*I did while devloping this notebook*)Beginning with the initial questsions submitted by users, take a look at the[Questions API](https://api.stackexchange.com/docs/questions)webapp on the Stack Exchange site, and build a query that you would like to use with Python. Goals- Choose a site (default is StackOverflow)- Choose Start and/or End Date- Sort by creation- Limit the number of questions to 10 (`pagesize`) Make API Request ###Code # API URL url = 'https://api.stackexchange.com/2.2/questions' params = dict( site='stackoverflow', # stackoverflow (coding) questions pagesize='10', # Number of questions to return fromdate='1500163200',# Get epoch time from webapp order='desc', sort='creation' ) resp = requests.get(url=url, params=params) data = json.loads(resp.text) print(json.dumps(data, indent=3)) ###Output _____no_output_____ ###Markdown Great! If you kept `pagesize` at 10, you should have a JSON response of 10 questions. If you decided to crank up your response size, you might have to scroll a bit. JSON StructureThis JSON response probably looks familiar if you have ever worked with Python dictionaries in the past. At the most basic level, a JSON is a collection of key and value pairs.```json{ "key1": value1, "key2": value2}```Instead of using a numerical index, you refer to each value with the corresponding key.- key1- key2This makes both the data structure and programatic access human-readable. However, the lack of indicies makes traditional access through looping somewhat difficult. ###Code # Print first question title ############################ # Pull "items" json # > Pull first record # > Pull title print(data['items'][0]['title']) # You need to know the exact key names to traverse it for item in data['items']: # Print the question title print("TAGS - %s"%(item['title'])) # Print the question tags print(" [%s]\n"%(", ".join(item['tags']))) ###Output _____no_output_____ ###Markdown Explore- Try pulling out the `answer_count` for each question- Try pulling out the `view_count` for each question- Try pulling out the submission date.- **Extra Credit** - [Convert the epoch time to human readable](https://stackoverflow.com/a/12400584) Converting to PandasInstead of testing you on your ability to traverse a JSON tree, the goal for today is to explore data using Pandas, so lets convert the JSON to a DataFrame. ###Code questionsDF = pd.io.json.json_normalize(data['items']) questionsDF ###Output _____no_output_____ ###Markdown [`json_normalize`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.json.json_normalize.html) takes a nested JSON and flattens it into a table. In our case, it flattened each return question in the `items` list. Child JSONs like owner, which described the original submitter, now have owner as a prefix in the column name. JSON```"owner": { "reputation": 1, "user_id": 6140730, "user_type": "registered", "profile_image": "https://www.gravatar.com/avatar/efa02138df0bc1f59618c365872caed6?s=128&d=identicon&r=PG&f=1", "display_name": "John", "link": "https://stackoverflow.com/users/6140730/john" }``` Table| Column Name | Value ||--|--|| owner.reputation | 1 || owner.user_id | 6140730 || owner.user_type | registered || owner.profile_image | https://www... || owner.display_name | John || owner.link | https://stackoverflow... | Exploring the DataWhen we transform the JSON data into a table, using `json_normalize`, the resulting table is actually a [Pandas DataFrame.](https://pandas.pydata.org/pandas-docs/stable/dsintro.htmldataframe)A DataFrame is a 2-dimensional data structure that can store data of different types(characters, integers, floating point values, factors, and more)in columns. It is similar to a spreadsheet or an SQL table or the data.frame in R. A DataFrame always has an index (0-based). An index refers to the row of an element in the data structure.You can see the **bold** index column on the left of our example. Viewing DataFrame AttributesBesides having text column headers, DataFrames come with some nice attributes and methods to view specific parts of the data. ColumnsYou often need to iterate over the columns of your table, and DataFrames expose those names ###Code print(questionsDF.columns) ###Output _____no_output_____ ###Markdown ShapeYou can also see how many rows and columns (rows, columns) are in your DataFrame by accessing the shape attribute. ###Code print(questionsDF.shape) ###Output _____no_output_____ ###Markdown HeadIf you have ever used the `head` command on a terminal to view the first N lines of a file, the head function of a DataFrame will look familiar to you. This is great for just peeking at the data and not overflowing your window. ###Code questionsDF.head() #questionsDF.head(2) ###Output _____no_output_____ ###Markdown TailThere is also a tail command for looking at the last N rows of a DataFrame. ###Code questionsDF.tail() #questionsDF.tail(2) ###Output _____no_output_____ ###Markdown Grouping RecordsMany of the columns in this data, like `owner.link`, may not be immediately useful to us. With a DataFrame, you can select and group specific columns for use in a downstream analysis without losing the original.For example, we could be interested in the `view_count` of each question. An analysis of this column could show how many people also encounter a similar problem and needed to seek help on Stack Exchange. Column GroupsWe can pull out this single column using two methods. ###Code # Dot print(questionsDF.view_count.head()) # Bracket print(questionsDF['view_count'].head()) ###Output _____no_output_____ ###Markdown We can also produce similar statistics provided by the `summary()` function in R with the `describe()` function. This can be applied directly to our column selection as so. ###Code questionsDF['view_count'].describe() ###Output _____no_output_____ ###Markdown Besides only using the first 10 questions in my example data, they're all very new, so they have very few views. Lets instead work on the latest 1,000 questions and generate the same description. Stack Exchange [limits](https://api.stackexchange.com/docs/throttle) the `pagesize` of the response to 100, so we will be pulling the first 10 pages. ###Code # Latest 1000 questions # Params pull 100 questsions per query params = dict( site='stackoverflow', pagesize='100', page='1', order='desc', sort='creation' ) nPages = 10 #How many pages you want data = [] import sys print("Reading Page:") for page in map(str, range(1,nPages+1)): params['page']=page # Change page number if int(page) > 1: sys.stdout.write(", ") sys.stdout.write("%s"%(page)) data += json.loads(requests.get(url=url, params=params).text)['items'] questionsDF = pd.io.json.json_normalize(data) # Drop the "migrated_from" columns questionsDF = questionsDF[list(filter(lambda x: 'migrated' not in x, questionsDF.columns))] questionsDF['view_count'].describe() ###Output _____no_output_____ ###Markdown Now that we have a larger pool of data, you should check out other statistics that can be generated per column. Feel free to use another numerical column as well. ExploreThere are a bunch of [built in](https://pandas.pydata.org/pandas-docs/stable/api.htmlcomputations-descriptive-stats) descriptive functions, but these are good to check out.- describe()- nuniqe()- value_counts() ###Code # How many unique users? questionsDF['owner.user_id'].head() ###Output _____no_output_____ ###Markdown Two-Way GroupsIf you ever want to summarize by one or more variables, you can use the `groupby` method. In our case, it would be interesting to look at `view_count` statistics of answered and unanswered questions. ###Code questionsDF.groupby('is_answered')['view_count'].describe() ###Output _____no_output_____ ###Markdown We can see that while there are fewer answered questions, their view count (in my test) is almost 100% higher. Neat! ExploreTake some time using the `groupby` method to explore other cool trends.- Owner reputation - Is the submitter a bot?- Score - Is the question real? ###Code #questionsDF.groupby('is_answered')['owner.reputation'].describe() ###Output _____no_output_____ ###Markdown Selecting and Subsetting RecordsYou can also select a subset of the data using criteria. For example, we can select all rows that have a `view_count` greater than 5. ###Code questionsDF[questionsDF.view_count > 5] ###Output _____no_output_____ ###Markdown ExploreExperiment with the- `>`, `<`- `==`, `!=`- `>=`, `<=`operators on numerical data. If you have extra time, look for questions that contain tags that you know. The tags are actually a list, so you can search for tags using the `in` operator. ###Code # Need to use the map operation on tags questionsDF[questionsDF.tags.map(lambda x: 'python' in x)] ###Output _____no_output_____ ###Markdown Visualizing the ResultsWhile the tables we have been generating are nice, they still contain thousands of rows. A single figure could help visualize the data as a whole. Insead of crafting specific matplotlib calls, Pandas built a universal [`plot()` function](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html) into the DataFrame object to simplify figure generation.By stating that we want to generate a histogram with `kind='hist'`, we can look at the `view_count` fequency. ###Code questionsDF['view_count'].plot(kind='hist') # Try increasing the resolution with the "bins" parameter # Try a square root transform of the view count ###Output _____no_output_____ ###Markdown We can also plot our two-way tables. ###Code questionsDF.groupby('is_answered')['view_count'].plot(kind='hist', legend=True) ###Output _____no_output_____ ###Markdown ExploreTry generating a few figures on your own. Joining TablesYou can even join two datasets. Lets grab some answers so we can try joining them to their corresponding questions. ###Code url = 'https://api.stackexchange.com/2.2/answers' params = dict( site='stackoverflow', pagesize='100', page='1', order='desc', sort='creation' ) nPages = 10 #How many pages you want data = [] import sys print("Reading Page:") for page in map(str, range(1,nPages+1)): params['page']=page # Change page number if int(page) > 1: sys.stdout.write(", ") sys.stdout.write("%s"%(page)) data += json.loads(requests.get(url=url, params=params).text)['items'] answersDF = pd.io.json.json_normalize(data) answersDF.head() ###Output _____no_output_____ ###Markdown Inner JoinWe can return the intersection of all questions that also map to an answer by using an inner join. Assuming we had the following example data:```Questions---------------------QuestionID 0 1 2 3ViewCount 2 4 10 7AnswerID NA 1 2 3Answers---------------------QuestionID 5 1 2 3Score 3 5 3 1AnswerID 0 1 2 3```An inner join would yield```Questions X Answers---------------------QuestionID 1 2 3ViewCount 4 10 7Score 5 3 1AnswerID 1 2 3```We join both `questionsDF` and `answersDF` on the `question_id` column that they both share. ###Code merged = pd.merge(left=questionsDF, right=answersDF[['answer_id','question_id']], left_on="question_id", right_on="question_id") print(merged.shape) merged.head() print(questionsDF.columns) ###Output _____no_output_____ ###Markdown Left JoinLeft joins return all items from the first set, and any items from the second set that overlap with the first. This is useful if we want ALL questions returned, and any questions that also match.Using the table from the first example, a left join would yield```Questions LJ Answers---------------------QuestionID 0 1 2 3ViewCount 2 4 10 7Score NA 5 3 1AnswerID NA 1 2 3```Notice that whenever there is no match on the right, fields are filled in as NA. ###Code merged = pd.merge(left=questionsDF, right=answersDF, left_on="question_id", right_on="question_id", how="left") print(merged.shape) merged.head() ###Output _____no_output_____ ###Markdown ExploreThere are also Right and Outer joins to explore. Take a look at [the documentation](https://pandas.pydata.org/pandas-docs/stable/merging.htmldatabase-style-dataframe-joining-merging) and see if you can discover anythign fun. ###Code # Try joining some data ###Output _____no_output_____
notebooks/5.0-lm-optimization-tsne.ipynb
###Markdown Parameter optimization for t-SNE ###Code # Load the "autoreload" extension %load_ext autoreload # always reload modules marked with "%aimport" %autoreload 1 import os import sys from dotenv import load_dotenv, find_dotenv import numpy as np import pandas as pd import hdbscan import scipy #Visualisation Libraries %matplotlib inline # Uncomment if you want interactive 3D plots --> does not work in the github rendering #%matplotlib notebook from copy import deepcopy import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D matplotlib.style.use('ggplot') import seaborn as sns # add the 'src' directory as one where we can import modules src_dir = os.path.join(os.getcwd(), os.pardir, 'src') sys.path.append(src_dir) %aimport visualization.visualize from visualization.visualize import get_color_encoding from visualization.visualize import plot_timeseries_clustering from visualization.visualize import get_plot_timeseries_clustering_variables %aimport data.preprocessing from data.preprocessing import Preprocessor %aimport data.download from data.download import DatasetDownloader %aimport utils.utilities from utils.utilities import get_cluster_labels %aimport models.cluster from models.cluster import get_clustering_performance %aimport models.dimensionality_reduction from models.dimensionality_reduction.TSNEModel import TSNEModel from models.dimensionality_reduction.BayesianTSNEOptimizer import BayesianTSNEOptimizer ###Output _____no_output_____ ###Markdown Load data from disk. ###Code # Load data from disk. data_dir = os.path.join(os.path.abspath(DatasetDownloader.get_data_dir())) file_path = os.path.join(data_dir, "preprocessed","preprocessed_data.dat") dfs = Preprocessor.restore_preprocessed_data_from_disk(file_path) ###Output _____no_output_____ ###Markdown Calculate distances. ###Code trips_cut_per_30_sec = Preprocessor.get_cut_trip_snippets_for_total(dfs) euclidean_distances = Preprocessor.calculate_distance_for_n2(trips_cut_per_30_sec, metric="euclidean") ###Output _____no_output_____ ###Markdown Prepare distance data for fitting of t-SNE model. ###Code categorical_columns = ["mode", "notes", "scripted", "token", "trip_id"] segment_distance_matrix = euclidean_distances.drop(categorical_columns,axis=1) ###Output _____no_output_____ ###Markdown Next steps: Integrate BayesianTSNEOptimizer, start optimization (record results and ingest at next start as initialization values). ###Code # Define parameter ranges, fix static variables. param_ranges = deepcopy(TSNEModel.PARAMETER_RANGES) param_ranges["metric"] = (TSNEModel.CATEGORICAL_VALUES["metric"].index("precomputed"),) param_ranges["init_method"] = (TSNEModel.CATEGORICAL_VALUES["init_method"].index("random"),) param_ranges["random_state"] = (42,) param_ranges["n_components"] = (3,) param_ranges["n_iter"] = (5000,) #param_ranges["min_grad_norm"] = (0.0000001,) # Initialize new BO object. boOpt = BayesianTSNEOptimizer( high_dim_data=segment_distance_matrix, cluster_memberships=euclidean_distances["mode"].values, parameters=param_ranges ) # Load existing results. history = BayesianTSNEOptimizer.load_result_dict("tsne_results") if history is not None: print("Number of models generated so far: ", len(history["values"])) # Execute optimization; initialize with existing results. # Use higher init_fraction if not many initialization datapoints are available. results = boOpt.run(num_iterations=30, init_fraction=0.1, init_values=history, kappa=6.0) # Save merged result set (new results and existing ones). all_results = BayesianTSNEOptimizer.merge_result_dictionaries(results, history) BayesianTSNEOptimizer.persist_result_dict( results=all_results, filename="tsne_results" ) ###Output Number of models generated so far: 111 Initialization ------------------------------------------------------------------------------------------------------------------- Step | Time | Value | angle | early_exaggeration | learning_rate | min_grad_norm | perplexity | 1 | 00m19s |  0.36532 |  0.7946 |  1.9608 |  410.2173 |  0.0769 |  20.2949 | 2 | 00m56s | 0.31999 | 0.4394 | 13.8880 | 811.6344 | 0.0136 | 15.7405 | 3 | 00m43s | 0.30678 | 0.3427 | 35.5272 | 886.9313 | 0.0915 | 37.6761 | 4 | 00m00s | 0.34443 | 0.3128 | 1.0688 | 654.4796 | 0.0936 | 49.7076 | 5 | 00m00s | 0.34637 | 0.3437 | 1.0738 | 562.3034 | 0.0588 | 49.4633 | 6 | 00m00s | 0.35604 | 0.8542 | 1.5960 | 464.4792 | 0.0063 | 47.0979 | 7 | 00m00s |  0.37111 |  0.8249 |  26.5449 |  10.8491 |  0.0521 |  11.4050 | 8 | 00m00s | 0.29904 | 0.9107 | 49.8520 | 1889.6890 | 0.0635 | 99.7347 | 9 | 00m00s | 0.30641 | 0.6615 | 49.1872 | 797.1386 | 0.0623 | 95.6741 | 10 | 00m00s | 0.30444 | 0.8378 | 49.9533 | 922.9950 | 0.0466 | 7.8946 | 11 | 00m00s | 0.30098 | 0.1146 | 49.2372 | 1828.4363 | 0.0918 | 43.8103 | 12 | 00m00s | 0.30241 | 0.8151 | 49.5745 | 1640.4534 | 0.0368 | 56.4864 | 13 | 00m00s | 0.29483 | 0.6326 | 49.1647 | 1999.3934 | 0.0765 | 26.0882 | 14 | 00m00s | 0.30045 | 0.6520 | 48.9578 | 203.7880 | 0.0290 | 1.1384 | 15 | 00m00s | 0.30075 | 0.1469 | 49.9815 | 468.0764 | 0.0314 | 2.1522 | 16 | 00m00s | 0.34794 | 0.5456 | 1.6581 | 69.3128 | 0.0522 | 1.9923 | 17 | 00m00s | 0.35501 | 0.3051 | 1.1870 | 159.7261 | 0.0688 | 53.0406 | 18 | 00m00s | 0.34476 | 0.6475 | 1.7978 | 1108.4676 | 0.0875 | 99.8143 | 19 | 00m00s | 0.35662 | 0.1651 | 2.5197 | 506.5098 | 0.0751 | 46.2949 | 20 | 00m00s | 0.30560 | 0.9940 | 49.9472 | 697.8204 | 0.0136 | 45.0828 | 21 | 00m00s | 0.29398 | 0.7469 | 49.3801 | 1168.1650 | 0.0964 | 2.6211 | 22 | 00m00s | 0.33016 | 0.3555 | 1.8607 | 1909.4509 | 0.0838 | 99.9934 | 23 | 00m00s | 0.34518 | 0.9032 | 3.0345 | 899.9167 | 0.0966 | 98.7900 | 24 | 00m00s | 0.33371 | 0.1347 | 1.3138 | 1721.9947 | 0.0087 | 99.7203 | 25 | 00m00s | 0.31057 | 0.9181 | 27.7648 | 858.8472 | 0.0714 | 50.4817 | 26 | 00m00s | 0.33083 | 0.9182 | 2.6319 | 955.3677 | 0.0232 | 1.2861 | 27 | 00m00s | 0.34105 | 0.3955 | 1.3353 | 1456.6966 | 0.0605 | 62.5465 | 28 | 00m00s | 0.34912 | 0.6455 | 1.0282 | 31.0171 | 0.0379 | 72.6535 | 29 | 00m00s | 0.34681 | 0.8226 | 16.3877 | 137.1769 | 0.0881 | 99.0196 | 30 | 00m00s | 0.30812 | 0.8855 | 49.3717 | 546.4269 | 0.0199 | 84.8115 | 31 | 00m00s | 0.30767 | 0.5217 | 20.2927 | 385.7861 | 0.0647 | 1.0769 | 32 | 00m00s | 0.34216 | 0.4065 | 1.8400 | 1334.4834 | 0.0685 | 99.8095 | 33 | 00m00s | 0.35441 | 0.3233 | 1.4131 | 721.8197 | 0.0576 | 49.9436 | 34 | 00m00s | 0.35194 | 0.1446 | 1.2145 | 342.6239 | 0.0862 | 49.3531 | 35 | 00m00s | 0.30448 | 0.6427 | 49.4127 | 1039.2726 | 0.0585 | 98.2775 | 36 | 00m00s | 0.36680 | 0.1808 | 38.4465 | 1.0348 | 0.0989 | 50.2728 | 37 | 00m00s | 0.30684 | 0.4325 | 1.0943 | 1727.3216 | 0.0480 | 1.3386 | 38 | 00m00s | 0.33220 | 0.2187 | 1.6714 | 1999.4261 | 0.0514 | 66.2029 | 39 | 00m00s | 0.33149 | 0.6941 | 1.4036 | 1204.4865 | 0.0586 | 2.2114 | 40 | 00m00s | 0.34877 | 0.9680 | 2.1708 | 1600.8236 | 0.0581 | 47.5393 | 41 | 00m00s | 0.33929 | 0.6078 | 1.5280 | 1668.0727 | 0.0880 | 59.4251 | 42 | 00m00s | 0.33594 | 0.6934 | 1.1454 | 745.6466 | 0.0139 | 1.1292 | 43 | 00m00s | 0.35239 | 0.2164 | 2.3584 | 289.3523 | 0.0565 | 99.4950 | 44 | 00m00s | 0.32384 | 0.5627 | 1.4237 | 1437.2627 | 0.0655 | 2.4658 | 45 | 00m00s | 0.33303 | 0.2944 | 1.2474 | 689.8908 | 0.0997 | 1.0673 | 46 | 00m00s | 0.33537 | 0.2037 | 1.1818 | 1408.7275 | 0.0400 | 98.8258 | 47 | 00m00s | 0.30400 | 0.3412 | 48.6239 | 937.0568 | 0.0600 | 97.1822 | 48 | 00m00s | 0.34244 | 0.3232 | 1.1471 | 1321.4812 | 0.0962 | 56.2816 | 49 | 00m00s | 0.34460 | 0.1017 | 1.1956 | 427.3550 | 0.0920 | 98.5182 | 50 | 00m00s | 0.30011 | 0.5919 | 49.6391 | 1513.7555 | 0.0173 | 98.6602 | 51 | 00m00s | 0.34692 | 0.1978 | 1.0616 | 199.4631 | 0.0308 | 98.9227 | 52 | 00m00s | 0.34990 | 0.1464 | 1.6259 | 924.6001 | 0.0921 | 63.1840 | 53 | 00m00s | 0.31698 | 0.8764 | 49.9315 | 194.2295 | 0.0463 | 98.5747 | 54 | 00m00s | 0.35381 | 0.1353 | 2.0348 | 231.6353 | 0.0288 | 3.0429 | 55 | 00m00s | 0.35411 | 0.1714 | 1.5656 | 605.3854 | 0.0720 | 42.2867 | 56 | 00m00s | 0.33129 | 0.3957 | 1.0208 | 1733.5334 | 0.0501 | 56.7839 | 57 | 00m00s | 0.33962 | 0.1494 | 1.0910 | 1531.5253 | 0.0613 | 52.3546 | 58 | 00m00s | 0.36701 | 0.1738 | 3.6652 | 4.8300 | 0.0229 | 99.7852 | 59 | 00m00s | 0.30277 | 0.7129 | 49.7902 | 1113.4985 | 0.0393 | 99.5399 | 60 | 00m00s | 0.29240 | 0.9910 | 47.7636 | 1573.5244 | 0.0476 | 1.3962 | 61 | 00m00s | 0.29126 | 0.5331 | 49.8683 | 1041.5724 | 0.0156 | 1.7631 | 62 | 00m00s | 0.31017 | 0.6784 | 49.3533 | 82.9671 | 0.0823 | 1.2403 | 63 | 00m00s | 0.30405 | 0.2130 | 47.6998 | 1344.2020 | 0.0397 | 99.9642 | 64 | 00m00s | 0.29982 | 0.8467 | 43.7637 | 1999.2604 | 0.0353 | 99.7493 | 65 | 00m00s | 0.30329 | 0.3335 | 49.2427 | 1220.2798 | 0.0299 | 51.7465 | 66 | 00m00s | 0.29671 | 0.3971 | 49.6265 | 1924.1592 | 0.0606 | 2.2726 | 67 | 00m00s | 0.34636 | 0.2359 | 1.0215 | 790.2905 | 0.0826 | 32.2752 | 68 | 00m00s | 0.34772 | 0.9095 | 1.0312 | 267.1386 | 0.0888 | 59.3099 | 69 | 00m00s | 0.34760 | 0.9509 | 1.1635 | 551.8756 | 0.0449 | 3.5937 | 70 | 00m00s | 0.30741 | 0.5151 | 49.6511 | 316.7186 | 0.0942 | 99.3118 | 71 | 00m00s | 0.34510 | 0.8333 | 1.2514 | 1066.0585 | 0.0737 | 60.9584 | 72 | 00m00s | 0.34068 | 0.7097 | 1.4955 | 1511.2548 | 0.0826 | 99.0362 | 73 | 00m00s | 0.35735 | 0.2917 | 27.4145 | 27.0000 | 0.0716 | 57.0335 | 74 | 00m00s | 0.30869 | 0.5594 | 1.7658 | 1547.5589 | 0.0310 | 1.9237 | 75 | 00m00s | 0.32844 | 0.2313 | 1.0073 | 1930.2638 | 0.0373 | 36.1783 | 76 | 00m00s | 0.34574 | 0.5603 | 1.4974 | 751.9135 | 0.0526 | 99.1311 | 77 | 00m00s | 0.31363 | 0.6952 | 2.7045 | 1347.9938 | 0.0974 | 1.0621 | 78 | 00m00s | 0.30159 | 0.6477 | 49.9835 | 1432.0237 | 0.0185 | 35.4033 | 79 | 00m00s | 0.34933 | 0.7493 | 2.2691 | 591.5771 | 0.0335 | 99.5395 | 80 | 00m00s | 0.35306 | 0.6603 | 48.9842 | 7.2234 | 0.0789 | 1.1004 | 81 | 00m00s | 0.30994 | 0.7053 | 49.7156 | 455.6846 | 0.0331 | 98.1077 | 82 | 00m00s | 0.29578 | 0.9953 | 7.0567 | 1997.4346 | 0.0863 | 1.2954 | 83 | 00m00s | 0.35466 | 0.4304 | 2.5876 | 14.8857 | 0.0312 | 2.4159 | 84 | 00m00s | 0.33256 | 0.5681 | 2.1619 | 1985.3270 | 0.0778 | 99.2251 | 85 | 00m00s | 0.34764 | 0.5218 | 1.9850 | 682.9564 | 0.0562 | 99.8516 | 86 | 00m00s | 0.34407 | 0.6687 | 1.4990 | 1003.4461 | 0.0445 | 97.3465 | 87 | 00m00s | 0.34689 | 0.7987 | 1.0057 | 341.4508 | 0.0887 | 99.4471 | 88 | 00m00s | 0.34247 | 0.7645 | 1.3523 | 450.4442 | 0.0068 | 2.3155 | 89 | 00m00s | 0.33318 | 0.7533 | 1.2512 | 1828.1274 | 0.0516 | 99.1697 | 90 | 00m00s | 0.33421 | 0.1134 | 1.7416 | 885.9026 | 0.0521 | 1.2815 | 91 | 00m00s | 0.37075 | 0.2868 | 5.6124 | 6.7732 | 0.0687 | 97.4081 | 92 | 00m00s | 0.34846 | 0.7601 | 1.2738 | 1252.3122 | 0.0052 | 3.2058 | 93 | 00m00s | 0.35549 | 0.1693 | 48.6268 | 3.1480 | 0.0359 | 99.2178 | 94 | 00m00s | 0.34638 | 0.3104 | 1.3220 | 532.0899 | 0.0411 | 98.6401 | 95 | 00m00s | 0.31043 | 0.2376 | 2.9981 | 1823.4807 | 0.0326 | 1.5688 | 96 | 00m00s | 0.34752 | 0.7635 | 1.9882 | 823.4975 | 0.0419 | 98.3100 | 97 | 00m00s | 0.33245 | 0.3216 | 1.2128 | 1625.1680 | 0.0609 | 99.9586 | 98 | 00m00s | 0.30432 | 0.1789 | 49.5573 | 321.2464 | 0.0671 | 4.4460 | 99 | 00m00s | 0.34112 | 0.5811 | 1.1928 | 1165.1755 | 0.0392 | 71.0937 | 100 | 00m00s | 0.35545 | 0.8400 | 1.3813 | 1.4476 | 0.0179 | 44.1270 | 101 | 00m00s | 0.30167 | 0.1996 | 49.0180 | 1725.6710 | 0.0778 | 99.7398 | 102 | 00m00s | 0.34870 | 0.8821 | 3.7921 | 136.8910 | 0.0272 | 1.9920 | 103 | 00m00s | 0.30269 | 0.4553 | 49.4879 | 577.3544 | 0.0774 | 3.3832 | 104 | 00m00s | 0.29275 | 0.1786 | 48.2983 | 771.1327 | 0.0988 | 1.6598 | 105 | 00m00s | 0.32891 | 0.1539 | 1.1631 | 1654.2860 | 0.0264 | 3.6028 | 106 | 00m00s | 0.30976 | 0.4031 | 48.5392 | 637.3870 | 0.0953 | 99.8240 | 107 | 00m00s | 0.33732 | 0.5278 | 1.3803 | 1024.5311 | 0.0631 | 2.3021 | 108 | 00m00s | 0.35084 | 0.1584 | 1.2213 | 326.3545 | 0.0895 | 3.8243 | 109 | 00m00s | 0.29470 | 0.1645 | 48.7770 | 1314.0140 | 0.0867 | 1.9793 | 110 | 00m00s | 0.34556 | 0.7453 | 1.0318 | 72.9521 | 0.0190 | 93.4363 | 111 | 00m00s | 0.29109 | 0.5575 | 49.9870 | 1738.7781 | 0.0266 | 3.0750 | 112 | 00m00s | 0.33106 | 0.3663 | 1.1014 | 1133.2438 | 0.0922 | 1.5781 | 113 | 00m00s | 0.35343 | 0.1119 | 1.0332 | 412.4994 | 0.0121 | 55.0950 | 114 | 00m00s | 0.34265 | 0.7031 | 2.4904 | 1257.8046 | 0.0630 | 99.6657 | ###Markdown Sort results by score, pick highest. ###Code all_results_sorted_idx = np.argsort(all_results["values"]) max_score_index = all_results_sorted_idx[-1] best_param_set = all_results["params"][max_score_index] print(best_param_set) ###Output {'perplexity': 6.2975330305384913, 'early_exaggeration': 26.398296478695748, 'learning_rate': 11.256126673690892, 'angle': 0.15925222040151887, 'min_grad_norm': 0.069598686192291315} ###Markdown (Re-)Generate model with given parameter set, since we didn't store the results for each run. ###Code tsne = TSNEModel(num_dimensions=3, perplexity=best_param_set["perplexity"], early_exaggeration=best_param_set["early_exaggeration"], learning_rate=best_param_set["learning_rate"], num_iterations=5000, min_grad_norm=best_param_set["min_grad_norm"], random_state=42, angle=best_param_set["angle"], metric='precomputed', init_method='random') # Fit t-SNE model. tsne_results = tsne.run(segment_distance_matrix.values) transport_modes = { 'WALK': 'blue', 'METRO': 'red', 'TRAM': 'green' } tokens = { '355007075245007': 'x', '358568053229914': 'o', '868049020858898': 'v' } fig, ax = plt.subplots(2, 3, figsize=(20, 10)) for transport_mode, transport_mode_color in transport_modes.items(): transport_mode_scripted = euclidean_distances[ (euclidean_distances["mode"] == transport_mode) & (euclidean_distances["notes"].str.contains('scripted')) ] transport_mode_unscripted = euclidean_distances[ (euclidean_distances["mode"] == transport_mode) & (~(euclidean_distances["notes"].str.contains('scripted', na=False))) ] for token, token_symbol in tokens.items(): transport_mode_scripted_for_token = transport_mode_scripted[ transport_mode_scripted["token"] == token ].index.values transport_mode_unscripted_for_token = transport_mode_unscripted[ transport_mode_unscripted["token"] == token ].index.values ax[0, 0].scatter( tsne_results[transport_mode_scripted_for_token, 0], tsne_results[transport_mode_scripted_for_token, 1], c=transport_mode_color, marker=token_symbol, alpha=0.5 ) ax[0, 1].scatter( tsne_results[transport_mode_scripted_for_token, 0], tsne_results[transport_mode_scripted_for_token, 2], c=transport_mode_color, marker=token_symbol, alpha=0.5 ) ax[0, 2].scatter( tsne_results[transport_mode_scripted_for_token, 1], tsne_results[transport_mode_scripted_for_token, 2], c=transport_mode_color, marker=token_symbol, alpha=0.5 ) ax[1, 0].scatter( tsne_results[transport_mode_unscripted_for_token, 0], tsne_results[transport_mode_unscripted_for_token, 1], c=transport_mode_color, marker=token_symbol, alpha=0.5 ) ax[1, 1].scatter( tsne_results[transport_mode_unscripted_for_token, 0], tsne_results[transport_mode_unscripted_for_token, 2], c=transport_mode_color, marker=token_symbol, alpha=0.5 ) ax[1, 2].scatter( tsne_results[transport_mode_unscripted_for_token, 1], tsne_results[transport_mode_unscripted_for_token, 2], c=transport_mode_color, marker=token_symbol, alpha=0.5 ) ax[0, 0].set_title('Scripted') ax[0, 1].set_title('Scripted') ax[0, 2].set_title('Scripted') ax[1, 0].set_title('Unscripted') ax[1, 1].set_title('Unscripted') ax[1, 2].set_title('Unscripted') #ax[0].legend(loc='upper center', bbox_to_anchor=(1, 0.5)) #ax[1].legend(loc='upper center', bbox_to_anchor=(1, 0.5)) ###Output _____no_output_____
Functional Programming in Python/1_Functional Programming in Python.ipynb
###Markdown Functional Programming in Python[Tutorial playlist](https://www.youtube.com/playlist?list=PLP8GkvaIxJP1z5bu4NX_bFrEInBkAgTMr) [中文文档](https://docs.python.org/zh-cn/3/howto/functional.html) Immutable Data StructuresImmutable data structures cannot be modified in-place and this can help reduce bugs ###Code import collections Scientist = collections.namedtuple('Scientist',[ 'name', 'field', 'born', 'nobel', ]) scientists = ( Scientist(name=' Ada Lovelace', field='math', born=1815, nobel=False), Scientist(name=' Emmy Noether', field='math', born=1882, nobel=False), Scientist(name='Marie Curie', field='physics', born=1867, nobel=True), Scientist(name=' Tu-Youyou', field='chemistry', born=1930, nobel=True), Scientist(name=' Ada-Yonath', field='chemistry', born=1939, nobel=True), Scientist(name=' Vera Rubin', field='astronomy',born=1928, nobel=False), Scientist(name='Sally Ride', field='physics', born=1951, nobel=False), ) scientists[0].name from pprint import pprint pprint(scientists) ###Output (Scientist(name=' Ada Lovelace', field='math', born=1815, nobel=False), Scientist(name=' Emmy Noether', field='math', born=1882, nobel=False), Scientist(name='Marie Curie', field='physics', born=1867, nobel=True), Scientist(name=' Tu-Youyou', field='chemistry', born=1930, nobel=True), Scientist(name=' Ada-Yonath', field=' chemistry', born=1939, nobel=True), Scientist(name=' Vera Rubin', field='astronomy', born=1928, nobel=False), Scientist(name='Sally Ride', field='physics', born=1951, nobel=False)) ###Markdown The `filter()` Function ###Code filter(lambda x: x.nobel is True, scientists) fs = filter(lambda x: x.nobel is True, scientists) next(fs) next(fs) next(fs) next(fs) fs = tuple(filter(lambda x: x.nobel is True, scientists)) fs pprint(tuple(filter(lambda x: True, scientists))) pprint(tuple(filter(lambda x: x.field == 'physics', scientists))) pprint(tuple(filter(lambda x: x.field == 'physics' and x.nobel, scientists))) for x in scientists: if x.nobel is True: print(x) def nobel_filter(x): return x.nobel is True pprint(tuple(filter(nobel_filter, scientists))) # list comprehension [x for x in scientists if x.nobel is True] pprint([x for x in scientists if x.nobel is True]) pprint(tuple([x for x in scientists if x.nobel is True])) # not need to use list as imtermediate pprint(tuple(x for x in scientists if x.nobel is True)) tuple([1,2,3]) tuple(1,2,3) ###Output _____no_output_____ ###Markdown The `map()` Function ###Code names_and_ages = tuple(map(lambda x: {'name': x.name, 'age': 2017 - x.born}, scientists)) names_and_ages pprint(names_and_ages) # list comprehension [{'name': x.name, 'age': 2017 - x.born} for x in scientists] # generator tuple({'name': x.name, 'age': 2017 - x.born} for x in scientists) tuple({'name': x.name.upper(), 'age': 2017 - x.born} for x in scientists) ###Output _____no_output_____ ###Markdown The `reduce()` Function ###Code from functools import reduce names_and_ages = tuple({'name': x.name.upper(), 'age': 2017 - x.born} for x in scientists) pprint(names_and_ages) total_age = reduce(lambda acc, val: acc + val['age'], names_and_ages, 0) total_age sum(x['age'] for x in names_and_ages) def reducer(acc, val): acc[val.field].append(val.name) return acc scientists_by_field = reduce(reducer, scientists, {'math': [], 'physics': [], 'chemistry': [], 'astronomy': []}) pprint(scientists_by_field) import collections scientists_by_field = reduce(reducer, scientists, collections.defaultdict(list)) pprint(scientists_by_field) ###Output defaultdict(<class 'list'>, {'astronomy': [' Vera Rubin'], 'chemistry': [' Tu-Youyou', ' Ada-Yonath'], 'math': [' Ada Lovelace', ' Emmy Noether'], 'physics': ['Marie Curie', 'Sally Ride']}) ###Markdown defaultdict ###Code dd = collections.defaultdict(list) dd dd['doesnetexist'] dd dd['doesnetexist---2'] dd dd['xyz'].append(1) dd['xyz'].append(2) dd['xyz'].append(3) dd import itertools scientists_by_field5 = {item[0]: list(item[1]) for item in itertools.groupby(scientists, lambda x: x.field)} scientists_by_field5 # lambda function for fun import functools scientists_by_field = functools.reduce(lambda acc, val:{**acc, **{val.field: acc[val.field] + [val.name]}}, scientists, {'math': [], 'physics': [], 'chemistry': [], 'astronomy': []}) pprint(scientists_by_field) ###Output {'astronomy': [' Vera Rubin'], 'chemistry': [' Tu-Youyou', ' Ada-Yonath'], 'math': [' Ada Lovelace', ' Emmy Noether'], 'physics': ['Marie Curie', 'Sally Ride']}
Week 02 - Data Science Libraries/2- Matplotlib.ipynb
###Markdown Matplotlib-->-->As its name suggests, Matplotlib is a library for creating plots, graphs, charts, etc., of data. Its syntax is influenced by Matlab. It is possbile visualize data contained in simple lists and tuples, but Matplotlib can also work effectively NumPy and Pandas data structures. Below, we will specifically work with the `pyplot` routines.You can view the documentation in more detail here:* [Documentation](https://matplotlib.org/tutorials/introductory/pyplot.html)* [Cheatsheet](https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf) Below we create a plot from two data lists `x` `y` using `plot()`. We also specify text for the x-axis and y-axis as well as give the plot a title. ###Code import numpy as np import matplotlib import matplotlib.pyplot as plt # pyplot gives a matlab like feel. # need the below for presenting plots in Jupyiter notebook. %matplotlib inline x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] result = plt.plot(x, y) # returns a list of objects. plt.xlabel("X") # x-axis label plt.ylabel("Y") # y-axis label plt.title("Example 1") # title of the graph plt.suptitle("A Simple Plot") # title of the entire graph plt.show() # show the plot ###Output _____no_output_____ ###Markdown An even simpler plot can be created by providing only a single list of numbers. These are taken as y values. The corresponding x values are just the sequence 0,1,2,... ###Code plt.plot([1, 4, 9, 16]) # x-axis is the index of the list. plt.xlabel("X") # x-axis label plt.ylabel("Y") # y-axis label plt.title("A single list is assumed to be y-values") # title of the graph plt.show() ###Output _____no_output_____ ###Markdown We can adjust the viewable axes using `plot.axis([xmin,xmax,ymin,ymax])` ###Code x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] plt.plot(x, y) plt.xlabel("X") plt.ylabel("Y") plt.axis( [4, 8, 10, 70] ) # first two parameters are minimum and maximum x values to show in the plot, the second two are minimum and maximum y values. plt.show() ###Output _____no_output_____ ###Markdown Formatting pointsAn optional string can be used to format the plotted data. The format is based on the parameters used in Matlab. E.g., `r*` will make red stars, `b-` will make a solid blue line. ###Code plt.plot( x, y, "r*" ) # 'r*' is a matlab-like formatting string; 'r' for red, '*' for stars plt.xlabel("X") # x-axis label plt.ylabel("Y") # y-axis label plt.title("Formatted Data Points") # title of the graph plt.show() ###Output _____no_output_____ ###Markdown **Line Styles**| character | description || --- | --- || '-' | solid line style || '--' | dashed line style || '-.' | dash-dot line style || ':' | dotted line style || '.' | point marker || ',' | pixel marker || 'o' | circle marker || 'v' | triangle_down marker || '^' | triangle_up marker || '<' | triangle_left marker || '>' | triangle_right marker || '1' | tri_down marker || '2' | tri_up marker || '3' | tri_left marker || '4' | tri_right marker || 's' | square marker || 'p' | pentagon marker || '*' | star marker || 'h' | hexagon1 marker || 'H' | hexagon2 marker || '+' | plus marker || 'x' | x marker || 'D' | diamond marker || 'd' | thin_diamond marker || '_' | hline marker |**Colors**| character | color || --- | --- || b | blue || g | green || r | red || c | cyan || m | magenta || y | yellow || k | black || w | white | Formatting multiple seriesIn general, `plt.plot()` accepts a sequence of alternating x,y values, each having an optional format string. plot(x1,y1,format1,x2,y2,format2,x3,y3,format3) In this way, multiple series can be plotted. ###Code x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y2 = [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000] y3 = [10, 18, 37, 74, 135, 226, 353, 522, 739, 1010] y4 = [20, 28, 47, 84, 145, 236, 363, 532, 749, 1020] result = plt.plot( x, y2, "r-", x, y3, "b--", x, y4, "g--" ) # 'r-', 'b--', 'g--' are matlab-like formatting strings. plt.xlabel("X") # x-axis label plt.ylabel("Y") # y-axis label plt.title("Plotting multiple series") # title of the graph plt.show() ###Output _____no_output_____ ###Markdown We can also "zoom in" by placing limits on the displayed x and y axies using `plt.xlim()` and `plt.ylim()` functions ###Code result = plt.plot( x, y2, "r-", x, y3, "b--", x, y4, "g--" ) # 'r-', 'b--', 'g--' are matlab-like formatting strings. plt.xlabel("X") # x-axis label plt.ylabel("Y") # y-axis label plt.xlim((2, 4)) # Note the limits on the x and y axes. plt.ylim((0, 100)) plt.title("Plotting multiple series") # title of the graph plt.show() ###Output _____no_output_____ ###Markdown Though it is possible to use simple lists as the input to be plotted, it is more convenient and flexible to use NumPy arrays. ###Code x = np.arange( 0.0, 10.0, 0.01 ) # np.arrange(start, stop, step); returns an ndarray object. y = np.sin(x) plt.plot(x, y) # plot(x,y) is a matplotlib function. plt.show() ###Output _____no_output_____ ###Markdown The `hist()` function in pyplot module of matplotlib library is used to plot a histogram ###Code x = np.random.randn( 10000 ) # generate 10,000 points from the standard normal distribution (sd=1, mean=0) plt.hist(x, bins=50) # bins=50 is the number of bins to use. plt.show() ###Output _____no_output_____ ###Markdown Bar Charts ###Code groups = [0, 1, 2, 3, 4] group_titles = ["A", "B", "C", "D", "E"] grparray = np.array(groups) values = [75, 60, 80, 77, 90] plt.bar( groups, values, align="center" ) # align='center' centers the bars on the x-axis. plt.xticks( groups, group_titles ) # groups is the x-axis, group_titles is the labels for the x-axis. plt.ylabel("Score") # label the y-axis plt.title("Test Scores by Class (A-E)") # title is a matlab-like formatting string plt.show() plt.barh( groups, values, align="center", color="red" ) # color='red' is a matlab-like formatting string. plt.yticks(groups, group_titles) # Note the order of the arguments. plt.ylabel("Class") # Note the y-axis label is on the left side of the plot. plt.xlabel("Score") # Note the x-axis label is on the bottom of the plot. plt.title("Test Scores by Class (A-E)") # Note the title is on the top of the plot. plt.show() grpA = (77, 58, 84, 62) grpB = (99, 92, 88, 80) grpC = (85, 81, 79, 80) plt.subplots() # creates a figure with a single subplot index = np.arange(4) bar_width = 0.25 rects1 = plt.bar( index, grpA, bar_width, color="r", label="Group 1", width=bar_width ) # color='r' is a matlab-like formatting string. rects2 = plt.bar( index + bar_width, grpB, bar_width, color="b", label="Group 2" ) # color='b' is a matlab-like formatting string. rects3 = plt.bar( index + 2 * bar_width, grpC, bar_width, color="g", label="Group 3" ) # color='g' is a matlab-like formatting string. plt.xlabel("Subject") # add x-axis label plt.ylabel("Test Score") # add y-axis label plt.title("Test Scores by Subject") # add title plt.xticks(index + bar_width, ("A", "B", "C", "D")) # add x-axis tick labels plt.legend() # add legend plt.show() ###Output _____no_output_____ ###Markdown MarkersYou can use the keyword argument marker to emphasize each point with a specified marker: ###Code ypoints = np.array([3, 8, 1, 10]) plt.plot(ypoints, marker="o") # plot the points plt.show() ###Output _____no_output_____ ###Markdown Marker SizeYou can use the keyword argument markersize or the shorter version, ms to set the size of the markers: ###Code ypoints = np.array([3, 8, 1, 10]) plt.plot(ypoints, marker="o", ms=20) # marker size plt.show() ###Output _____no_output_____ ###Markdown Marker ColorYou can use the keyword argument markeredgecolor or the shorter mec to set the color of the edge of the markers: ###Code ypoints = np.array([3, 8, 1, 10]) plt.plot(ypoints, marker="o", ms=20, mec="r") # marker size, marker edge color plt.show() ###Output _____no_output_____ ###Markdown You can use the keyword argument markerfacecolor or the shorter mfc to set the color inside the edge of the markers: ###Code ypoints = np.array([3, 8, 1, 10]) plt.plot(ypoints, marker="o", ms=20, mfc="r") plt.show() ###Output _____no_output_____ ###Markdown Set Font Properties for Title and LabelsYou can use the fontdict parameter in xlabel(), ylabel(), and title() to set font properties for the title and labels. ###Code x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125]) y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330]) font1 = {"family": "serif", "color": "blue", "size": 20} font2 = {"family": "serif", "color": "darkred", "size": 15} plt.title("Sports Watch Data", fontdict=font1) # add to the title plt.xlabel("Average Pulse", fontdict=font2) # add label to the x-xsie plt.ylabel("Calorie Burnage", fontdict=font2) # add label to the y-xsie plt.plot(x, y) # plot the data plt.show() ###Output _____no_output_____ ###Markdown Display Multiple PlotsMatplotlib provides a convenient method called subplots to do this. Subplots mean a group of smaller axes (where each axis is a plot) that can exist together within a single figure. Think of a figure as a canvas that holds multiple plots.With the `subplot(nrows, ncols, index)` function you can draw multiple plots in one figure: ###Code # plot 1: x = np.array([0, 1, 2, 3]) y = np.array([3, 8, 1, 10]) plt.subplot(1, 2, 1) # creates a figure with a single subplot plt.plot(x, y) # plot the data # plot 2: x = np.array([0, 1, 2, 3]) y = np.array([10, 20, 30, 40]) plt.subplot(1, 2, 2) # creates a figure with a single subplot plt.plot(x, y) # plot the data plt.show() ###Output _____no_output_____
1c_convolution.ipynb
###Markdown Tutorial 1c. ConvolutionThe spatial dimensions of the ouput image (width and height) depend on the spatial dimensions of the input image, kernel_size, padding, and striding. In order to build efficient convolutional networks, it's important to understand what the sizes are after after each convolutional layer.In this exersise you will derive the dependency between input and output image sizes. For the sake of simplicity we assume that the input tensor is _square_, i.e., width = height = image_size.We will use the nn.Conv2d layer here. We have not yet discussed what a convolutional layer is yet, but if you set the first two parameters (input channels and output channels) to 1, then this defines a basic convolution.If your code is correct, you should see 'OK'. ###Code def compute_conv_output_size(image_size, kernel_size, padding, stride): ########################################################################### # Add code that computes the size of the image after a conv layer. # ########################################################################### return output_size # Compare the size of the output of nn.Conv2d with compute_convnet_output_size. for image_size in range(5, 21, 1): # Shape: batch x channels x height x width. input_tensor = torch.zeros((1, 1, image_size, image_size)) for kernel_size in 2, 3, 5, 7: for padding in 0, 5: for stride in 1, 2, 3, 4: if kernel_size >= image_size: continue output_tensor = Conv2d(1, 1, kernel_size, stride, padding)(input_tensor) output_size = output_tensor.size(2) predicted_output_size = compute_conv_output_size(image_size, kernel_size, padding, stride) assert output_size == predicted_output_size, ( f"ERROR: the real size is {output_size}," f" but got {predicted_output_size}." f"\nimage_size={image_size}" f" kernel_size={kernel_size}" f" padding={padding}" f" stride={stride}" ) print("OK") ###Output _____no_output_____ ###Markdown You can now use the function you just implemented to compute the size of the output of a convolution. ###Code compute_conv_output_size(1, 1, 1, 1) ###Output _____no_output_____ ###Markdown **Question [optional]:** Implement your own convolution operator **without** using any of PyTorch's (or numpy's) pre-defined convolutional functions. ###Code def conv_naive(x, w, b, conv_param): """ A naive Python implementation of a convolution. The input consists of an image tensor with height H and width W. We convolve each input with a filter F, where the filter has height HH and width WW. Input: - x: Input data of shape (H, W) - w: Filter weights of shape (HH, WW) - b: Bias for filter - conv_param: A dictionary with the following keys: - 'stride': The number of pixels between adjacent receptive fields in the horizontal and vertical directions. - 'pad': The number of pixels that will be used to zero-pad the input. During padding, 'pad' zeros should be placed symmetrically (i.e equally on both sides) along the height and width axes of the input. Be careful not to modfiy the original input x directly. Returns an array. - out: Output data, of shape (H', W') where H' and W' are given by H' = 1 + (H + 2 * pad - HH) / stride W' = 1 + (W + 2 * pad - WW) / stride """ out = None H, W = x.shape filter_height, filter_width = w.shape stride, pad = conv_param["stride"], conv_param["pad"] # Check dimensions. assert (W + 2 * pad - filter_width) % stride == 0, "width does not work" assert (H + 2 * pad - filter_height) % stride == 0, "height does not work" ########################################################################### # TODO: Implement the convolutional forward pass. # # Hint: you can use the function torch.nn.functional.pad for padding. # ########################################################################### ###Output _____no_output_____ ###Markdown You can test your implementation by running the following: ###Code # Make convolution module. w_shape = (4, 4) w = torch.linspace(-0.2, 0.3, steps=torch.prod(torch.tensor(w_shape))).reshape(w_shape) b = torch.linspace(-0.1, 0.2, steps=1) # Compute output of module and compare against reference values. x_shape = (4, 4) x = torch.linspace(-0.1, 0.5, steps=torch.prod(torch.tensor(x_shape))).reshape(x_shape) out = conv_naive(x, w, b, {"stride": 2, "pad": 1}) correct_out = torch.tensor([[0.156, 0.162], [0.036, -0.054]]) # Compare your output to ours; difference should be around e-8 print("Testing conv_forward_naive") rel_error = ((out - correct_out) / (out + correct_out + 1e-6)).mean() print("difference: ", rel_error) if abs(rel_error) < 1e-6: print("Nice work! Your implementation of a convolution layer works correctly.") else: print( "Something is wrong. The output was expected to be {} but it was {}".format( correct_out, out ) ) ###Output _____no_output_____ ###Markdown **Aside: Image processing via convolutions:**As fun way to gain a better understanding of the type of operation that convolutional layers can perform, we will set up an input containing two images and manually set up filters that perform common image processing operations (grayscale conversion and edge detection). The convolution forward pass will apply these operations to each of the input images. We can then visualize the results as a sanity check. ###Code # Load image of a kitten and a puppy. kitten_uri = "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Persian_Cat_%28kitten%29.jpg/256px-Persian_Cat_%28kitten%29.jpg" puppy_uri = "https://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Golde33443.jpg/256px-Golde33443.jpg" kitten, puppy = imageio.imread(kitten_uri), imageio.imread(puppy_uri) img_size = 200 # Make this smaller if it runs too slow x = numpy.zeros((2, 3, img_size, img_size)) x[0, :, :, :] = skimage.transform.resize(puppy, (img_size, img_size)).transpose( (2, 0, 1) ) x[1, :, :, :] = skimage.transform.resize(kitten, (img_size, img_size)).transpose( (2, 0, 1) ) x = torch.FloatTensor(x) # Set up a convolutional weights holding 2 filters, each 3x3 w = torch.zeros((2, 3, 3, 3), dtype=torch.float) # The first filter converts the image to grayscale. # Set up the red, green, and blue channels of the filter. w[0, 0, :, :] = torch.tensor([[0, 0, 0], [0, 0.3, 0], [0, 0, 0]]) w[0, 1, :, :] = torch.tensor([[0, 0, 0], [0, 0.6, 0], [0, 0, 0]]) w[0, 2, :, :] = torch.tensor([[0, 0, 0], [0, 0.1, 0], [0, 0, 0]]) # Second filter detects horizontal edges in the blue channel. w[1, 2, :, :] = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) # Vector of biases. We don't need any bias for the grayscale # filter, but for the edge detection filter we want to add 128 # to each output so that nothing is negative. b = torch.tensor([0, 128], dtype=torch.float) # Compute the result of convolving each input in x with each filter in w, # offsetting by b, and storing the results in out. out = F.conv2d(x, w, b, stride=1, padding=1).numpy() def imshow_noax(img, normalize=True): """Tiny helper to show images as uint8 and remove axis labels.""" if normalize: img_max, img_min = numpy.max(img), numpy.min(img) img = 255.0 * (img - img_min) / (img_max - img_min) matplotlib.pyplot.imshow(img.astype("uint8")) matplotlib.pyplot.gca().axis("off") # Show the original images and the results of the conv operation matplotlib.pyplot.subplot(2, 3, 1) imshow_noax(puppy, normalize=False) matplotlib.pyplot.title("Original image") matplotlib.pyplot.subplot(2, 3, 2) imshow_noax(out[0, 0]) matplotlib.pyplot.title("Grayscale") matplotlib.pyplot.subplot(2, 3, 3) imshow_noax(out[0, 1]) matplotlib.pyplot.title("Edges") matplotlib.pyplot.subplot(2, 3, 4) imshow_noax(kitten, normalize=False) matplotlib.pyplot.subplot(2, 3, 5) imshow_noax(out[1, 0]) matplotlib.pyplot.subplot(2, 3, 6) imshow_noax(out[1, 1]) matplotlib.pyplot.show() ###Output _____no_output_____
notebooks/lst/real_data/crab_analysis_src_independent.ipynb
###Markdown ON/OFF theta2 and alpha plotThis notebook produces both the theta2 plot and the alpha plot of a set of DL2 files.It extracts automatically also the time duration, given a set of DL2 files merged run-wise.Input:- merged DL2 run files (run-wise)- merged ON and merged all DL2 files- run numbers- selection cuts ###Code __authors__ = 'Ruben Lopez, Luca Foffano' # [email protected], [email protected] __version__ = '3.08.2020' # it provides theta2 plot and estimation of run duration import warnings warnings.filterwarnings("ignore",category=DeprecationWarning) warnings.filterwarnings("ignore",category=FutureWarning) warnings.filterwarnings("ignore",category=RuntimeWarning) import time import pandas as pd import matplotlib.pyplot as plt import numpy as np from lstchain.reco.utils import reco_source_position_sky, radec_to_camera from lstchain.tests.test_lstchain import dl2_file, dl2_params_lstcam_key from astropy.coordinates import SkyCoord import astropy.units as u from gammapy.stats import WStatCountsStatistic plt.rcParams['figure.figsize'] = (12, 12) plt.rcParams['font.size'] = 20 ###################################################################################### # SELECTION CUTS intensity_cut = 200 leakage_cut = 0.2 wl_cut = 0.01 gammaness_cut = 0.8 n_pixels_cut = 1800 # 1800 r_cut = 1 theta2_cut = 0.1 alpha_cut = 8. # INPUT FILES runs_on = [1874, 1875, 1876, 1878, 1879, 1880] runs_off = [1877, 1881] # path to the DL2 merged files - per run - e.g. merged-dl2-run1880.h5 path_runs = '../data/crab_on_off/' # ON and OFF data files (each one obtained merging all ON or OFF files) on_data_file = '../../data/crab_on_off/crab_on/dl2_Run01874_merged.h5' off_data_file = '../../data/crab_on_off/crab_off/dl2_Run01881_merged.h5' # reads files - takes some minutes on_data = pd.read_hdf(on_data_file, key=dl2_params_lstcam_key) off_data = pd.read_hdf(off_data_file, key=dl2_params_lstcam_key) # run duration estimation print("Evaluating run duration...\n") on_obstime_start = pd.to_datetime(on_data['dragon_time'][0], unit='s') on_obstime_end = pd.to_datetime(on_data['dragon_time'][len(on_data)-1], unit='s') print("duration: {:.1f} min".format((on_obstime_end - on_obstime_start).total_seconds()/60) ) total_obs_duration_on = (on_obstime_end - on_obstime_start).total_seconds() print("ON data total duration: {:.1f} s = {:.1f} min\n".format(total_obs_duration_on, total_obs_duration_on/60)) ##################################### off_obstime_start = pd.to_datetime(off_data['dragon_time'][0], unit='s') off_obstime_end = pd.to_datetime(off_data['dragon_time'][len(off_data)-1], unit='s') print("duration: {:.1f} min".format((off_obstime_end - off_obstime_start).total_seconds()/60) ) total_obs_duration_off = (off_obstime_end - off_obstime_start).total_seconds() print("OFF data total duration: {:.1f} s = {:.1f} min\n".format(total_obs_duration_off, total_obs_duration_off/60)) ##################################################################### # ON computation source_position = [0,0] # assuming source located in the m_tocamera center m_to_deg = np.rad2deg(np.arctan(1./28)) # conversion from deg / m Tot_Non = np.shape(on_data)[0] print("Total number of ON events", Tot_Non) selection_cuts_on_data = np.array([ (on_data['leakage_intensity_width_2'] < leakage_cut) & (on_data['intensity'] > intensity_cut) & (on_data['n_pixels'] < n_pixels_cut) & (on_data['wl'] > wl_cut) & (on_data['gammaness'] > gammaness_cut) & (on_data['r'] < r_cut) ])[0] print('Number of ON events after cuts', np.sum(selection_cuts_on_data)) reco_src_x = on_data['reco_src_x'][selection_cuts_on_data] reco_src_y = on_data['reco_src_y'][selection_cuts_on_data] on_data['theta2'] = m_to_deg**2 * ((source_position[0] - reco_src_x)**2 + (source_position[1] - reco_src_y)**2) theta2 = np.array(on_data['theta2']) ##################################################################################### # OFF computation selection_cuts_off_data = np.array([ (off_data['leakage_intensity_width_2'] < leakage_cut) & (off_data['intensity'] > intensity_cut) & (off_data['n_pixels'] < n_pixels_cut) & (off_data['wl'] > wl_cut) & (off_data['gammaness'] > gammaness_cut) & (off_data['r'] < r_cut) ])[0] Tot_Noff = np.shape(off_data)[0] print("Total number of OFF events", Tot_Noff) print('Number of OFF events after cuts', np.sum(selection_cuts_off_data)) reco_src_x_off = off_data['reco_src_x'][selection_cuts_off_data] reco_src_y_off = off_data['reco_src_y'][selection_cuts_off_data] off_data['theta2'] = m_to_deg**2 * ((reco_src_x_off)**2 + (reco_src_y_off)**2) theta2_off = np.array(off_data['theta2']) # normalization theta2 norm_range_th2_min = 0.5 norm_range_th2_max = 2. Non_norm = np.sum((theta2 > norm_range_th2_min) & (theta2 < norm_range_th2_max)) Noff_norm = np.sum((theta2_off > norm_range_th2_min) & (theta2_off < norm_range_th2_max)) Norm_theta2 = Non_norm / Noff_norm print("Normalization: {:.2f}".format(Norm_theta2)) Non = np.sum(theta2 < theta2_cut) Noff = np.sum(theta2_off < theta2_cut) Nex = Non - Noff * Norm_theta2 print("Non, Noff, Nex = {:.0f}, {:.0f}, {:.0f}".format(Non, Noff,Nex)) S = Nex / np.sqrt(Noff) stat = WStatCountsStatistic(Non, Noff, Norm_theta2) lima_significance = stat.sqrt_ts.item() #print("\nSignificance: {:.2f}".format(S)) print("Significance Li&Ma: {:.2f}".format(lima_significance)) # theta2 plot nbins = 100 range_max = 2 # deg2 ######################################################## fig, ax = plt.subplots(1, 1, figsize=(12, 8)) h_on = ax.hist(theta2, label = 'ON data', bins=nbins, alpha=0.2, color = 'blue', range=[0,range_max]) # color = 'C3', h_off = ax.hist(theta2_off, weights = Norm_theta2 * np.ones(len(theta2_off)), range=[0,range_max], histtype='step', label = 'OFF data', bins=nbins, alpha=0.5, color = 'k') ax.annotate(s=f'Significance Li&Ma = {lima_significance:.2f}' \ f'$\sigma$\nRate = {Nex/total_obs_duration_on * 60:.1f}' \ f'$\gamma$/min \nObstime = {total_obs_duration_on:.1f} s\nNon = {Non} Noff = {Noff} Norm_theta2 = {Norm_theta2:.2f}', xy=(np.max(h_on[1]/4), np.max(h_on[0]/6*5)), size = 20, color = 'r') ax.vlines(x = theta2_cut, ymin = 0, ymax = np.max(h_on[0]*1.2), linestyle='--', linewidth = 2, color = 'black', alpha = 0.2) ax.set_xlabel(r'$\theta^2$ [deg$^2$]') ax.set_ylabel(r'Number of events') ax.set_ylim(0,np.max(h_on[0]*1.2)) ax.legend() ###Output /Users/rlopezcoto/opt/anaconda3/envs/lst-dev/lib/python3.7/site-packages/ipykernel_launcher.py:17: MatplotlibDeprecationWarning: The 's' parameter of annotate() has been renamed 'text' since Matplotlib 3.3; support for the old name will be dropped two minor releases later.
examples/Example Data Sets.ipynb
###Markdown Chicago setCSV file available from https://catalog.data.gov/dataset/crimes-one-year-prior-to-present-e171f ###Code import open_cp.sources.chicago as chicago points = chicago.default_burglary_data() points type(points) len(points.timestamps), points.time_range bbox = points.bounding_box print("X coord range:", bbox.xmin, bbox.xmax) print("Y coord range:", bbox.ymin, bbox.ymax) print(bbox.aspect_ratio) _, ax = plt.subplots(figsize=(10,10 * bbox.aspect_ratio)) ax.scatter(points.coords[0], points.coords[1], alpha=0.1, marker="o", s=1) ###Output _____no_output_____ ###Markdown As an American city, most streets run North-South or East-West. Further, the data is geocoded to the centre of the "block", to anonymise the data. (Though this is slightly inconsistent, if one looks closely at the raw CSV file.)In the plot above: - the clump at the upper left is the airport. - We see a large clump of theft data downtown. - It would be interesting to know what causes the visible lines running north north west from downtown. ###Code mask = ( (points.xcoords >= 355000) & (points.xcoords <= 365000) & (points.ycoords >= 575000) & (points.ycoords <= 585000) ) downtown = points[mask] bbox = downtown.bounding_box print("X coord range:", bbox.xmin, bbox.xmax) print("Y coord range:", bbox.ymin, bbox.ymax) _, ax = plt.subplots(figsize=(5, 5 * bbox.aspect_ratio)) ax.scatter(downtown.coords[0], downtown.coords[1], alpha=0.1, marker="o", s=1) ###Output _____no_output_____ ###Markdown UK Crime dataWe use an example of January 2017 from West Yorkshire. ###Code import open_cp.sources.ukpolice as ukpolice points = ukpolice.default_burglary_data() len(points.timestamps) bbox = points.bounding_box fig, ax = plt.subplots(figsize=(10, 10 * bbox.aspect_ratio)) ax.scatter(points.xcoords, points.ycoords, s=10, alpha=0.2) ###Output _____no_output_____ ###Markdown These are longitude / latitude points, which distort distance. Assuming you have `pyproj` installed, you can project. For the UK, we use [British National Grid](http://www.spatialreference.org/ref/epsg/osgb36-british-national-grid-odn-height/) ###Code import open_cp projected_points = open_cp.data.points_from_lon_lat(points, epsg=7405) bbox = projected_points.bounding_box fig, ax = plt.subplots(figsize=(10, 10 * bbox.aspect_ratio)) ax.scatter(projected_points.xcoords, projected_points.ycoords, s=10, alpha=0.2) ###Output _____no_output_____ ###Markdown Random data ###Code import open_cp.sources.random as random import datetime region = open_cp.RectangularRegion(390000, 450000, 410000, 450000) points = random.random_uniform(region, datetime.date(2017,1,1), datetime.date(2017,3,1), 1000) points.time_range bbox = points.bounding_box fig, ax = plt.subplots(figsize=(10, 10 * bbox.aspect_ratio)) ax.scatter(*points.coords, s=10, alpha=0.2) ###Output _____no_output_____ ###Markdown If we have scipy installed, we can quickly use a 2D Gaussian kernel density estimation to get an estimate of the "risk intensity" from the real West Yorkshire data. ###Code import scipy.stats kernel = scipy.stats.gaussian_kde(projected_points.coords) X, Y = np.mgrid[bbox.xmin:bbox.xmax:100j, bbox.ymin:bbox.ymax:100j] positions = np.vstack([X.ravel(), Y.ravel()]) Z = np.reshape(kernel(positions), X.shape) np.max(Z) plt.imshow(np.rot90(Z)) sampler = random.KernelSampler(region, kernel, 4e-9) points = random.random_spatial(sampler, datetime.date(2017,1,1), datetime.date(2017,3,1), 2350) fig, ax = plt.subplots(ncols=2, figsize=(16, 6)) ax[0].scatter(*projected_points.coords, s=10, alpha=0.2) ax[1].scatter(*points.coords, s=10, alpha=0.2) for i in [0, 1]: ax[i].set_aspect(bbox.aspect_ratio) ax[i].set(xlim=[bbox.xmin, bbox.xmax], ylim=[bbox.ymin, bbox.ymax]) ax[0].set_title("Real data, Jan 2017") _ = ax[1].set_title("Gaussian KDE sample") ###Output _____no_output_____ ###Markdown The real plot still looks somewhat different to the random test data, suggesting that a simple fixed bandwidth Gaussian KDE is not appropriate (which we already knew...) Using a nearest neighbour variable bandwidth Gaussian KDE ###Code import open_cp.kernels kernel = open_cp.kernels.kth_nearest_neighbour_gaussian_kde(projected_points.coords, k=10) sampler = random.KernelSampler(region, kernel, 4e-9) points10 = random.random_spatial(sampler, datetime.date(2017,1,1), datetime.date(2017,3,1), 2350) kernel = open_cp.kernels.kth_nearest_neighbour_gaussian_kde(projected_points.coords, k=25) sampler = random.KernelSampler(region, kernel, 4e-9) points25 = random.random_spatial(sampler, datetime.date(2017,1,1), datetime.date(2017,3,1), 2350) kernel = open_cp.kernels.kth_nearest_neighbour_gaussian_kde(projected_points.coords, k=50) sampler = random.KernelSampler(region, kernel, 4e-9) points50 = random.random_spatial(sampler, datetime.date(2017,1,1), datetime.date(2017,3,1), 2350) fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(15, 9)) ax[0,0].scatter(*projected_points.coords, s=10, alpha=0.2) ax[0,1].scatter(*points10.coords, s=10, alpha=0.2) ax[1,0].scatter(*points25.coords, s=10, alpha=0.2) ax[1,1].scatter(*points50.coords, s=10, alpha=0.2) for a in ax.ravel(): a.set_aspect(bbox.aspect_ratio) a.set(xlim=[bbox.xmin, bbox.xmax], ylim=[bbox.ymin, bbox.ymax]) ax[0,0].set_title("Real data, Jan 2017") ax[0,1].set_title("k=10 nearest neighbour sample") ax[1,0].set_title("k=25 nearest neighbour sample") ax[1,1].set_title("k=50 nearest neighbour sample") fig.tight_layout() None ###Output _____no_output_____ ###Markdown Visually, having a rather narrow bandwidth seems to look better.I suspect that to produce more realistic simulations, to _geography_ of the data needs to be investigated: i.e. locate the points onto buildings and into the real street network. Self-exciting point process sampler Inhomogeneous Poisson process ###Code import open_cp.sources.sepp as sepp region = open_cp.RectangularRegion(0,100,0,100) kernel = sepp.PoissonTimeGaussianSpace(1, [50, 50], [150, 25], 0.8) sampler = sepp.InhomogeneousPoisson(region, kernel) points = sampler.sample(0, 100) fig, ax = plt.subplots(ncols=2, figsize=(16, 6)) ax[0].scatter(points[1], points[2]) ax[0].set_title("Space location") ax[0].set_aspect(1) ax[0].set_xlim(0,100) ax[0].set_ylim(0,100) ax[1].scatter(points[0], points[1]) ax[1].set_xlabel("time") ax[1].set_ylabel("x coord") ax[1].set_title("X location against time") None ###Output _____no_output_____ ###Markdown The coordinates in space give samples from a 2D correlated Gaussian distribution, as we expect.If we do this repeatedly, then the time coordinates along should give a poisson process. ###Code counts = [] window = [] for _ in range(10000): times = sampler.sample(0,100)[0] counts.append(len(times)) window.append(np.sum(times <= 20)) fig, ax = plt.subplots(ncols=2, figsize=(16, 4)) ax[0].hist(counts) ax[0].set_title("Number of points") ax[1].hist(window) ax[1].set_title("In window [0,20]") None ###Output _____no_output_____ ###Markdown Inhomogeneous Poisson process via factorisationIf the intensity function of the poisson process has the form $\lambda(t,x,y) = \nu(t)\mu(x,y)$ then we can simulate the time-only Poission process with density $\nu$, and then sample the space dimension as if it were a "mark" (see the notion of a "marked Poisson process" in the literature). If $\mu$ is a probability density of a standard type, this is much faster, because we can very easily draw samples for the space dimensions. ###Code time_kernel = sepp.Exponential(exp_rate=1, total_rate=10) space_sampler = sepp.GaussianSpaceSampler([50, 50], [150, 25], 0.8) sampler = sepp.InhomogeneousPoissonFactors(time_kernel, space_sampler) points = sampler.sample(0, 100) fig, ax = plt.subplots(ncols=2, figsize=(16, 6)) ax[0].scatter(points[1], points[2]) ax[0].set_title("Space location") ax[0].set_aspect(1) ax[0].set_xlim(0,100) ax[0].set_ylim(0,100) ax[1].scatter(points[0], points[1]) ax[1].set_xlabel("time") ax[1].set_ylabel("x coord") ax[1].set_title("X location against time") None ###Output _____no_output_____ ###Markdown Self-excited point process samplerYou need to pass two intensity functions (aka kernels), one for the background events, and one for the triggered events.In the following example, the background sampler has as time component a constant rate poisson process, and a Gaussian space density, centred at (50,50).The trigger kernel has an exponential density in time (so on average each event triggers one further event) and a space kernel which is deliberate biases to jump around 5 units in the x direction. We can hence visualise the cascade of triggered events as a rightward drift on the first graph, and an upward drift on the second graph. ###Code background_sampler = sepp.InhomogeneousPoissonFactors(sepp.HomogeneousPoisson(1), sepp.GaussianSpaceSampler([50,50], [50,50], 0)) time_kernel = sepp.Exponential(exp_rate=1, total_rate=1) space_sampler = sepp.GaussianSpaceSampler([5, 0], [1, 1], 0) trigger_sampler = sepp.InhomogeneousPoissonFactors(time_kernel, space_sampler) sampler = sepp.SelfExcitingPointProcess(background_sampler, trigger_sampler) points = sampler.sample(0,10) fig, ax = plt.subplots(ncols=2, figsize=(16, 6)) ax[0].scatter(points[1], points[2]) ax[0].set_title("Space location") ax[0].set_aspect(1) ax[0].set_xlim(0,100) ax[0].set_ylim(0,100) ax[1].scatter(points[0], points[1]) ax[1].set_xlabel("time") ax[1].set_ylabel("x coord") ax[1].set_title("X location against time") None ###Output _____no_output_____
Stock_Analysis_multidim_1stock_weekly.ipynb
###Markdown Analysis of a single stock - for simulation over the course of a yearGoal: This script simulates a year of weekly pred/close determinations and simulates for any given stock if it is better to invest a consistent price or buy in higher/lower depending on the current performance of the stock.Take 1 stock and run a trendline through multiple 1 year cycles, creating a linear prediction to be applied weekly. Assess the theoretical performance of adjusting weekly contributions as compared to contributing a consistent amount every week ###Code import yfinance as yf import pandas as pd import matplotlib.pyplot as plt import numpy as np # Arguments Scenarios Example value # period date period to download 1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max # interval data interval. If it’s intraday data, the interval needs to be set within 60 days 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo # start If period is not set- Download start date string (YYYY-MM-DD) or datetime 2020-03-18 # end If period is not set - Download end date string (YYYY-MM-DD) or datetime 2020-03-19 # prepost Boolean value to include Pre and Post market data Default is False # auto_adjust Boolean value to adjust all OHLC Default is True # actions Boolean value download stock dividends and stock splits events Default is True # pull data # note: you can't choose a stock with less than 2 years of history # AAPL, AMD, AMZN, CRM, GOOG, INTC, MDB, MSFT, NVDA, QQQ, SBUX, SQ, TSLA, TSM stock = yf.Ticker("amd") df = stock.history(period="2y") #df = stock.history(period="7d", interval = "1m") df = pd.DataFrame(df['Close']) df = df.dropna() #in case the first row generates as nulls df # add index to df #df = pd.DataFrame(df['Close']) add_index = np.arange(1,len(df)+1) df['Index'] = add_index df # create 50 dataframes in a dictionary, each 260 days: dataframes['data0'] - dataframes['data49'] # 0 is the most recent 260 days, 49 is the oldest # 260 days isn't exactly 1 trading year, but I think it's close enough dataframes = {} x = (max(df['Index']))-260 y = max(df['Index']) for i in range(50): dataframes['data' + str(i)] = df.iloc[x:y] x -= 5 y -= 5 # show the newest and oldest dataframes print(dataframes['data0']) print(dataframes['data49']) # plot data with a trendline - most recent 260 days x = dataframes['data0']['Index'] y = dataframes['data0']['Close'] plt.plot(x, y) m, b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) # plot data with a trendline - the oldest 260 days x = dataframes['data49']['Index'] y = dataframes['data49']['Close'] plt.plot(x, y) m, b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) plt.show() # plot only trendlines, weekly, each line representing 1 year of data # if the movement is too stable, these graphs won't be useable for i in range(len(dataframes)): x = dataframes['data' + str(i)]['Index'] y = dataframes['data' + str(i)]['Close'] m, b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) plt.show() for i in range(len(dataframes)): x = dataframes['data' + str(i)]['Index'] y = dataframes['data' + str(i)]['Close'] m, b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) plt.plot(range(len(df)), df['Close']) plt.show() # create pred and pred/close list for each of the 50 dataframes k = len(dataframes) for e in range(k): nlist = [] ylist = [] y = dataframes['data' + str(e)]['Close'] for i in range(1,len(dataframes['data0'])+1): # create pred x = range(260) m, b = np.polyfit(x, y, 1) d = m*i+b nlist.append(d) dataframes['data' + str(e)]['pred'] = nlist for i in range(1,len(dataframes['data0'])+1): # create pred/close d = (dataframes['data' + str(e)]['pred'].iloc[i-1])/(dataframes['data' + str(e)]['Close'].iloc[i-1]) ylist.append(d) dataframes['data' + str(e)]['pred/close'] = ylist print(dataframes['data49']) print(dataframes['data0']) # pull the last 'Close' and pred/close' from each dataframe in dataframes and make a new dataframe out of it # each row is the last close price in a 1 year period and the final pred/close derived from a 1 year trendline # the rows have a 51 week overlap and are separated by 1 week nlist = [] ylist = [] k = len(dataframes['data0']) for e in reversed(range(len(dataframes))): nlist.append(round(dataframes['data' + str(e)]['pred/close'].iloc[k-1],4)) ylist.append(round(dataframes['data' + str(e)]['Close'].iloc[k-1],4)) df = pd.DataFrame(list(zip(ylist, nlist)), columns=['Close', 'pred/close']) print(df.head()) print('') print(df.tail()) # determine the weeks where pred/close is >1 and therefore they are better weeks to buy in # steady stocks could be at about 50/50 but stocks exponentially rising could have close to 0 pred/close > 1 nlist = [] for i in range(len(df)): if df['pred/close'].iloc[i] >= 1: nlist.append(1) else: nlist.append(0) df['>1'] = nlist print('total weeks:', len(df['>1'])) print('number above 1:', sum(df['>1'])) print('') print(df) # create multiple investment strategies and simulate the returns over 1 year # the strategy that ends up with the most stock for the same amount of money is ultimately the best print('baseline - contribute 10 every week') print('opt1 - buy in every week proportional to the pred/close variable') print('opt2 - buy in every week proportional to the pred/close variable - squared') print('opt3 - contribute 20 only on the weeks where pred/close is >=1') print('opt4 - buy in every week inversely proportional to the pred/close variable - as a fact check (should be lower)') invest = 500 # max amount to contribute wkly_contrib = 10 # how much to contribute each week df['pred/close2'] = round(df['pred/close']**2,4) # make the value differences a little more pronounced # baseline - buy in $10 weekly no matter what - baseline df['baseline'] = 0 df['baseline_stk'] = 0 v = invest for i in range(len(df)): df['baseline'].iloc[i] = wkly_contrib df['baseline_stk'].iloc[i] = round(df['baseline'].iloc[i]/df['Close'].iloc[i],4) v -= wkly_contrib if v < wkly_contrib: break baseline_left = v # opt1 - buy in every week but proportionally to the pred/close df['opt1'] = 0 df['opt1_stk'] = 0 v = invest for i in range(len(df)): df['opt1'].iloc[i] = wkly_contrib*df['pred/close'].iloc[i] df['opt1_stk'].iloc[i] = round(df['opt1'].iloc[i]/df['Close'].iloc[i],4) v -= wkly_contrib*df['pred/close'].iloc[i] if i == (len(df)-1): t = i else: t = i+1 if v < wkly_contrib*df['pred/close'].iloc[t]: break opt1_left = v # opt2 - buy in every week but proportionally to the pred/close and pred/close is squared to be more dramatic df['opt2'] = 0 df['opt2_stk'] = 0 v = invest for i in range(len(df)): df['opt2'].iloc[i] = wkly_contrib*df['pred/close2'].iloc[i] df['opt2_stk'].iloc[i] = round(df['opt2'].iloc[i]/df['Close'].iloc[i],4) v -= wkly_contrib*df['pred/close2'].iloc[i] if i == (len(df)-1): t = i else: t = i+1 if v < wkly_contrib*df['pred/close2'].iloc[t]: break opt2_left = v # opt3 - buy in every week but proportionally to the pred/close & buy 0 on days <1 df['opt3'] = 0 df['opt3_stk'] = 0 v = invest for i in range(len(df)): df['opt3'].iloc[i] = wkly_contrib*2*df['>1'].iloc[i] df['opt3_stk'].iloc[i] = round(df['opt3'].iloc[i]/df['Close'].iloc[i],4) v -= wkly_contrib*2*df['>1'].iloc[i] if i == (len(df)-1): t = i else: t = i+1 if v < wkly_contrib*2*df['>1'].iloc[t]: break opt3_left = v # opt4 - buy in every week but proportionally to the inverse of pred/close - to verify my method df['opt4'] = 0 df['opt4_stk'] = 0 v = invest for i in range(len(df)): df['opt4'].iloc[i] = round(wkly_contrib/df['pred/close'].iloc[i],4) df['opt4_stk'].iloc[i] = round(df['opt4'].iloc[i]/df['Close'].iloc[i],4) v -= wkly_contrib*df['pred/close'].iloc[i] # technically wrong, should be a divide, but divide doesn't work??? if i == (len(df)-1): t = i else: t = i+1 if v < wkly_contrib/df['pred/close'].iloc[t]: break opt4_left = v d = {'name': ['baseline', 'op1', 'op2', 'op3', 'op4'] ,'bought_in': [sum(df['baseline']), sum(df['opt1']), sum(df['opt2']), sum(df['opt3']),sum(df['opt4'])] ,'leftover': [baseline_left, opt1_left, opt2_left, opt3_left, opt4_left] ,'stocks_held': [round(sum(df['baseline_stk']),4), round(sum(df['opt1_stk']),4), round(sum(df['opt2_stk']),4), round(sum(df['opt3_stk']),4), round(sum(df['opt4_stk']),4)] ,'cost_per_stock': [sum(df['baseline'])/sum(df['baseline_stk']), sum(df['opt1'])/sum(df['opt1_stk']), sum(df['opt2'])/sum(df['opt2_stk']), sum(df['opt3'])/sum(df['opt3_stk']), sum(df['opt4'])/sum(df['opt4_stk'])] ,'profit': [(sum(df['baseline_stk']) * df['Close'].iloc[49]) - sum(df['baseline']), (sum(df['opt1_stk']) * df['Close'].iloc[49]) - sum(df['opt1']), (sum(df['opt2_stk']) * df['Close'].iloc[49]) - sum(df['opt2']), (sum(df['opt3_stk']) * df['Close'].iloc[49]) - sum(df['opt3']), (sum(df['opt4_stk']) * df['Close'].iloc[49]) - sum(df['opt4'])] } df2 = pd.DataFrame(data=d) df2['diff'] = 0 df2['diff'].iloc[1] = df2['profit'].iloc[1]-df2['profit'].iloc[0] df2['diff'].iloc[2] = df2['profit'].iloc[2]-df2['profit'].iloc[0] df2['diff'].iloc[3] = df2['profit'].iloc[3]-df2['profit'].iloc[0] df2['diff'].iloc[4] = df2['profit'].iloc[4]-df2['profit'].iloc[0] df2['%_diff'] = (df2['diff']/df2['profit'])*100 df2 ###Output baseline - contribute 10 every week opt1 - buy in every week proportional to the pred/close variable opt2 - buy in every week proportional to the pred/close variable - squared opt3 - contribute 20 only on the weeks where pred/close is >=1 opt4 - buy in every week inversely proportional to the pred/close variable - as a fact check (should be lower) ###Markdown Final notes:Stocks going up parabolically will almost never be above 1, so I can't simply not buy in when pred/close is not above 1. GOOG is like this as of 9/3/2021. opt3 can't be used. This kind of stock will also produce worse than baseline profits because opt1 and opt2 won't be investing the full 500 over the course of the year.Stocks in a big S-curve, flat ~ spike ~ flat, will only have a pred/close above 1 on the latter half of the year, so again, I can't contribute nothing. TSM and TSLA are like this as of 9/3/2021. Results as compared to the baseline (on 9/3/2021):aapl - opt1: +3.39, opt2: +7.28 amd - opt1: +11.63, opt2: +24.52 amzn - opt1: +1.14, opt2: +3.85 crm - opt1: +5.99, opt2: +11.65 goog - opt1: -8.16, opt2: -16.01intc - opt1: +3.74, opt2: +7.26 mdb - opt1: +17.92, opt2: +37.92 *huge spike on 9/3/2021, exclude due to misleadingly highmsft - opt1: +2.83, opt2: +5.81 nvda - opt1: +12.44, opt2: +28.15 qqq - opt1: +0.30, opt2: +0.68 sbux - opt1: -5.73, opt2: -10.70sq - opt1: -3.00, opt2: -3.23tsla - opt1: +0.15, opt2: +3.38 tsm - opt1: -4.02, opt2: -7.44Excluding MDB (due to misleadingly high extra profits), opt1 nets +20.7, opt2 nets +55.2. investing 500 into 13 stocks over 1 year (6500 total investment), with 55.2 extra profit over baseline. 0.85% better than baseline. ###Code df ###Output _____no_output_____
Dr. Semmelweis and the Discovery of Handwashing/notebook.ipynb
###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules # ... YOUR CODE FOR TASK 1 ... import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly # ... YOUR CODE FOR TASK 1 ... print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 2 ... yearly['proportion_deaths']=yearly.deaths/yearly.births # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly['clinic']=='clinic 1'] yearly2 = yearly[yearly['clinic']=='clinic 2'] # Print out yearly1 # ... YOUR CODE FOR TASK 2 ... print(yearly1) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics # ... YOUR CODE FOR TASK 3 ... ax=yearly1.plot(y='proportion_deaths', x='year') yearly2.plot(y='proportion_deaths', x='year', ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv', parse_dates=['date']) # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 4 ... monthly['proportion_deaths']=monthly.deaths/monthly.births # Print out the first rows in monthly # ... YOUR CODE FOR TASK 4 ... monthly.head() ###Output _____no_output_____ ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths # ... YOUR CODE FOR TASK 5 ... ax=monthly.plot(x='date', y='proportion_deaths') ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly.date<handwashing_start] after_washing = monthly[monthly.date>=handwashing_start] # Plot monthly proportion of deaths before and after handwashing ax= before_washing.plot(x='date', y='proportion_deaths') after_washing.plot(x='date', y='proportion_deaths', ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing.proportion_deaths after_proportion = after_washing.proportion_deaths mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(boot_after.mean()-boot_before.mean()) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([2.5, 97.5]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = False ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births yearly["proportion_deaths"] = yearly.deaths/yearly.births # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly['clinic'] == 'clinic 1'] yearly2 = yearly[yearly['clinic'] == 'clinic 2'] # Print out yearly1 print(yearly1) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics ax = yearly1.plot(x='year', y='proportion_deaths', label='Clinic 1') yearly2.plot(x='year', y='proportion_deaths', label='Clinic 2', ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv', parse_dates=['date']) # Calculate proportion of deaths per no. births monthly['proportion_deaths'] = monthly.deaths/monthly.births # Print out the first rows in monthly monthly.head() ###Output _____no_output_____ ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics ax = monthly['proportion_deaths'].plot(x='date', y='proportion_deaths', label='Clinic 1') monthly['proportion_deaths'].plot(x='date', y='proportion_deaths', label='Clinic 2', ax=ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # This makes plots appear in the notebook %matplotlib inline # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly['date'] < handwashing_start] after_washing = monthly[monthly['date'] >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing ax = before_washing.plot(x='date', y='proportion_deaths', label='Clinic 1') after_washing.plot(x='date', y='proportion_deaths', label='Clinic 2', ax=ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing['proportion_deaths'] after_proportion = after_washing['proportion_deaths'] mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(boot_after.mean() - boot_before.mean()) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025, 0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv("datasets/yearly_deaths_by_clinic.csv") # Print out yearly print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births yearly["proportion_deaths"] = yearly["deaths"] / yearly["births"] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly["clinic"] == "clinic 1"] yearly2 = yearly[yearly["clinic"] == "clinic 2"] # Print out yearly1 print(yearly1) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline import matplotlib.pyplot as plt # Plot yearly proportion of deaths at the two clinics ax = yearly1.plot(x="year", y="proportion_deaths", label="Clinic 1") ax = yearly2.plot(x="year", y="proportion_deaths", label="Clinic 2", ax=ax) ax.set_xlabel("Yearly") ax.set_ylabel("Proportion deaths") ax.legend() plt.show() ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv("datasets/monthly_deaths.csv", parse_dates=["date"]) # Calculate proportion of deaths per no. births monthly["proportion_deaths"] = monthly["deaths"] / monthly["births"] # Print out the first rows in monthly monthly.head() ###Output _____no_output_____ ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ax = monthly.plot(x="date", y="proportion_deaths", label="Clinic 1") ax.set_xlabel("Date") ax.set_ylabel("Proportion deaths") ax.legend() plt.show() ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly["date"] < handwashing_start] after_washing = monthly[monthly["date"] >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing ax = before_washing.plot(x="date", y="proportion_deaths", label="Before Handwashing") ax = after_washing.plot(x="date", y="proportion_deaths", label="After Handwashing", ax=ax) ax.set_xlabel("Yearly") ax.set_ylabel("Proportion deaths") ax.legend() plt.show() ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing import numpy as np before_proportion = before_washing["proportion_deaths"] after_proportion = after_washing["proportion_deaths"] mean_diff = np.mean(after_proportion) - np.mean(before_proportion) mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(np.mean(boot_after) - np.mean(boot_before)) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = np.percentile(boot_mean_diff, [2.5, 97.5]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly yearly.head(10) # Let's see clinic 1 and 2 value_counts yearly['clinic'].value_counts() ###Output _____no_output_____ ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births yearly['proportion_deaths'] = yearly['deaths'] / yearly['births'] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly['clinic'] == 'clinic 1'] yearly2 = yearly[yearly['clinic'] == 'clinic 2'] # Print out yearly1 yearly1 ###Output _____no_output_____ ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern… ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics ax = yearly1.plot(x='year' , y ='proportion_deaths',label='Clinic 1') yearly2.plot(x ='year',y='proportion_deaths' , label = 'Clinic 2' , ax = ax) ax.set_ylabel('Proportion of deaths') ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv' , parse_dates=['date']) monthly.info() # Calculate proportion of deaths per no. births monthly["proportion_deaths"] = monthly['deaths'] / monthly['births'] # Print out the first rows in monthly monthly.head() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 98 entries, 0 to 97 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 date 98 non-null datetime64[ns] 1 births 98 non-null int64 2 deaths 98 non-null int64 dtypes: datetime64[ns](1), int64(2) memory usage: 2.4 KB ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ax = monthly.plot(x='date' , y ='proportion_deaths') ax.set_ylabel('Proportion of deaths') ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly['date'] < handwashing_start] after_washing = monthly[monthly['date'] >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing ax = before_washing.plot(x='date' , y ='proportion_deaths',label='Before handwashing') after_washing.plot(x ='date',y='proportion_deaths' , label = 'After handwashing' , ax = ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing['proportion_deaths'] after_proportion = after_washing['proportion_deaths'] mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac= 1 , replace= True) boot_after = after_proportion.sample(frac= 1 , replace= True) boot_mean_diff.append(boot_after.mean() - boot_before.mean() ) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025,0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = False ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births yearly['proportion_deaths'] = yearly['deaths'] / yearly['births'] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly['clinic'] == 'clinic 1'] yearly2 = yearly[yearly['clinic'] == 'clinic 2'] # Print out yearly1 print(yearly1) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics ax = yearly1.plot(x='year',y = 'proportion_deaths',label = 'Clinic 1') yearly2.plot(x = 'year',y = 'proportion_deaths',label = 'Clinic 2',ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv',parse_dates = ['date']) # Calculate proportion of deaths per no. births monthly['proportion_deaths'] = monthly['deaths'] / monthly['births'] # Print out the first rows in monthly print(monthly.head()) ###Output date births deaths proportion_deaths 0 1841-01-01 254 37 0.145669 1 1841-02-01 239 18 0.075314 2 1841-03-01 277 12 0.043321 3 1841-04-01 255 4 0.015686 4 1841-05-01 255 2 0.007843 ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ax = monthly.plot(x = 'date',y = 'proportion_deaths') ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly['date'] < handwashing_start] after_washing = monthly[monthly['date'] >= handwashing_start] after_washing # Plot monthly proportion of deaths before and after handwashing ax = before_washing.plot(x = 'date',y = 'proportion_deaths',label = 'Before Washing') after_washing.plot(x = 'date',y = 'proportion_deaths',label = 'After Washing',ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing['proportion_deaths'] after_proportion = after_washing['proportion_deaths'] mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac = 1,replace = True) boot_after = after_proportion.sample(frac = 1,replace = True) boot_mean_diff.append(boot_after.mean() - boot_before.mean()) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025,0.975]) ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz SemmelweisThis is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code import pandas as pd yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code yearly["proportion_deaths"] = yearly["deaths"]/yearly["births"] yearly1 = yearly[yearly["clinic"] == "clinic 1"] yearly2 = yearly[yearly["clinic"] == "clinic 2"] print(yearly1) print(yearly2) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 year births deaths clinic proportion_deaths 6 1841 2442 86 clinic 2 0.035217 7 1842 2659 202 clinic 2 0.075968 8 1843 2739 164 clinic 2 0.059876 9 1844 2956 68 clinic 2 0.023004 10 1845 3241 66 clinic 2 0.020364 11 1846 3754 105 clinic 2 0.027970 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code %matplotlib inline ax = yearly1.plot(x="year", y="proportion_deaths", label="Clinic 1") yearly2.plot(x="year", y="proportion_deaths", label="Clinic 2", ax=ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code monthly = pd.read_csv("datasets/monthly_deaths.csv", parse_dates=["date"]) monthly["proportion_deaths"] = monthly["deaths"]/monthly["births"] monthly.head() ###Output _____no_output_____ ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code ax = monthly.plot(x="date", y="proportion_deaths") ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') before_washing = monthly[monthly["date"] < handwashing_start] after_washing = monthly[monthly["date"] >= handwashing_start] ax = before_washing.plot(x="date", y="proportion_deaths", label="Before") after_washing.plot(x="date", y="proportion_deaths", label="After", ax=ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code before_proportion = before_washing["proportion_deaths"] after_proportion = after_washing["proportion_deaths"] mean_diff = after_proportion.mean() - before_proportion.mean() print(mean_diff) ###Output -0.08395660751183336 ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(boot_after.mean() - boot_before.mean()) confidence_interval = pd.Series(boot_mean_diff).quantile([0.025, 0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to the fact: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules # ... YOUR CODE FOR TASK 1 ... import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv("datasets/yearly_deaths_by_clinic.csv") # Print out yearly print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births yearly["proportion_deaths"] = yearly["deaths"]/yearly["births"] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly["clinic"]=="clinic 1"] yearly2 = yearly[yearly["clinic"]=="clinic 2"] # Print out yearly1 print(yearly1) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern… ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics ax = yearly1.plot(x= "year", y="proportion_deaths", label="plot") ax.set_ylabel("Proportion deaths") yearly2.plot(x= "year", y="proportion_deaths", label="plot", ax=ax) ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv("datasets/monthly_deaths.csv", parse_dates = ["date"]) # Calculate proportion of deaths per no. births monthly["proportion_deaths"] = monthly["deaths"]/monthly["births"] # Print out the first rows in monthly print(monthly.head(1)) ###Output date births deaths proportion_deaths 0 1841-01-01 254 37 0.145669 ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ax = monthly.plot(x="date", y="proportion_deaths") ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly["date"]<handwashing_start] after_washing = monthly[monthly["date"]>=handwashing_start] # Plot monthly proportion of deaths before and after handwashing ax = before_washing.plot(x="date", y="proportion_deaths", label="plot") after_washing.plot(x="date", y="proportion_deaths", label="plot", ax = ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing.proportion_deaths after_proportion = after_washing.proportion_deaths mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(boot_after.mean()-boot_before.mean()) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025, 0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules # ... YOUR CODE FOR TASK 1 ... import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv("datasets/yearly_deaths_by_clinic.csv") # Print out yearly # ... YOUR CODE FOR TASK 1 ... print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 2 ... yearly['proportion_deaths'] = yearly.deaths.divide(yearly.births) # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly.clinic == 'clinic 1'] yearly2 = yearly[yearly.clinic == 'clinic 2'] # Print out yearly1 # ... YOUR CODE FOR TASK 2 ... print(yearly2) ###Output year births deaths clinic proportion_deaths 6 1841 2442 86 clinic 2 0.035217 7 1842 2659 202 clinic 2 0.075968 8 1843 2739 164 clinic 2 0.059876 9 1844 2956 68 clinic 2 0.023004 10 1845 3241 66 clinic 2 0.020364 11 1846 3754 105 clinic 2 0.027970 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics # ... YOUR CODE FOR TASK 3 ... ax = yearly1.plot(x='year', y='proportion_deaths', label='clinic 1') yearly2.plot(x='year', y='proportion_deaths', label='clinic 2', ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv', parse_dates = ['date']) # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 4 ... monthly['proportion_deaths'] = monthly.deaths.divide(monthly.births) # Print out the first rows in monthly # ... YOUR CODE FOR TASK 4 ... print(monthly.head()) ###Output date births deaths proportion_deaths 0 1841-01-01 254 37 0.145669 1 1841-02-01 239 18 0.075314 2 1841-03-01 277 12 0.043321 3 1841-04-01 255 4 0.015686 4 1841-05-01 255 2 0.007843 ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths # ... YOUR CODE FOR TASK 5 ... ax = monthly.plot(x = 'date', y = 'proportion_deaths') ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly.date < handwashing_start] after_washing = monthly[monthly.date >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing # ... YOUR CODE FOR TASK 6 ... ax = before_washing.plot(x = 'date', y = 'proportion_deaths', label = 'Before handwashing') after_washing.plot(x = 'date', y='proportion_deaths', label='After handwashing', ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing.proportion_deaths after_proportion = after_washing.proportion_deaths mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac = 1, replace = True) boot_after = after_proportion.sample(frac = 1, replace = True) boot_mean_diff.append( boot_after.mean() - boot_before.mean() ) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean).quantile([0.025, 0.975]) ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = False ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # Load in the tidyverse package library(tidyverse) # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly <- read_csv("datasets/yearly_deaths_by_clinic.csv") # Print out yearly yearly ###Output -- Attaching packages --------------------------------------- tidyverse 1.2.0 -- v ggplot2 3.1.0 v purrr 0.2.5 v tibble 1.4.2 v dplyr 0.7.8 v tidyr 0.8.2 v stringr 1.3.1 v readr 1.2.1 v forcats 0.3.0 -- Conflicts ------------------------------------------ tidyverse_conflicts() -- x dplyr::filter() masks stats::filter() x dplyr::lag() masks stats::lag() Parsed with column specification: cols( year = col_double(), births = col_double(), deaths = col_double(), clinic = col_character() ) ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. ###Code # Adding a new column to yearly with proportion of deaths per no. births yearly <- yearly %>% mutate(proportion_deaths = deaths/births) # Print out yearly yearly ###Output _____no_output_____ ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # Setting the size of plots in this notebook options(repr.plot.width = 7, repr.plot.height = 4) # Plot yearly proportion of deaths at the two clinics ggplot(yearly, aes(x = year, y = proportion_deaths, col = clinic)) + geom_line() ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly <- read_csv("datasets/monthly_deaths.csv") # Adding a new column with proportion of deaths per no. births monthly <- monthly %>% mutate(proportion_deaths = deaths/births) # Print out the first rows in monthly head(monthly) ###Output Parsed with column specification: cols( date = col_date(format = ""), births = col_double(), deaths = col_double() ) ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code ggplot(monthly, aes(date, proportion_deaths)) + geom_line() + labs(x = "Year", y = "Proportion Deaths") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # From this date handwashing was made mandatory handwashing_start = as.Date('1847-06-01') # Add a TRUE/FALSE to monthly called handwashing_started monthly <- monthly %>% mutate(handwashing_started = date >= handwashing_start) # Plot monthly proportion of deaths before and after handwashing ggplot(monthly, aes(x = date, y = proportion_deaths, color = handwashing_started)) + geom_line() ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Calculating the mean proportion of deaths # before and after handwashing. monthly_summary <- monthly %>% group_by(handwashing_started) %>% summarise(mean_proportion_deaths = mean(proportion_deaths)) # Printing out the summary. monthly_summary ###Output _____no_output_____ ###Markdown 8. A statistical analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average before handwashing to just 2% when handwashing was enforced (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using a t-test). ###Code # Calculating a 95% Confidence intrerval using t.test test_result <- t.test( proportion_deaths ~ handwashing_started, data = monthly) test_result ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisThat the doctors didn't wash their hands increased the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands <- TRUE ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # Load in the tidyverse package library(tidyverse) # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly <- read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly yearly ###Output Parsed with column specification: cols( year = col_double(), births = col_double(), deaths = col_double(), clinic = col_character() ) ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. ###Code # Adding a new column to yearly with proportion of deaths per no. births yearly <- yearly %>% mutate(proportion_deaths = deaths/births) # Print out yearly yearly ###Output _____no_output_____ ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # Setting the size of plots in this notebook options(repr.plot.width=7, repr.plot.height=4) # Plot yearly proportion of deaths at the two clinics ggplot(yearly, aes(x=year, y=proportion_deaths, color=clinic)) + geom_line() ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly <- read_csv('datasets/monthly_deaths.csv') # Adding a new column with proportion of deaths per no. births monthly <- monthly %>% mutate(proportion_deaths = deaths/births) # Print out the first rows in monthly head(monthly) ###Output Parsed with column specification: cols( date = col_date(format = ""), births = col_double(), deaths = col_double() ) ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ggplot(monthly, aes(x=date, y=proportion_deaths )) + geom_line() + labs(x="Date", y="Proportion of Deaths") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # From this date handwashing was made mandatory handwashing_start = as.Date('1847-06-01') # Add a TRUE/FALSE column to monthly called handwashing_started monthly <- monthly %>% mutate(is_start_month = monthly$date == handwashing_start) # Add a TRUE/FALSE column to monthly called handwashing_started monthly <- monthly %>% mutate(handwashing_started = ifelse(date >= handwashing_start, TRUE, FALSE)) # Plot monthly proportion of deaths before and after handwashing ggplot(monthly, aes(x = date, y = proportion_deaths, col = handwashing_started)) + geom_line() ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Calculating the mean proportion of deaths # before and after handwashing. monthly_summary <- monthly %>% group_by(handwashing_started) %>% summarise(mean_proportion_deaths = mean(proportion_deaths)) # Printing out the summary. monthly_summary ###Output _____no_output_____ ###Markdown 8. A statistical analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average before handwashing to just 2% when handwashing was enforced (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using a t-test). ###Code # Calculating a 95% Confidence intrerval using t.test test_result <- t.test( proportion_deaths ~ handwashing_started, data = monthly) test_result ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisThat the doctors didn't wash their hands increased the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands <- FALSE ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules # ... YOUR CODE FOR TASK 1 ... import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') yearly # Print out yearly # ... YOUR CODE FOR TASK 1 ... ###Output _____no_output_____ ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 2 ... yearly['proportion_deaths'] = yearly['deaths'] / yearly['births'] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly['clinic']=='clinic 1'] yearly2 = yearly[yearly['clinic']=='clinic 2'] yearly1 # Print out yearly1 # ... YOUR CODE FOR TASK 2 ... ###Output _____no_output_____ ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline ax = yearly1.plot(x='year',y='proportion_deaths',label='yearly' ) yearly2.plot(x='year',y='proportion_deaths',label='yearly2',ax=ax) # Plot yearly proportion of deaths at the two clinics # ... YOUR CODE FOR TASK 3 ... ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv',parse_dates=['date']) # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 4 ... monthly['proportion_deaths'] = monthly['deaths'] / monthly['births'] monthly.head() # Print out the first rows in monthly # ... YOUR CODE FOR TASK 4 ... ###Output _____no_output_____ ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ax = monthly.plot(x='date',y='proportion_deaths',label='Proportion deaths') # ... YOUR CODE FOR TASK 5 ... ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd import matplotlib.pyplot as plt handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly['date'] < handwashing_start] after_washing = monthly[monthly['date'] >= handwashing_start] ax = before_washing.plot('date','proportion_deaths', color = 'red', label = 'Before Washing') after_washing.plot('date','proportion_deaths', ax = ax, color = 'blue', label = 'After Washing') plt.xticks(rotation = 45) ax.legend(loc = 0) ax.set_ylabel('Proportion Deaths') # Plot monthly proportion of deaths before and after handwashing # ... YOUR CODE FOR TASK 6 ... ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing['proportion_deaths'] after_proportion = after_washing['proportion_deaths'] mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=i, replace=True) boot_after = after_proportion.sample(frac=i, replace=True) boot_mean_diff.append( boot_after.mean()-boot_before.mean() ) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025, 0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = False ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules import pandas as pd # ... YOUR CODE FOR TASK 1 ... # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly print(yearly) # ... YOUR CODE FOR TASK 1 ... ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 2 ... yearly['proportion_deaths'] = yearly['deaths']/yearly['births'] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly.loc[yearly['clinic'] == 'clinic 1'] yearly2 = yearly.loc[yearly['clinic'] == 'clinic 2'] # Print out yearly1 print(yearly1) # ... YOUR CODE FOR TASK 2 ... ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics # ... YOUR CODE FOR TASK 3 ... ax = yearly1.plot(x='year', y='proportion_deaths', label='yearly1') yearly2.plot(x='year', y='proportion_deaths', label='yearly2', ax=ax) ax.set_ylabel('proportion_deaths') ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv', parse_dates=['date']) # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 4 ... monthly['proportion_deaths'] = monthly['deaths']/monthly['births'] # Print out the first rows in monthly # ... YOUR CODE FOR TASK 4 ... print(monthly.head()) ###Output date births deaths proportion_deaths 0 1841-01-01 254 37 0.145669 1 1841-02-01 239 18 0.075314 2 1841-03-01 277 12 0.043321 3 1841-04-01 255 4 0.015686 4 1841-05-01 255 2 0.007843 ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths # ... YOUR CODE FOR TASK 5 ... ax = monthly.plot(x='date', y='proportion_deaths', label='proportion_deaths') ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly.loc[monthly['date'] < handwashing_start] after_washing = monthly.loc[monthly['date'] >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing # ... YOUR CODE FOR TASK 6 ... ax = before_washing.plot(x='date', y='proportion_deaths', label='before_washing') after_washing.plot(x='date', y='proportion_deaths', label='after_washing', ax=ax) ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing['proportion_deaths'] after_proportion = after_washing['proportion_deaths'] mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(boot_after.mean() - boot_before.mean()) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025, 0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules # ... YOUR CODE FOR TASK 1 ... import pandas as pd import numpy as np # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') yearly # Print out yearly # ... YOUR CODE FOR TASK 1 ... ###Output _____no_output_____ ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 2 ... # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly.clinic=='clinic 1'] yearly2 = yearly[yearly.clinic=='clinic 2'] # Print out yearly1 yearly1 # ... YOUR CODE FOR TASK 2 ... ###Output _____no_output_____ ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook import matplotlib.pyplot as plt %matplotlib inline x1=yearly1.year y1=yearly1.deaths plt.plot(x1,y1,label="clinic1") x2=yearly2.year y2=yearly2.deaths plt.plot(x2,y2,label="clinic2") plt.xlabel("Year") plt.ylabel("No of Deaths") plt.title("proportion of deaths at both clinic1 and clinic2") plt.legend() plt.show() # Plot yearly proportion of deaths at the two clinics # ... YOUR CODE FOR TASK 3 ... ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv') # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 4 ... monthly.head() # Print out the first rows in monthly # ... YOUR CODE FOR TASK 4 ... ###Output _____no_output_____ ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths # ... YOUR CODE FOR TASK 5 ... x=monthly.date y=monthly.deaths plt.plot(x,y) plt.xlabel('Date') plt.ylabel('No of Deaths') plt.title('monthly proportion of deaths') plt.show() ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly.date<'1847-06-01'] after_washing = monthly[monthly.date>='1847-06-01'] # Plot monthly proportion of deaths before and after handwashing # ... YOUR CODE FOR TASK 6 ... x1=before_washing.date y1=before_washing.deaths plt.plot(x1,y1,label="before_washing") x2=after_washing.date y2=after_washing.deaths plt.plot(x2,y2,label="after_washing") plt.xlabel("Date") plt.ylabel("No of Deaths") plt.title('monthly proportion of deaths before and after handwashing') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing['deaths'] after_proportion = after_washing['deaths'] mean_diff = np.mean(after_proportion) - np.mean(before_proportion) mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(np.mean(boot_after)-np.mean(boot_before)) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.05,0.950]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # Load in the tidyverse package # .... YOUR CODE FOR TASK 1 .... library(tidyverse) # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly <- read_csv("datasets/yearly_deaths_by_clinic.csv") # Print out yearly # .... YOUR CODE FOR TASK 1 .... print(yearly) ###Output Parsed with column specification: cols( year = col_double(), births = col_double(), deaths = col_double(), clinic = col_character() ) ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. ###Code # Adding a new column to yearly with proportion of deaths per no. births yearly <- yearly %>% mutate(proportion_deaths = deaths / births) # Print out yearly print(yearly) ###Output # A tibble: 12 x 5 year births deaths clinic proportion_deaths <dbl> <dbl> <dbl> <chr> <dbl>  1 1841 3036 237 clinic 1 0.0781  2 1842 3287 518 clinic 1 0.158  3 1843 3060 274 clinic 1 0.0895  4 1844 3157 260 clinic 1 0.0824  5 1845 3492 241 clinic 1 0.0690  6 1846 4010 459 clinic 1 0.114  7 1841 2442 86 clinic 2 0.0352  8 1842 2659 202 clinic 2 0.0760  9 1843 2739 164 clinic 2 0.0599 10 1844 2956 68 clinic 2 0.0230 11 1845 3241 66 clinic 2 0.0204 12 1846 3754 105 clinic 2 0.0280 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern… ###Code # Setting the size of plots in this notebook options(repr.plot.width=7, repr.plot.height=4) # Plot yearly proportion of deaths at the two clinics ggplot(data= yearl2, aes(y= proportion_deaths, x= year, color= clinic)) + geom_line() ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly <- read_csv("datasets/monthly_deaths.csv") # Adding a new column with proportion of deaths per no. births monthly <- monthly %>% mutate(proportion_deaths= deaths / births) # Print out the first rows in monthly head(monthly) ###Output Parsed with column specification: cols( date = col_date(format = ""), births = col_double(), deaths = col_double() ) ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ggplot(data= monthly, aes(y= proportion_deaths, x= date)) + geom_line() + labs(x= "Date", y= "Proportion of Death per Births") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # From this date handwashing was made mandatory handwashing_start = as.Date('1847-06-01') # Add a TRUE/FALSE column to monthly called handwashing_started monthly <- monthly %>% add_column(handwashing_started= if_else(handwashing_start <= monthly$date, TRUE, FALSE)) # Plot monthly proportion of deaths before and after handwashing ggplot(data= monthly, aes(y= proportion_deaths, x= date, color= handwashing_started)) + geom_line() + labs(x= "Date", y= "Proportion of death per births") ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Calculating the mean proportion of deaths # before and after handwashing. monthly_summary <- monthly3 %>% group_by(handwashing_started) %>% summarise(mean_prop= mean(proportion_deaths)) # Printing out the summary. monthly_summary ###Output `summarise()` ungrouping output (override with `.groups` argument) ###Markdown 8. A statistical analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average before handwashing to just 2% when handwashing was enforced (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using a t-test). ###Code # Calculating a 95% Confidence intrerval using t.test test_result <- t.test( proportion_deaths ~ handwashing_started, data = monthly3) test_result ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisThat the doctors didn't wash their hands increased the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands <- TRUE ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules # ... YOUR CODE FOR TASK 1 ... import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly # ... YOUR CODE FOR TASK 1 ... print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 2 ... import pandas as pd yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') yearly["proportion_deaths"]=yearly["deaths"]/yearly["births"] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly.head(6) yearly2 = yearly.tail(6) # Print out yearly1 # ... YOUR CODE FOR TASK 2 ... print(yearly1) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code import matplotlib.pyplot as plt ax = yearly1.plot(x="year", y="proportion_deaths", label="Clinic 1") yearly2.plot(x="year", y="proportion_deaths", label='Clinic 2', ax=ax) ax.set_ylabel("proportion deaths") ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv("datasets/monthly_deaths.csv", parse_dates=["date"]) # Calculate proportion of deaths per no. births monthly["proportion_deaths"]=monthly["deaths"]/monthly["births"] # Print out the first rows in monthly print(monthly.head(1)) ###Output date births deaths proportion_deaths 0 1841-01-01 254 37 0.145669 ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code %matplotlib inline # Plot monthly proportion of deaths # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv("datasets/monthly_deaths.csv", parse_dates=["date"]) # Calculate proportion of deaths per no. births monthly["proportion_deaths"]=monthly["deaths"]/monthly["births"] ax= monthly.plot(x="date", y="proportion_deaths") ax.set_ylabel=("Proportion deaths") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly["date"] < handwashing_start] after_washing = monthly[monthly["date"] >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing ax = before_washing.plot(x="date", y="proportion_deaths", label="before washing") after_washing.plot(x="date", y="proportion_deaths", label="after washing", ax=ax) ax.set_ylabel("proportion deaths") ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing["proportion_deaths"] after_proportion = after_washing["proportion_deaths"] mean_diff = after_proportion.mean()-before_proportion.mean() print(mean_diff) ###Output -0.08395660751183336 ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(boot_after.mean() - boot_before.mean()) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025, 0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births yearly["proportion_deaths"] = yearly["deaths"]/yearly["births"] # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly["clinic"] == "clinic 1"] yearly2 = yearly[yearly["clinic"] == "clinic 2"] # Print out yearly1 print(yearly1) ###Output year births deaths clinic proportion_deaths 0 1841 3036 237 clinic 1 0.078063 1 1842 3287 518 clinic 1 0.157591 2 1843 3060 274 clinic 1 0.089542 3 1844 3157 260 clinic 1 0.082357 4 1845 3492 241 clinic 1 0.069015 5 1846 4010 459 clinic 1 0.114464 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics ax = yearly1.plot(x="year", y="proportion_deaths", label="Clinic 1") yearly2.plot(x="year", y="proportion_deaths", label="Clinic 2", ax=ax) ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv', parse_dates = ["date"]) # Calculate proportion of deaths per no. births monthly["proportion_deaths"] = monthly["deaths"]/monthly["births"] # Print out the first rows in monthly monthly.head() ###Output _____no_output_____ ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths ax = monthly.plot(x="date", y="proportion_deaths") ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly["date"] < handwashing_start] after_washing = monthly[monthly["date"] >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing ax = before_washing.plot(x='date', y='proportion_deaths', label='clinic1') after_washing.plot(x='date', y='proportion_deaths', label='clinic2', ax=ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing["proportion_deaths"] after_proportion = after_washing["proportion_deaths"] mean_diff = after_proportion.mean() - before_proportion.mean() mean_diff ###Output _____no_output_____ ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append( ... ) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = ... confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = False ###Output _____no_output_____ ###Markdown 1. Meet Dr. Ignaz Semmelweis<!---->This is Dr. Ignaz Semmelweis, a Hungarian physician born in 1818 and active at the Vienna General Hospital. If Dr. Semmelweis looks troubled it's probably because he's thinking about childbed fever: A deadly disease affecting women that just have given birth. He is thinking about it because in the early 1840s at the Vienna General Hospital as many as 10% of the women giving birth die from it. He is thinking about it because he knows the cause of childbed fever: It's the contaminated hands of the doctors delivering the babies. And they won't listen to him and wash their hands!In this notebook, we're going to reanalyze the data that made Semmelweis discover the importance of handwashing. Let's start by looking at the data that made Semmelweis realize that something was wrong with the procedures at Vienna General Hospital. ###Code # importing modules # ... YOUR CODE FOR TASK 1 ... import pandas as pd # Read datasets/yearly_deaths_by_clinic.csv into yearly yearly = pd.read_csv('datasets/yearly_deaths_by_clinic.csv') # Print out yearly # ... YOUR CODE FOR TASK 1 ... print(yearly) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 6 1841 2442 86 clinic 2 7 1842 2659 202 clinic 2 8 1843 2739 164 clinic 2 9 1844 2956 68 clinic 2 10 1845 3241 66 clinic 2 11 1846 3754 105 clinic 2 ###Markdown 2. The alarming number of deathsThe table above shows the number of women giving birth at the two clinics at the Vienna General Hospital for the years 1841 to 1846. You'll notice that giving birth was very dangerous; an alarming number of women died as the result of childbirth, most of them from childbed fever.We see this more clearly if we look at the proportion of deaths out of the number of women giving birth. Let's zoom in on the proportion of deaths at Clinic 1. ###Code # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 2 ... yearly["proportion_deaths"] = # Extract clinic 1 data into yearly1 and clinic 2 data into yearly2 yearly1 = yearly[yearly.clinic == 'clinic 1'] yearly2 = yearly[yearly.clinic == 'clinic 2'] # Print out yearly1 # ... YOUR CODE FOR TASK 2 ... print(yearly1) ###Output year births deaths clinic 0 1841 3036 237 clinic 1 1 1842 3287 518 clinic 1 2 1843 3060 274 clinic 1 3 1844 3157 260 clinic 1 4 1845 3492 241 clinic 1 5 1846 4010 459 clinic 1 ###Markdown 3. Death at the clinicsIf we now plot the proportion of deaths at both clinic 1 and clinic 2 we'll see a curious pattern... ###Code # This makes plots appear in the notebook %matplotlib inline # Plot yearly proportion of deaths at the two clinics # ... YOUR CODE FOR TASK 3 ... ax = yearly1.plot(x="year", y="deaths", label="clinic 1") yearly2.plot(x="year", y="deaths", label="clinic 2", ax=ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 4. The handwashing beginsWhy is the proportion of deaths constantly so much higher in Clinic 1? Semmelweis saw the same pattern and was puzzled and distressed. The only difference between the clinics was that many medical students served at Clinic 1, while mostly midwife students served at Clinic 2. While the midwives only tended to the women giving birth, the medical students also spent time in the autopsy rooms examining corpses. Semmelweis started to suspect that something on the corpses, spread from the hands of the medical students, caused childbed fever. So in a desperate attempt to stop the high mortality rates, he decreed: Wash your hands! This was an unorthodox and controversial request, nobody in Vienna knew about bacteria at this point in time. Let's load in monthly data from Clinic 1 to see if the handwashing had any effect. ###Code # Read datasets/monthly_deaths.csv into monthly monthly = pd.read_csv('datasets/monthly_deaths.csv', parse_dates=['date']) # Calculate proportion of deaths per no. births # ... YOUR CODE FOR TASK 4 ... monthly["proportion_deaths"] = monthly.deaths / monthly.births # Print out the first rows in monthly # ... YOUR CODE FOR TASK 4 ... print(monthly.head()) ###Output date births deaths proportion_deaths 0 1841-01-01 254 37 0.145669 1 1841-02-01 239 18 0.075314 2 1841-03-01 277 12 0.043321 3 1841-04-01 255 4 0.015686 4 1841-05-01 255 2 0.007843 ###Markdown 5. The effect of handwashingWith the data loaded we can now look at the proportion of deaths over time. In the plot below we haven't marked where obligatory handwashing started, but it reduced the proportion of deaths to such a degree that you should be able to spot it! ###Code # Plot monthly proportion of deaths # ... YOUR CODE FOR TASK 5 ... ax = monthly.plot(x="date", y="proportion_deaths", label = 'Clinic 1') ax.set_ylabel('Proportion deaths') ###Output _____no_output_____ ###Markdown 6. The effect of handwashing highlightedStarting from the summer of 1847 the proportion of deaths is drastically reduced and, yes, this was when Semmelweis made handwashing obligatory. The effect of handwashing is made even more clear if we highlight this in the graph. ###Code # Date when handwashing was made mandatory import pandas as pd handwashing_start = pd.to_datetime('1847-06-01') # Split monthly into before and after handwashing_start before_washing = monthly[monthly["date"] < handwashing_start] after_washing = monthly[monthly["date"] >= handwashing_start] # Plot monthly proportion of deaths before and after handwashing # ... YOUR CODE FOR TASK 6 ... ax = before_washing.plot(x="date", y="proportion_deaths",label="before_washing") after_washing.plot(x="date", y="proportion_deaths",label="after_washing", ax=ax) ax.set_ylabel("Proportion deaths") ###Output _____no_output_____ ###Markdown 7. More handwashing, fewer deaths?Again, the graph shows that handwashing had a huge effect. How much did it reduce the monthly proportion of deaths on average? ###Code # Difference in mean monthly proportion of deaths due to handwashing before_proportion = before_washing['proportion_deaths'] after_proportion = after_washing['proportion_deaths'] mean_diff = after_proportion.mean() - before_proportion.mean() print(mean_diff) ###Output -0.08395660751183336 ###Markdown 8. A Bootstrap analysis of Semmelweis handwashing dataIt reduced the proportion of deaths by around 8 percentage points! From 10% on average to just 2% (which is still a high number by modern standards). To get a feeling for the uncertainty around how much handwashing reduces mortalities we could look at a confidence interval (here calculated using the bootstrap method). ###Code # A bootstrap analysis of the reduction of deaths due to handwashing boot_mean_diff = [] for i in range(3000): boot_before = before_proportion.sample(frac=1, replace=True) boot_after = after_proportion.sample(frac=1, replace=True) boot_mean_diff.append(boot_after.mean() - boot_before.mean() ) # Calculating a 95% confidence interval from boot_mean_diff confidence_interval = pd.Series(boot_mean_diff).quantile([0.025, 0.975]) confidence_interval ###Output _____no_output_____ ###Markdown 9. The fate of Dr. SemmelweisSo handwashing reduced the proportion of deaths by between 6.7 and 10 percentage points, according to a 95% confidence interval. All in all, it would seem that Semmelweis had solid evidence that handwashing was a simple but highly effective procedure that could save many lives.The tragedy is that, despite the evidence, Semmelweis' theory — that childbed fever was caused by some "substance" (what we today know as bacteria) from autopsy room corpses — was ridiculed by contemporary scientists. The medical community largely rejected his discovery and in 1849 he was forced to leave the Vienna General Hospital for good.One reason for this was that statistics and statistical arguments were uncommon in medical science in the 1800s. Semmelweis only published his data as long tables of raw data, but he didn't show any graphs nor confidence intervals. If he would have had access to the analysis we've just put together he might have been more successful in getting the Viennese doctors to wash their hands. ###Code # The data Semmelweis collected points to that: doctors_should_wash_their_hands = True ###Output _____no_output_____
hb_analysis_MD/HB_Analysis_MD_traj.ipynb
###Markdown Function for graph and finding paths ###Code def addEdge(graph,u,v): graph[u].append(v) def find_all_path(graph, start, path, paths): if len(path) == 6: return paths.append(list(path)) if len(graph[start]) == 0: return paths.append(list(path)) for node in graph[start]: if node in path: continue path.append(node) find_all_path(graph, node, path, paths) path.pop() ###Output _____no_output_____ ###Markdown Loading the pdb file or dcd file with psf ###Code DCD = '/Users/zhangyingying/Dropbox (City College)/Yingying/large_file/new_trajectories_PSII_wt/step7_50.dcd' PDB = '/Users/zhangyingying/Dropbox (City College)/Yingying/large_file/new_trajectories_PSII_wt/frame50_56-stripped.pdb' PSF = '/Users/zhangyingying/Dropbox (City College)/Yingying/large_file/new_trajectories_PSII_wt/step5_charmm2omm_keep.psf' ###Output _____no_output_____ ###Markdown Get chain name for each atom For some cases, there are duplicate resname+resid but with different chain name, for distinguishing these different residues, we need to know the chain name ###Code chain = {} i = 0 pdb = open(PDB, 'r') for line in pdb: if line[0:4] != 'ATOM': continue chain[i] = line[21:22] i += 1 print(chain) ###Output _____no_output_____ ###Markdown Calculate angles and distances for atoms and filter HBs ###Code u = MDAnalysis.Universe(PDB) h3 = MDAnalysis.analysis.hbonds.HydrogenBondAnalysis(u, 'not resname ALA and not resname GLN and not resname GLY and not resname ILE and not resname LEU and not resname PHE and not resname PRO and not resname VAL', 'not resname ALA and not resname GLN and not resname GLY and not resname ILE and not resname LEU and not resname PHE and not resname PRO and not resname VAL', distance=3.5, angle=90.0, acceptors = {'O1', 'O2'}) h3.run() h3.generate_table() df3 = pd.DataFrame.from_records(h3.table) h3.generate_table() df3 = pd.DataFrame.from_records(h3.table) print(df3.head(10)) df3.to_csv('/Users/zhangyingying/Dropbox (City College)/Yingying/PSII/quinone/hb_network/1000ns_connection_his252sele.csv') ###Output _____no_output_____ ###Markdown Give chain names for protein and index for water molecules ###Code index_donor = [] index_accept = [] for index2, row2 in df3.iterrows(): if row2['donor_resnm'] == 'TIP3'and row2['acceptor_resnm'] != 'TIP3': if row2['donor_atom'] == 'H1': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-1)) index_accept.append(row2['acceptor_resnm'] + '_' + chain[row2['acceptor_index']] + '_' + str(row2['acceptor_resid'])) if row2['donor_atom'] == 'H2': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-2)) index_accept.append(row2['acceptor_resnm'] + '_' + chain[row2['acceptor_index']] + '_' + str(row2['acceptor_resid'])) elif row2['acceptor_resnm'] == 'TIP3' and row2['donor_resnm'] != 'TIP3': index_accept.append(row2['acceptor_resnm'] + '_' + str(row2['acceptor_index'])) index_donor.append(row2['donor_resnm'] + '_' + chain[row2['donor_index']] + '_' + str(row2['donor_resid'])) elif row2['acceptor_resnm'] == 'TIP3' and row2['donor_resnm'] == 'TIP3': if row2['donor_atom'] == 'H1': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-1)) index_accept.append(row2['acceptor_resnm'] + '_' + str(row2['acceptor_index'])) if row2['donor_atom'] == 'H2': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-2)) index_accept.append(row2['acceptor_resnm'] + '_' + str(row2['acceptor_index'])) else: index_donor.append(row2['donor_resnm'] + '_' + chain[row2['donor_index']] + '_' + str(row2['donor_resid'])) index_accept.append(row2['acceptor_resnm'] + '_' + chain[row2['acceptor_index']] + '_' + str(row2['acceptor_resid'])) df3['donor_residue'] = index_donor df3['acceptor_residue'] = index_accept print(df3.head(10)) ###Output time donor_index acceptor_index donor_resnm donor_resid donor_atom \ 0 0.0 13 20 ASN 12 H 1 0.0 13 127926 ASN 12 H 2 0.0 46 127950 TRP 14 H 3 0.0 56 28536 TRP 14 HE1 4 0.0 70 25 GLU 15 H 5 0.0 85 25 ARG 16 H 6 0.0 129 68 CYS 18 H 7 0.0 129 83 CYS 18 H 8 0.0 129 135 CYS 18 H 9 0.0 136 68 CYS 18 HG acceptor_resnm acceptor_resid acceptor_atom distance angle \ 0 ASN 12 OD1 3.309775 94.632241 1 TIP3 30742 OH2 2.394234 118.093242 2 TIP3 32005 OH2 2.662945 149.125949 3 SER 25 OG 2.011113 145.927014 4 ASN 12 O 2.582404 128.395456 5 ASN 12 O 1.887107 175.984727 6 TRP 14 O 1.884332 156.853694 7 GLU 15 O 2.897370 101.905417 8 CYS 18 SG 3.106368 90.224835 9 TRP 14 O 1.860560 139.995169 donor_residue acceptor_residue 0 ASN_A_12 ASN_A_12 1 ASN_A_12 TIP3_127926 2 TRP_A_14 TIP3_127950 3 TRP_A_14 SER_H_25 4 GLU_A_15 ASN_A_12 5 ARG_A_16 ASN_A_12 6 CYS_A_18 TRP_A_14 7 CYS_A_18 GLU_A_15 8 CYS_A_18 CYS_A_18 9 CYS_A_18 TRP_A_14 ###Markdown Filter the sidechain hydrogen bond (hide the backbone HBs) ###Code hb = pd.DataFrame() dic_hdonnor = {'ASP':['HD1', 'HD2'], 'ARG': ['HH11', 'HH12', 'HH21', 'HH22', 'HE'], 'GLU':['HE1', 'HE2'], 'HIS':['HD1', 'HE2'], 'HSD':['HD1', 'HE2'], 'HSE':['HD1', 'HE2'], 'HSP':['HD1', 'HE2'], 'SER':['HG'], 'THR':['HG1'], 'ASN':['HD21', 'HD22'], 'GLN':['HE21', 'HE22'], 'CYS':['HG'], 'TYR':['HH'], 'TRP':['HE1'], 'LYS':['HZ1', 'HZ2', 'HZ3'], 'TIP3':['H1', 'H2'], 'HOH':['1H', '2H']} dic_accept = {'ASP':['OD1', 'OD2'], 'HCO': ['OC1', 'OC2'], 'ARG': ['NE', 'NH1', 'NH2'], 'GLU':['OE1', 'OE2'], 'HSD':['ND1', 'NE2'], 'HSE':['ND1', 'NE2'], 'HSP':['ND1', 'NE2'], 'HIS':['ND1', 'NE2'], 'SER':['OG'], 'THR':['OG1'], 'ASN':['OD1'], 'GLN':['OE1'], 'CYS':['SG'], 'TYR':['OH'], 'LYS':['NZ'], 'MET':['SD'], 'CLX':['CLX'], 'CLA':['CLA'], 'OX2':['OX2'], 'PL9':['O1', 'O2'], 'FX':['FX'], 'TIP3':['OH2'], 'HOH':['O'], 'MQ8':['O1', 'O2']} donor_residue_pick = [] acceptor_residue_pick = [] donor_atom_pick = [] acceptor_atom_pick = [] for index, row in df3.iterrows(): if row['donor_resnm'] in dic_hdonnor.keys() and row['acceptor_resnm'] in dic_accept.keys(): if row['donor_atom'] in dic_hdonnor[row['donor_resnm']] and row['acceptor_atom'] in dic_accept[row['acceptor_resnm']]: donor_residue_pick.append(row['donor_residue']) acceptor_residue_pick.append(row['acceptor_residue']) donor_atom_pick.append(row['donor_atom']) acceptor_atom_pick.append(row['acceptor_atom']) else: continue # all connection network hb_two = pd.DataFrame({'donor_residue':donor_residue_pick, 'donor_atom':donor_atom_pick, 'acceptor_residue':acceptor_residue_pick, 'acceptor_atom':acceptor_atom_pick}) print(hb_two.head(10)) ###Output acceptor_atom acceptor_residue donor_atom donor_residue 0 OG SER_H_25 HE1 TRP_A_14 1 OD1 ASN_A_26 HE1 TRP_A_20 2 OH2 TIP3_47469 HD21 ASN_A_26 3 OH2 TIP3_127254 HH11 ARG_A_27 4 OH2 TIP3_127353 HH11 ARG_A_27 5 OH2 TIP3_127254 HH12 ARG_A_27 6 OH2 TIP3_128304 HH12 ARG_A_27 7 OH2 TIP3_128304 HH22 ARG_A_27 8 OE1 GLU_A_132 HH TYR_A_29 9 OE2 GLU_A_132 HH TYR_A_29 ###Markdown Divide all connections to two groups: directly connection, connection via water molecules ###Code donor_residue = [] acceptor_residue = [] donor_residue2 = [] acceptor_residue2 = [] for row in range(len(hb_two)): if hb_two['donor_residue'][row][0:3] != 'TIP' and hb_two['acceptor_residue'][row][0:3] != 'TIP': if hb_two['donor_residue'][row] == hb_two['acceptor_residue'][row]: continue else: donor_residue.append(hb_two['donor_residue'][row]) acceptor_residue.append(hb_two['acceptor_residue'][row]) else: if hb_two['donor_residue'][row] == hb_two['acceptor_residue'][row]: continue else: donor_residue2.append(hb_two['donor_residue'][row]) acceptor_residue2.append(hb_two['acceptor_residue'][row]) dire_con = pd.DataFrame({'donor_residue': donor_residue, 'acceptor_residue': acceptor_residue, 'wat_num': [0]*len(donor_residue)}) wat_con = pd.DataFrame({'donor_residue': donor_residue2, 'acceptor_residue': acceptor_residue2}) # connection via water wat_con = wat_con.drop_duplicates() wat_con.index = range(0, len(wat_con)) # direct connection dire_con = dire_con.drop_duplicates() dire_con.index = range(0, len(dire_con)) print('Direct connection:', len(dire_con)) print('Connection with water:', len(wat_con)) ###Output Direct connection: 303 Connection with water: 2691 ###Markdown Build graph for the connction via water ###Code graph = defaultdict(list) for i in range(len(wat_con)): addEdge(graph, wat_con['donor_residue'][i], wat_con['acceptor_residue'][i]) print(graph) # print(graph['TIP3_127788']) ###Output defaultdict(<class 'list'>, {'TIP3_128523': ['TIP3_127788', 'TIP3_129585'], 'TIP3_129054': ['TIP3_129312', 'TIP3_130125'], 'TIP3_129462': ['ASP_M_169', 'TIP3_128106', 'TIP3_129702', 'TIP3_128775', 'TIP3_129048'], 'TIP3_128214': ['TIP3_127143', 'TIP3_127917', 'ASP_B_276'], 'SER_M_221': ['TIP3_130044'], 'TIP3_127257': ['TIP3_127887', 'TIP3_127836'], 'TIP3_128514': ['TIP3_129528'], 'LYS_B_373': ['TIP3_128022'], 'TIP3_47751': ['THR_C_158'], 'TIP3_47754': ['TIP3_47733'], 'ARG_A_129': ['TIP3_47466'], 'TIP3_47490': ['ASP_A_308', 'TIP3_129336'], 'ARG_P_31': ['TIP3_128895', 'TIP3_129561'], 'TIP3_128997': ['ASP_M_205', 'GLU_M_210'], 'ASN_A_303': ['TIP3_47538', 'TIP3_47586'], 'TIP3_47550': ['ASP_A_61', 'TIP3_47517', 'TIP3_47574'], 'SER_B_391': ['TIP3_129015'], 'TIP3_129147': ['TIP3_127164', 'TIP3_129192', 'TIP3_128190', 'TIP3_129069', 'TIP3_129270'], 'HIS_M_228': ['TIP3_128223', 'TIP3_130044'], 'TIP3_129765': ['TIP3_129846'], 'TIP3_129216': ['GLU_C_413'], 'TIP3_128037': ['TIP3_127794', 'TIP3_128184', 'GLU_H_38'], 'TIP3_47505': ['GLU_A_132'], 'SER_C_46': ['TIP3_127317'], 'TIP3_129504': ['TIP3_128379'], 'TIP3_128124': ['TIP3_130116', 'TIP3_47691'], 'TIP3_128886': ['TIP3_129177', 'ASP_D_333', 'TIP3_128112'], 'ASN_D_292': ['TIP3_130167', 'TIP3_129075'], 'TIP3_127719': ['TIP3_128505'], 'TIP3_128049': ['TIP3_127983'], 'TIP3_127254': ['TIP3_128304', 'TIP3_129822', 'TIP3_127497', 'TIP3_127788'], 'TIP3_129885': ['GLU_A_226'], 'THR_M_107': ['TIP3_47610'], 'TIP3_127455': ['TIP3_127773', 'GLU_G_47', 'TIP3_127863'], 'TIP3_127242': ['TIP3_128625', 'TIP3_129615', 'ASN_C_228', 'TIP3_128592', 'TIP3_128694'], 'ARG_B_476': ['TIP3_128388'], 'THR_F_17': ['TIP3_127806', 'TIP3_130017'], 'TIP3_129795': ['HIS_D_336', 'TIP3_127281', 'TIP3_127842'], 'TIP3_127527': ['GLU_C_269', 'HIS_C_444'], 'TIP3_128721': ['TIP3_127524'], 'TIP3_128328': ['TIP3_128541', 'TIP3_129423'], 'TIP3_129141': ['TIP3_127641', 'TIP3_129747'], 'SER_B_446': ['TIP3_47649'], 'TYR_A_246': ['TIP3_129918'], 'TYR_M_7': ['TIP3_129351', 'TIP3_129969'], 'TIP3_127779': ['TIP3_127890', 'TIP3_47745'], 'TIP3_127560': ['TIP3_129129', 'THR_C_397'], 'TIP3_128403': ['TYR_B_258', 'HIS_D_87'], 'TIP3_127176': ['TIP3_47604', 'TIP3_130122'], 'LYS_B_137': ['TIP3_129438', 'TIP3_129840'], 'TIP3_47439': ['TIP3_47472', 'TIP3_47487', 'TIP3_47529'], 'ASN_A_247': ['TIP3_128415', 'TIP3_129024'], 'TIP3_128448': ['TIP3_129960'], 'TIP3_129096': ['SER_B_291'], 'TIP3_129864': ['ASP_B_313'], 'ARG_B_422': ['TIP3_128775', 'TIP3_128901', 'TIP3_129498', 'TIP3_127320', 'TIP3_128799'], 'TIP3_127461': ['TIP3_129549', 'TIP3_127401', 'TIP3_127500'], 'ARG_D_251': ['TIP3_127743', 'TIP3_128358', 'TIP3_127815', 'TIP3_128970', 'TIP3_128766'], 'TIP3_129792': ['TIP3_129993'], 'TIP3_128772': ['TIP3_129777', 'TIP3_127596'], 'SER_M_191': ['TIP3_127902'], 'THR_C_335': ['TIP3_47718'], 'TIP3_129039': ['TYR_P_35', 'TIP3_127995'], 'THR_G_5': ['TIP3_129114'], 'LYS_A_310': ['TIP3_127488', 'TIP3_127971'], 'TIP3_127344': ['TIP3_127677', 'TIP3_129675', 'TIP3_127338'], 'TIP3_129705': ['ASN_A_315', 'TIP3_129681'], 'TIP3_128415': ['TIP3_127590'], 'TIP3_130029': ['TIP3_127662'], 'ARG_A_334': ['TIP3_47886', 'TIP3_128532', 'TIP3_47547', 'TIP3_128634', 'TIP3_47484', 'TIP3_127425'], 'TIP3_47838': ['TIP3_47817', 'TIP3_47877'], 'TRP_C_425': ['TIP3_129030'], 'TIP3_127542': ['TYR_P_137'], 'ARG_J_46': ['TIP3_128934', 'TIP3_129249', 'TIP3_128400'], 'TIP3_127425': ['TIP3_128208', 'TIP3_128634', 'TIP3_129417', 'GLU_A_65'], 'TIP3_129693': ['TIP3_128127'], 'TIP3_128592': ['ASN_C_228', 'TIP3_128976', 'TIP3_129615'], 'TIP3_127548': ['TIP3_127632', 'TIP3_128412'], 'TIP3_127653': ['TIP3_127137'], 'TIP3_127449': ['TYR_P_26', 'GLU_P_122', 'TIP3_128259', 'TIP3_128469'], 'TIP3_128796': ['TIP3_127653', 'TIP3_127386', 'TIP3_128148', 'TIP3_128331'], 'TIP3_129822': ['ASP_C_473', 'TIP3_127254', 'TIP3_127497', 'TIP3_128358'], 'TIP3_129621': ['TIP3_129921', 'TIP3_129288'], 'SER_I_38': ['TIP3_127566'], 'TIP3_128634': ['GLU_D_312', 'TIP3_128532'], 'ARG_A_323': ['TIP3_129927', 'TIP3_130170'], 'THR_M_153': ['TIP3_128622'], 'TIP3_128220': ['TIP3_128421', 'TIP3_128763'], 'ARG_Q_42': ['TIP3_127578', 'TIP3_128826'], 'TIP3_127788': ['TIP3_127254', 'TIP3_127497', 'TIP3_128565', 'TIP3_127947'], 'TIP3_129789': ['TIP3_128628'], 'TIP3_127182': ['TIP3_127467', 'TIP3_127923'], 'TIP3_47694': ['ASP_B_334', 'TIP3_47685'], 'TIP3_128487': ['ASP_C_376', 'TIP3_127269', 'TIP3_128526'], 'TIP3_128808': ['TIP3_130071'], 'HIS_D_197': ['TIP3_47814'], 'TIP3_129327': ['TIP3_128259', 'TIP3_128637', 'GLU_P_122', 'TIP3_127464'], 'TIP3_127215': ['HIS_D_61', 'TIP3_127593', 'TIP3_128028'], 'TYR_C_302': ['TIP3_47778'], 'TIP3_127854': ['ASP_D_297', 'TIP3_129003', 'TIP3_129744'], 'TIP3_128775': ['TIP3_128901', 'TIP3_129543', 'ASP_M_169', 'TIP3_129048', 'TIP3_129462'], 'ASN_H_31': ['TIP3_128955'], 'TIP3_128790': ['TIP3_128085', 'TIP3_127587'], 'TIP3_128616': ['TIP3_128832', 'TIP3_127140', 'TIP3_129432'], 'TIP3_47595': ['TIP3_47712', 'TIP3_47592'], 'TIP3_128763': ['TIP3_127341', 'TIP3_129585'], 'TIP3_130164': ['TYR_E_56'], 'TIP3_127338': ['TIP3_128151', 'TIP3_127677'], 'TIP3_127368': ['TIP3_127722', 'TIP3_128841'], 'TIP3_127185': ['TIP3_129171', 'TIP3_127956'], 'TIP3_128655': ['TIP3_130137', 'TIP3_128340'], 'TIP3_47565': ['TIP3_129723'], 'TIP3_127158': ['ASP_P_53'], 'TIP3_129117': ['GLU_C_71', 'TIP3_129291', 'TIP3_129909'], 'TIP3_127281': ['TIP3_129903', 'TIP3_130083'], 'TIP3_128604': ['TIP3_127206', 'TIP3_127776', 'ASN_A_108', 'TIP3_128142', 'TIP3_129111'], 'TIP3_127521': ['TIP3_127458', 'TIP3_127557', 'TIP3_129654'], 'THR_D_60': ['TIP3_47853'], 'ASN_D_263': ['TIP3_129384', 'TIP3_129759'], 'TIP3_128409': ['SER_D_300', 'GLU_N_2', 'TIP3_127914'], 'TIP3_129153': ['TIP3_127719', 'TIP3_129555'], 'LYS_H_33': ['TIP3_127539'], 'TIP3_128709': ['ASP_C_187', 'TIP3_127851', 'TIP3_130095'], 'TIP3_128541': ['TIP3_128328', 'TIP3_129546'], 'TIP3_128631': ['TIP3_127500', 'TIP3_129078', 'SER_D_230', 'TIP3_127461'], 'TIP3_127407': ['TIP3_127128', 'TIP3_127227', 'TIP3_128742', 'TIP3_129843', 'GLU_C_394'], 'TIP3_127575': ['TIP3_129942', 'TIP3_127230', 'TIP3_128364'], 'TRP_B_468': ['TIP3_127680', 'TIP3_130125'], 'THR_M_208': ['TIP3_128682'], 'TIP3_127749': ['TIP3_127845', 'TIP3_128196', 'TIP3_129159', 'GLU_C_300'], 'TIP3_129519': ['TIP3_127410', 'TIP3_127656'], 'ARG_D_348': ['TIP3_127659', 'TIP3_127929', 'TIP3_128457'], 'TIP3_47934': ['TIP3_127167', 'TIP3_129852'], 'TIP3_47574': ['ASP_A_61', 'TIP3_47550', 'TIP3_47559'], 'TIP3_128847': ['TIP3_128592', 'TIP3_128694', 'TIP3_129834'], 'TIP3_130014': ['TIP3_128904', 'TIP3_127263'], 'TIP3_47784': ['TIP3_127998', 'TIP3_128685', 'TIP3_130104', 'TIP3_128397'], 'TIP3_47700': ['SER_B_241', 'SER_B_240'], 'TIP3_129363': ['TIP3_127995', 'TIP3_129513'], 'TIP3_127872': ['TIP3_128166', 'TIP3_129333'], 'TIP3_129714': ['TIP3_128562'], 'TIP3_128400': ['TIP3_128619'], 'SER_C_344': ['TIP3_129735'], 'SER_B_291': ['TIP3_129096'], 'TIP3_127551': ['TIP3_129102', 'TIP3_127599', 'TIP3_129471'], 'TIP3_129591': ['ASP_C_360', 'TIP3_130149', 'TIP3_127389', 'TIP3_129621', 'TIP3_129636'], 'TIP3_128340': ['ASP_P_53', 'THR_P_58'], 'TIP3_127251': ['TIP3_128778', 'ASP_M_79', 'TIP3_127269'], 'TIP3_128142': ['TIP3_129852', 'TIP3_128604', 'TIP3_129111'], 'TIP3_129492': ['GLU_P_90'], 'ASN_A_26': ['TIP3_47469'], 'TIP3_127740': ['TIP3_130149'], 'TIP3_127785': ['GLU_O_93', 'TIP3_127569'], 'TIP3_128199': ['TIP3_129291'], 'TIP3_128343': ['SER_P_39', 'TIP3_127122', 'TIP3_128349', 'TIP3_130005'], 'TIP3_47451': ['SER_A_134', 'TIP3_47520', 'CYS_A_144'], 'TIP3_129048': ['ASP_O_14', 'TIP3_127398', 'TIP3_128898', 'ASP_M_169', 'TIP3_129543', 'TIP3_129702'], 'TIP3_127323': ['TIP3_129966'], 'TIP3_128694': ['TIP3_127242', 'TIP3_128592', 'TIP3_128847', 'TIP3_128976'], 'ASN_D_220': ['TIP3_128190', 'TIP3_129318'], 'TIP3_47775': ['TIP3_47772'], 'TIP3_128130': ['ASP_G_9', 'TIP3_129957'], 'TIP3_129234': ['GLU_B_387', 'TIP3_128580'], 'ASN_A_267': ['TIP3_129033'], 'TIP3_128370': ['TIP3_128733', 'THR_B_255'], 'TIP3_130155': ['TIP3_127908'], 'TIP3_127791': ['TIP3_127218', 'TIP3_47937', 'TIP3_127821'], 'SER_K_16': ['TIP3_127869'], 'TIP3_129858': ['TIP3_128877'], 'TIP3_129501': ['GLU_D_302', 'TIP3_128007', 'TIP3_127812', 'TIP3_128397'], 'TIP3_128646': ['ASP_T_2', 'TIP3_127434'], 'TIP3_128391': ['GLU_D_242', 'TIP3_127473', 'TIP3_130002', 'SER_D_245', 'TIP3_127689'], 'TIP3_128466': ['ASP_O_96', 'TIP3_128622', 'TIP3_128949', 'ASN_M_155'], 'TIP3_127656': ['TIP3_127305', 'TIP3_127362', 'TIP3_127410', 'TIP3_128922', 'TIP3_129519'], 'ARG_B_57': ['TIP3_127905', 'TIP3_47685'], 'TIP3_129651': ['TIP3_128307', 'TIP3_128955'], 'TIP3_127194': ['THR_M_75'], 'TIP3_47766': ['THR_C_335', 'TIP3_47718', 'TIP3_128730'], 'TIP3_47622': ['TIP3_128898', 'TIP3_129945', 'GLU_B_393', 'TIP3_129015'], 'TIP3_47799': ['TIP3_129075', 'GLU_B_364'], 'TYR_O_38': ['TIP3_129603'], 'ARG_P_105': ['TIP3_128817', 'TIP3_128892', 'TIP3_128961'], 'TIP3_47544': ['ASN_A_303', 'TIP3_47538'], 'ASN_O_100': ['TIP3_128082', 'TIP3_128580', 'TIP3_127230'], 'TIP3_128103': ['TYR_A_107'], 'TIP3_128853': ['TIP3_128475', 'HIS_B_343', 'GLU_B_428', 'TIP3_129558'], 'TIP3_47535': ['TIP3_47460'], 'TIP3_129615': ['TIP3_128019', 'TIP3_129414', 'TIP3_127389', 'TIP3_128976'], 'TIP3_129840': ['TIP3_127173', 'TIP3_129240'], 'TIP3_128073': ['TIP3_127614', 'GLU_B_364', 'TIP3_127359', 'TIP3_128451'], 'TIP3_129720': ['TIP3_128784', 'TIP3_129489', 'TIP3_127893'], 'ASN_C_415': ['TIP3_128319', 'TIP3_129897'], 'TIP3_128463': ['TIP3_129138'], 'TIP3_127770': ['TIP3_128070'], 'TIP3_129357': ['TIP3_128373', 'TIP3_127344', 'TIP3_129675'], 'LYS_M_188': ['TIP3_47919', 'TIP3_47943'], 'TIP3_128841': ['TIP3_127857', 'TIP3_127722', 'TIP3_129570'], 'TIP3_129183': ['ASP_M_223', 'TIP3_127515', 'TIP3_129399', 'SER_M_191', 'TIP3_127902'], 'TIP3_127638': ['TIP3_129963'], 'TRP_B_493': ['TIP3_47859', 'TIP3_129150'], 'TIP3_47781': ['TIP3_127554'], 'TIP3_47592': ['TIP3_127992'], 'TIP3_128217': ['TIP3_129579', 'TIP3_129906', 'TIP3_129456'], 'TIP3_128526': ['TIP3_129465', 'TIP3_127269'], 'TIP3_127887': ['GLU_M_179', 'SER_M_170'], 'TIP3_47571': ['TIP3_47532', 'TIP3_47856', 'ASP_A_170', 'TIP3_47535', 'TIP3_47556'], 'HIS_A_92': ['TIP3_128241'], 'THR_K_15': ['TIP3_127869'], 'TIP3_127278': ['GLU_C_71', 'TIP3_128433', 'TIP3_129117'], 'TIP3_129951': ['TIP3_127284', 'TIP3_130053', 'ASP_A_103', 'TIP3_127152', 'TIP3_129846'], 'TIP3_127440': ['TIP3_128652', 'TIP3_129567'], 'TIP3_128202': ['TIP3_130116', 'TIP3_127257', 'TIP3_127836'], 'TYR_D_160': ['TIP3_47787'], 'TIP3_127617': ['THR_B_81', 'TIP3_128838'], 'TIP3_128430': ['TIP3_47670', 'ASP_B_313'], 'TIP3_127233': ['TIP3_127941'], 'TIP3_128088': ['TIP3_47637', 'TIP3_47613'], 'TIP3_128676': ['TIP3_129906', 'TIP3_127656'], 'TIP3_129978': ['GLU_B_492'], 'TIP3_129345': ['TIP3_127962'], 'TIP3_129318': ['TIP3_128190', 'GLU_D_219', 'TIP3_129192'], 'TYR_D_296': ['TIP3_128685'], 'LYS_O_104': ['TIP3_127158', 'TIP3_129564', 'TIP3_128655'], 'TIP3_127161': ['SER_C_416', 'TIP3_127464', 'TIP3_128637'], 'TIP3_129294': ['SER_D_88', 'GLU_D_96', 'THR_G_52'], 'TIP3_128313': ['TIP3_130038', 'TIP3_129327'], 'TIP3_128406': ['TIP3_127149', 'TIP3_127596', 'TIP3_128772', 'TIP3_130011'], 'THR_C_346': ['TIP3_129735'], 'SER_D_300': ['TIP3_127914'], 'TIP3_47601': ['TIP3_47823', 'TIP3_47835'], 'ARG_F_19': ['TIP3_129387', 'TIP3_128505'], 'TIP3_129336': ['ASN_A_312', 'TIP3_127971', 'ASP_A_308', 'TIP3_47490'], 'TIP3_127413': ['TIP3_129054'], 'TIP3_128580': ['TIP3_127326', 'GLU_B_387', 'TIP3_129228'], 'TIP3_128652': ['TIP3_127275', 'TIP3_129129', 'GLU_C_394', 'TIP3_128454', 'TIP3_129843'], 'TIP3_129828': ['TIP3_127416'], 'TIP3_128112': ['ASP_D_333', 'TIP3_128886', 'TIP3_129210', 'TIP3_127215'], 'TIP3_128064': ['TIP3_127917', 'TIP3_129000'], 'TIP3_128484': ['ASN_K_13', 'GLU_K_11'], 'TIP3_128703': ['TIP3_128169', 'TIP3_128250', 'TIP3_128754', 'GLU_A_244'], 'TIP3_127422': ['GLU_D_11'], 'TIP3_127722': ['TIP3_129570'], 'TIP3_127164': ['TIP3_128190', 'TIP3_129147', 'TIP3_129192', 'TIP3_129279', 'GLU_D_219'], 'TIP3_127755': ['HIS_C_74', 'ASP_J_23', 'ASP_J_19'], 'TIP3_127239': ['TIP3_128319', 'TIP3_129897', 'TIP3_129222'], 'TIP3_129945': ['ASP_O_14'], 'TIP3_127149': ['TIP3_128406', 'TIP3_128772', 'TIP3_130011'], 'TIP3_127686': ['SER_B_169', 'TIP3_129876', 'TIP3_130065', 'GLU_B_266'], 'TIP3_128190': ['GLU_D_219', 'TIP3_129192', 'TIP3_129318'], 'THR_D_248': ['TIP3_129045'], 'TIP3_127971': ['ASN_A_312', 'TIP3_129336'], 'TIP3_129063': ['TIP3_127374'], 'TIP3_130002': ['TIP3_127689', 'TIP3_129450'], 'TIP3_127476': ['ASP_B_15', 'TIP3_129231', 'TIP3_129807'], 'TIP3_128232': ['TIP3_128937', 'TIP3_129243'], 'TIP3_128271': ['TIP3_130092'], 'TIP3_47763': ['SER_C_275'], 'TIP3_129465': ['TIP3_127269', 'TIP3_128487', 'TIP3_128526'], 'TIP3_128316': ['TIP3_129186'], 'TIP3_128673': ['ASP_D_25', 'TIP3_127404', 'TIP3_129102'], 'TIP3_128439': ['TIP3_127245', 'ASP_B_372'], 'THR_C_412': ['TIP3_127848'], 'TIP3_129321': ['THR_G_27'], 'ASN_A_325': ['TIP3_47538'], 'TIP3_129405': ['TIP3_127866', 'TIP3_127959'], 'TIP3_130089': ['TIP3_128403'], 'TIP3_127203': ['TIP3_128835', 'TIP3_129147'], 'TIP3_127131': ['TIP3_127596'], 'TIP3_127143': ['GLU_D_337', 'TIP3_127917'], 'ASN_A_234': ['TIP3_128217', 'TIP3_128988', 'TIP3_127623'], 'TIP3_129177': ['ASP_D_333', 'TIP3_128886', 'TIP3_128940'], 'TIP3_129081': ['TIP3_130077'], 'TIP3_129936': ['ASP_B_119'], 'LYS_M_18': ['TIP3_130077'], 'TIP3_47646': ['TIP3_128154', 'GLU_D_323', 'TIP3_127998', 'TIP3_130074'], 'TIP3_127524': ['TIP3_129090', 'TIP3_129183'], 'TIP3_129777': ['TIP3_129156'], 'TIP3_129636': ['TIP3_129621', 'TIP3_127389'], 'SER_K_33': ['TIP3_47907'], 'TIP3_127308': ['GLU_C_464', 'TIP3_129450'], 'THR_D_80': ['TIP3_128613'], 'THR_B_271': ['TIP3_127827'], 'TIP3_129717': ['GLU_K_11', 'ASN_K_13'], 'TIP3_128742': ['GLU_C_394', 'TIP3_127407', 'TIP3_129843', 'TIP3_127227'], 'TRP_B_257': ['TIP3_47709'], 'TIP3_128436': ['TIP3_128733', 'THR_B_255'], 'TIP3_47892': ['TIP3_127848'], 'TIP3_127581': ['TIP3_129576'], 'TIP3_128205': ['TIP3_127506'], 'SER_B_365': ['TIP3_127737', 'TIP3_129771'], 'TIP3_127644': ['TIP3_128676'], 'ARG_N_24': ['TIP3_128523', 'TIP3_128220', 'TIP3_128304'], 'TIP3_129543': ['TIP3_127398', 'TIP3_127572', 'ASP_M_169', 'TIP3_128775', 'TIP3_129048'], 'TIP3_128865': ['TIP3_127455'], 'THR_A_316': ['TIP3_129009'], 'TIP3_128208': ['TIP3_129417', 'TIP3_127425'], 'TIP3_129180': ['TIP3_128670'], 'TIP3_128187': ['GLU_P_85'], 'LYS_P_134': ['TIP3_127848'], 'HIS_B_469': ['TIP3_127680', 'TIP3_129378'], 'TIP3_47634': ['ASP_B_276', 'TIP3_128214'], 'TIP3_128364': ['TYR_O_21', 'TIP3_129804'], 'ARG_A_64': ['TIP3_127287', 'TIP3_129852', 'TIP3_47610', 'TIP3_127194', 'TIP3_47934', 'TIP3_128142', 'TIP3_129612'], 'TIP3_127914': ['SER_D_300'], 'TIP3_129882': ['TIP3_127518', 'TIP3_129357', 'TIP3_129144'], 'TIP3_128571': ['TIP3_127953', 'TIP3_129021', 'TIP3_129282'], 'TIP3_129555': ['TIP3_128505', 'TIP3_129618', 'TIP3_127719', 'TIP3_129153'], 'TIP3_130104': ['GLU_D_323', 'TIP3_47925', 'TIP3_130074'], 'TIP3_129330': ['TIP3_127404', 'TIP3_128673', 'TIP3_129102'], 'LYS_P_47': ['TIP3_128151', 'TIP3_128688', 'TIP3_127185', 'TIP3_127956', 'TIP3_129171'], 'TIP3_129192': ['GLU_D_219', 'TIP3_128190', 'TIP3_129318'], 'TIP3_128358': ['TIP3_128766'], 'TIP3_129171': ['TIP3_127485', 'TIP3_128688', 'TIP3_129018'], 'TIP3_128850': ['TIP3_129810', 'TIP3_130062', 'TIP3_127782', 'TIP3_128145'], 'TIP3_127545': ['TIP3_127593'], 'TIP3_127701': ['TIP3_127128', 'TIP3_127227', 'TIP3_128913'], 'TIP3_127119': ['ASP_H_27', 'TIP3_128661'], 'TIP3_129633': ['TIP3_129645'], 'TIP3_47832': ['SER_D_33'], 'ARG_A_136': ['TIP3_127119'], 'ASN_M_155': ['TIP3_129099'], 'TIP3_127782': ['TIP3_128145', 'TIP3_128544', 'TIP3_129627', 'TIP3_128850'], 'TIP3_130050': ['TIP3_127980'], 'TIP3_128292': ['THR_O_44', 'ASP_P_83', 'THR_P_81'], 'TIP3_128826': ['SER_S_29', 'TIP3_127578'], 'TIP3_127350': ['TIP3_47652'], 'SER_A_169': ['TIP3_47550'], 'TIP3_129960': ['TIP3_128172'], 'TIP3_128991': ['TIP3_129168'], 'TIP3_128892': ['TIP3_127671', 'TIP3_128496'], 'TIP3_129381': ['ASN_C_327', 'TIP3_129879'], 'TIP3_128028': ['TIP3_127545'], 'TIP3_128397': ['TIP3_127347', 'TIP3_127812', 'TIP3_128007'], 'TIP3_128376': ['SER_B_76', 'GLU_B_94', 'TIP3_129582'], 'TIP3_129249': ['TIP3_47904', 'TIP3_127875'], 'TIP3_129174': ['THR_P_63', 'TIP3_129798'], 'TIP3_47793': ['TYR_D_315'], 'THR_D_75': ['TIP3_127176'], 'ARG_B_385': ['TIP3_129945', 'TIP3_128898', 'TIP3_47928'], 'TIP3_129774': ['TIP3_129708'], 'TIP3_129969': ['GLU_C_348', 'TYR_M_7', 'TIP3_129537', 'TIP3_130059'], 'TIP3_128832': ['TIP3_128910', 'TIP3_127140', 'TIP3_128616', 'TIP3_129432'], 'TIP3_128700': ['THR_C_316'], 'TIP3_128898': ['ASP_O_14', 'TIP3_47622', 'TIP3_129945', 'TIP3_129702'], 'ASN_C_405': ['TIP3_127239', 'TIP3_128319'], 'TIP3_129891': ['TIP3_127428', 'TIP3_128103'], 'TIP3_47598': ['TIP3_129516'], 'HIS_C_53': ['TIP3_47769'], 'TIP3_128883': ['TIP3_127203'], 'TIP3_127716': ['TIP3_127386'], 'TIP3_127236': ['GLU_C_308', 'TIP3_128046', 'TIP3_128445', 'ASN_C_294'], 'TIP3_127179': ['TIP3_128958'], 'TIP3_47589': ['TIP3_128163'], 'TIP3_128274': ['ASP_D_225', 'TIP3_127980'], 'TIP3_129975': ['TIP3_127314'], 'TIP3_127518': ['TIP3_127200', 'TIP3_129675', 'TIP3_129357', 'TIP3_129882'], 'ARG_D_265': ['TIP3_127611'], 'TIP3_128607': ['ASP_M_224', 'TIP3_127938', 'TIP3_128208', 'TIP3_129417'], 'SER_S_29': ['TIP3_128826'], 'THR_P_48': ['TIP3_127866', 'TIP3_127959'], 'TIP3_129468': ['TIP3_129753'], 'TIP3_127659': ['TIP3_47868', 'TIP3_128412', 'TIP3_128457'], 'TIP3_128769': ['TIP3_128727'], 'TIP3_129009': ['TIP3_129681', 'THR_A_316', 'ASP_A_319'], 'TIP3_129432': ['TIP3_127140', 'TIP3_128910', 'TIP3_127371'], 'TIP3_129246': ['TIP3_127284', 'TIP3_130053'], 'TIP3_127797': ['GLU_D_344', 'TIP3_127809', 'ASP_B_380'], 'TIP3_129870': ['ASN_C_415'], 'TIP3_127737': ['SER_B_365', 'TIP3_129771', 'TIP3_127320', 'TIP3_130116'], 'TIP3_128043': ['TYR_C_340'], 'TIP3_129735': ['TIP3_130173', 'THR_C_346', 'GLU_C_348'], 'TIP3_127677': ['TIP3_47892', 'TIP3_129675', 'TIP3_127848', 'TIP3_129297'], 'TIP3_128625': ['TIP3_128019', 'TIP3_129615'], 'TIP3_129489': ['TIP3_47679', 'TIP3_127899', 'TIP3_127893', 'TIP3_129720'], 'TIP3_129276': ['TIP3_127356'], 'TIP3_128451': ['GLU_B_364', 'TIP3_127359', 'TIP3_127614', 'ASP_D_297', 'TIP3_127347'], 'TIP3_127902': ['TIP3_127524'], 'TIP3_129429': ['TYR_B_279'], 'TIP3_129630': ['TIP3_127650'], 'ASN_A_296': ['TIP3_127197', 'TIP3_127641', 'TIP3_129684'], 'TIP3_130092': ['TIP3_128271'], 'TIP3_127809': ['GLU_D_344', 'TIP3_127797'], 'ARG_F_45': ['TIP3_128361', 'TIP3_129561', 'TIP3_128931'], 'TIP3_129957': ['TIP3_128130', 'ASP_G_9'], 'TIP3_47901': ['TYR_E_55'], 'TIP3_47643': ['TIP3_128379'], 'ASN_M_186': ['TIP3_127887'], 'TIP3_128760': ['TIP3_128394'], 'TIP3_128022': ['GLU_B_353', 'ASP_B_372', 'TIP3_127245', 'TIP3_128439'], 'TYR_E_44': ['TIP3_129339'], 'ARG_B_358': ['TIP3_128430', 'TIP3_129483', 'TIP3_128853', 'TIP3_129864'], 'TIP3_47727': ['TIP3_47748', 'TIP3_47733', 'TIP3_47754'], 'TIP3_129222': ['TIP3_128808', 'TIP3_130122'], 'TIP3_127830': ['SER_B_400'], 'TIP3_128754': ['TIP3_127581', 'TIP3_129645', 'GLU_A_244', 'TIP3_128250', 'TIP3_128703'], 'THR_P_58': ['TIP3_128340'], 'ARG_C_343': ['TIP3_127134', 'TIP3_127251', 'TIP3_128778'], 'TIP3_128250': ['GLU_A_244', 'TIP3_128703', 'TIP3_128754'], 'TIP3_128193': ['TIP3_127128', 'TIP3_129843', 'TIP3_128652'], 'ARG_M_115': ['TIP3_129765', 'TIP3_127428', 'TIP3_129891'], 'TIP3_128922': ['TYR_B_6', 'TIP3_129906'], 'TIP3_128685': ['TIP3_47784', 'TIP3_127998'], 'TIP3_128931': ['TYR_P_26'], 'TIP3_127326': ['TIP3_128412', 'TIP3_128580', 'TIP3_129228'], 'HIS_B_216': ['TIP3_47667'], 'ARG_R_39': ['TIP3_127563'], 'TIP3_128145': ['TIP3_128544', 'TIP3_129627', 'TIP3_129717'], 'ASN_A_322': ['TIP3_47583', 'TIP3_127638'], 'TIP3_128499': ['ASP_D_333', 'TIP3_128613', 'TIP3_129210'], 'TIP3_130122': ['TIP3_128808', 'TIP3_129222'], 'TIP3_128361': ['SER_I_37', 'TIP3_129828'], 'TIP3_47868': ['TIP3_127659'], 'TIP3_129573': ['TYR_A_235', 'GLU_N_25', 'TIP3_130062', 'TIP3_129810'], 'ARG_M_73': ['TIP3_127776'], 'TIP3_47562': ['ASP_A_61', 'TIP3_47559', 'TIP3_129006'], 'TIP3_127398': ['TIP3_128898', 'TIP3_129048', 'TIP3_127572'], 'TIP3_129618': ['TIP3_128505', 'TIP3_129555'], 'TIP3_130086': ['GLU_D_302', 'TIP3_129087'], 'ASN_D_194': ['TIP3_47802', 'TIP3_47796'], 'TIP3_127401': ['GLU_C_456', 'TIP3_127500', 'TIP3_127461'], 'TIP3_127632': ['TIP3_127326', 'TIP3_127659', 'TIP3_128412'], 'TIP3_127851': ['ASP_C_187', 'TIP3_128709'], 'TIP3_129225': ['TIP3_127272', 'TIP3_128064'], 'ARG_S_35': ['TIP3_128448'], 'SER_C_310': ['TIP3_47727'], 'LYS_O_47': ['TIP3_129126'], 'TIP3_47778': ['HIS_C_91', 'TIP3_47739', 'THR_C_94'], 'TIP3_130059': ['TYR_M_7'], 'TIP3_128589': ['TIP3_127383'], 'TIP3_129459': ['TIP3_127395', 'TIP3_128859'], 'TIP3_129585': ['SER_D_254', 'TIP3_128565', 'TIP3_128691', 'TIP3_127341', 'TIP3_128763'], 'TIP3_129087': ['GLU_D_302', 'TIP3_129501'], 'TIP3_129588': ['TIP3_130137'], 'TIP3_127167': ['TIP3_129612', 'TIP3_129594'], 'TIP3_128454': ['TIP3_127113', 'TIP3_129843', 'GLU_C_394', 'HIS_C_398', 'TIP3_129129', 'TIP3_129567'], 'THR_O_44': ['TIP3_128292'], 'TIP3_128418': ['TIP3_127323'], 'TYR_B_6': ['TIP3_128529'], 'TIP3_47709': ['ASN_D_292'], 'TIP3_129681': ['ASP_A_319', 'TIP3_129009'], 'TIP3_127641': ['ASN_A_296', 'TIP3_129699'], 'TIP3_127395': ['TIP3_128859', 'TIP3_129459'], 'TIP3_129552': ['TIP3_130074'], 'TIP3_127953': ['ASN_O_100', 'TIP3_128082', 'TIP3_129282', 'ASN_O_99'], 'TRP_G_62': ['TIP3_127827'], 'ARG_D_294': ['TIP3_128829', 'TIP3_47910', 'TIP3_129744'], 'TIP3_129090': ['SER_M_191', 'TIP3_127524', 'TIP3_129183'], 'LYS_B_423': ['TIP3_128799', 'TIP3_129162', 'TIP3_128226', 'TIP3_129912'], 'TIP3_128304': ['ASP_C_473', 'TIP3_129822'], 'TIP3_128574': ['GLU_M_218'], 'TIP3_128502': ['GLU_B_492'], 'TIP3_128286': ['TIP3_128658'], 'TIP3_47664': ['ASP_B_134'], 'TIP3_127728': ['TIP3_129300'], 'ARG_B_68': ['TIP3_47616', 'TIP3_128367'], 'TIP3_47538': ['TIP3_47586', 'ASN_A_322'], 'TIP3_128613': ['TIP3_128325', 'TIP3_128499', 'TIP3_129210'], 'TIP3_128421': ['TIP3_128220', 'TIP3_128763'], 'LYS_C_48': ['TIP3_127125', 'TIP3_128229'], 'TIP3_129723': ['TIP3_47565', 'GLU_D_242', 'TIP3_127473', 'TIP3_128391', 'TIP3_130002'], 'ASN_C_294': ['TIP3_128445', 'TIP3_128694', 'TIP3_129819', 'TIP3_129933', 'TIP3_128046'], 'ASN_C_228': ['TIP3_128592'], 'TIP3_129834': ['TIP3_128592', 'TIP3_128694', 'TIP3_128847', 'ASN_C_228'], 'TIP3_47661': ['THR_B_27'], 'TIP3_128277': ['ASN_A_338', 'TIP3_129099'], 'TIP3_128331': ['TIP3_127866', 'TIP3_127386', 'TIP3_128796'], 'ARG_A_140': ['TIP3_128631', 'TIP3_129078', 'TIP3_129816', 'TIP3_127164'], 'TIP3_128784': ['TIP3_47847', 'TIP3_127899', 'TIP3_129489'], 'TIP3_127950': ['TIP3_127926', 'TIP3_129198', 'TIP3_129441'], 'TIP3_127707': ['THR_B_327', 'TIP3_130119'], 'SER_I_37': ['TIP3_128361'], 'TIP3_130041': ['TIP3_127536', 'TIP3_127437'], 'SER_A_86': ['TIP3_129360'], 'TIP3_128031': ['TIP3_129153', 'TIP3_129555', 'TIP3_129618'], 'TIP3_128319': ['TIP3_128979', 'TIP3_129897'], 'TIP3_127665': ['TIP3_129732'], 'TIP3_47907': ['SER_K_32'], 'TRP_C_151': ['TIP3_129402'], 'ARG_D_24': ['TIP3_129354', 'TIP3_127806', 'TIP3_130035'], 'ARG_M_189': ['TIP3_129396'], 'ASN_A_298': ['TIP3_127992', 'TIP3_129684', 'TIP3_47592'], 'TIP3_128460': ['TIP3_47922', 'TIP3_128967'], 'SER_M_217': ['TIP3_47916'], 'TYR_E_55': ['TIP3_47898'], 'TIP3_127848': ['GLU_A_329', 'THR_C_412', 'TIP3_47892'], 'LYS_M_69': ['TIP3_127152', 'TIP3_129972'], 'TIP3_129660': ['TIP3_129504', 'TIP3_129789'], 'TIP3_47532': ['GLU_A_333', 'TIP3_47571', 'TIP3_47574', 'ASN_A_181', 'TIP3_47856'], 'TIP3_127842': ['SER_D_84', 'TIP3_127281', 'TIP3_129795'], 'TIP3_47895': ['THR_E_49'], 'HIS_C_398': ['TIP3_128454', 'TIP3_129129', 'TIP3_128343'], 'ASN_K_13': ['TIP3_128484', 'TIP3_129888', 'TIP3_128538'], 'TIP3_127938': ['TIP3_129861', 'ASP_M_222', 'TIP3_127734', 'TIP3_128223'], 'TIP3_129861': ['TYR_M_151', 'TIP3_128076'], 'TIP3_128334': ['TIP3_127182', 'TIP3_127467'], 'TIP3_129240': ['GLU_G_17', 'TIP3_47664'], 'HIS_D_336': ['TIP3_129000'], 'TIP3_129684': ['TIP3_127992', 'TIP3_130113', 'TIP3_127197', 'TIP3_127332'], 'TIP3_129309': ['ASN_O_99', 'TIP3_128277', 'TIP3_129099'], 'TIP3_127218': ['TIP3_127821', 'TIP3_129393'], 'TIP3_129819': ['TIP3_127242', 'TIP3_128625', 'TIP3_128694', 'TIP3_128445'], 'TIP3_129678': ['TIP3_127566', 'TIP3_128262'], 'TIP3_47685': ['ASP_B_334', 'TIP3_47889'], 'TIP3_127494': ['TIP3_128556', 'TIP3_130011'], 'TIP3_129513': ['TIP3_129363', 'GLU_C_83'], 'ASN_M_147': ['TIP3_127785'], 'TIP3_47697': ['TIP3_47625', 'GLU_B_41', 'TIP3_129663'], 'TIP3_127374': ['ASN_C_44', 'ASP_C_150'], 'TYR_P_137': ['TIP3_127200', 'TIP3_129522'], 'TIP3_127734': ['ASP_M_222', 'ASP_M_224', 'TIP3_127938'], 'TIP3_128949': ['ASP_O_96', 'TIP3_47937', 'TIP3_128466', 'TIP3_128622'], 'TIP3_47886': ['TIP3_47547', 'GLU_D_312'], 'TIP3_127365': ['TIP3_129651'], 'TIP3_47721': ['TIP3_47511'], 'ARG_C_449': ['TIP3_128718'], 'TIP3_47823': ['TIP3_47793'], 'TIP3_129942': ['TIP3_128466', 'TIP3_127230', 'TIP3_128595'], 'TIP3_47715': ['TIP3_47766', 'MET_C_342'], 'TIP3_128496': ['TIP3_127671', 'TIP3_128892', 'TIP3_127701', 'TIP3_128235'], 'TIP3_128706': ['TIP3_128961'], 'SER_D_172': ['TIP3_128139'], 'TIP3_130038': ['TIP3_128313', 'TIP3_127542'], 'TRP_D_93': ['TIP3_127455'], 'ARG_C_262': ['TIP3_127731'], 'TIP3_129255': ['TYR_G_49'], 'TIP3_47541': ['TYR_A_161', 'HIS_A_190', 'TIP3_47553', 'TIP3_47556', 'GLU_A_189'], 'TIP3_128388': ['GLU_B_235', 'TIP3_128283'], 'TYR_P_26': ['TIP3_127449', 'TIP3_128469'], 'TIP3_129741': ['TIP3_128871', 'TIP3_127359'], 'TIP3_127608': ['TIP3_127341', 'TIP3_128175', 'TIP3_128904', 'TIP3_127335', 'TIP3_129453'], 'TIP3_129996': ['TIP3_128601'], 'TIP3_129855': ['TIP3_127230', 'TIP3_128364'], 'LYS_P_129': ['TIP3_129927', 'TIP3_128973'], 'TIP3_127821': ['TIP3_128949', 'ASP_O_96', 'TIP3_47937'], 'ASN_B_318': ['TIP3_47634'], 'TIP3_127629': ['TIP3_127935', 'TIP3_128907'], 'TIP3_47676': ['GLU_B_428'], 'TIP3_128829': ['TIP3_47910'], 'TIP3_127299': ['TIP3_130041'], 'TIP3_128349': ['SER_P_39', 'TIP3_127122', 'TIP3_128343', 'TIP3_129624'], 'TIP3_129738': ['TIP3_129597'], 'ARG_E_8': ['TIP3_129153', 'TIP3_129786'], 'TIP3_128811': ['TIP3_128517'], 'TIP3_47613': ['TIP3_47637'], 'TIP3_128166': ['TIP3_127380'], 'TIP3_129912': ['TIP3_128202', 'TIP3_128226', 'TIP3_129162'], 'TIP3_47610': ['TYR_M_151'], 'TIP3_129810': ['TIP3_128850', 'GLU_N_25', 'TIP3_130062'], 'TIP3_127839': ['TIP3_128889', 'GLU_L_30'], 'TIP3_129033': ['TIP3_127509', 'TIP3_128640', 'TIP3_128664'], 'TIP3_127587': ['ASN_A_234', 'TIP3_128538'], 'TIP3_127896': ['TIP3_128934', 'TIP3_128400', 'TIP3_128619'], 'TIP3_129219': ['TIP3_128184', 'TIP3_127794', 'TIP3_128307'], 'TIP3_130020': ['TIP3_130038'], 'TIP3_128934': ['TIP3_129249'], 'ARG_D_326': ['TIP3_47925', 'TIP3_127329', 'TIP3_47631', 'TIP3_128055', 'TIP3_47784', 'TIP3_130104'], 'TIP3_128559': ['TIP3_129978'], 'TIP3_127377': ['TIP3_127965'], 'TIP3_130107': ['TIP3_127224'], 'SER_C_406': ['TIP3_129030'], 'TIP3_129768': ['GLU_C_389'], 'THR_N_5': ['TIP3_128472'], 'TIP3_129672': ['ASP_O_96', 'TIP3_47937', 'TIP3_128622', 'TIP3_129366'], 'LYS_M_86': ['TIP3_129540'], 'TIP3_127875': ['TIP3_127896', 'TIP3_128400', 'TIP3_128934'], 'TIP3_130149': ['TIP3_129288', 'TIP3_129591', 'TIP3_129621', 'TIP3_129636', 'ASP_C_360'], 'TIP3_127836': ['TIP3_127257'], 'TIP3_130125': ['TIP3_127680'], 'TIP3_129021': ['TIP3_128082', 'TIP3_127953', 'TIP3_128571', 'TIP3_129282'], 'ARG_D_26': ['TIP3_127806', 'TIP3_47805', 'TIP3_130035'], 'ARG_E_61': ['TIP3_128586'], 'TIP3_129348': ['TIP3_128121', 'TIP3_129810'], 'TIP3_129933': ['TIP3_128289'], 'TIP3_127128': ['TIP3_127407', 'TIP3_128193', 'TIP3_128964', 'TIP3_129843', 'TIP3_127227', 'TIP3_127701', 'TIP3_128235'], 'TIP3_127698': ['TIP3_127644', 'TIP3_127611'], 'TIP3_127500': ['TIP3_127401', 'GLU_C_456'], 'THR_C_139': ['TIP3_127317'], 'TRP_D_58': ['TIP3_128670'], 'ARG_H_34': ['TIP3_128955', 'TIP3_129651', 'TIP3_128307'], 'TIP3_128241': ['SER_C_216', 'GLU_C_221'], 'TIP3_127776': ['TIP3_127206', 'TIP3_128604', 'GLU_A_104'], 'TIP3_127764': ['TIP3_127647', 'TIP3_128514'], 'TIP3_129168': ['TIP3_128349', 'HIS_C_398', 'TIP3_127113', 'TIP3_128454'], 'TRP_A_131': ['TIP3_47721'], 'TIP3_47484': ['GLU_A_65', 'TIP3_128532'], 'TIP3_129897': ['TIP3_127566', 'TIP3_128355', 'TIP3_128058'], 'LYS_B_418': ['TIP3_129048', 'TIP3_129702', 'TIP3_47622', 'TIP3_128898'], 'TIP3_129561': ['TIP3_128802', 'TIP3_129477'], 'TIP3_128169': ['TIP3_129645', 'THR_D_243', 'TIP3_128640'], 'ARG_B_272': ['TIP3_47634', 'TIP3_47709', 'TIP3_130167', 'TIP3_129426', 'TIP3_128214', 'TIP3_128907'], 'TIP3_130173': ['GLU_C_348', 'TIP3_129735'], 'CYS_D_71': ['TIP3_47850'], 'TIP3_129783': ['TIP3_128796', 'TIP3_127716'], 'TIP3_130116': ['TIP3_127320', 'TIP3_127836', 'TIP3_128202', 'TIP3_128124', 'TIP3_128226'], 'TIP3_47829': ['TIP3_127854', 'TIP3_129003'], 'ARG_G_12': ['TIP3_129957', 'TIP3_128952'], 'TIP3_129675': ['TIP3_127518', 'TIP3_129144', 'TIP3_129357', 'TIP3_129882', 'TIP3_47892', 'TIP3_127677'], 'TIP3_47580': ['TIP3_47463'], 'TIP3_128325': ['TIP3_128133'], 'TIP3_128151': ['TIP3_128688', 'GLU_C_413'], 'SER_B_419': ['TIP3_128799'], 'TIP3_127224': ['TIP3_128244'], 'LYS_M_160': ['TIP3_129087', 'TIP3_129501', 'TIP3_130086', 'TIP3_47646', 'TIP3_128154'], 'TIP3_47877': ['TIP3_47844', 'TIP3_47817', 'TIP3_47853'], 'ASN_A_108': ['TIP3_128604', 'TIP3_129111'], 'TIP3_129210': ['ASP_D_333', 'TIP3_127593', 'HIS_D_61', 'TIP3_127215', 'TIP3_128112'], 'SER_B_76': ['TIP3_128376'], 'TIP3_129579': ['TYR_D_141', 'TIP3_128793'], 'TIP3_127332': ['TIP3_127170', 'TIP3_130113'], 'TIP3_127905': ['ASN_B_53', 'ASN_B_331'], 'TIP3_127434': ['TIP3_128232'], 'TIP3_129663': ['GLU_B_41', 'TIP3_47625'], 'ASN_S_58': ['TIP3_129204'], 'TIP3_127317': ['TIP3_129063', 'THR_C_139', 'GLU_C_141'], 'TIP3_128505': ['TIP3_127719'], 'ASN_C_155': ['TIP3_129237'], 'ASN_A_266': ['TIP3_128502'], 'TIP3_128793': ['TIP3_130152', 'TIP3_127698'], 'ARG_A_269': ['TIP3_128640', 'TIP3_127509', 'TIP3_127980', 'TIP3_128274'], 'ARG_B_384': ['TIP3_130155', 'TIP3_130146', 'TIP3_127326', 'TIP3_127659'], 'LYS_C_339': ['TIP3_128622', 'TIP3_129099', 'TIP3_129672', 'TIP3_128277', 'TIP3_129309', 'TIP3_128043'], 'TIP3_129726': ['TYR_A_73', 'TIP3_129303'], 'TIP3_128598': ['TIP3_129255'], 'TIP3_128433': ['TIP3_127278', 'TIP3_129117'], 'ARG_P_66': ['TIP3_127884', 'TIP3_129072'], 'TIP3_129972': ['ASP_A_103', 'TIP3_127152', 'TIP3_128679', 'TIP3_129951'], 'TIP3_129243': ['TIP3_128937'], 'TIP3_127311': ['GLU_A_329', 'TIP3_127833', 'TIP3_127848', 'ASP_A_342', 'TIP3_127170'], 'TIP3_127827': ['TIP3_128583', 'TIP3_129429', 'TIP3_127110'], 'TIP3_130158': ['TIP3_128511'], 'TIP3_47850': ['SER_D_65'], 'TIP3_128871': ['TIP3_127359', 'TIP3_129741', 'TIP3_127347'], 'ASN_D_350': ['TIP3_127908'], 'TIP3_130110': ['ASP_C_473', 'TIP3_127788'], 'THR_P_63': ['TIP3_47949'], 'TIP3_128001': ['HIS_B_466', 'SER_B_239'], 'TIP3_129150': ['TIP3_127155', 'TIP3_129930'], 'TIP3_129507': ['GLU_O_93', 'TIP3_128238'], 'LYS_D_264': ['TIP3_127473', 'TIP3_128250', 'TIP3_47565'], 'HIS_A_304': ['TIP3_128973', 'TIP3_129705', 'TIP3_127674', 'TIP3_129474'], 'TIP3_128109': ['TIP3_129549', 'TIP3_129816', 'TIP3_129078'], 'TIP3_129624': ['TIP3_128991'], 'SER_D_230': ['TIP3_127461', 'TIP3_128631'], 'TYR_C_149': ['TIP3_129402'], 'ASN_A_338': ['TIP3_47766', 'TIP3_128730'], 'TIP3_129126': ['TIP3_129783', 'TIP3_128292'], 'ASN_B_53': ['TIP3_128985'], 'TIP3_129267': ['TIP3_129990'], 'ARG_B_326': ['TIP3_127854', 'TIP3_129003', 'TIP3_128073', 'TIP3_128451', 'TIP3_128079', 'TIP3_129744'], 'ARG_K_7': ['TIP3_127536'], 'TIP3_47547': ['TIP3_130098'], 'TIP3_129411': ['TIP3_47928'], 'SER_A_70': ['TIP3_47448'], 'TIP3_127572': ['TIP3_127398', 'TIP3_129543'], 'TIP3_128730': ['ASN_A_338'], 'SER_B_74': ['TIP3_127818', 'TIP3_129582'], 'TYR_M_168': ['TIP3_47925'], 'TIP3_130071': ['TIP3_128808', 'TIP3_128385'], 'TIP3_128622': ['ASP_O_96', 'TIP3_47937', 'TIP3_128466', 'TIP3_128949', 'TIP3_129672'], 'LYS_L_34': ['TIP3_129051'], 'TIP3_129669': ['TIP3_127191'], 'TIP3_127335': ['SER_D_262', 'TIP3_129453', 'TIP3_129573', 'THR_K_15', 'TIP3_128904'], 'TIP3_129057': ['SER_P_39', 'TIP3_127860'], 'TIP3_127341': ['TIP3_127608', 'TIP3_128175', 'TIP3_128904', 'TIP3_129585', 'TIP3_127263'], 'SER_B_79': ['TIP3_127617'], 'TIP3_47586': ['TIP3_47538', 'TIP3_47526'], 'TIP3_127578': ['SER_S_36', 'TIP3_128118'], 'TIP3_47670': ['ASP_B_313', 'TIP3_47658', 'TIP3_47682'], 'TIP3_129006': ['TIP3_47493', 'ASP_A_61', 'TIP3_47559', 'TIP3_47562'], 'TIP3_127443': ['TIP3_129132', 'TIP3_129876'], 'TIP3_130011': ['TIP3_127494', 'TIP3_128406', 'TIP3_128556', 'TIP3_127149', 'TIP3_128610'], 'TIP3_127941': ['TIP3_128193'], 'TIP3_47478': ['TIP3_47532'], 'TIP3_129771': ['TIP3_127836', 'TIP3_130116', 'TIP3_128871'], 'TIP3_128814': ['TIP3_128271'], 'TIP3_128307': ['TIP3_128184', 'TIP3_127794'], 'TIP3_47790': ['TIP3_47829', 'TIP3_127854'], 'TIP3_127482': ['TIP3_127293'], 'TIP3_128637': ['SER_C_416', 'TIP3_128259', 'TIP3_129477'], 'TIP3_128889': ['THR_L_29'], 'TIP3_128427': ['ASP_C_460', 'TIP3_130161'], 'TIP3_47880': ['TIP3_47817'], 'LYS_C_381': ['TIP3_127977'], 'TIP3_47787': ['ASN_D_292'], 'TIP3_128988': ['TIP3_128091', 'TIP3_129924', 'TIP3_128217', 'TIP3_129906'], 'TIP3_129291': ['TIP3_129117', 'TIP3_129909'], 'ARG_C_390': ['TIP3_127233'], 'TIP3_47460': ['TYR_A_161', 'TIP3_47541', 'TIP3_47556'], 'TIP3_129909': ['GLU_C_71'], 'TIP3_127359': ['GLU_B_364', 'TIP3_127614', 'TIP3_128451', 'TIP3_127347', 'TIP3_128871'], 'TIP3_128268': ['TIP3_128595'], 'TIP3_128688': ['TIP3_129018', 'TIP3_129171'], 'TIP3_129399': ['MET_M_225', 'SER_M_191', 'ASP_M_223', 'TIP3_129183'], 'TIP3_127272': ['GLU_D_337', 'TIP3_127143', 'TIP3_127917'], 'TIP3_128733': ['SER_B_260', 'THR_B_262', 'TIP3_47703'], 'SER_B_388': ['TIP3_127797'], 'TIP3_130152': ['TIP3_128286'], 'TIP3_128553': ['TIP3_127284', 'TIP3_128844'], 'TIP3_127155': ['TIP3_129150'], 'TRP_B_340': ['TIP3_47676'], 'TIP3_127122': ['SER_P_39', 'TIP3_127860', 'TIP3_128343'], 'TIP3_127209': ['TIP3_128334', 'TIP3_127467'], 'ASN_A_312': ['TIP3_129207'], 'TIP3_128016': ['TYR_P_75'], 'TIP3_128628': ['THR_B_371'], 'TIP3_129075': ['TIP3_47799', 'TIP3_128829'], 'TIP3_128976': ['TIP3_128592', 'TIP3_128694', 'TIP3_128847', 'TIP3_127209', 'TIP3_127467'], 'TIP3_47514': ['TIP3_47517'], 'TIP3_47517': ['ASP_A_61', 'TIP3_47550', 'GLU_A_333', 'GLU_C_354'], 'TIP3_47481': ['SER_A_167'], 'TIP3_128085': ['TIP3_128790', 'TIP3_129888'], 'TIP3_129873': ['TIP3_127671', 'TIP3_128496'], 'TIP3_128664': ['TIP3_127509', 'TIP3_129633'], 'TIP3_128577': ['TIP3_127575'], 'TIP3_129015': ['GLU_B_393', 'TIP3_47622'], 'TIP3_128226': ['TIP3_128124', 'TIP3_130116', 'TIP3_127320', 'TIP3_128202', 'TIP3_129162'], 'TIP3_127329': ['TIP3_47925'], 'TIP3_127467': ['TIP3_127389', 'TIP3_129636', 'ASP_C_360', 'TIP3_129414'], 'ARG_A_257': ['TIP3_47859', 'TIP3_128559'], 'TIP3_129708': ['TIP3_129774'], 'TIP3_128019': ['ASP_C_360', 'TIP3_129591', 'TIP3_129636', 'TIP3_127389', 'TIP3_129495'], 'HIS_B_343': ['TIP3_128853', 'TIP3_129558'], 'TIP3_129699': ['ASN_A_296', 'TIP3_127641', 'TIP3_129141', 'TIP3_129747'], 'ARG_B_472': ['TIP3_127680', 'TIP3_128283', 'TIP3_128388', 'TIP3_128529'], 'TIP3_129843': ['TIP3_127113', 'TIP3_128742', 'TIP3_128964', 'GLU_C_394', 'TIP3_127407'], 'TIP3_128532': ['GLU_D_312', 'TIP3_128634', 'TIP3_47562', 'TIP3_129006'], 'ASN_A_301': ['TIP3_47712'], 'TIP3_128766': ['ASP_A_25'], 'TRP_P_130': ['TIP3_128310'], 'TYR_S_27': ['TIP3_128811'], 'TIP3_130044': ['TIP3_128223'], 'TIP3_127923': ['ASP_C_360', 'TIP3_129414', 'TIP3_127182', 'TIP3_127467'], 'TIP3_130137': ['TIP3_129228'], 'TIP3_127980': ['TIP3_127509', 'ASP_D_225'], 'TIP3_128121': ['TIP3_129759', 'TIP3_129810', 'TIP3_130062'], 'TIP3_129000': ['GLU_D_337', 'TIP3_127917'], 'LYS_E_84': ['TIP3_127191'], 'TIP3_127362': ['GLU_A_229', 'TIP3_127305'], 'ARG_B_124': ['TIP3_127356', 'TIP3_128247'], 'TIP3_129114': ['TIP3_129936'], 'TIP3_127515': ['ASP_M_222', 'TIP3_127734', 'SER_M_150', 'ASP_M_223', 'TIP3_129183', 'TIP3_129399'], 'TIP3_47577': ['TIP3_47607', 'THR_A_179'], 'TIP3_129351': ['GLU_C_348', 'TYR_M_7', 'TIP3_129333', 'TIP3_130173'], 'HIS_B_114': ['TIP3_47655'], 'TIP3_128679': ['ASP_A_103', 'TIP3_129972'], 'TIP3_47871': ['TIP3_47484', 'TIP3_47562'], 'TIP3_127695': ['GLU_D_241', 'GLU_A_242', 'GLU_D_242'], 'TIP3_47559': ['GLU_A_333', 'TIP3_47532', 'TIP3_47574', 'ASP_A_61', 'TIP3_47562', 'TIP3_129006'], 'TIP3_129450': ['GLU_C_464', 'TIP3_127308'], 'TIP3_127416': ['TIP3_127761'], 'TIP3_129111': ['ASN_A_108'], 'TIP3_128958': ['TIP3_127377', 'ASP_D_20', 'TIP3_127563'], 'TIP3_130005': ['TIP3_127485', 'TIP3_129171'], 'ARG_C_423': ['TIP3_47724', 'TIP3_127236'], 'TIP3_129597': ['TIP3_128187'], 'TIP3_129906': ['TIP3_128091', 'TIP3_128676', 'TIP3_128217', 'TIP3_129579'], 'TIP3_129711': ['TIP3_127845', 'TIP3_128196'], 'TIP3_128091': ['TYR_B_6', 'TIP3_128157', 'TIP3_129906'], 'ARG_C_41': ['TIP3_47904', 'TIP3_129249'], 'ASN_A_315': ['TIP3_128973', 'TIP3_129705', 'TIP3_130164'], 'TYR_O_42': ['TIP3_128925'], 'TIP3_127611': ['GLU_A_226'], 'TIP3_128157': ['TIP3_128091', 'TIP3_129312'], 'TIP3_127614': ['GLU_B_364', 'TIP3_47799', 'TIP3_127359', 'TIP3_128451', 'TIP3_128829'], 'TIP3_127284': ['TIP3_130032', 'TIP3_128553', 'TIP3_129951'], 'TRP_C_189': ['TIP3_129834'], 'TIP3_128610': ['TYR_B_312', 'TIP3_127494'], 'TIP3_129198': ['TIP3_127419'], 'TIP3_47889': ['TIP3_47685'], 'LYS_C_457': ['TIP3_130050'], 'TIP3_128538': ['TIP3_128085', 'TIP3_129888', 'TIP3_127587'], 'TIP3_127935': ['TIP3_127917', 'TIP3_128064'], 'TIP3_127563': ['ASP_D_20', 'TIP3_128958'], 'TIP3_47925': ['GLU_D_323', 'TYR_M_168', 'TIP3_130104', 'TIP3_47679'], 'TIP3_128751': ['TIP3_128244'], 'SER_C_299': ['TIP3_127236'], 'ASN_D_190': ['TIP3_47823', 'TIP3_47835', 'TIP3_47793'], 'TIP3_129753': ['TIP3_129231', 'TIP3_129807'], 'TIP3_127110': ['TIP3_129954', 'TIP3_130065', 'TIP3_128583'], 'TIP3_129186': ['TIP3_128316', 'TIP3_129435'], 'TIP3_127845': ['THR_C_188', 'GLU_C_300', 'TIP3_127749', 'TIP3_129159', 'TIP3_128289'], 'TIP3_127800': ['SER_C_299', 'TIP3_128289', 'GLU_C_308'], 'TIP3_127569': ['TIP3_127791', 'TIP3_128238', 'GLU_O_93'], 'TIP3_128916': ['GLU_P_122', 'TIP3_127449'], 'TIP3_128973': ['HIS_A_304', 'ASN_A_315', 'TIP3_129705'], 'TIP3_129801': ['TIP3_128160'], 'TIP3_47493': ['ASP_A_59'], 'TIP3_129144': ['TIP3_47892', 'TIP3_130146'], 'TIP3_127926': ['TIP3_127950', 'TIP3_129441'], 'SER_C_416': ['TIP3_127161'], 'LYS_C_323': ['TIP3_128148', 'TIP3_129768'], 'TIP3_129477': ['TIP3_127302', 'TIP3_128259', 'TIP3_130143'], 'TIP3_47637': ['TIP3_47613'], 'TIP3_129954': ['TIP3_127110', 'TIP3_127443'], 'TIP3_127884': ['TIP3_129072', 'TIP3_127290', 'TIP3_128016'], 'TIP3_129444': ['TIP3_129510', 'GLU_B_393'], 'ARG_D_139': ['TIP3_127413', 'TIP3_127644', 'TIP3_128676', 'TIP3_127698', 'TIP3_128157', 'TIP3_129054'], 'TIP3_128979': ['TIP3_129222', 'TIP3_127239', 'TIP3_128319', 'TIP3_129897'], 'TIP3_129528': ['TIP3_128424'], 'TIP3_47487': ['TIP3_47439'], 'TIP3_129297': ['THR_C_412', 'GLU_A_329', 'TIP3_127677', 'TIP3_127848'], 'TIP3_129333': ['TIP3_130173', 'TIP3_127872', 'TIP3_128166'], 'TIP3_128055': ['TIP3_47631'], 'ARG_B_448': ['TIP3_127110'], 'TIP3_129342': ['TIP3_129798'], 'TIP3_127647': ['TIP3_128514', 'TIP3_129528'], 'TIP3_129279': ['TIP3_127164', 'TIP3_129147'], 'ARG_C_357': ['TIP3_47550'], 'TIP3_47526': ['TIP3_47595'], 'TIP3_129807': ['ASN_K_4', 'TIP3_127476', 'ASP_B_15', 'TIP3_129231'], 'TIP3_129963': ['ASN_A_315', 'TIP3_127638', 'TIP3_129927'], 'TRP_A_105': ['TIP3_47502'], 'TIP3_127353': ['TIP3_128220', 'TIP3_128421', 'TIP3_128691', 'TIP3_128763', 'TIP3_127254', 'TIP3_128523', 'TIP3_128565', 'TIP3_129585'], 'TIP3_128490': ['TIP3_129141', 'TIP3_129921'], 'ASN_A_335': ['TIP3_47484'], 'TIP3_129606': ['TIP3_130071'], 'TIP3_127371': ['TIP3_127140', 'TIP3_128910'], 'TIP3_128475': ['TIP3_129558'], 'TYR_C_82': ['TIP3_47724', 'TIP3_128862'], 'TIP3_47703': ['TIP3_128598', 'TIP3_128436', 'TIP3_128733'], 'SER_A_222': ['TIP3_47865'], 'TIP3_129852': ['TIP3_47934', 'TIP3_127287', 'TIP3_127167'], 'TIP3_128508': ['TIP3_130047'], 'TIP3_127893': ['SER_B_365', 'TIP3_127737'], 'TIP3_129537': ['THR_M_13', 'TIP3_129969', 'TIP3_130059'], 'TIP3_47835': ['THR_D_192', 'ASN_D_190'], 'TYR_A_135': ['TIP3_127365', 'TIP3_129651'], 'TIP3_129471': ['TIP3_127404', 'TIP3_129330'], 'TIP3_129231': ['ASP_B_15', 'ASN_K_6'], 'TIP3_129924': ['TIP3_128091', 'TIP3_128988'], 'ARG_E_18': ['TIP3_129786', 'TIP3_129153'], 'TIP3_129879': ['ASN_C_327', 'TIP3_129381'], 'TIP3_129303': ['TIP3_128553', 'TIP3_130053', 'TIP3_129246'], 'TIP3_129483': ['SER_B_278', 'TIP3_128013'], 'TIP3_129051': ['GLU_L_30'], 'TIP3_128556': ['TIP3_128406'], 'TIP3_47667': ['TIP3_127803'], 'ARG_D_180': ['TIP3_128112', 'TIP3_128886', 'TIP3_128325', 'TIP3_128613', 'TIP3_128139', 'TIP3_129915', 'TIP3_129177', 'TIP3_128133', 'TIP3_128499'], 'TIP3_47718': ['TIP3_47715', 'TIP3_47508'], 'ASN_A_191': ['TIP3_47538', 'TIP3_47586', 'TIP3_47544'], 'SER_D_262': ['TIP3_129453', 'TIP3_129573'], 'TIP3_129903': ['TIP3_127584'], 'TIP3_130035': ['TIP3_130017', 'ASP_R_35', 'TIP3_128280'], 'TIP3_128046': ['TIP3_128445', 'TIP3_129819', 'GLU_C_308', 'TIP3_127236'], 'TIP3_127290': ['TIP3_129258', 'TIP3_128016'], 'TIP3_129387': ['THR_E_5', 'TIP3_127824'], 'TIP3_129744': ['TIP3_47910', 'ASP_D_297', 'TIP3_128451'], 'TIP3_129270': ['TIP3_127203', 'TIP3_128883', 'TIP3_129318'], 'TIP3_128595': ['TIP3_128268', 'TIP3_128466'], 'TIP3_47856': ['ASN_A_181', 'TIP3_129987'], 'TIP3_129798': ['THR_P_63', 'TIP3_129342', 'TIP3_129174'], 'TIP3_127134': ['TIP3_128460'], 'TIP3_128682': ['GLU_M_244'], 'TIP3_128007': ['ASP_D_297', 'TIP3_128079', 'GLU_D_302', 'TIP3_127812', 'TIP3_129501'], 'TIP3_129078': ['GLU_C_456', 'TIP3_127500'], 'TIP3_128457': ['GLU_D_343', 'TIP3_127470', 'TIP3_127929', 'TIP3_127659'], 'TIP3_129378': ['GLU_B_235', 'HIS_B_469', 'TIP3_127680'], 'TIP3_129030': ['TIP3_127890', 'TIP3_127779'], 'TIP3_129645': ['TIP3_127581', 'TIP3_128754', 'TIP3_129633'], 'TYR_C_395': ['TIP3_127800'], 'ASN_C_373': ['TIP3_127251'], 'ARG_B_18': ['TIP3_127476', 'TIP3_129807'], 'ARG_M_152': ['TIP3_127734', 'TIP3_127938', 'TIP3_128607', 'TIP3_129861', 'TIP3_127425', 'TIP3_128076'], 'SER_M_166': ['TIP3_127908', 'TIP3_130155'], 'TIP3_129564': ['ASP_P_53'], 'TIP3_127863': ['TIP3_127455', 'TIP3_128865'], 'TIP3_128259': ['TIP3_127302', 'TIP3_128916', 'GLU_P_122', 'TIP3_127449', 'TIP3_127464', 'TIP3_129327'], 'ASN_A_76': ['TIP3_127914'], 'TIP3_129582': ['GLU_B_94', 'TIP3_128376', 'SER_B_74', 'TIP3_127818'], 'TIP3_127137': ['TIP3_127653', 'TIP3_128016'], 'TIP3_47769': ['TYR_C_149'], 'SER_D_165': ['TIP3_127629', 'TIP3_129426'], 'TIP3_47736': ['TIP3_47922'], 'TIP3_129162': ['TIP3_129912', 'TIP3_127257', 'TIP3_128202'], 'TIP3_129132': ['TIP3_127443'], 'TIP3_47748': ['TIP3_47589', 'ASP_A_342', 'GLU_C_354'], 'TIP3_129690': ['TIP3_130107'], 'SER_A_85': ['TIP3_47481'], 'TIP3_129567': ['TIP3_128652', 'TIP3_129129', 'TIP3_129057'], 'TIP3_129069': ['TIP3_128190', 'TIP3_129147', 'TIP3_129270'], 'TIP3_47625': ['GLU_B_41', 'TIP3_129663'], 'TYR_P_35': ['TIP3_127995', 'TIP3_129513'], 'ARG_B_357': ['TIP3_129660'], 'TIP3_128247': ['TIP3_127356'], 'TIP3_47454': ['SER_A_70', 'TIP3_47448'], 'TIP3_127731': ['TIP3_128649'], 'TIP3_127995': ['TYR_P_35', 'TIP3_129039', 'ASN_P_106'], 'SER_B_169': ['TIP3_127686'], 'TIP3_47910': ['TIP3_127614', 'TIP3_128829'], 'TIP3_129612': ['TIP3_127167', 'TIP3_47934'], 'LYS_C_154': ['TIP3_128178', 'TIP3_128037'], 'ASN_K_4': ['TIP3_129468'], 'TIP3_127197': ['TIP3_127332', 'TIP3_129684'], 'TIP3_129426': ['ASP_B_276', 'TIP3_127629', 'TIP3_127935'], 'TIP3_129990': ['TIP3_129267'], 'HIS_C_251': ['TIP3_47751'], 'TIP3_127302': ['TIP3_129477', 'TIP3_130143', 'TIP3_128916'], 'SER_D_245': ['TIP3_127689', 'TIP3_128256'], 'HIS_C_74': ['TIP3_127755'], 'ASN_B_348': ['TIP3_129408'], 'ARG_C_391': ['TIP3_128196', 'TIP3_127941', 'TIP3_127407', 'TIP3_127128'], 'TIP3_129129': ['TIP3_127275', 'TIP3_128652', 'GLU_C_394', 'HIS_C_398', 'TIP3_128454'], 'TIP3_129654': ['TIP3_127521', 'TIP3_127557'], 'TIP3_128034': ['TIP3_127938', 'TIP3_128607', 'GLU_D_310'], 'TIP3_128925': ['TIP3_127386', 'TIP3_127716', 'TIP3_127653'], 'TIP3_128994': ['TIP3_128100'], 'TIP3_127833': ['GLU_A_329', 'THR_C_412', 'TIP3_127311'], 'TIP3_128805': ['GLU_E_7'], 'TIP3_129282': ['ASN_O_100', 'TIP3_127953', 'TIP3_128082', 'TIP3_129021', 'ASN_O_31'], 'TIP3_129702': ['ASP_O_14', 'ASP_M_169', 'TIP3_128106', 'TIP3_129462'], 'TIP3_127245': ['ASP_B_372', 'TIP3_128439'], 'THR_O_68': ['TIP3_128010'], 'TIP3_128235': ['TIP3_127701', 'TIP3_128496', 'TIP3_129873'], 'TIP3_130161': ['ASP_C_460'], 'LYS_B_321': ['TIP3_47799', 'TIP3_127614', 'TIP3_127359', 'TIP3_129741', 'TIP3_129135'], 'TRP_B_56': ['TIP3_128610'], 'TIP3_127389': ['TIP3_129495', 'TIP3_128976', 'TIP3_129615'], 'TIP3_128835': ['TIP3_129147', 'TIP3_129279', 'TIP3_129069', 'TIP3_129270'], 'ARG_G_3': ['TIP3_129936'], 'TIP3_127710': ['TIP3_127581', 'TIP3_129645'], 'HIS_A_198': ['TIP3_47442'], 'TIP3_127758': ['SER_R_32'], 'ASN_C_293': ['TIP3_128847'], 'TIP3_127593': ['HIS_D_61', 'TIP3_127215', 'TIP3_129210', 'ASP_D_333'], 'TIP3_127404': ['ASP_D_25', 'TIP3_127551', 'TIP3_129102', 'TIP3_129471'], 'TIP3_127536': ['TIP3_127506', 'TIP3_129630', 'TIP3_130041'], 'TIP3_129423': ['TIP3_128541'], 'TIP3_128082': ['ASN_O_31', 'TIP3_129234', 'TIP3_128580'], 'TIP3_47631': ['TYR_D_296'], 'TIP3_127818': ['TIP3_128376'], 'HIS_P_118': ['TIP3_127464'], 'TIP3_128907': ['TIP3_127629', 'TIP3_127935', 'TIP3_128214'], 'TIP3_128280': ['ASP_R_35', 'TIP3_130035'], 'TIP3_129384': ['TIP3_129348', 'SER_D_262'], 'TIP3_127473': ['GLU_D_242', 'TIP3_128391', 'TIP3_129723'], 'TIP3_47640': ['SER_B_439'], 'ARG_C_461': ['TIP3_127695'], 'TIP3_128004': ['SER_C_299', 'TYR_C_395'], 'TIP3_129453': ['TIP3_128175', 'SER_D_262', 'TIP3_129573'], 'TIP3_128895': ['TIP3_128802', 'TIP3_129561'], 'TIP3_129288': ['TIP3_127740', 'TIP3_130149'], 'TIP3_127269': ['ASN_C_373', 'ASP_M_79', 'TIP3_127251', 'TIP3_128487', 'TIP3_129465'], 'TIP3_127320': ['TIP3_127737', 'TIP3_129771', 'TIP3_130116', 'TIP3_127836'], 'TIP3_129576': ['TIP3_127710', 'TIP3_127911', 'TIP3_130140'], 'TIP3_127911': ['TIP3_127710', 'TIP3_128415', 'TIP3_129024'], 'TIP3_128295': ['SER_I_38'], 'TIP3_129759': ['TIP3_128880'], 'TIP3_128937': ['TIP3_128232'], 'TRP_B_78': ['TIP3_128376'], 'TIP3_47673': ['TIP3_47889'], 'THR_D_56': ['TIP3_47898'], 'TIP3_127683': ['TYR_A_235', 'SER_D_262', 'TIP3_127335'], 'TIP3_47472': ['TIP3_47496', 'TIP3_47487'], 'TIP3_127497': ['TIP3_128358', 'TIP3_127815', 'TIP3_128970'], 'TIP3_128283': ['GLU_B_235'], 'TRP_C_291': ['TIP3_128490'], 'TIP3_128445': ['GLU_C_308', 'TIP3_127800', 'TIP3_129933'], 'TIP3_129366': ['TIP3_47937', 'TIP3_127212', 'TIP3_128238'], 'TIP3_129627': ['TIP3_128145', 'TIP3_130062', 'TIP3_128544', 'TIP3_129717'], 'TIP3_129921': ['TIP3_128490'], 'ARG_B_7': ['TIP3_129519'], 'TYR_B_226': ['TIP3_129687'], 'TIP3_129876': ['SER_B_169'], 'TIP3_128799': ['TIP3_129162', 'SER_B_419', 'GLU_M_179'], 'ARG_D_128': ['TIP3_47832', 'TIP3_127155'], 'TIP3_127446': ['TIP3_47922'], 'TIP3_128565': ['TIP3_127254', 'TIP3_127353', 'TIP3_127788', 'TIP3_128691'], 'SER_A_232': ['TIP3_128790'], 'TIP3_128967': ['TIP3_128520'], 'TIP3_127623': ['TIP3_128988', 'TIP3_129924'], 'TIP3_127287': ['ASP_A_59', 'TIP3_129360'], 'TIP3_129360': ['ASN_A_108', 'ASP_A_59'], 'TIP3_47940': ['TIP3_127986'], 'TIP3_128079': ['ASP_D_297', 'TIP3_128007'], 'SER_C_330': ['TIP3_129507'], 'SER_M_150': ['TIP3_127515', 'TIP3_129183', 'TIP3_129399'], 'TIP3_47811': ['TYR_A_254'], 'TIP3_127470': ['GLU_D_343'], 'TIP3_127230': ['TIP3_128268', 'TIP3_127575', 'TIP3_128595', 'TIP3_129942'], 'TIP3_128928': ['GLU_A_329', 'TIP3_127677', 'TIP3_127848', 'TIP3_127311'], 'TIP3_47817': ['TIP3_47880'], 'TIP3_130017': ['TIP3_128280', 'TIP3_130035'], 'ASN_A_181': ['TIP3_47478'], 'TIP3_47859': ['TIP3_129150', 'ASP_D_25'], 'TIP3_128076': ['GLU_A_65', 'TYR_M_151'], 'TIP3_127596': ['GLU_B_266', 'TIP3_128697', 'TIP3_128406', 'TIP3_130011'], 'TIP3_128601': ['TIP3_129225', 'TIP3_129996'], 'TIP3_127590': ['TIP3_129306'], 'TIP3_128238': ['TIP3_127791', 'TIP3_127212', 'TIP3_129366'], 'TIP3_129003': ['ASN_K_37', 'TIP3_47829', 'ASP_D_297', 'TIP3_127854'], 'TIP3_129915': ['TIP3_128139'], 'TIP3_127998': ['GLU_D_323', 'TIP3_47646', 'TIP3_128397', 'TIP3_129501'], 'TIP3_127206': ['TIP3_128142', 'TIP3_127776'], 'SER_P_39': ['TIP3_127860'], 'TIP3_128424': ['TIP3_127383', 'TIP3_128589'], 'TYR_M_151': ['TIP3_128076', 'TIP3_129861'], 'TIP3_128223': ['ASP_M_222', 'TIP3_127938', 'GLU_D_310', 'TIP3_128034'], 'TIP3_127566': ['TIP3_128979', 'TIP3_129897', 'SER_I_38'], 'TIP3_128067': ['ASN_M_124', 'ASP_M_99', 'ASP_M_102'], 'ARG_C_447': ['TIP3_127527', 'TIP3_127401', 'TIP3_128109', 'TIP3_129549'], 'TIP3_128196': ['TIP3_129159', 'TIP3_127845', 'TIP3_129711'], 'TIP3_130113': ['TIP3_127170', 'TIP3_127332', 'TIP3_127311', 'TIP3_127833'], 'TIP3_47865': ['SER_A_221', 'SER_A_222'], 'TIP3_128802': ['SER_I_38', 'TIP3_128295', 'TIP3_129477', 'TIP3_129561'], 'TIP3_128583': ['TIP3_129429', 'TIP3_130065'], 'TIP3_47520': ['SER_A_134', 'TIP3_47451', 'ASN_D_220'], 'TIP3_127869': ['TYR_A_235', 'THR_K_15', 'GLU_N_25'], 'TIP3_128298': ['TIP3_127182'], 'TIP3_127899': ['TIP3_47847', 'TIP3_128784', 'TIP3_129489'], 'TIP3_128256': ['GLU_C_464', 'TIP3_127689', 'TIP3_129450', 'TIP3_127308'], 'ASN_P_49': ['TIP3_127653', 'TIP3_128925'], 'TIP3_129312': ['TIP3_130125'], 'TIP3_129927': ['TIP3_129963'], 'TIP3_127908': ['ASN_D_350', 'TIP3_47913'], 'ASN_K_37': ['TIP3_129003'], 'TIP3_128940': ['TIP3_129996', 'TIP3_128601'], 'SER_A_177': ['TIP3_47601'], 'TIP3_129339': ['TIP3_47901'], 'TIP3_47847': ['TIP3_127572'], 'HIS_C_444': ['TIP3_127527'], 'HIS_C_56': ['TIP3_47775'], 'TIP3_129687': ['TIP3_127296', 'TIP3_129012', 'TIP3_130008'], 'TIP3_128964': ['TIP3_127227', 'TIP3_128742', 'TIP3_127128', 'TIP3_128235'], 'TIP3_47937': ['ASP_O_96', 'TIP3_128622', 'TIP3_128949'], 'TIP3_47448': ['TIP3_47439', 'TIP3_47529'], 'TIP3_129099': ['ASN_M_155', 'ASP_O_96', 'TIP3_128622'], 'TIP3_128010': ['TIP3_129738'], 'TIP3_128640': ['TIP3_128664', 'TIP3_129033', 'TIP3_129633', 'ASN_A_267'], 'TIP3_130083': ['TIP3_127584', 'TIP3_129903'], 'ARG_C_197': ['TIP3_127851'], 'TIP3_128568': ['THR_P_46'], 'LYS_D_23': ['TIP3_130101'], 'THR_P_56': ['TIP3_128310'], 'LYS_B_308': ['TIP3_127494', 'TIP3_128697', 'TIP3_130011'], 'TYR_A_237': ['TIP3_129723'], 'TIP3_129414': ['ASP_C_360', 'TIP3_127923', 'TIP3_127389', 'TIP3_128019', 'TIP3_129591'], 'TIP3_129438': ['GLU_G_17'], 'TIP3_127992': ['TIP3_130113'], 'TIP3_128289': ['THR_C_188', 'TIP3_127845', 'TIP3_129711'], 'TIP3_128952': ['TIP3_128247', 'GLU_B_121'], 'TIP3_128139': ['TIP3_128613'], 'TIP3_129474': ['TIP3_127674', 'TIP3_128313', 'TIP3_130020'], 'TIP3_130062': ['GLU_N_25', 'TIP3_129573', 'ASN_K_13'], 'TIP3_129300': ['ASP_B_49'], 'TIP3_128163': ['TIP3_47589'], 'TIP3_129495': ['TIP3_128046', 'TIP3_129819', 'THR_C_305'], 'TIP3_47739': ['TIP3_129696'], 'TIP3_129159': ['SER_C_299', 'TYR_C_395', 'GLU_C_300', 'TIP3_127749', 'TIP3_127845'], 'THR_D_243': ['TIP3_128169', 'TIP3_128640', 'TIP3_128664'], 'TIP3_129888': ['GLU_K_11'], 'TIP3_129417': ['TIP3_128634'], 'ARG_N_28': ['TIP3_128121', 'TIP3_129810', 'TIP3_128484'], 'TYR_D_59': ['TIP3_129180'], 'LYS_P_103': ['TIP3_128454', 'TIP3_129057', 'TIP3_127113', 'TIP3_128349', 'TIP3_129168'], 'TIP3_128106': ['ASP_M_169', 'TIP3_129462', 'TIP3_129702'], 'SER_A_268': ['TIP3_128703'], 'TIP3_129207': ['TIP3_129813', 'TIP3_128586'], 'TIP3_129939': ['TIP3_128571', 'TIP3_129021', 'SER_P_51'], 'ARG_K_14': ['TIP3_127839', 'TIP3_128544', 'TIP3_129627'], 'TIP3_128520': ['TIP3_129612', 'TIP3_127194'], 'TIP3_129354': ['TIP3_127179'], 'SER_A_68': ['TIP3_47454'], 'TIP3_129285': ['TIP3_128298', 'TIP3_128334'], 'TIP3_127140': ['TIP3_128910'], 'TIP3_47853': ['TIP3_47817', 'TIP3_47838', 'TIP3_47877'], 'TIP3_128697': ['GLU_B_266', 'TIP3_127596', 'TIP3_128610', 'TIP3_130011'], 'TIP3_130065': ['TIP3_127686', 'TIP3_129876', 'TIP3_127110', 'TIP3_129954'], 'TIP3_128373': ['TIP3_127158'], 'TIP3_129228': ['TIP3_127326', 'TIP3_130137'], 'SER_D_57': ['TIP3_47862'], 'THR_C_255': ['TIP3_129237'], 'TIP3_129831': ['THR_D_248', 'TIP3_129045', 'TIP3_127308', 'TIP3_128256'], 'TIP3_128901': ['TIP3_129543', 'TIP3_129720'], 'TIP3_128469': ['HIS_P_118', 'GLU_P_122', 'TIP3_127449'], 'TIP3_47508': ['TIP3_47514'], 'THR_D_316': ['TIP3_47886'], 'SER_L_31': ['TIP3_127506', 'TIP3_128205'], 'TIP3_47706': ['TIP3_129639'], 'TIP3_127866': ['TIP3_128331'], 'TIP3_127806': ['THR_F_17', 'TIP3_130017', 'TIP3_130035'], 'TIP3_127452': ['TIP3_127665'], 'TIP3_127410': ['TIP3_127305', 'TIP3_127656', 'TIP3_129885'], 'TIP3_129510': ['TIP3_128106', 'TIP3_129702'], 'LYS_M_123': ['TIP3_129507', 'TIP3_128067'], 'TIP3_127305': ['TIP3_127410', 'TIP3_127656', 'TIP3_129885', 'TIP3_127644'], 'TIP3_128544': ['GLU_L_30', 'TIP3_127839', 'TIP3_128145', 'TIP3_129717'], 'TIP3_127248': ['ASP_J_19'], 'TIP3_129498': ['TIP3_128775', 'TIP3_129462'], 'HIS_A_337': ['TIP3_47598', 'TIP3_129516'], 'TIP3_129258': ['TIP3_128568'], 'TIP3_129012': ['ASP_B_134', 'TIP3_129687', 'TIP3_130008'], 'TIP3_127824': ['THR_E_5', 'TIP3_129387', 'THR_E_4'], 'TIP3_128913': ['TIP3_129159', 'TIP3_127128'], 'TIP3_127602': ['TIP3_128262', 'TIP3_128355', 'TIP3_127566', 'TIP3_129678'], 'TRP_B_450': ['TIP3_47613'], 'TIP3_127959': ['TIP3_127866'], 'TIP3_129786': ['SER_E_16'], 'TIP3_47523': ['SER_A_221'], 'TRP_B_5': ['TIP3_127623'], 'TIP3_128013': ['SER_B_278', 'TIP3_129483'], 'TIP3_128745': ['TIP3_129027'], 'TIP3_130146': ['TIP3_129144'], 'TIP3_127428': ['TIP3_128103', 'TIP3_129891'], 'TIP3_47604': ['THR_A_316', 'TIP3_129009'], 'ASN_A_87': ['TIP3_47514'], 'TYR_D_141': ['TIP3_128157'], 'TIP3_128862': ['TIP3_47724', 'SER_C_421'], 'TIP3_129558': ['TIP3_47676', 'HIS_B_343', 'GLU_B_428', 'TIP3_128853'], 'TYR_N_6': ['TIP3_127944'], 'TIP3_127509': ['TIP3_127980', 'ASP_D_225'], 'TIP3_130077': ['GLU_M_74', 'TIP3_129081'], 'TIP3_47652': ['TIP3_127350'], 'TIP3_127275': ['TIP3_127479'], 'HIS_C_132': ['TIP3_47742'], 'ARG_C_370': ['TIP3_129333', 'TIP3_129351'], 'TIP3_128985': ['ASP_B_46'], 'ARG_B_220': ['TIP3_127803', 'TIP3_129438', 'TIP3_129012'], 'TIP3_47898': ['THR_D_56', 'GLU_D_69'], 'TIP3_127815': ['TIP3_127497', 'TIP3_127947', 'TIP3_128970'], 'TIP3_127200': ['TYR_P_137', 'TIP3_127344', 'TIP3_129522', 'TIP3_127518', 'TIP3_129675'], 'TIP3_128778': ['SER_M_77'], 'TIP3_130053': ['TIP3_128553', 'TIP3_129303', 'TIP3_127284', 'TIP3_129246'], 'TIP3_127674': ['TIP3_127302', 'TIP3_128313', 'TIP3_129327', 'TIP3_129474'], 'TIP3_129435': ['TIP3_129714'], 'TIP3_127356': ['ASP_B_15', 'TIP3_128247'], 'TRP_J_39': ['TIP3_128400', 'TIP3_128619'], 'ARG_C_320': ['TIP3_128571', 'TIP3_129939'], 'TIP3_47733': ['TIP3_47754'], 'ARG_B_347': ['TIP3_127830'], 'LYS_D_317': ['TIP3_47559', 'TIP3_47562', 'TIP3_129006'], 'TIP3_47883': ['THR_F_17', 'GLU_E_7'], 'TIP3_128175': ['TIP3_129453', 'TIP3_128523', 'TIP3_129585'], 'TIP3_127803': ['TIP3_47667', 'TIP3_129438'], 'TIP3_127488': ['TIP3_127971'], 'TIP3_127212': ['TIP3_127218', 'TIP3_127791', 'TIP3_128238', 'TIP3_129393'], 'TIP3_130101': ['GLU_D_131'], 'TIP3_130140': ['TIP3_127911', 'TIP3_129024', 'TIP3_127710'], 'TIP3_129813': ['TYR_E_56'], 'TIP3_128367': ['TIP3_128733', 'TIP3_128370'], 'TIP3_127506': ['TIP3_127536', 'TIP3_129630', 'SER_L_31', 'TIP3_128205'], 'TIP3_127386': ['TIP3_127959', 'TIP3_128331', 'TIP3_128148'], 'TIP3_129918': ['SER_A_268', 'TIP3_129201'], 'TIP3_128970': ['TIP3_127497', 'TIP3_128358'], 'TIP3_128529': ['TIP3_127362', 'TIP3_127656', 'TIP3_128676'], 'TIP3_129024': ['TIP3_130140', 'ASN_A_247'], 'TIP3_128352': ['TIP3_127704'], 'ARG_A_27': ['TIP3_127254', 'TIP3_127353', 'TIP3_128304'], 'ASN_O_11': ['TIP3_47928', 'TIP3_129411'], 'TIP3_127152': ['ASP_A_103', 'TIP3_129951', 'TIP3_129972'], 'TIP3_128058': ['TIP3_127566', 'TIP3_127602', 'TIP3_128979', 'TIP3_129678'], 'TIP3_47556': ['GLU_A_189', 'TIP3_47460', 'TIP3_47541', 'ASP_A_170', 'TIP3_47535', 'TIP3_47571'], 'LYS_T_29': ['TIP3_129066'], 'TIP3_47553': ['GLU_A_189', 'TIP3_47541', 'TYR_A_161', 'HIS_A_190', 'TIP3_127197'], 'SER_E_39': ['TIP3_127668'], 'ASN_D_250': ['TIP3_127608'], 'TIP3_127479': ['TIP3_128253'], 'TIP3_128904': ['TIP3_127335', 'TIP3_127608', 'THR_K_15', 'TIP3_129453'], 'TIP3_127113': ['GLU_C_83', 'TIP3_128964', 'TIP3_129168', 'TIP3_129843'], 'TIP3_47679': ['TIP3_127899', 'TIP3_129489', 'GLU_D_323', 'TYR_M_168'], 'TIP3_130167': ['TIP3_128907'], 'TRP_A_32': ['TIP3_127119', 'TIP3_128661'], 'TIP3_127812': ['GLU_D_302', 'TIP3_128007', 'TIP3_129501', 'ASP_D_297', 'TIP3_128079'], 'THR_M_75': ['TIP3_127194'], 'TIP3_127539': ['ASP_C_460'], 'ARG_O_39': ['TIP3_129342', 'TIP3_129798'], 'TIP3_128229': ['GLU_C_138'], 'TIP3_47745': ['SER_C_424'], 'TIP3_127947': ['ASN_D_250', 'TIP3_127254', 'TIP3_128565'], 'TIP3_47922': ['TIP3_127446'], 'TIP3_127347': ['TIP3_127812', 'TIP3_128397', 'ASP_D_297', 'TIP3_128007', 'TIP3_128079', 'TIP3_128451'], 'TIP3_127689': ['TIP3_128256', 'TIP3_129450'], 'TIP3_128880': ['GLU_A_231', 'TIP3_128484'], 'TIP3_129402': ['TIP3_129063'], 'TIP3_47808': ['GLU_D_96'], 'TYR_A_235': ['TIP3_129573'], 'TIP3_127557': ['TIP3_127458', 'TIP3_129654'], 'THR_D_231': ['TIP3_128274'], 'TIP3_127917': ['ASP_B_276', 'TIP3_127143', 'TIP3_129000'], 'TIP3_127599': ['TIP3_129471'], 'TIP3_128148': ['TIP3_127386', 'TIP3_128331', 'TIP3_128796', 'TIP3_129768'], 'TIP3_128172': ['TIP3_129960'], 'ASN_D_318': ['TIP3_47601', 'TIP3_47835'], 'TIP3_127944': ['TIP3_129324', 'TIP3_127914', 'TIP3_128409'], 'TIP3_129522': ['TIP3_129297', 'TIP3_127338', 'TIP3_127677'], 'TIP3_128262': ['TIP3_128355', 'TIP3_129870', 'TIP3_127566', 'TIP3_127602', 'TIP3_129678'], 'TIP3_47943': ['ASP_M_224', 'TIP3_128208', 'TIP3_47919'], 'TIP3_128184': ['TIP3_128307', 'TIP3_127794', 'TIP3_129219'], 'TIP3_127965': ['TIP3_129600'], 'TIP3_128844': ['TIP3_129972'], 'TIP3_47946': ['TIP3_47949'], 'TIP3_128133': ['TIP3_128499', 'TIP3_129177'], 'TIP3_128649': ['SER_H_25'], 'TIP3_129102': ['ASP_D_25', 'TIP3_128673'], 'TIP3_47445': ['TIP3_47475'], 'THR_C_305': ['TIP3_128046'], 'TIP3_129441': ['TIP3_129198'], 'THR_B_262': ['TIP3_127974'], 'TYR_A_73': ['TIP3_129303'], 'TIP3_129525': ['TIP3_128337'], 'THR_C_295': ['TIP3_128709'], 'TIP3_128691': ['TIP3_127743', 'TIP3_127353', 'TIP3_128421'], 'TIP3_127692': ['TYR_D_59', 'TIP3_129180'], 'TIP3_127170': ['GLU_A_189', 'ASP_A_342', 'TIP3_127311'], 'HIS_B_26': ['TIP3_47661'], 'TIP3_130074': ['GLU_D_323', 'TIP3_47646', 'TIP3_130104'], 'ASN_O_31': ['TIP3_128082', 'TIP3_128580', 'TIP3_129234', 'TIP3_127230', 'TIP3_129855'], 'TIP3_127929': ['TIP3_127470', 'TIP3_128457', 'TIP3_127518', 'TIP3_129675'], 'TIP3_47583': ['TIP3_127638', 'ASP_A_319'], 'LYS_P_30': ['TIP3_128931', 'TIP3_127449', 'TIP3_129561'], 'TIP3_127974': ['TIP3_47652', 'TIP3_47703'], 'TIP3_128355': ['ASN_C_418', 'TIP3_128262', 'TIP3_129870'], 'ASN_D_72': ['TIP3_127176', 'TIP3_130122'], 'TIP3_127671': ['TIP3_128706', 'TIP3_128961'], 'CYS_A_144': ['TIP3_47451'], 'TIP3_127680': ['GLU_B_235', 'HIS_B_469', 'TIP3_129378'], 'TIP3_47568': ['ASN_A_303', 'TIP3_47544'], 'TIP3_47691': ['TIP3_128100', 'TIP3_128994', 'TIP3_128124'], 'TIP3_127227': ['TIP3_128004', 'TIP3_127128', 'TIP3_127701', 'TIP3_128913'], 'TIP3_47658': ['TIP3_47670', 'TIP3_47682'], 'TIP3_129846': ['ASP_A_103', 'TIP3_129951', 'TIP3_128553', 'TIP3_130053'], 'TIP3_127464': ['TIP3_127161', 'TIP3_128259', 'TIP3_128637', 'TIP3_129327', 'GLU_P_122'], 'TIP3_47862': ['GLU_D_69', 'TIP3_47844'], 'TIP3_129816': ['TIP3_128109', 'TIP3_128631', 'TIP3_129078', 'TIP3_129549', 'TIP3_127164']}) ###Markdown Find all the paths in the graph ###Code visited = [] path = [] for res in range(len(wat_con)): results = [] if wat_con['donor_residue'][res] not in visited and wat_con['donor_residue'][res][0:3] != 'TIP': find_all_path(graph, wat_con['donor_residue'][res], [wat_con['donor_residue'][res]], results) path = path + results visited.append(wat_con['donor_residue'][res]) else: continue print(path[0:4]) ###Output [['ASN_A_26', 'TIP3_47469'], ['ARG_A_27', 'TIP3_127254', 'TIP3_128304', 'ASP_C_473'], ['ARG_A_27', 'TIP3_127254', 'TIP3_128304', 'TIP3_129822', 'ASP_C_473'], ['ARG_A_27', 'TIP3_127254', 'TIP3_128304', 'TIP3_129822', 'TIP3_127497', 'TIP3_128358']] ###Markdown Count the water number between residues ###Code donor = [] accept = [] wat_num = [] for item in path: donor_column = [item[0]] accpt_column = [] count = 0 for r in range(1, len(item)): if item[r][0:3] != 'TIP': donor_column.append(item[r]) accpt_column.append(item[r]) wat_num.append(count) count = 0 else: count += 1 if len(donor_column) > len(accpt_column): donor_column.pop() else: accpt_column.pop() donor.extend(donor_column) accept.extend(accpt_column) print(donor[0], accept[0], wat_num[0]) ###Output ARG_A_27 ASP_C_473 2 ###Markdown Put all data in dataframe and count the frequency of the connection ###Code direct_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) one_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) two_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) three_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) four_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) visited_1 = [] visited_2 = [] visited_3 = [] visited_4 = [] res_wat_res = pd.DataFrame({'donor_residue': donor, 'acceptor_residue': accept, 'wat_num': wat_num}) res_wat_res = res_wat_res.drop_duplicates() hb_network = pd.concat([dire_con, res_wat_res]) hb_network.index = range(0, len(hb_network)) for i in range(0, len(hb_network)): if hb_network['wat_num'][i] == 0: new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) direct_connection = direct_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 1 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_1: visited_1.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) one_water_connection = one_water_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 2 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_2: visited_2.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) two_water_connection = two_water_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 3 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_3: visited_3.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) three_water_connection = three_water_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 4 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_4: visited_4.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) four_water_connection = four_water_connection.append(new_row, ignore_index=True) print(direct_connection.head(5)) ###Output donor_residue acceptor_residue 0 TRP_A_14 SER_H_25 1 TRP_A_20 ASN_A_26 2 TYR_A_29 GLU_A_132 3 ARG_A_64 THR_M_75 4 ASN_A_75 SER_A_68 ###Markdown If we have more than one frame, we need to append all connection in one dataFrame ###Code Direct = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) One_water = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) Two_water = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) Three_water = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) Four_water = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) # if we need to calculate more than one frame Direct = pd.concat([Direct, direct_connection]) One_water = pd.concat([One_water, one_water_connection]) Two_water = pd.concat([Two_water, two_water_connection]) Three_water = pd.concat([Three_water, three_water_connection]) Four_water = pd.concat([Four_water, four_water_connection]) # calculate the frequency for all the connections Direct = Direct.groupby(['donor_residue', 'acceptor_residue']).size().reset_index(name='Frequency') One_water = One_water.groupby(['donor_residue', 'acceptor_residue']).size().reset_index(name='Frequency') Two_water = Two_water.groupby(['donor_residue', 'acceptor_residue']).size().reset_index(name='Frequency') Three_water = Three_water.groupby(['donor_residue', 'acceptor_residue']).size().reset_index(name='Frequency') Four_water = Four_water.groupby(['donor_residue', 'acceptor_residue']).size().reset_index(name='Frequency') print(Direct.head(5)) ###Output donor_residue acceptor_residue Frequency 0 ARG_A_136 ASP_H_27 1 1 ARG_A_136 GLU_A_132 1 2 ARG_A_136 TYR_A_29 1 3 ARG_A_140 GLU_D_219 1 4 ARG_A_257 ASP_D_25 1
DATA515hw3.ipynb
###Markdown 1. Function code (5 points). Last week you wrote python codes that read an online file and created a data frame that has at least 3 columns. Now: (a) create a python module ``dataframe.py`` that reads the data in homework 2; and (b) ``dataframpe.py`` should generate an ValueError execption if the dataframe doesn't have the expected column names.1. Test code (5 points). Create a python file ``test_dataframe.py`` that has unit tests for dataframe.py. Include at least 2 of the following tests: - You have the expected columns. - Values in the column are all of the expected type. - There are no nan values. - The dataframe has at least one row. 1. Coding style (4 points). Make all codes PEP8 compliant and provide the output from pylint to demonstrate that you have accomplished this. ###Code import dataframe import test_dataframe import unittest import numpy as np import pandas as pd permits = dataframe.get_permits() permits.head() ###Output _____no_output_____
Chapter08/Recipe4-Maximum-Absolute-Scaling.ipynb
###Markdown Scaling to maximum value - MaxAbsScalingMaximum absolute scaling scales the data to its maximum value:X_scaled = X / X.max ###Code import pandas as pd # dataset for the demo from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split # the scaler - for MaxAbsScaling, with centering from sklearn.preprocessing import MaxAbsScaler, StandardScaler # load the the Boston House price data # this is how we load the boston dataset from sklearn boston_dataset = load_boston() # create a dataframe with the independent variables data = pd.DataFrame(boston_dataset.data, columns=boston_dataset.feature_names) # add target data['MEDV'] = boston_dataset.target data.head() # let's separate into training and testing set X_train, X_test, y_train, y_test = train_test_split(data.drop('MEDV', axis=1), data['MEDV'], test_size=0.3, random_state=0) X_train.shape, X_test.shape # set up the scaler scaler = MaxAbsScaler() # fit the scaler to the train set, it will learn the parameters scaler.fit(X_train) # transform train and test sets X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # the scaler stores the maximum values of the features as learned from train set scaler.max_abs_ # let's transform the returned NumPy arrays to dataframes X_train_scaled = pd.DataFrame(X_train_scaled, columns=X_train.columns) X_test_scaled = pd.DataFrame(X_test_scaled, columns=X_test.columns) import matplotlib.pyplot as plt import seaborn as sns # let's compare the variable distributions before and after scaling fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5)) # before scaling ax1.set_title('Before Scaling') sns.kdeplot(X_train['RM'], ax=ax1) sns.kdeplot(X_train['LSTAT'], ax=ax1) sns.kdeplot(X_train['CRIM'], ax=ax1) # after scaling ax2.set_title('After Max Abs Scaling') sns.kdeplot(X_train_scaled['RM'], ax=ax2) sns.kdeplot(X_train_scaled['LSTAT'], ax=ax2) sns.kdeplot(X_train_scaled['CRIM'], ax=ax2) plt.show() # let's compare the variable distributions before and after scaling fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5)) # before scaling ax1.set_title('Before Scaling') sns.kdeplot(X_train['AGE'], ax=ax1) sns.kdeplot(X_train['DIS'], ax=ax1) sns.kdeplot(X_train['NOX'], ax=ax1) # after scaling ax2.set_title('After Max Abs Scaling') sns.kdeplot(X_train_scaled['AGE'], ax=ax2) sns.kdeplot(X_train_scaled['DIS'], ax=ax2) sns.kdeplot(X_train_scaled['NOX'], ax=ax2) plt.show() ###Output _____no_output_____ ###Markdown Centering + MaxAbsScalingWe can center the distributions at zero and then scale to its absolute maximum, as recommended by Scikit-learn by combining the use of 2 transformers. ###Code # set up the StandardScaler so that it removes the mean # but does not divide by the standard deviation scaler_mean = StandardScaler(with_mean=True, with_std=False) # set up the MaxAbsScaler normally scaler_maxabs = MaxAbsScaler() # fit the scalers to the train set, it will learn the parameters scaler_mean.fit(X_train) scaler_maxabs.fit(X_train) # transform train and test sets X_train_scaled = scaler_maxabs.transform(scaler_mean.transform(X_train)) X_test_scaled = scaler_maxabs.transform(scaler_mean.transform(X_test)) # let's transform the returned NumPy arrays to dataframes for the rest of # the demo X_train_scaled = pd.DataFrame(X_train_scaled, columns=X_train.columns) X_test_scaled = pd.DataFrame(X_test_scaled, columns=X_test.columns) # let's compare the variable distributions before and after scaling fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5)) # before scaling ax1.set_title('Before Scaling') sns.kdeplot(X_train['AGE'], ax=ax1) sns.kdeplot(X_train['DIS'], ax=ax1) sns.kdeplot(X_train['NOX'], ax=ax1) # after scaling ax2.set_title('After Max Abs Scaling') sns.kdeplot(X_train_scaled['AGE'], ax=ax2) sns.kdeplot(X_train_scaled['DIS'], ax=ax2) sns.kdeplot(X_train_scaled['NOX'], ax=ax2) plt.show() ###Output _____no_output_____
Projects/8-Backtesting/project_8_starter.ipynb
###Markdown Project 8: BacktestingIn this project, you will build a fairly realistic backtester that uses the Barra data. The backtester will perform portfolio optimization that includes transaction costs, and you'll implement it with computational efficiency in mind, to allow for a reasonably fast backtest. You'll also use performance attribution to identify the major drivers of your portfolio's profit-and-loss (PnL). You will have the option to modify and customize the backtest as well. InstructionsEach problem consists of a function to implement and instructions on how to implement the function. The parts of the function that need to be implemented are marked with a ` TODO` comment. Your code will be checked for the correct solution when you submit it to Udacity. PackagesWhen you implement the functions, you'll only need to you use the packages you've used in the classroom, like [Pandas](https://pandas.pydata.org/) and [Numpy](http://www.numpy.org/). These packages will be imported for you. We recommend you don't add any import statements, otherwise the grader might not be able to run your code. Install Packages ###Code import sys !{sys.executable} -m pip install -r requirements.txt ###Output Requirement already satisfied: matplotlib==2.1.0 in /opt/conda/lib/python3.6/site-packages (from -r requirements.txt (line 1)) (2.1.0) Requirement already satisfied: numpy==1.16.1 in /opt/conda/lib/python3.6/site-packages (from -r requirements.txt (line 2)) (1.16.1) Requirement already satisfied: pandas==0.24.1 in /opt/conda/lib/python3.6/site-packages (from -r requirements.txt (line 3)) (0.24.1) Requirement already satisfied: patsy==0.5.1 in /opt/conda/lib/python3.6/site-packages (from -r requirements.txt (line 4)) (0.5.1) Requirement already satisfied: scipy==0.19.1 in /opt/conda/lib/python3.6/site-packages (from -r requirements.txt (line 5)) (0.19.1) Requirement already satisfied: statsmodels==0.9.0 in /opt/conda/lib/python3.6/site-packages (from -r requirements.txt (line 6)) (0.9.0) Requirement already satisfied: tqdm==4.19.5 in /opt/conda/lib/python3.6/site-packages (from -r requirements.txt (line 7)) (4.19.5) Requirement already satisfied: six>=1.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib==2.1.0->-r requirements.txt (line 1)) (1.11.0) Requirement already satisfied: python-dateutil>=2.0 in /opt/conda/lib/python3.6/site-packages (from matplotlib==2.1.0->-r requirements.txt (line 1)) (2.6.1) Requirement already satisfied: pytz in /opt/conda/lib/python3.6/site-packages (from matplotlib==2.1.0->-r requirements.txt (line 1)) (2017.3) Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages/cycler-0.10.0-py3.6.egg (from matplotlib==2.1.0->-r requirements.txt (line 1)) (0.10.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib==2.1.0->-r requirements.txt (line 1)) (2.2.0) ###Markdown Load Packages ###Code import scipy import patsy import pickle import numpy as np import pandas as pd import scipy.sparse import matplotlib.pyplot as plt from statistics import median from scipy.stats import gaussian_kde from statsmodels.formula.api import ols from tqdm import tqdm ###Output _____no_output_____ ###Markdown Load DataWe’ll be using the Barra dataset to get factors that can be used to predict risk. Loading and parsing the raw Barra data can be a very slow process that can significantly slow down your backtesting. For this reason, it's important to pre-process the data beforehand. For your convenience, the Barra data has already been pre-processed for you and saved into pickle files. You will load the Barra data from these pickle files.In the code below, we start by loading `2004` factor data from the `pandas-frames.2004.pickle` file. We also load the `2003` and `2004` covariance data from the `covaraince.2003.pickle` and `covaraince.2004.pickle` files. You are encouraged to customize the data range for your backtest. For example, we recommend starting with two or three years of factor data. Remember that the covariance data should include all the years that you choose for the factor data, and also one year earlier. For example, in the code below we are using `2004` factor data, therefore, we must include `2004` in our covariance data, but also the previous year, `2003`. If you don't remember why must include this previous year, feel free to review the lessons. ###Code barra_dir = '../../data/project_8_barra/' data = {} for year in [2004]: fil = barra_dir + "pandas-frames." + str(year) + ".pickle" data.update(pickle.load( open( fil, "rb" ) )) covariance = {} for year in [2004]: fil = barra_dir + "covariance." + str(year) + ".pickle" covariance.update(pickle.load( open(fil, "rb" ) )) daily_return = {} for year in [2004, 2005]: fil = barra_dir + "price." + str(year) + ".pickle" daily_return.update(pickle.load( open(fil, "rb" ) )) ###Output _____no_output_____ ###Markdown Shift Daily Returns Data (TODO)In the cell below, we want to incorporate a realistic time delay that exists in live trading, we’ll use a two day delay for the `daily_return` data. That means the `daily_return` should be two days after the data in `data` and `cov_data`. Combine `daily_return` and `data` together in a dict called `frames`.Since reporting of PnL is usually for the date of the returns, make sure to use the two day delay dates (dates that match the `daily_return`) when building `frames`. This means calling `frames['20040108']` will get you the prices from "20040108" and the data from `data` at "20040106".Note: We're not shifting `covariance`, since we'll use the "DataDate" field in `frames` to lookup the covariance data. The "DataDate" field contains the date when the `data` in `frames` was recorded. For example, `frames['20040108']` will give you a value of "20040106" for the field "DataDate". ###Code frames ={} dlyreturn_n_days_delay = 2 # TODO: Implement date_shifts = zip( sorted(data.keys()), sorted(daily_return.keys())[dlyreturn_n_days_delay : len(data) + dlyreturn_n_days_delay]) # TODO for data_date, price_date in date_shifts: frames[price_date] = data[data_date].merge(daily_return[price_date], on='Barrid') df = frames['20040108'] df.head() ###Output _____no_output_____ ###Markdown Add Daily Returns date column (Optional)Name the column `DlyReturnDate`.**Hint**: create a list containing copies of the date, then create a pandas series. ###Code for DlyReturnDate, df in frames.items(): n_rows = df.shape[0] df['DlyReturnDate'] = pd.Series([DlyReturnDate] * n_rows) df = frames['20040108'] df.head() ###Output _____no_output_____ ###Markdown WinsorizeAs we have done in other projects, we'll want to avoid extremely positive or negative values in our data. Will therefore create a function, `wins`, that will clip our values to a minimum and maximum range. This process is called **Winsorizing**. Remember that this helps us handle noise, which may otherwise cause unusually large positions. ###Code def wins(x,a,b): return np.where(x <= a,a, np.where(x >= b, b, x)) ###Output _____no_output_____ ###Markdown Density PlotLet's check our `wins` function by taking a look at the distribution of returns for a single day `20040102`. We will clip our data from `-0.1` to `0.1` and plot it using our `density_plot` function. ###Code def density_plot(data): density = gaussian_kde(data) xs = np.linspace(np.min(data),np.max(data),200) density.covariance_factor = lambda : .25 density._compute_covariance() plt.plot(xs,density(xs)) plt.xlabel('Daily Returns') plt.ylabel('Density') plt.show() test = frames['20040108'] test['DlyReturn'] = wins(test['DlyReturn'],-0.1,0.1) density_plot(test['DlyReturn']) ###Output _____no_output_____ ###Markdown Factor Exposures and Factor ReturnsRecall that:$r_{i,t} = \sum_{j=1}^{k} (\beta_{i,j,t-2} \times f_{j,t})$ where $i=1...N$ (N assets), and $j=1...k$ (k factors).where $r_{i,t}$ is the return, $\beta_{i,j,t-2}$ is the factor exposure, and $f_{j,t}$ is the factor return. Since we get the factor exposures from the Barra data, and we know the returns, it is possible to estimate the factor returns. In this notebook, we will use the Ordinary Least Squares (OLS) method to estimate the factor exposures, $f_{j,t}$, by using $\beta_{i,j,t-2}$ as the independent variable, and $r_{i,t}$ as the dependent variable. ###Code def get_formula(factors, Y): L = ["0"] L.extend(factors) return Y + " ~ " + " + ".join(L) def factors_from_names(n): return list(filter(lambda x: "USFASTD_" in x, n)) def estimate_factor_returns(df): ## build universe based on filters estu = df.loc[df.IssuerMarketCap > 1e9].copy(deep=True) ## winsorize returns for fitting estu['DlyReturn'] = wins(estu['DlyReturn'], -0.25, 0.25) all_factors = factors_from_names(list(df)) form = get_formula(all_factors, "DlyReturn") model = ols(form, data=estu) results = model.fit() return results facret = {} for date in frames: facret[date] = estimate_factor_returns(frames[date]).params my_dates = sorted(list(map(lambda date: pd.to_datetime(date, format='%Y%m%d'), frames.keys()))) ###Output _____no_output_____ ###Markdown Choose Alpha FactorsWe will now choose our alpha factors. Barra's factors include some alpha factors that we have seen before, such as:* **USFASTD_1DREVRSL** : Reversal* **USFASTD_EARNYILD** : Earnings Yield* **USFASTD_VALUE** : Value* **USFASTD_SENTMT** : SentimentWe will choose these alpha factors for now, but you are encouraged to come back to this later and try other factors as well. ###Code alpha_factors = ["USFASTD_1DREVRSL", "USFASTD_EARNYILD", "USFASTD_VALUE", "USFASTD_SENTMT"] facret_df = pd.DataFrame(index = my_dates) for dt in my_dates: for alp in alpha_factors: facret_df.at[dt, alp] = facret[dt.strftime('%Y%m%d')][alp] for column in facret_df.columns: plt.plot(facret_df[column].cumsum(), label=column) plt.legend(loc='upper left') plt.xlabel('Date') plt.ylabel('Cumulative Factor Returns') plt.show() ###Output /opt/conda/lib/python3.6/site-packages/pandas/plotting/_converter.py:129: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters. To register the converters: >>> from pandas.plotting import register_matplotlib_converters >>> register_matplotlib_converters() warnings.warn(msg, FutureWarning) ###Markdown Merge Previous Portfolio Holdings In order to optimize our portfolio we will use the previous day's holdings to estimate the trade size and transaction costs. In order to keep track of the holdings from the previous day we will include a column to hold the portfolio holdings of the previous day. These holdings of all our assets will be initialized to zero when the backtest first starts. ###Code def clean_nas(df): numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist() for numeric_column in numeric_columns: df[numeric_column] = np.nan_to_num(df[numeric_column]) return df previous_holdings = pd.DataFrame(data = {"Barrid" : ["USA02P1"], "h.opt.previous" : np.array(0)}) df = frames[my_dates[0].strftime('%Y%m%d')] df = df.merge(previous_holdings, how = 'left', on = 'Barrid') df = clean_nas(df) df.loc[df['SpecRisk'] == 0]['SpecRisk'] = median(df['SpecRisk']) ###Output _____no_output_____ ###Markdown Build Universe Based on Filters (TODO)In the cell below, implement the function `get_universe` that creates a stock universe by selecting only those companies that have a market capitalization of at least 1 billion dollars **OR** that are in the previous day's holdings, even if on the current day, the company no longer meets the 1 billion dollar criteria.When creating the universe, make sure you use the `.copy()` attribute to create a copy of the data. Also, it is very important to make sure that we are not looking at returns when forming the portfolio! to make this impossible, make sure to drop the column containing the daily return. ###Code def get_universe(df): """ Create a stock universe based on filters Parameters ---------- df : DataFrame All stocks Returns ------- universe : DataFrame Selected stocks based on filters """ # TODO: Implement universe = df.loc[(df['IssuerMarketCap'] >= 1e9) | (abs(df['h.opt.previous']) > 0)].copy() universe = universe.drop(columns = 'DlyReturn') return universe universe = get_universe(df) date = str(int(universe['DataDate'][1])) ###Output _____no_output_____ ###Markdown FactorsWe will now extract both the risk factors and alpha factors. We begin by first getting all the factors using the `factors_from_names` function defined previously. ###Code all_factors = factors_from_names(list(universe)) print('Number of factors:', len(all_factors)) ###Output Number of factors: 81 ###Markdown We will now create the function `setdiff` to just select the factors that we have not defined as alpha factors ###Code def setdiff(temp1, temp2): s = set(temp2) temp3 = [x for x in temp1 if x not in s] return temp3 risk_factors = setdiff(all_factors, alpha_factors) print('Number of risk factors: ', len(risk_factors)) ###Output Number of risk factors: 77 ###Markdown We will also save the column that contains the previous holdings in a separate variable because we are going to use it later when we perform our portfolio optimization. ###Code h0 = universe['h.opt.previous'] print('Number of stocks in the portfolio: ', h0.shape[0]) ###Output Number of stocks in the portfolio: 2265 ###Markdown Matrix of Risk Factor ExposuresOur dataframe contains several columns that we'll use as risk factors exposures. Extract these and put them into a matrix.The data, such as industry category, are already one-hot encoded, but if this were not the case, then using `patsy.dmatrices` would help, as this function extracts categories and performs the one-hot encoding. We'll practice using this package, as you may find it useful with future data sets. You could also store the factors in a dataframe if you prefer. How to use patsy.dmatrices`patsy.dmatrices` takes in a formula and the dataframe. The formula tells the function which columns to take. The formula will look something like this: `SpecRisk ~ 0 + USFASTD_AERODEF + USFASTD_AIRLINES + ...` where the variable to the left of the ~ is the "dependent variable" and the others to the right are the independent variables (as if we were preparing data to be fit to a model).This just means that the `pasty.dmatrices` function will return two matrix variables, one that contains the single column for the dependent variable `outcome`, and the independent variable columns are stored in a matrix `predictors`.The `predictors` matrix will contain the matrix of risk factors, which is what we want. We don't actually need the `outcome` matrix; it's just created because that's the way patsy.dmatrices works. ###Code formula = get_formula(risk_factors, "SpecRisk") def model_matrix(formula, data): outcome, predictors = patsy.dmatrices(formula, data) return predictors B = model_matrix(formula, universe) BT = B.transpose() print(B.shape) ###Output (2265, 77) ###Markdown Calculate Specific VarianceNotice that the specific risk data is in percent: ###Code universe['SpecRisk'][0:2] ###Output _____no_output_____ ###Markdown Therefore, in order to get the specific variance for each stock in the universe we first need to multiply these values by `0.01` and then square them: ###Code specVar = (0.01 * universe['SpecRisk']) ** 2 ###Output _____no_output_____ ###Markdown Factor covariance matrix (TODO)Note that we already have factor covariances from Barra data, which is stored in the variable `covariance`. `covariance` is a dictionary, where the key is each day's date, and the value is a dataframe containing the factor covariances. ###Code covariance['20040102'].head() ###Output _____no_output_____ ###Markdown In the code below, implement the function `diagonal_factor_cov` to create the factor covariance matrix. Note that the covariances are given in percentage units squared. Therefore you must re-scale them appropriately so that they're in decimals squared. Use the given `colnames` function to get the column names from `B`. When creating factor covariance matrix, you can store the factor variances and covariances, or just store the factor variances. Try both, and see if you notice any differences. ###Code def colnames(B): if type(B) == patsy.design_info.DesignMatrix: return B.design_info.column_names if type(B) == pd.core.frame.DataFrame: return B.columns.tolist() return None ## extract a diagonal element from the factor covariance matrix def get_cov(cv, factor1, factor2): try: return(cv.loc[(cv.Factor1==factor1) & (cv.Factor2==factor2),"VarCovar"].iloc[0]) except: print(f"didn't find covariance for: factor 1: {factor1} factor2: {factor2}") return 0 def diagonal_factor_cov(date, B): """ Create the factor covariance matrix Parameters ---------- date : string date. For example 20040102 B : patsy.design_info.DesignMatrix OR pandas.core.frame.DataFrame Matrix of Risk Factors Returns ------- Fm : Numpy ndarray factor covariance matrix """ cv = covariance[date] k = np.shape(B)[1] Fm = np.zeros([k,k]) # Zero out covariance for i in range(0, k): fac = colnames(B)[i] # Convert from percentage units squared to decimal Fm[i,i] = (0.01 ** 2) * get_cov(cv, fac, fac) return Fm Fvar = diagonal_factor_cov(date, B) ###Output _____no_output_____ ###Markdown Transaction CostsTo get the transaction cost, or slippage, we have to multiply the price change due to market impact by the amount of dollars traded:$$\mbox{tcost_{i,t}} = \% \Delta \mbox{price}_{i,t} \times \mbox{trade}_{i,t}$$In summation notation it looks like this: $$\mbox{tcost}_{i,t} = \sum_i^{N} \lambda_{i,t} (h_{i,t} - h_{i,t-1})^2$$ where$$\lambda_{i,t} = \frac{1}{10\times \mbox{ADV}_{i,t}}$$Note that since we're dividing by ADV, we'll want to handle cases when ADV is missing or zero. In those instances, we can set ADV to a small positive number, such as 10,000, which, in practice assumes that the stock is illiquid. In the code below if there is no volume information we assume the asset is illiquid. ###Code def get_lambda(universe, composite_volume_column = 'ADTCA_30'): universe.loc[np.isnan(universe[composite_volume_column]), composite_volume_column] = 1.0e4 universe.loc[universe[composite_volume_column] == 0, composite_volume_column] = 1.0e4 adv = universe[composite_volume_column] return 0.1 / adv Lambda = get_lambda(universe) ###Output _____no_output_____ ###Markdown Alpha Combination (TODO)In the code below create a matrix of alpha factors and return it from the function `get_B_alpha`. Create this matrix in the same way you created the matrix of risk factors, i.e. using the `get_formula` and `model_matrix` functions we have defined above. Feel free to go back and look at the previous code. ###Code def get_B_alpha(alpha_factors, universe): formula = get_formula(alpha_factors, "SpecRisk") B_alpha = model_matrix(formula, universe) return B_alpha B_alpha = get_B_alpha(alpha_factors, universe) ###Output _____no_output_____ ###Markdown Now that you have the matrix containing the alpha factors we will combine them by adding its rows. By doing this we will collapse the `B_alpha` matrix into a single alpha vector. We'll multiply by `1e-4` so that the expression of expected portfolio return, $\alpha^T \mathbf{h}$, is in dollar units. ###Code def get_alpha_vec(B_alpha): """ Create an alpha vecrtor Parameters ---------- B_alpha : patsy.design_info.DesignMatrix Matrix of Alpha Factors Returns ------- alpha_vec : patsy.design_info.DesignMatrix alpha vecrtor """ # TODO: Implement alpha_vec = 1e-4 * np.sum(B_alpha, axis=1) return alpha_vec alpha_vec = get_alpha_vec(B_alpha) ###Output _____no_output_____ ###Markdown Optional ChallengeYou can also try to a more sophisticated method of alpha combination, by choosing the holding for each alpha based on the same metric of its performance, such as the factor returns, or sharpe ratio. To make this more realistic, you can calculate a rolling average of the sharpe ratio, which is updated for each day. Remember to only use data that occurs prior to the date of each optimization, and not data that occurs in the future. Also, since factor returns and sharpe ratios may be negative, consider using a `max` function to give the holdings a lower bound of zero. Objective function (TODO)The objective function is given by:$$f(\mathbf{h}) = \frac{1}{2}\kappa \mathbf{h}_t^T\mathbf{Q}^T\mathbf{Q}\mathbf{h}_t + \frac{1}{2} \kappa \mathbf{h}_t^T \mathbf{S} \mathbf{h}_t - \mathbf{\alpha}^T \mathbf{h}_t + (\mathbf{h}_{t} - \mathbf{h}_{t-1})^T \mathbf{\Lambda} (\mathbf{h}_{t} - \mathbf{h}_{t-1})$$Where the terms correspond to: factor risk + idiosyncratic risk - expected portfolio return + transaction costs, respectively. We should also note that $\textbf{Q}^T\textbf{Q}$ is defined to be the same as $\textbf{BFB}^T$. Review the lessons if you need a refresher of how we get $\textbf{Q}$.Our objective is to minimize this objective function. To do this, we will use Scipy's optimization function:`scipy.optimize.fmin_l_bfgs_b(func, initial_guess, func_gradient)`where:* **func** : is the function we want to minimize* **initial_guess** : is out initial guess* **func_gradient** : is the gradient of the function we want to minimizeSo, in order to use the `scipy.optimize.fmin_l_bfgs_b` function we first need to define its parameters.In the code below implement the function `obj_func(h)` that corresponds to the objective function above that we want to minimize. We will set the risk aversion to be `1.0e-6`. ###Code risk_aversion = 1.0e-6 def get_obj_func(h0, risk_aversion, Q, specVar, alpha_vec, Lambda): def obj_func(h): # print(f'h: {h.shape}' # f'h0: {h0.shape}' # f'Q: {Q.shape}' # f'risk_aversion: {risk_aversion}' # f'specVar: {np.diag(specVar).shape}' # f'alpha_vec: {alpha_vec.shape}' # f'Lambda: {np.diag(Lambda).shape}') # h: (2265,)h0: (2265,)Q: (77, 2265)risk_aversion: 1e-06specVar: (2265, 2265)alpha_vec: (2265,)Lambda: (2265, 2265) # TODO: Implement factor_risk = 0.5 * risk_aversion * scipy.linalg.norm(Q @ h) ** 2 idiosyncratic_risk = 0.5 * risk_aversion * np.dot(h ** 2, specVar) portfolio_return = np.dot(h, alpha_vec) trans_cost = np.dot((h - h0) ** 2, Lambda) f = factor_risk + idiosyncratic_risk - portfolio_return + trans_cost return f return obj_func ###Output _____no_output_____ ###Markdown Gradient (TODO)Now that we can generate the objective function using `get_obj_func`, we can now create a similar function with its gradient. The reason we're interested in calculating the gradient is so that we can tell the optimizer in which direction, and how much, it should shift the portfolio holdings in order to improve the objective function (minimize variance, minimize transaction cost, and maximize expected portfolio return).Before we implement the function we first need to know what the gradient looks like. The gradient, or derivative of the objective function, with respect to the portfolio holdings h, is given by: $$f'(\mathbf{h}) = \frac{1}{2}\kappa (2\mathbf{Q}^T\mathbf{Qh}) + \frac{1}{2}\kappa (2\mathbf{Sh}) - \mathbf{\alpha} + 2(\mathbf{h}_{t} - \mathbf{h}_{t-1}) \mathbf{\Lambda}$$In the code below, implement the function `grad(h)` that corresponds to the function of the gradient given above. ###Code def get_grad_func(h0, risk_aversion, Q, QT, specVar, alpha_vec, Lambda): def grad_func(h): # TODO: Implement g = risk_aversion * (QT @ (Q @ h)) + risk_aversion * specVar * h - alpha_vec + 2 * (h - h0) * Lambda return np.asarray(g) return grad_func ###Output _____no_output_____ ###Markdown Optimize (TODO)Now that we can generate the objective function using `get_obj_func`, and its corresponding gradient using `get_grad_func` we are ready to minimize the objective function using Scipy's optimization function. For this, we will use out initial holdings as our `initial_guess` parameter.In the cell below, implement the function `get_h_star` that optimizes the objective function. Use the objective function (`obj_func`) and gradient function (`grad_func`) provided within `get_h_star` to optimize the objective function using the `scipy.optimize.fmin_l_bfgs_b` function. ###Code risk_aversion = 1.0e-6 Q = np.matmul(scipy.linalg.sqrtm(Fvar), BT) QT = Q.transpose() def get_h_star(risk_aversion, Q, QT, specVar, alpha_vec, h0, Lambda): """ Optimize the objective function Parameters ---------- risk_aversion : int or float Trader's risk aversion Q : patsy.design_info.DesignMatrix Q Matrix QT : patsy.design_info.DesignMatrix Transpose of the Q Matrix specVar: Pandas Series Specific Variance alpha_vec: patsy.design_info.DesignMatrix alpha vector h0 : Pandas Series initial holdings Lambda : Pandas Series Lambda Returns ------- optimizer_result[0]: Numpy ndarray optimized holdings """ obj_func = get_obj_func(h0, risk_aversion, Q, specVar, alpha_vec, Lambda) grad_func = get_grad_func(h0, risk_aversion, Q, QT, specVar, alpha_vec, Lambda) # TODO: Implement optimizer_result = scipy.optimize.fmin_l_bfgs_b(obj_func, h0, fprime=grad_func) return optimizer_result[0] h_star = get_h_star(risk_aversion, Q, QT, specVar, alpha_vec, h0, Lambda) ###Output _____no_output_____ ###Markdown After we have optimized our objective function we can now use, `h_star` to create our optimal portfolio: ###Code opt_portfolio = pd.DataFrame(data = {"Barrid" : universe['Barrid'], "h.opt" : h_star}) ###Output _____no_output_____ ###Markdown Risk Exposures (TODO)We can also use `h_star` to calculate our portfolio's risk and alpha exposures.In the cells below implement the functions `get_risk_exposures` and `get_portfolio_alpha_exposure` that calculate the portfolio's risk and alpha exposures, respectively. ###Code def get_risk_exposures(B, BT, h_star): """ Calculate portfolio's Risk Exposure Parameters ---------- B : patsy.design_info.DesignMatrix Matrix of Risk Factors BT : patsy.design_info.DesignMatrix Transpose of Matrix of Risk Factors h_star: Numpy ndarray optimized holdings Returns ------- risk_exposures : Pandas Series Risk Exposures """ # TODO: Implement risk_exposures = pd.Series(BT @ h_star, index=colnames(B)) return risk_exposures risk_exposures = get_risk_exposures(B, BT, h_star) def get_portfolio_alpha_exposure(B_alpha, h_star): """ Calculate portfolio's Alpha Exposure Parameters ---------- B_alpha : patsy.design_info.DesignMatrix Matrix of Alpha Factors h_star: Numpy ndarray optimized holdings Returns ------- alpha_exposures : Pandas Series Alpha Exposures """ # TODO: Implement return pd.Series(B_alpha.T @ h_star, index = colnames(B_alpha)) portfolio_alpha_exposure = get_portfolio_alpha_exposure(B_alpha, h_star) ###Output _____no_output_____ ###Markdown Transaction Costs (TODO)We can also use `h_star` to calculate our total transaction costs:$$\mbox{tcost} = \sum_i^{N} \lambda_{i} (h_{i,t} - h_{i,t-1})^2$$In the cell below, implement the function `get_total_transaction_costs` that calculates the total transaction costs according to the equation above: ###Code def get_total_transaction_costs(h0, h_star, Lambda): """ Calculate Total Transaction Costs Parameters ---------- h0 : Pandas Series initial holdings (before optimization) h_star: Numpy ndarray optimized holdings Lambda : Pandas Series Lambda Returns ------- total_transaction_costs : float Total Transaction Costs """ # TODO: Implement return np.dot((h_star - h0) ** 2, Lambda) total_transaction_costs = get_total_transaction_costs(h0, h_star, Lambda) ###Output _____no_output_____ ###Markdown Putting It All TogetherWe can now take all the above functions we created above and use them to create a single function, `form_optimal_portfolio` that returns the optimal portfolio, the risk and alpha exposures, and the total transactions costs. ###Code def form_optimal_portfolio(df, previous, risk_aversion): df = df.merge(previous, how = 'left', on = 'Barrid') df = clean_nas(df) df.loc[df['SpecRisk'] == 0]['SpecRisk'] = median(df['SpecRisk']) universe = get_universe(df) date = str(int(universe['DataDate'][1])) all_factors = factors_from_names(list(universe)) risk_factors = setdiff(all_factors, alpha_factors) h0 = universe['h.opt.previous'] B = model_matrix(get_formula(risk_factors, "SpecRisk"), universe) BT = B.transpose() specVar = (0.01 * universe['SpecRisk']) ** 2 Fvar = diagonal_factor_cov(date, B) Lambda = get_lambda(universe) B_alpha = get_B_alpha(alpha_factors, universe) alpha_vec = get_alpha_vec(B_alpha) Q = np.matmul(scipy.linalg.sqrtm(Fvar), BT) QT = Q.transpose() h_star = get_h_star(risk_aversion, Q, QT, specVar, alpha_vec, h0, Lambda) opt_portfolio = pd.DataFrame(data = {"Barrid" : universe['Barrid'], "h.opt" : h_star}) risk_exposures = get_risk_exposures(B, BT, h_star) portfolio_alpha_exposure = get_portfolio_alpha_exposure(B_alpha, h_star) total_transaction_costs = get_total_transaction_costs(h0, h_star, Lambda) return { "opt.portfolio" : opt_portfolio, "risk.exposures" : risk_exposures, "alpha.exposures" : portfolio_alpha_exposure, "total.cost" : total_transaction_costs} ###Output _____no_output_____ ###Markdown Build tradelistThe trade list is the most recent optimal asset holdings minus the previous day's optimal holdings. ###Code def build_tradelist(prev_holdings, opt_result): tmp = prev_holdings.merge(opt_result['opt.portfolio'], how='outer', on = 'Barrid') tmp['h.opt.previous'] = np.nan_to_num(tmp['h.opt.previous']) tmp['h.opt'] = np.nan_to_num(tmp['h.opt']) return tmp ###Output _____no_output_____ ###Markdown Save optimal holdings as previous optimal holdings.As we walk through each day, we'll re-use the column for previous holdings by storing the "current" optimal holdings as the "previous" optimal holdings. ###Code def convert_to_previous(result): prev = result['opt.portfolio'] prev = prev.rename(index=str, columns={"h.opt": "h.opt.previous"}, copy=True, inplace=False) return prev ###Output _____no_output_____ ###Markdown Run the backtestWalk through each day, calculating the optimal portfolio holdings and trade list. This may take some time, but should finish sooner if you've chosen all the optimizations you learned in the lessons. ###Code trades = {} port = {} for dt in tqdm(my_dates, desc='Optimizing Portfolio', unit='day'): date = dt.strftime('%Y%m%d') result = form_optimal_portfolio(frames[date], previous_holdings, risk_aversion) trades[date] = build_tradelist(previous_holdings, result) port[date] = result previous_holdings = convert_to_previous(result) ###Output Optimizing Portfolio: 100%|██████████| 252/252 [21:29<00:00, 5.12s/day] ###Markdown Profit-and-Loss (PnL) attribution (TODO)Profit and Loss is the aggregate realized daily returns of the assets, weighted by the optimal portfolio holdings chosen, and summed up to get the portfolio's profit and loss.The PnL attributed to the alpha factors equals the factor returns times factor exposures for the alpha factors. $$\mbox{PnL}_{alpha}= f \times b_{alpha}$$Similarly, the PnL attributed to the risk factors equals the factor returns times factor exposures of the risk factors.$$\mbox{PnL}_{risk} = f \times b_{risk}$$In the code below, in the function `build_pnl_attribution` calculate the PnL attributed to the alpha factors, the PnL attributed to the risk factors, and attribution to cost. ###Code ## assumes v, w are pandas Series def partial_dot_product(v, w): common = v.index.intersection(w.index) return np.sum(v[common] * w[common]) def build_pnl_attribution(): df = pd.DataFrame(index = my_dates) for dt in my_dates: date = dt.strftime('%Y%m%d') p = port[date] fr = facret[date] mf = p['opt.portfolio'].merge(frames[date], how = 'left', on = "Barrid") mf['DlyReturn'] = wins(mf['DlyReturn'], -0.5, 0.5) df.at[dt,"daily.pnl"] = np.sum(mf['h.opt'] * mf['DlyReturn']) # TODO: Implement df.at[dt,"attribution.alpha.pnl"] = partial_dot_product(fr,p['alpha.exposures']) df.at[dt,"attribution.risk.pnl"] = partial_dot_product(fr,p['risk.exposures']) df.at[dt,"attribution.cost"] = p['total.cost'] return df attr = build_pnl_attribution() for column in attr.columns: plt.plot(attr[column].cumsum(), label=column) plt.legend(loc='upper left') plt.xlabel('Date') plt.ylabel('PnL Attribution') plt.show() ###Output _____no_output_____ ###Markdown Build portfolio characteristics (TODO)Calculate the sum of long positions, short positions, net positions, gross market value, and amount of dollars traded.In the code below, in the function `build_portfolio_characteristics` calculate the sum of long positions, short positions, net positions, gross market value, and amount of dollars traded. ###Code def build_portfolio_characteristics(): df = pd.DataFrame(index = my_dates) for dt in my_dates: date = dt.strftime('%Y%m%d') p = port[date] tradelist = trades[date] h = p['opt.portfolio']['h.opt'] # TODO: Implement long = np.sum(h[h>0]) short = np.sum(h[h<0]) df.at[dt,"long"] = long df.at[dt,"short"] = short df.at[dt,"net"] = long + short df.at[dt,"gmv"] = np.abs(long) + np.abs(short) df.at[dt,"traded"] = np.sum(np.abs(tradelist['h.opt'] - tradelist['h.opt.previous'])) return df pchar = build_portfolio_characteristics() for column in pchar.columns: plt.plot(pchar[column], label=column) plt.legend(loc='upper left') plt.xlabel('Date') plt.ylabel('Portfolio') plt.show() ###Output _____no_output_____
examples/00_quick_start/fastai_movielens.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders from tempfile import TemporaryDirectory import sys import os import itertools import pandas as pd import numpy as np import scrapbook as sb import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from recommenders.utils.timer import Timer from recommenders.datasets import movielens from recommenders.datasets.python_splitters import python_stratified_split from recommenders.models.fastai.fastai_utils import cartesian_product, score from recommenders.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from recommenders.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.11 | packaged by conda-forge | (default, Aug 5 2020, 20:09:42) [GCC 7.5.0] Pandas version: 0.25.3 Fast AI version: 1.0.46 Torch version: 1.4.0 Cuda Available: False CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) with Timer() as preprocess_time: data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code with Timer() as train_time: learn.fit_one_cycle(EPOCHS, max_lr=5e-3) print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code tmp = TemporaryDirectory() model_path = os.path.join(tmp.name, "movielens_model.pkl") learn.export(model_path) ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(tmp.name, "movielens_model.pkl") ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code with Timer() as test_time: top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.9734 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026115 NDCG: 0.155065 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902379 MAE: 0.712163 Explained variance: 0.346523 R squared: 0.345672 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests sb.glue("map", eval_map) sb.glue("ndcg", eval_ndcg) sb.glue("precision", eval_precision) sb.glue("recall", eval_recall) sb.glue("rmse", eval_rmse) sb.glue("mae", eval_mae) sb.glue("exp_var", eval_exp_var) sb.glue("rsquared", eval_r2) sb.glue("train_time", train_time.interval) sb.glue("test_time", test_time.interval) tmp.cleanup() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders import sys sys.path.append("../../") import os import itertools import pandas as pd import numpy as np import papermill as pm import scrapbook as sb import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.common.timer import Timer from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_stratified_split from reco_utils.recommender.fastai.fastai_utils import cartesian_product, score from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.11 | packaged by conda-forge | (default, Aug 5 2020, 20:09:42) [GCC 7.5.0] Pandas version: 0.25.3 Fast AI version: 1.0.46 Torch version: 1.4.0 Cuda Available: False CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) with Timer() as preprocess_time: data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code with Timer() as train_time: learn.fit_one_cycle(EPOCHS, max_lr=5e-3) print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code learn.export('movielens_model.pkl') ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(path=".", fname='movielens_model.pkl') ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code with Timer() as test_time: top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.9734 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026115 NDCG: 0.155065 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902379 MAE: 0.712163 Explained variance: 0.346523 R squared: 0.345672 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests sb.glue("map", eval_map) sb.glue("ndcg", eval_ndcg) sb.glue("precision", eval_precision) sb.glue("recall", eval_recall) sb.glue("rmse", eval_rmse) sb.glue("mae", eval_mae) sb.glue("exp_var", eval_exp_var) sb.glue("rsquared", eval_r2) sb.glue("train_time", train_time.interval) sb.glue("test_time", test_time.interval) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders from tempfile import TemporaryDirectory import sys import os import itertools import pandas as pd import numpy as np import scrapbook as sb import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from recommenders.utils.timer import Timer from recommenders.datasets import movielens from recommenders.datasets.python_splitters import python_stratified_split from recommenders.models.fastai.fastai_utils import cartesian_product, score from recommenders.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from recommenders.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.11 | packaged by conda-forge | (default, Aug 5 2020, 20:09:42) [GCC 7.5.0] Pandas version: 0.25.3 Fast AI version: 1.0.46 Torch version: 1.4.0 Cuda Available: False CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) with Timer() as preprocess_time: data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code with Timer() as train_time: learn.fit_one_cycle(EPOCHS, max_lr=5e-3) print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code tmp = TemporaryDirectory() model_path = os.path.join(tmp.name, "movielens_model.pkl") learn.export(model_path) ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(tmp.name, "movielens_model.pkl") ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code with Timer() as test_time: top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.9734 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026115 NDCG: 0.155065 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902379 MAE: 0.712163 Explained variance: 0.346523 R squared: 0.345672 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests sb.glue("map", eval_map) sb.glue("ndcg", eval_ndcg) sb.glue("precision", eval_precision) sb.glue("recall", eval_recall) sb.glue("rmse", eval_rmse) sb.glue("mae", eval_mae) sb.glue("exp_var", eval_exp_var) sb.glue("rsquared", eval_r2) sb.glue("train_time", train_time.interval) sb.glue("test_time", test_time.interval) tmp.cleanup() ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code with Timer() as train_time: learn.fit_one_cycle(EPOCHS, max_lr=5e-3) print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code tmp = TemporaryDirectory() model_path = os.path.join(tmp.name, "movielens_model.pkl") learn.export(model_path) ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(tmp.name, "movielens_model.pkl") ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code with Timer() as test_time: top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.9734 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026115 NDCG: 0.155065 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902379 MAE: 0.712163 Explained variance: 0.346523 R squared: 0.345672 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests sb.glue("map", eval_map) sb.glue("ndcg", eval_ndcg) sb.glue("precision", eval_precision) sb.glue("recall", eval_recall) sb.glue("rmse", eval_rmse) sb.glue("mae", eval_mae) sb.glue("exp_var", eval_exp_var) sb.glue("rsquared", eval_r2) sb.glue("train_time", train_time.interval) sb.glue("test_time", test_time.interval) tmp.cleanup() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders from tempfile import TemporaryDirectory import sys import os import itertools import pandas as pd import numpy as np import scrapbook as sb import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.common.timer import Timer from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_stratified_split from reco_utils.recommender.fastai.fastai_utils import cartesian_product, score from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.11 | packaged by conda-forge | (default, Aug 5 2020, 20:09:42) [GCC 7.5.0] Pandas version: 0.25.3 Fast AI version: 1.0.46 Torch version: 1.4.0 Cuda Available: False CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) with Timer() as preprocess_time: data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code with Timer() as train_time: learn.fit_one_cycle(EPOCHS, max_lr=5e-3) print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code tmp = TemporaryDirectory() model_path = os.path.join(tmp.name, "movielens_model.pkl") learn.export(model_path) ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(tmp.name, "movielens_model.pkl") ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code with Timer() as test_time: top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.9734 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026115 NDCG: 0.155065 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902379 MAE: 0.712163 Explained variance: 0.346523 R squared: 0.345672 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests sb.glue("map", eval_map) sb.glue("ndcg", eval_ndcg) sb.glue("precision", eval_precision) sb.glue("recall", eval_recall) sb.glue("rmse", eval_rmse) sb.glue("mae", eval_mae) sb.glue("exp_var", eval_exp_var) sb.glue("rsquared", eval_r2) sb.glue("train_time", train_time.interval) sb.glue("test_time", test_time.interval) tmp.cleanup() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders from tempfile import TemporaryDirectory import sys sys.path.append("../../") import os import itertools import pandas as pd import numpy as np import scrapbook as sb import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.common.timer import Timer from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_stratified_split from reco_utils.recommender.fastai.fastai_utils import cartesian_product, score from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.11 | packaged by conda-forge | (default, Aug 5 2020, 20:09:42) [GCC 7.5.0] Pandas version: 0.25.3 Fast AI version: 1.0.46 Torch version: 1.4.0 Cuda Available: False CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) with Timer() as preprocess_time: data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders from tempfile import TemporaryDirectory import sys import os import pandas as pd import numpy as np import scrapbook as sb import torch, fastai from fastai.collab import collab_learner, CollabDataBunch, load_learner from recommenders.utils.constants import ( DEFAULT_USER_COL as USER, DEFAULT_ITEM_COL as ITEM, DEFAULT_RATING_COL as RATING, DEFAULT_TIMESTAMP_COL as TIMESTAMP, DEFAULT_PREDICTION_COL as PREDICTION ) from recommenders.utils.timer import Timer from recommenders.datasets import movielens from recommenders.datasets.python_splitters import python_stratified_split from recommenders.models.fastai.fastai_utils import cartesian_product, score from recommenders.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from recommenders.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.11 | packaged by conda-forge | (default, Aug 5 2020, 20:09:42) [GCC 7.5.0] Pandas version: 0.25.3 Fast AI version: 1.0.46 Torch version: 1.4.0 Cuda Available: False CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) # Remove "cold" users from test set test_df = test_df[test_df.userID.isin(train_valid_df.userID)] ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) with Timer() as preprocess_time: data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code with Timer() as train_time: learn.fit_one_cycle(EPOCHS, max_lr=5e-3) print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code tmp = TemporaryDirectory() model_path = os.path.join(tmp.name, "movielens_model.pkl") learn.export(model_path) ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(tmp.name, "movielens_model.pkl") ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code with Timer() as test_time: top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.9734 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026115 NDCG: 0.155065 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902379 MAE: 0.712163 Explained variance: 0.346523 R squared: 0.345672 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests sb.glue("map", eval_map) sb.glue("ndcg", eval_ndcg) sb.glue("precision", eval_precision) sb.glue("recall", eval_recall) sb.glue("rmse", eval_rmse) sb.glue("mae", eval_mae) sb.glue("exp_var", eval_exp_var) sb.glue("rsquared", eval_r2) sb.glue("train_time", train_time.interval) sb.glue("test_time", test_time.interval) tmp.cleanup() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders import sys sys.path.append("../../") import time import os import itertools import pandas as pd import numpy as np import papermill as pm import scrapbook as sb import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_stratified_split from reco_utils.recommender.fastai.fastai_utils import cartesian_product, score from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) [GCC 7.3.0] Pandas version: 0.24.1 Fast AI version: 1.0.46 Torch version: 1.0.1.post2 Cuda Available: True CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) start_time = time.time() data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) preprocess_time = time.time() - start_time data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code start_time = time.time() learn.fit_one_cycle(EPOCHS, max_lr=5e-3) train_time = time.time() - start_time + preprocess_time print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code learn.export('movielens_model.pkl') ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(path=".", fname='movielens_model.pkl') ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code start_time = time.time() top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) test_time = time.time() - start_time print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.928511142730713 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026112 NDCG: 0.155062 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902386 MAE: 0.712164 Explained variance: 0.346513 R squared: 0.345662 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests sb.glue("map", eval_map) sb.glue("ndcg", eval_ndcg) sb.glue("precision", eval_precision) sb.glue("recall", eval_recall) sb.glue("rmse", eval_rmse) sb.glue("mae", eval_mae) sb.glue("exp_var", eval_exp_var) sb.glue("rsquared", eval_r2) sb.glue("train_time", train_time) sb.glue("test_time", test_time) ###Output /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/ipykernel_launcher.py:2: DeprecationWarning: Function record is deprecated and will be removed in verison 1.0.0 (current version 0.19.0). Please see `scrapbook.glue` (nteract-scrapbook) as a replacement for this functionality.
NoSQL/Cassandra_working_03_2020.ipynb
###Markdown * http://cassandra.apache.org/doc/latest/getting_started/ * https://help.aiven.io/en/articles/1803299-getting-started-with-aiven-for-cassandra ###Code # https://github.com/datastax/python-driver !pip install cassandra-driver !pip install --user cassandra-driver from cassandra.cluster import Cluster cluster = Cluster() class Config: ca_path='ca.pem' host='cassandra-3630668e-valdis-c169.aivencloud.com' password='realpwneeded' port=23114 username='avnadmin' # Copyright (c) 2018 Aiven, Helsinki, Finland. https://aiven.io/ import ssl from cassandra.auth import PlainTextAuthProvider from cassandra.cluster import Cluster from cassandra.policies import DCAwareRoundRobinPolicy def cassandra_example(args): auth_provider = PlainTextAuthProvider(args.username, args.password) ssl_options = {"ca_certs": args.ca_path, "cert_reqs": ssl.CERT_REQUIRED} with Cluster([args.host], port=args.port, ssl_options=ssl_options, auth_provider=auth_provider, load_balancing_policy=DCAwareRoundRobinPolicy(local_dc='aiven')) as cluster: with cluster.connect() as session: # Create a keyspace session.execute(""" CREATE KEYSPACE IF NOT EXISTS example_keyspace WITH REPLICATION = {'class': 'NetworkTopologyStrategy', 'aiven': 3} """) # Create a table session.execute(""" CREATE TABLE IF NOT EXISTS example_keyspace.example_python ( id int PRIMARY KEY, message text ) """) # Insert some data for i in range(10): session.execute(""" INSERT INTO example_keyspace.example_python (id, message) VALUES (%s, %s) """, (i, "Hello from Python!")) # Read it back for row in session.execute("SELECT id, message FROM example_keyspace.example_python"): print("Row: id = {}, message = {}".format(row.id, row.message)) def cassandra_qry(args, qry): auth_provider = PlainTextAuthProvider(args.username, args.password) ssl_options = {"ca_certs": args.ca_path, "cert_reqs": ssl.CERT_REQUIRED} with Cluster([args.host], port=args.port, ssl_options=ssl_options, auth_provider=auth_provider, load_balancing_policy=DCAwareRoundRobinPolicy(local_dc='aiven')) as cluster: with cluster.connect() as session: for row in session.execute(qry): print(f"Row: id = {row.id}") for key,value in row._asdict().items(): print(f"Column {key} - Value {value}") auth_provider = PlainTextAuthProvider(args.username, args.password) ssl_options = {"ca_certs": args.ca_path, "cert_reqs": ssl.CERT_REQUIRED} cluster = Cluster([args.host], port=args.port, ssl_options=ssl_options, auth_provider=auth_provider,\ load_balancing_policy=DCAwareRoundRobinPolicy(local_dc='aiven')) session = cluster.connect() session.execute(""" CREATE KEYSPACE IF NOT EXISTS mydb WITH REPLICATION = {'class': 'NetworkTopologyStrategy', 'aiven': 3} """) sess = session # one mor allias sess.execute(""" CREATE TABLE IF NOT EXISTS mydb.tasks( id int PRIMARY KEY, task text, created timestamp, finished boolean, cost float ) """) r = sess.execute(""" INSERT INTO mydb.tasks (id, task) VALUES (101, 'Buy Milk') """) print(r) id = 10 import random id += 1 cost = 4 + random.random()*2 r = sess.execute(f""" INSERT INTO mydb.tasks (id, task, created, finished, cost) VALUES ({id}, 'Buy Dinner', toTimeStamp(now()), False, {cost}) """) print(r) r = sess.execute(""" SELECT * FROM mydb.tasks """) reslist = list(r) print(len(reslist)) dinnerlist = [row for row in reslist if row.task == 'Buy Dinner'] dinnerlist cheapfood = [row for row in dinnerlist if row.cost < 5] cheapfood id += 1 r = sess.execute(f""" INSERT INTO mydb.tasks (id, task, created) VALUES ({id}, 'Get Dinner', toTimeStamp(now())) """) print(r) r = sess.execute(""" SELECT * FROM mydb.tasks """) results = list(r) len(results) r = sess.execute(""" SELECT * FROM mydb.tasks WHERE id = 101 """) results = list(r) len(results) print(results) row = results[0] row type(row) dir(row) for value in row: print(value) row._fields row._asdict() for key,value in row._asdict().items(): print(f"Column {key} - Value {value}") # qry = "SELECT id, message FROM example_keyspace.example_python" qry = "INSERT INTO example_keyspace.example_python (id, message) VALUES (15, 'Valdis')" qry = "SELECT id, message FROM example_keyspace.example_python" cassandra_qry(args, qry) args = Config() args.ca_path args.username cassandra_example(args) # Create new table mydb.users in your Cassandra DB # EXTRACT - Read ALL data from JSON API at Mockaroo (could use my at https://my.api.mockaroo.com/mar07.json?key=58227cb0) # TRANSFORM # LOAD Insert ALL data into mydb.users ## For extra challenge add timestamp into users table # SELECT ALL from users # filter all users from Italy (with .it) import requests url = "https://my.api.mockaroo.com/mar07.json?key=58227cb0" req = requests.get(url) req.status_code data = req.json() #requests has json decoding built in len(data) data[:5] # https://docs.datastax.com/en/dse/6.0/cql/cql/cql_reference/cql_commands/cqlDropTable.html r = sess.execute(""" DROP TABLE IF EXISTS mydb.users ; """) # https://docs.datastax.com/en/dse/6.0/cql/cql/cql_reference/cql_commands/cqlCreateTable.html#cqlCreateTable r = sess.execute(""" CREATE TABLE IF NOT EXISTS mydb.users( id int PRIMARY KEY, first_name text, created timestamp, last_name text, ip_address inet, gender text, email text ) """) # https://docs.datastax.com/en/dse/6.0/cql/cql/cql_reference/cql_commands/cqlAlterTable.html sess.execute(""" ALTER TABLE mydb.users ADD passcode int """) list(r.all()) r = sess.execute("""SELECT * FROM system_schema.keyspaces""") rlist = list(r) len(rlist) print(rlist) tinfo = sess.execute(""" SELECT * FROM system_schema.columns WHERE keyspace_name = 'mydb' AND table_name = 'users';""") tlist = list(tinfo) tlist len(data) frow = data[0] frow frow['id'] frow.get('id') columns = [r.column_name for r in tlist] columns # https://docs.datastax.com/en/dse/6.0/cql/cql/cql_reference/cql_commands/cqlInsert.html sess.execute(""" INSERT INTO mydb.users (created, email, first_name, gender, id, ip_address, last_name, passcode) VALUES (toTimeStamp(now()), %s, %s, %s, %s, %s, %s, %s) """, (frow.get('email'), frow.get('first_name'), frow.get('gender'), frow.get('id'), frow.get('ip_address'), frow.get('last_name'), 9000 )) res = sess.execute(""" SELECT * FROM mydb.users """) rlist = list(res) rlist for frow in data: sess.execute(""" INSERT INTO mydb.users (created, email, first_name, gender, id, ip_address, last_name, passcode) VALUES (toTimeStamp(now()), %s, %s, %s, %s, %s, %s, %s) """, (frow.get('email'), frow.get('first_name'), frow.get('gender'), frow.get('id'), frow.get('ip_address'), frow.get('last_name'), 9000 )) res = sess.execute(""" SELECT * FROM mydb.users """) rlist = list(res) len(rlist) rlist[0] rlist[0].email japanese = [row for row in rlist if row.email.endswith('.jp')] japanese # https://docs.datastax.com/en/dse/5.1/cql/cql/cql_reference/cql_commands/cqlDropIndex.html sess.execute(""" DROP INDEX mydb.users_email_idx """) # We need to create secondary index for filtering by WHERE with LIKE # https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useSecondaryIndex.html sess.execute(""" CREATE INDEX ON mydb.users (email) ;""") # TURNS OUT WE need a special SASI index # http://www.tsoft.se/wp/2016/08/12/sql-like-operation-in-cassandra-is-possible-in-v3-4/ sess.execute(""" CREATE CUSTOM INDEX ON mydb.users (email) USING 'org.apache.cassandra.index.sasi.SASIIndex' WITH OPTIONS = {'mode': 'CONTAINS', 'analyzer_class': 'org.apache.cassandra.index.sasi.analyzer.StandardAnalyzer', 'case_sensitive': 'false'}; """) # https://docs.datastax.com/en/dse/6.7/cql/cql/cql_using/search_index/nativeCqlQueryExamples.html res = sess.execute(""" SELECT * FROM mydb.users WHERE email LIKE '%.jp'; """) rlist = list(res) len(rlist) rlist ###Output _____no_output_____
notebooks/Data_Creation_from_Sample_Adult_and_Family.ipynb
###Markdown First some environment variablesWe now use the files that are stored in the RAW directory.If we decide to change the data format by changing names, adding features, created summary data frames etc., we will save those files in the INTERIM directory. ###Code PROJECT_DIR = os.path.dirname(dotenv_path) RAW_DATA_DIR = PROJECT_DIR + os.environ.get("RAW_DATA_DIR") INTERIM_DATA_DIR = PROJECT_DIR + os.environ.get("INTERIM_DATA_DIR") files=os.environ.get("FILES").split() print("Project directory is : {0}".format(PROJECT_DIR)) print("Raw data directory is : {0}".format(RAW_DATA_DIR)) print("Interim directory is : {0}".format(INTERIM_DATA_DIR)) ###Output Project directory is : /home/gsentveld/lunch_and_learn Raw data directory is : /home/gsentveld/lunch_and_learn/data/raw Interim directory is : /home/gsentveld/lunch_and_learn/data/interim ###Markdown Importing pandas and matplotlib.pyplot ###Code # The following jupyter notebook magic makes the plots appear in the notebook. # If you run in batch mode, you have to save your plots as images. %matplotlib inline # matplotlib.pyplot is traditionally imported as plt import matplotlib.pyplot as plt # numpy is imported as np import numpy as np # Pandas is traditionaly imported as pd. import pandas as pd from pylab import rcParams # some display options to size the figures. feel free to experiment pd.set_option('display.max_columns', 25) rcParams['figure.figsize'] = (17, 7) ###Output _____no_output_____ ###Markdown Reading a file in PandasReading a CSV file is really easy in Pandas. There are several formats that Pandas can deal with.|Format Type|Data Description|Reader|Writer||---|---|---|---||text|CSV|read_csv|to_csv||text|JSON|read_json|to_json||text|HTML|read_html|to_html||text|Local clipboard|read_clipboard|to_clipboard||binary|MS Excel|read_excel|to_excel||binary|HDF5 Format|read_hdf|to_hdf||binary|Feather Format|read_feather|to_feather||binary|Msgpack|read_msgpack|to_msgpack||binary|Stata|read_stata|to_stata||binary|SAS|read_sas |||binary|Python Pickle Format|read_pickle|to_pickle||SQL|SQL|read_sql|to_sql||SQL|Google Big Query|read_gbq|to_gbq| Psychological well-being among US adults with arthritis and the unmet need for mental health carehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436776/pdf/oarrr-9-101.pdfThis article suggests a relationship between arthritis and serious psychological distress (SPD).First we will look at the article to recreate the data set from the NIHS data we got in session 2. We will use pd.read_csv().As you will see, the Jupyter notebook prints out a very nice rendition of the DataFrame object that is the result ###Code family=pd.read_csv(RAW_DATA_DIR+'/familyxx.csv') samadult=pd.read_csv(RAW_DATA_DIR+'/samadult.csv') # Start with a data frame to collect all the data in df = pd.DataFrame() ###Output _____no_output_____ ###Markdown Mental health conditionsIndividuals were determined to have SPD using the validatedKessler 6 (K6) scale.31,32 K6 scores are derived fromresponses to six questions asking how often in the past 30days the individual felt “nervous”, “restless”, “hopeless”,“worthless”, “everything feels like an effort”, and “so sadthat nothing cheers them up”, with responses ranging from0 (none of the time) to 4 (all of the time). The responsesfor these six variables are summed to obtain the K6 score(maximum possible score of 24), and individuals with a scoreof ≥13 are considered to have SPD.Corresponding columns:ASINERV, ASIRSTLS, ASIHOPLS, ASIWTHLS, ASIEFFRT, ASISAD ###Code # Calculate Kessler 6 # How often did you feel: # nervous, restless, hopeless, worthless, everything is an effort, so sad nothing mattered. # ASINERV, ASIRSTLS, ASIHOPLS, ASIWTHLS, ASIEFFRT, ASISAD kessler_6_questions=['ASINERV', 'ASIRSTLS', 'ASIHOPLS', 'ASIWTHLS', 'ASIEFFRT', 'ASISAD'] # 1 ALL of the time # 2 MOST of the time # 3 SOME of the time # 4 A LITTLE of the time # 5 NONE of the time # 7 Refused # 8 Not ascertained # 9 Don't know # These have to be encoded as: # 7, 8, 9 -> NaN # 5 -> 0 # 4 -> 1 # 3 -> 2 # 2 -> 3 # 1 -> 4 kessler_6_map = { 1:4, 2:3, 3:2, 4:1, 5:0} kessler_6=pd.DataFrame() for col in kessler_6_questions: kessler_6[col]=[ kessler_6_map.get(x, None) for x in samadult[col]] df['SPD']= kessler_6.sum(axis=1)>=13 df['SPD'] = np.where(df['SPD'], 'Yes', 'No') del kessler_6 df.head(5) ###Output _____no_output_____ ###Markdown Arthritis indicator itself is very simple ###Code # Arthritis Status arth_map= {1:'Yes', 2:'No'} df['ARTH1']=[ arth_map.get(x, None) for x in samadult['ARTH1']] ###Output _____no_output_____ ###Markdown Chronic condition countFrom the article: We created a chronic condition count based onthe following eight nonarthritis chronic conditions: cancer(except nonmelanoma skin); heart condition (includingcoronary heart disease, angina, myocardial infarction, or anyother heart condition); diabetes; hepatitis or liver condition;hypertension (on at least two different visits); respiratoryconditions (current asthma, emphysema, or chronic bronchitis);stroke; and weak or failing kidneys, defined similar tothe recommendations of Goodman et al.From the NIHS file:- CANEV, - CNKIND22: cancer (except nonmelanoma skin)- CHDEV: heart condition (including coronary heart disease, angina, myocardial infarction, or any other heart condition)- DIBEV: diabetes- AHEP, LIVEV: hepatitis or liver condition- HYPDIFV: hypertension (on at least two different visits)- AASMEV, EPHEV, CBRCHYR: respiratory conditions (current asthma, emphysema, or chronic bronchitis)- STREV, ALCHRC8: stroke- KIDWKYR: and weak or failing kidneys ###Code # the following variables are used for the chronic condition count straight_chronic_condition_questions = ['CHDEV','DIBEV','HYPDIFV', 'KIDWKYR'] cancer_nonmelanoma_skin= ['CANEV','CNKIND22'] # CANEV minus CNKIND22 hep_liver=['AHEP','LIVEV'] respiratory=['AASMEV','EPHEV', 'CBRCHYR'] stroke=['STREV','ALCHRC8'] # Create a temporary dataframe and collect the straight forward conditions chronic_ind=pd.DataFrame() # this could be a bit too liberal with the Unknown and Refused to answer values for col in straight_chronic_condition_questions: chronic_ind[col]=samadult[col]==1 # Assume CANCER is false. Set to True for those diagnosed, and reset a few that were CNKIND22 chronic_ind['CANCER']=False chronic_ind.loc[samadult['CANEV']==1,'CANCER'] = True # override a few that have nonmelanoma skin chronic_ind.loc[samadult['CNKIND22']==1, 'CANCER'] = False # Assume Hepatitis or Liver condition is false and then set to True if either is reported chronic_ind['HEPLIVER']=False chronic_ind.loc[(samadult['AHEP']==1) | (samadult['LIVEV']==1), 'HEPLIVER'] = True # Assume Respiratory condition is False and set to True if either of the three is reported chronic_ind['RESPIRATORY']=False chronic_ind.loc[(samadult['AASMEV']==1) | (samadult['EPHEV']==1) | (samadult['CBRCHYR']==1), 'RESPIRATORY'] = True # Assume Stroke condition is false and then set to True if either flag is reported chronic_ind['STROKE']=False chronic_ind.loc[(samadult['STREV']==1) | (samadult['ALCHRC8']==1), 'STROKE'] = True chronic_ind.head() ###Output _____no_output_____ ###Markdown Now count the TRUE values over this dataframe.Keep the values for 0, 1 and 2 and call everything else >=3 ###Code # Now count the chronic conditions and assign to df chronic_ind['CHRONIC_CT']=np.array(np.sum(chronic_ind, axis=1)) chron_map = {0:'0',1:'1', 2:'2'} df['CHRONIC_CT']=[chron_map.get(x, '>=3') for x in chronic_ind['CHRONIC_CT']] del chronic_ind df.head(10) # General Health Status, does not exist as in study Very Good/Excellent, Good, Poor/Fair. # Only and indicator if it was worse, same, better # we will use it as a proxy. status_map={1:"Very Good", 2:"Poor", 3: "Good"} df['GENERAL_HEALTH_STATUS']=[status_map.get(x, None) for x in samadult['AHSTATYR']] ###Output _____no_output_____ ###Markdown Another Pandas manipulation trickHere we have numerical range that we want to transform into 3 different categories.We can do a loop, but Pandas allows for a more Pythonic way to do this ###Code # BMI bmi=pd.DataFrame() bmi['BMI']=samadult['BMI'] bmi.loc[bmi['BMI'] < 2500, 'BMI_C'] = '<25' bmi.loc[(bmi['BMI'] >= 2500)&(bmi['BMI'] < 3000), 'BMI_C'] = '25<30' bmi.loc[(bmi['BMI'] >= 3000)&(bmi['BMI'] < 9999), 'BMI_C'] = '>30' df['BMI_C']=bmi['BMI_C'] del bmi ###Output _____no_output_____ ###Markdown Physical Activity LevelAt least 150 Moderate or 75 Vigorous minutes per week.Questions are answered with per day, per week, per month, per year and recoded to units per week. But the file also has it recoded to units per week. Those units are either minutes or hours. So we have to do some math to figure out if we get more than 150 moderate equivalent minutes.Another interesting way to manipulate data, this time using 'apply' and a user defined function. ###Code def determine_activity(x): minutes = 0 if x['VIGLNGTP']==1: minutes = minutes + x['VIGLNGNO']*2 elif x['VIGLNGTP']==2: minutes = minutes + x['VIGLNGNO']*120 if x['MODLNGTP']==1: minutes = minutes + x['MODLNGNO'] elif x['MODLNGTP']==2: minutes = minutes + x['MODLNGNO']*60 return 'Meets' if minutes >= 150 else 'Does not meet' physical_activity=pd.DataFrame() physical_activity=samadult[['VIGLNGNO','VIGLNGTP', 'MODLNGNO', 'MODLNGTP']].copy() physical_activity['ACTIVITY']=physical_activity.apply(determine_activity, axis=1) df['ACTIVITY']=physical_activity['ACTIVITY'] del physical_activity df.head(20) ###Output _____no_output_____ ###Markdown Similar activities for Age, Sex, and RaceHere we do similar activities for Age, Sex and Race and we start to see that the coding of the data is slightly different than is suggested in the article for some fields. This is interesting as it will schew the categories probabilities. ###Code # Age age=pd.DataFrame() age['AGE_P']=samadult['AGE_P'] age.loc[age['AGE_P'] < 45, 'AGE_C'] = '18-44' age.loc[(age['AGE_P'] >= 45)&(age['AGE_P'] < 65), 'AGE_C'] = '45-64' age.loc[age['AGE_P'] >= 65, 'AGE_C'] = '65-' df['AGE_C']=age['AGE_C'] del age # Sex df['SEX']=[ 'Male' if x == 1 else 'Female' for x in samadult['SEX']] # Race. Not exactly a match with the study. Not sure why. # RACERPI2 race_map= {1: 'White', 2: 'Black/African American', 3:'AIAN', 4: 'Asian',5: 'not releasable',6: 'Multiple'} df['RACE']=[ race_map.get(x, None) for x in samadult['RACERPI2']] ###Output _____no_output_____ ###Markdown Some fields are not found or hard to reconstructEducation Level and Employment status are not encoded as expected.Education level can't be found at all and employment status is a mix between workstatus and why did you not work last week. Which is an odd way to determine if someone is retired, or a student. ###Code # Educational level: # Less than high school # High school diploma # Some college or Associates degree # College or greater # Can't find it in data? # Employment status: complex between workstatus and why not worked last week, logic is not described # Maybe at least get "Out of Work", "Retired", "Other"? ###Output _____no_output_____ ###Markdown Do the same for the other fields ###Code # marital status # R_MARITL # 0 Under 14 years -> will combine that with Never Married # 1 Married - spouse in household \ # 2 Married - spouse not in household > -- will combine these # 3 Married - spouse in household unknown / # 4 Widowed # 5 Divorced \ will combine these # 6 Separated / # 7 Never married # 8 Living with partner # 9 Unknown marital status -> will combine with 7 marital_map = { 0: "Never Married" , 1: "Married" , 2: "Married" , 3: "Married" , 4: "Widowed" , 5: "Divorced/Separated" , 6: "Divorced/Separated" , 7: "Never Married" , 8: "Living with Partner" , 9: "Never Married"} df['MARITAL_STATUS']=[ marital_map.get(x, "Never Married") for x in samadult['R_MARITL']] # Functional limitation score fl_columns=['FLWALK','FLCLIMB','FLSTAND','FLSIT','FLSTOOP','FLREACH','FLGRASP','FLCARRY','FLPUSH'] fl_cols=samadult[fl_columns].copy() for col in fl_columns: fl_cols.loc[fl_cols[col]>=6] = 0 fl_cols['FL_AVG']=fl_cols.mean(axis=1) fl_cols.loc[fl_cols['FL_AVG'] == 0,'FUNC_LIMIT'] = 'None' fl_cols.loc[(fl_cols['FL_AVG'] > 0)&(fl_cols['FL_AVG'] <=1),'FUNC_LIMIT'] = 'Low' fl_cols.loc[(fl_cols['FL_AVG'] > 1)&(fl_cols['FL_AVG'] <=2),'FUNC_LIMIT'] = 'Medium' fl_cols.loc[fl_cols['FL_AVG'] > 2,'FUNC_LIMIT'] = 'High' df['FUNC_LIMIT']=fl_cols['FUNC_LIMIT'] del fl_cols # Social participation restriction # We defined social participation restriction as # difficulty or inability to shop, go to events, or participate in # social activities without special equipment, per previously # published analyses. # FLSHOP and FLSOCL restr_map={1:"Yes", 2:"Yes", 3: "Yes", 4: "Yes"} social_cols=pd.DataFrame() social_cols['FLSHOP']=[restr_map.get(x, 'No') for x in samadult['FLSHOP']] social_cols['FLSOCL']=[restr_map.get(x, 'No') for x in samadult['FLSOCL']] social_cols.loc[(social_cols['FLSHOP']=='Yes')|(social_cols['FLSOCL']=='Yes'), 'SOC_RESTR']='Yes' social_cols.loc[(social_cols['FLSHOP']=='No')&(social_cols['FLSOCL']=='No'), 'SOC_RESTR']='No' df['SOC_RESTR']=social_cols['SOC_RESTR'] #Could not afford mental health care, past 12 months # AHCAFYR2 # No = 2 # Yes = 1 df['NOT_AFFORD']=[ 'Yes' if x == 1 else 'No' for x in samadult['AHCAFYR2']] #Seen a mental health professional, past 12 months # AHCSYR1 #No = 2 #Yes = 1 df['SEEN_MENTAL_DR']=[ 'Yes' if x == 1 else 'No' for x in samadult['AHCSYR1']] ###Output _____no_output_____ ###Markdown What do we have so far. ###Code df.head(34) ###Output _____no_output_____ ###Markdown Now get the Insurance and Poverty Ratio fields from the Family file. ###Code #From Familyxx get poverty ratio fam_df=pd.DataFrame() ratio_map={ 1: '<1' # Under 0.50 ,2: '<1' # 0.50 - 0.74 ,3: '<1' # 0.75 - 0.99 ,4: '1 to <2' # 1.00 - 1.24 ,5: '1 to <2' # 1.25 - 1.49 ,6: '1 to <2' # 1.50 - 1.74 ,7: '1 to <2' # 1.75 - 1.99 ,8: '>=2' # 2.00 - 2.49 ,9: '>=2' # 2.50 - 2.99 ,10: '>=2' # 3.00 - 3.49 ,11: '>=2' # 3.50 - 3.99 ,12: '>=2' # 4.00 - 4.49 ,13: '>=2' # 4.50 - 4.99 ,14: '>=2' # 5.00 and over ,15: '<1' # Less than 1.00 (no further detail) ,16: '1 to <2' # 1.00 - 1.99 (no further detail) ,17: '>=2' # 2.00 and over (no further detail) ,96: '1 to <2' # Undefinable ,99: '1 to <2' # Unknown } fam_df['POV_RATIO']=[ratio_map.get(x, None) for x in family['RAT_CAT4']] # Just going to go for Yes and No and any unknown/refused as No # Health insurance #Any private #Public only # Not covered # FHICOVYN fam_df['INSURANCE']=['Yes' if x == 1 else 'No' for x in family['FHICOVYN']] ###Output _____no_output_____ ###Markdown This is how you join two datasets in Pandas.To join two data sets in Pandas, you can merge based on key fields.In the NIHS datasets the key field that links a person to the family is the Houshold Key and the Family Key. ###Code df['HHX']=samadult['HHX'] df['FMX']=samadult['FMX'] fam_df['HHX']=family['HHX'] fam_df['FMX']=family['FMX'] ###Output _____no_output_____ ###Markdown And you then do a merge, with the columns indicated in the on= parameter and, very important, specify it is a left join, so that you don't loose any people, if you can't find the family. ###Code joined_df=pd.merge(df, fam_df, on=['HHX','FMX'],how='left', sort=False) joined_df.drop(['HHX','FMX'], axis=1,inplace=True ) joined_df.head() ###Output _____no_output_____ ###Markdown Save the result in the INTERIM data directory ###Code df=joined_df df.to_csv(INTERIM_DATA_DIR+'/arthritis_study.csv') ###Output _____no_output_____
landcover_change_application/level3_test.ipynb
###Markdown An environmental layers testing framework for the FAO land cover classification system The purpose of this notebook is to provide an easy-to-use method for testing environmental layers to use for classification and seeing how changes to particular layers effect the final Land Cover Classification. You can easily test with different environmental layer inputs, and different locations. This code defines 5 variables to contain the binary layers required to reach a level 3 classification:1. **vegetat_veg_cat:** Vegetated / Non-Vegetated 2. **aquatic_wat_cat:** Water / Terrestrial 3. **cultman_agr_cat:** Natural Veg / Crop or Managed Veg4. **artific_urb_cat:** Natural Surfaces / Artificial Surfaces (bare soil/urban) 5. **artwatr_wat_cat:** Natural water / Artificial waterWhilst this example is using open data cube to load the required data, it can be loaded from anywhere - so long as all input layers cover the same geographic region and are defined in a correctly labelled dataset, before being passed to the classification code. ###Code import numpy import xarray import scipy from matplotlib import pyplot from matplotlib import cm import datacube from datacube.storage import masking dc = datacube.Datacube(app="le_lccs") #import classification script import lccs_l3 ###Output _____no_output_____ ###Markdown Define details of data to be loaded - area, resolution, crs.. ###Code # Define area of interest # Ayr x = (1500000, 1600000) y = (-2200000, -2100000) # # Diamentina #x = (800000, 900000) #y = (-2800000, -2700000) # # Gwydir #x = (1600000, 1700000) #y = (-3400000, -3300000) # Leichhardt #x = (800000, 900000) #y = (-2000000, -1900000) # # Barmah-Millewa #x = (1100000, 1200000) #y = (-4000000, -3900000) # # Forescue marshes #x = (-1200000, -1300000) #y = (-2500000, -2400000) # # Snowy #x = (1400000, 1500000) #y = (-4100000, -4000000) res = (-25, 25) crs = "EPSG:3577" time = ("2010-01-01", "2010-12-15") sensor= 'ls5' query=({'x':x, 'y':y, 'crs':crs, 'resolution':res}) out_filename = "Townsville-2010.tif" ###Output _____no_output_____ ###Markdown Create environmental layers Presence/Absence of Vegetation INITIAL-LEVEL DISTINCTION * *Primarily Vegetated Areas*: This class applies to areas that have a vegetative cover of at least 4% for at least two months of the year, consisting of Woody (Trees, Shrubs) and/or Herbaceous (Forbs, Graminoids) lifeforms, or at least 25% cover of Lichens/Mosses when other life forms are absent. * *Primarily Non-Vegetated Areas*: Areas which are not primarily vegetated. Here we're using Fractional cover annual percentiles to distinguish between vegetated and not. http://data.auscover.org.au/xwiki/bin/view/Product+pages/Landsat+Fractional+Cover **Creating your own layer**: To use a different veg/non-veg layer, replace the following two cells with code to create a binary layer with vegetated (1) and non-vegetated (0), using the method of choice, and save into `vegetat_veg_cat_ds` ###Code # Load data from datacube fc_ann = dc.load(product="fc_percentile_albers_annual", measurements=["PV_PC_50", "NPV_PC_50", "BS_PC_50"], time=time, **query) fc_ann = masking.mask_invalid_data(fc_ann) # Create binary layer representing vegetated (1) and non-vegetated (0) #vegetat = ((fc_ann["PV_PC_50"] >= 55) | (fc_ann["NPV_PC_50"] >= 55)) vegetat = (fc_ann["BS_PC_50"] < 40) # Convert to Dataset and add name vegetat_veg_cat_ds = vegetat.to_dataset(name="vegetat_veg_cat").squeeze().drop('time') # # Plot output # vegetat_veg_cat_ds["vegetat_veg_cat"].plot(figsize=(6, 5)) ###Output _____no_output_____ ###Markdown Aquatic or regularly flooded / Terrestrial SECOND-LEVEL DISTINCTIONThis layer breaks the initial veg/non-veg into 4 classes based on the presence or absence of water * *Primarily vegetated, Terrestrial*: The vegetation is influenced by the edaphic substratum * *Primarily Non-Vegetated, Terrestrial*: The cover is influenced by the edaphic substratum * *Primarily vegetated, Aquatic or regularly flooded*: The environment is significantly influenced by the presence of water over extensive periods of time. The water is the dominant factor determining natural soil development and the type of plant communities living on its surface * *Primarily Non-Vegetated, Aquatic or regularly flooded*: Here we're using a Water Observations from Space (WOfS) annual summary to separate terrestrial areas from aquatic. We're using a threshold of 20% to rule out one-off flood events.[WOfS](https://doi.org/10.1016/j.rse.2015.11.003) **Creating your own layer**: To use a different veg/non-veg layer, replace the following two cells with code to create a binary layer with aquatic (1) and terrestrial (0), using the method of choice, and save into `aquatic_wat_cat_ds` ###Code # Load data from datacube wofs_ann = dc.load(product="wofs_annual_summary", measurements=["frequency"], time=time, **query) wofs_ann = masking.mask_invalid_data(wofs_ann) # Create binary layer representing aquatic (1) and terrestrial (0) aquatic_wat = ((wofs_ann["frequency"] >= 0.2)) # Convert to Dataset and add name aquatic_wat_cat_ds = aquatic_wat.to_dataset(name="aquatic_wat_cat").squeeze().drop('time') # # Plot output # aquatic_wat_cat_ds["aquatic_wat_cat"].plot(figsize=(6, 5)) ###Output _____no_output_____ ###Markdown cultman_agr_cat TERTIARY-LEVEL DISTINCTIONThis layer breaks the initial terrestrial and aquatic, vegetated categories into either cultivated/managed, or (semi-)natural * *Primarily vegetated, Terrestrial, Artificial/Managed*: Cultivated and Managed Terrestrial Areas * *Primarily vegetated, Terrestrial, (Semi-)natural*: Natural and Semi-Natural Vegetation * *Primarily vegetated, Aquatic or Regularly Flooded, Artificial/Managed*: Cultivated Aquatic or Regularly Flooded Areas * *Primarily vegetated, Aquatic or Regularly Flooded, (Semi-)natural*: Natural and Semi-Natural Aquatic or Regularly Flooded Vegetation Here we're using the Median Absolute Deviation (MAD) to distinguish between natural and cultivated areas. This looks to be an interesting option, but more investigation is required to see if we can get a reliable, robust layer using this. ###Code # Load data from datacube ls8_mads = dc.load(product=sensor +"_nbart_tmad_annual", time=time, **query) ls8_mads = masking.mask_invalid_data(ls8_mads) # Create binary layer representing cultivated (1) and natural (0) cultman = ((ls8_mads["edev"] > 0.115)) # Convert to Dataset and add name cultman_agr_cat_ds = cultman.to_dataset(name="cultman_agr_cat").squeeze().drop('time') # # Plot output # cultman_agr_cat_ds["cultman_agr_cat"].plot(figsize=(6, 5)) ###Output _____no_output_____ ###Markdown artific_urb_cat This layer breaks the initial terrestrial, non-vegetated category into either artificial surfaces or bare areas * *Primarily non-vegetated, Terrestrial, Artificial/managed*: Areas that have an artificial cover as a result of human activities such as construction, extraction or waste disposal * *Primarily non-vegetated, Terrestrial, (Semi-)natural*: Bare areas that do not have an artificial cover as a result of human activities. These areas include areas with less than 4% vegetative cover. Included are bare rock areas, sands and deserts Here we've used the Normalized Difference Built-up Index (NDBI) to distinguish urban from bare soil. It doesn't do a great job and has issues classifying correctly in bright bare areas. ###Code # Load data ls8_gm = dc.load(product= sensor + "_nbart_geomedian_annual", time=time, **query) ls8_gm = masking.mask_invalid_data(ls8_gm).squeeze().drop('time') # Calculate ndvi ndvi = ((ls8_gm.nir - ls8_gm.red) / (ls8_gm.nir + ls8_gm.red)) # Calculate NDBI NDBI = ((ls8_gm.nir - ls8_gm.swir1) / (ls8_gm.nir + ls8_gm.swir1)) # Create binary layer representing urban (1) and baresoil (0) urban = (NDBI.where(ndvi<0.15) < 0) # Convert to Dataset and add name artific_urb_cat = urban.to_dataset(name="artific_urb_cat") # # Plot output # artific_urb_cat["artific_urb_cat"].plot(figsize=(6, 5)) ###Output _____no_output_____ ###Markdown artwatr_wat_cat This layer breaks the initial Aquatic, non-vegetated category into either artificial water bodies or natural ones * *Primarily non-vegetated, Aquatic or Regularly Flooded, Artificial/managed*: areas that are covered by water due to the construction of artefacts such as reservoirs, canals, artificial lakes, etc. * *Primarily non-vegetated, Aquatic or Regularly Flooded, (Semi-)natural*: areas that are naturally covered by water, such as lakes, rivers, snow or ice As differentiating between natural and artificial waterbodies using only satellite imagery is extremely difficult, here we use a static layer. Australian Hydrological Geospatial Fabric (Geofabric) is a dataset of hydrological features derived from manually interpreted topographic map grids. It classifies the land in terms of: 0: Unclassified, 1: CanalArea, 2: Flat, 3: ForeshoreFlat, 4: PondageArea, 5: RapidArea, 6: WatercourseArea, 7: Lake, 8: Reservoir, 9: SwampHere, CanalArea & Reservoir are used to define artificial water. ###Code # Load data geofab = dc.load(product="geofabric",measurements=["band1"], **query) geofab = geofab.squeeze().drop('time') # # Plot data # geofab.band1.plot.imshow(cmap="nipy_spectral") # Create binary layer representing artificial water (1) and natural water (0) artwatr_wat_cat_ds = ((geofab["band1"] == 1) | (geofab["band1"] == 8)) # Convert to Dataset and add name artwatr_wat_cat_ds = artwatr_wat_cat_ds.to_dataset(name="artwatr_wat_cat") # # Plot output # artwatr_wat_cat_ds["artwatr_wat_cat"].plot(figsize=(5, 5)) ###Output _____no_output_____ ###Markdown Collect environmental variables into array for passing to classification system ###Code variables_xarray_list = [] variables_xarray_list.append(artwatr_wat_cat_ds) variables_xarray_list.append(aquatic_wat_cat_ds) variables_xarray_list.append(vegetat_veg_cat_ds) variables_xarray_list.append(cultman_agr_cat) variables_xarray_list.append(artific_urb_cat) ###Output _____no_output_____ ###Markdown Classification The LCCS classificaition is hierachial. The 8 classes are shown below.| Class name | Code | Numeric code ||----------------------------------|-----|-----|| Cultivated Terrestrial Vegetated | A11 | 111 || Natural Terrestrial Vegetated | A12 | 112 || Cultivated Aquatic Vegetated | A23 | 123 || Natural Aquatic Vegetated | A24 | 124 || Artificial Surface | B15 | 215 || Natural Surface | B16 | 216 || Artificial Water | B27 | 227 || Natural Water | B28 | 228 | ###Code # Merge to a single dataframe classification_data = xarray.merge(variables_xarray_list) #classification_data # Apply Level 3 classification using separate function. Works through in three stages level1, level2, level3 = lccs_l3.classify_lccs_level3(classification_data) # Save classification values back to xarray out_class_xarray = xarray.Dataset( {"level1" : (classification_data["vegetat_veg_cat"].dims, level1), "level2" : (classification_data["vegetat_veg_cat"].dims, level2), "level3" : (classification_data["vegetat_veg_cat"].dims, level3)}) classification_data = xarray.merge([classification_data, out_class_xarray]) col_level2 = cm.get_cmap("Set1", 2) # classification_data.level2.plot(cmap=(col_level2)) # print("level 1:",numpy.unique(classification_data.level1)) # print("level 2:",numpy.unique(classification_data.level2)) # print("level 3:",numpy.unique(classification_data.level3)) #To check the results for level 3 use colour_lccs_level3 to get the colour scheme. pyplot.figure(figsize=(10, 10)) red, green, blue, alpha = lccs_l3.colour_lccs_level3(level3) pyplot.imshow(numpy.dstack([red, green, blue, alpha])) ###Output _____no_output_____ ###Markdown Save results to geotiff ###Code import gdal def array_to_geotiff(fname, data, geo_transform, projection, nodata_val=0, dtype=gdal.GDT_Int16): # Set up driver driver = gdal.GetDriverByName('GTiff') # Create raster of given size and projection rows, cols = data.shape dataset = driver.Create(fname, cols, rows, 1, dtype) dataset.SetGeoTransform(geo_transform) dataset.SetProjection(projection) # Write data to array and set nodata values band = dataset.GetRasterBand(1) band.WriteArray(data) band.SetNoDataValue(nodata_val) # Close file dataset = None ###Output _____no_output_____
motif/final_project.ipynb
###Markdown IntroductionOur work seeks to curate audio features to train a music genre classifier. Such a classifier would be able to take in a set of audio features for a song and accurately determine the genre of that song--a task that is accomplished by most humans with minimal background in music. There are a number of difficulties in such a problem not limited to the definition of "genre" and selecting appropriate audio to train the model. MotivationIt is a somewhat simple task for a trained musician or musicologist to listen to a work of music and label its genre. What do we need to help a computer complete the same task? Questions we want to answer:1. What features of music make it a part of its genre?2. Is genre classification a problem well-suited to classical machine learning?We hypothesize that the MFCC coefficients will be important, because others doing genre classification have found them important, at least in deep learning models. We think that taking the mean and variance of the coefficients for each song will retain the most important information while making the problem tractable.We would note that one difficulty related to this task relates to how we define genres. It is a very abstract and subjective question, and the lines between genres are blurry at best. Thus, any machine learning genre classifier will be subject to the issue of vague class divisions depending on who labelled the data and what metric they used. Related WorkThere have been many studies in the area of genre classification in machine learning. Traditionally models have used learning algorithms for SVM and KNN and have relied heavily on common spectral features including the MFCCs (1). The state of the art has improved over time with most classical machine learning classifiers managing 60-70% accuracy. This is similar to human capabilities with short song intervals according to some human trials (2). In more recent years, neural networks have been able to make more accurate predictions near 80-90% accuracy in some cases. DataOur data comes from the Free Music Archive (https://github.com/mdeff/fma) created by Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information Retrieval Conference (ISMIR), 2017.We use the audio files and genre tags, but build our own features. We also use the small data set composed of 8000 30-second songs (8 GB in `.mp3` fromat). We convert each file to a `.wav` for simplicity. Each song is designated by a `track_id` and labeled with one of eight genres: Hip-Hop, Pop, Folk, Experimental, Rock, International, Electronic, and Instrumental. There songs are distributed evenly across genres with 1000 songs per genre. Potential IssuesOne potential issue with our data is that the dataset is composed entirely of free music (creative commons), and therefore our model may have difficulty analyzing other kinds of music, which may be quite different.Specifically, we have reason to believe that the genre definitions, quality, and style of a free music database may differ from commercial music, so a future step could be finding a way to evaluate how well a model trained on a free music database can generalize to samples of commercial music. Missing DataThe dataset is fairly robust, but of the 8000 tracks, there are 6 that are only a few seconds long. We ignore these tracks from our analysis, since our algorithms for feature extraction depend on the songs being of a certain length in order to be accurate. Ethical Concerns and ImplicationsThe music used in our work comes from the Creative Commons and is liscensed for this kind of use. We see no privacy concerns with the collection of this data. As music genre does not make a serious impact on the commercialization of music or the daily lives of non-musicians, we do not anticipate any negative repercussions from our work. The lines around genre are vague enough to ensure that professors of music theory and music history need not worry that they shall be out of a job. Feature EngineeringSince our original data was made up only of track IDs corresponding to wav files, and their genre labels, our feature extraction makes up all of our useful data. We created a dataframe that has the following features as its columns. In the next section, we discuss the meaning of each added feature column. Feature Descriptions and Reasoning**Track ID**: each wav file corresponds to a number, and we have a function that generates the file path to access each track if needed.Genre Code: We have encoded our eight genres by a 1:1 mapping to integers 0-7.**Mel Frequency Cepstral Coefficients (MFCCs)**: Represents the short term power spectrum of the sound. Aligns closely with the human auditory system’s reception of sound. These 30 coefficients describe the sound of a song in a human way. MFCCs are being used more and more in Music Information Retrieval specifically with genre tasks because they encapsulate the human experience of sound. We feel this will improve accuracy.**Zero Crossing Rate**: Indicates the average rate at which the sign of the signal changes. Higher zero crossing rates match with higher percussiveness in the song. We added this feature because genres often have a certain feel relative to beat and percussive sound.**Frequency Range**: The max and min frequency the audio ignoring the top 20% and bottom 20%. Clipping the top and bottom was important because almost all of our audio files go from 10 Hz to 10000 Hz. But seeing the range in where most of the sound of a song is seems to be connected to genre. Some genres have greater ranges while others are in a small range.**Key and Tonality**: We used the Krumhansl-Schmuckler algorithm to estimate the most likely key that the audio sample is in, and whether the key is major or minor. We chose this because even though most genres have songs in different keys, knowing the key will aid in normalizing pitch information for other features.**Spectral Rolloff**: The frequency below which a certain percent of the total spectral energy (pitches) are contained. When audio signals are noisy, the highest and lowest pitches present do not convey much information. What is more useful is knowing the frequency range that 99% of the signal is contained in, which is what the spectral rolloff represents.**The Three Highest Tempo Autocorrelation Peaks**: Indicative of what we would guess the average BPM will be for this audio file (3 columns). This is a way of summing up the entire tempogram array in just a few numbers so that comparing tempo features for each track is tractable.**Average Tonnetz over all Time**: The mean and variance of the x and y dimensions of the tonal centers for the major and minor thirds, as well as the fifths (this ends up being 6 means and 6 variances for a total of 12 columns). Here we take the means and variances to reduce the information down from a 6xt matrix (where t is the number of time values, about 1200) to just 12 numbers that sum up that matrix for each track. We have included the following code as an example of our feature engineering; we defined a lot of functions for our feature engineering that we don't have space here to include. The full code can be found at https://github.com/clarkedb/motif and in our supplementary files. ```python coefficients from: http://rnhart.net/articles/key-finding/major_coeffs = la.circulant( stats.zscore( np.array( [6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88] ) )).Tminor_coeffs = la.circulant( stats.zscore( np.array( [6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17] ) )).Tdef find_key(y: np.ndarray, sr: int) -> Tuple[bool, int]: """ Estimate the major or minor key of the input audio sample :param y: np.ndarray [shape=(n,)] Audio time series :param sr: number > 0 Sampling rate of y :return: (bool, int) Whether the sample is in a major key (as opposed to a minor key) Key of the audio sample """ compute the chromagram of the audio sample chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr) find the average of each pitch over the entire audio sample average_pitch = chroma_cq.mean(axis=1) Krumhansl-Schmuckler algorithm (key estimation) x = stats.zscore(average_pitch) major_corr, minor_corr = major_coeffs.dot(x), minor_coeffs.dot(x) major_key, minor_key = major_corr.argmax(), minor_corr.argmax() determine if the key is major or minor is_major = major_corr[major_key] > minor_corr[minor_key] return is_major, major_key if is_major else minor_key``` Visualization and Analysis Visualization ###Code genres = [ "Hip-Hop", "Pop", "Folk", "Experimental", "Rock", "International", "Electronic", "Instrumental", ] df = pd.read_csv('../data/features.csv', header=0) df['genre'] = df.genre_code.apply(lambda x : genres[x]) df[df.genre.isin(['Electronic', 'Experimental', 'Folk'])][['zcr', 'genre']].groupby('genre').boxplot(column='zcr', grid=False, layout=(1,3), figsize=(11,3)) plt.suptitle('Zero Crossing Rate Distribution by Genre', y=1.1) plt.show() ###Output _____no_output_____ ###Markdown These boxplots show the Zero Crossing Rate distribution by genre. ZCR is usually thought of as a good measure to include when doing a genre analysis because it conveys something of the percusiveness of the song. We see that the distributions differ enought to justify including it, but some genres are more drastic than others. ###Code fig, ax = plt.subplots(1, 2) df.plot(ax=ax[0], kind='hexbin', x='max_freq', y='rolloff_mean', gridsize=25, figsize=(7, 5), cmap='Blues', sharex=False) ax[0].set_title('Max Frequency and Spectral Rolloff Mean') rolloff_mean = df["rolloff_mean"] ax[1].boxplot(np.array([ rolloff_mean[df["genre_code"] == i] for i in range(len(genres)) ], dtype=object), labels=genres, showfliers=False) ax[1].set_title("Mean of Spectral Rolloff") ax[1].set_ylabel("Mean") ax[1].set_xticklabels(labels=genres, rotation=45) fig.set_size_inches((10, 4)) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown The hexbin plot (left) compares the max frequency and the spectrall rolloff mean. Because the spectral rolloff mean is the mean frequency greater than 99% of a time frame's frequencies, it make sense that it may be redundant information or colinear with max_frequency. A couple things to note from the mean of spectral rolloff plot (right) are the distributions of the mean spectral rolloff of experimental and instrumental music, which tend to be skewed lower than for other genres. Note that we omitted outliers from the boxplot. ###Code mfcc_cols = [f'mfcc{i}' for i in range(1,4)] mfcc_by_genre = df[mfcc_cols + ['genre']].groupby('genre') fig, axes = plt.subplots(1, 2, figsize=(10, 3)) mfcc_by_genre.mean().transpose().plot(ax=axes[0]) axes[0].set_title('Mean of First 3 MFCCs by Genre') axes[0].get_legend().remove() mfcc_by_genre.var().transpose().plot(ax=axes[1]) axes[1].set_title('Variance of First 3 MFCCs by Genre') axes[1].legend(title='Genre', loc='center left', bbox_to_anchor=(1.0, 0.5)) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Above, we plot only the first three MFCCs by genre. The first MFCC was fairly distinct for each genre with a high variance. However, the higher MFCCs have almost no variance and a very similar mean for each genre. We conclude that the earlier MFCCs are more important for classification. ###Code # Load the data and get the labels data = pd.read_csv('./../data/features.csv', index_col=0) # Save the genre labels genre_labels = ["Hip-Hop", "Pop", "Folk", "Experimental", "Rock", "International", "Electronic", "Instrumental"] tonnetz_labels = ['Fifth x-axis', 'Fifth y-axis', 'Minor Third x-axis', 'Minor Third y-axis', 'Major Third x-axis', 'Major Third y-axis'] # Get the tonnetz features in their own dataframe and group by genre tonnetz_features = data[['genre_code', 'tonnetz1', 'tonnetz2', 'tonnetz3', 'tonnetz4', 'tonnetz5', 'tonnetz6', 'tonnetz7', 'tonnetz8', 'tonnetz9', 'tonnetz10', 'tonnetz11', 'tonnetz12']] group = tonnetz_features.groupby('genre_code') # Make some bar plots fig, ax = plt.subplots(2, 1) group.mean()['tonnetz' + str(5)].plot(kind='barh', ax=ax.reshape(-1)[0]) ax.reshape(-1)[0].set_yticklabels(genre_labels) ax.reshape(-1)[0].set_xlabel('Mean Tonal Center') ax.reshape(-1)[0].set_ylabel('') ax.reshape(-1)[0].set_title(str(tonnetz_labels[2])) group.mean()['tonnetz' + str(9)].plot(kind='barh', ax=ax.reshape(-1)[1]) ax.reshape(-1)[1].set_yticklabels(genre_labels) ax.reshape(-1)[1].set_xlabel('Mean Tonal Center') ax.reshape(-1)[1].set_ylabel('') ax.reshape(-1)[1].set_title(str(tonnetz_labels[4])) plt.suptitle('Mean of Tonnetz Data by Genre\n') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown For each tonnetz, we calculated the mean and variance of the x and y directions for that tonal center for each song. Above are the plots of the averages of two of those means across each genre. We show plots of the major and minor third x-axis means, and much of the other data behaves similarly. Which tones are positive and negative changes for each tone, indicating that the mean tonal center data could be useful in making decisions between genres. ###Code genre_labels = ["Hip-Hop", "Pop", "Folk", "Experimental", "Rock", "International", "Electronic", "Instrumental"] data = pd.read_csv('./../data/features.csv', index_col=0) tempo_features = data['tempo1'] plt.boxplot(np.array([ tempo_features[data['genre_code'] == i] for i in range(len(genre_labels)) ], dtype=object), labels=genre_labels, showfliers=False) plt.xticks(rotation=45) plt.title('Tempo Estimates by Genre') plt.show() ###Output _____no_output_____ ###Markdown The tempo estimates are all somewhat similar in shape, in that all are skewed toward the lower end of the tempo ranges and all have outliers in the higher tempo ranges. We do see, however, that electronic and hip-hop songs appear to have a stronger clustering of tempo estimates at the lower/slower end of the spectrum, which could indicate that the tempo data may be useful for classification. We note that we are ignoring the outliers to focus more on the distribution of the tempo estimates; some of the outliers had values as high as 1200. That may indicate that the algorithm failed to pick out a tempo for these songs, or that some of the experimental music doesn't have a tempo. ###Code scree_plot() ###Output _____no_output_____ ###Markdown Using principal component analysis, we see that most of the variation in our features (90%) are explained by about 20 components. There is a strong dropoff in the amount of variance explained by each individual component after about the fourth component, seen in the scree plot (orange). Because we only had about 30 features, we decided to use the original features in our models, rather than the principal components. Models We trained each of the models we learned in class on our engineered features; the results are below. We have also included the code for our random forest model, which we found performed the best. ```pythondef random_forest( filename="../data/features.csv", test_size=0.3, plot_matrix=False, normalize=True, print_feature_importance=False): df = pd.read_csv(filename, index_col=0) x = preprocessing.scale(df.drop(["track_id", "genre_code"], axis=1)) y = df["genre_code"] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size, stratify=y) params = {"n_estimators": 1000} clf = RandomForestClassifier() clf.set_params(**params) clf.fit(x_train, y_train) if print_feature_importance: get feature importance features = df.drop(["track_id", "genre_code"], axis=1).columns imp = clf.feature_importances_ sorted_features = np.argsort(imp) print("Most-Important:", [features[i] for i in sorted_features[-3:]]) print("Least-Important:", [features[i] for i in sorted_features[:3]]) predictions = clf.predict(x_test) print( "RF Accuracy:", (len(y_test) - np.count_nonzero(predictions - y_test)) / len(y_test), ) if plot_matrix: plot_confusion_matrix(y_test, predictions, genres, normalize=normalize, title="Random Forest Confusion Matrix") return clf``` Table of Accuracy| Model | Accuracy ||-------|----------||Logistic Regression |44% ||XGBoost |49% ||Random Forest |53% ||Multilayer Perceptron|43% ||K-nearest Neighbors |40% | Among the models we trained on the features, XGBoost and random forests (with around 1000 trees) had the highest accuracy.The confusion matrix below tells us that pop is misidentified most of the time, whereas hip-hop is classified correctly the majority of the time. We can conclude that even though the overall accuracy is low, this is largely due to a couple genres. ###Code # random forest plt.rcParams['figure.figsize'] = 8, 5 a = random_forest(plot_matrix=True); ###Output _____no_output_____
AKosir-OPvTK-Lec08_ProbabilityTeoryStats_SLO.ipynb
###Markdown 8. Elementi teorije verjetnosti in statistike in statistike Andrej Košir, Lucami, FE Kontakt: prof. dr. Andrej Košir, [email protected], skype=akosir_sid 1 8. Elementi teorije verjetnosti in statistike Cilji ■ Cilj, vsebina- Cilj: - Spoznati / ponovite osnove teorije verjetnosti za potrebe optimizacije v TK - Spoznati osnove modeliranja s slučajnimi spremenljivkami- Potrebujemo za - Eksperimenti z uporabniki - Markovske verige - Časovne vrste – modeli za TK promet - Čakalne vrste 2 8. Elementi teorije verjetnosti in statistike Cilji ■ Poglavja8.1. Uvod■ Zgodovina opisa verjetnosti■ Intuitivni uvod – primer merjenja napetosti■ Različne vpeljave verjetnosti8.2. Verjetnostni prostor, slučajne spremenljivke■ Verjetnosti prostor in verjetnost■ Slučajna spremenljivka■ Porazdelitev in gostota porazdelitve■ Neodvisnost dogodkov, računanje z dogodki■ Pogojna verjetnost in Bayesova formula■ Momenti – matematično upanje in varianca■ Zaporedje slučajnih spremenljivk■ Pomembne porazdelitve■ Centralni limitni izrek8.3. Testiranje hipotez■ Problem: ali je razlika slučajna■ Ničelna hipozeteza, p-vrednost■ Stopnja tveganja $\alpha$■ Napake ■ Določanje velikosti vzorca8.4. Povezanost med podatki, korelacija in dimenzija podatkov■ Problem: kdaj sta dva podatkovna niza povezna■ Korelacija■ Dimenzionalnost podatkov 3 8. Elementi teorije verjetnosti in statistike 8.1 Uvod 8.1 Uvod■ Zgodovina opisa verjetnosti■ Intuitivni uvod – primer merjenja napetosti■ Različne vpeljave verjetnosti 4 8. Elementi teorije verjetnosti in statistike 8.1 Uvod ■ Zgodovina opisa verjetnosti- 17. stoletje: kocke ne padajo po pričakovanju B. Pascal, P. Fermat, C. de Mere- Tri kocke, kako verjetno skupaj pade 11 in kako verjetno pade 12: - Enako število možnosti - Poskus pravi drugače $S=11$ $S=12$ $146$ $156$ $236$ $246$ $155$ $336$ $245$ $246$ $335$ $345$ $443$ $354$ - Sklep: neodvisnost dogodkov: - $444$ pade manj krat kot $156$ - Definicija: dogodka sta neodvisna, če $𝑃[𝐴𝐵]=𝑃[𝐴]𝑃[𝐵]$ - C. de Mere odkril statistično definicijo verjetnosti 5 8. Elementi teorije verjetnosti in statistike 8.1 Uvod ■ Intuitivni uvod – primer merjenja napetosti- Merimo konstantno napetost, meritvi je dodan šum- Koraki 1. Zaporedna merjenja: $\{1.92, 2.03, ....\}$; 2. Model merjenja: $$ u_i = u_0 + \varepsilon_i $$ 3. Histogram, relativne frekvence 4. Slučajna spremenljivka $U$ in njena relaizacija $u_i$ 5. Gostota porazdelitve: kako se slučajna spremenljivka obnaša 6. Dogodek: pogojene realizacije slučajnih spremenljivk: $$ u \in [1.93, 2.081] $$ 7. Verjetnost dogodka: $$ P(U \in [1.93, 2.081])=0.61; $$ 8. Porazdelitvena funkcija $$ F_U (u) = P[U \leq u], $$ gostota porazdelitve: $$ p_U(𝑢) = \frac{F_U(u)}{d u}, $$ prilega se histogramu; 6 8. Elementi teorije verjetnosti in statistike 8.1 Uvod ■ Različne vpeljave verjetnosti- Statistična definicija verjetnosti: $$ P[A] = \frac{n_k}{n} $$ - V ozadju je zakon velikih števil- Geometrijska definicija verjetnosti: $$ P[A] = \frac{m(A)}{m(G)} $$ - Primerna osnova za matematično definicijo - Metoda Monte Carlo- Matematična vpeljava je univerzalna:dogodki so podmnožice 7 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke 8.2. Verjetnostni prostor, slučajne spremenljivke■ Verjetnosti prostor in verjetnost■ Slučajna spremenljivka■ Porazdelitev in gostota porazdelitve■ Neodvisnost dogodkov, računanje z dogodki■ Pogojna verjetnost in Bayesova formula■ Momenti – matematično upanje in varianca■ Zaporedje slučajnih spremenljivk■ Pomembne porazdelitve■ Centralni limitni izrek 8 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Verjetnosti prostor in verjetnost- Verjetnostni prostor $G$- Dogodek $A\subset G$, $A\in \cal G$- Množica dogodkov $\cal G$ - Gotov dogodek: $$ G\in \cal G $$ - Komplement: $$ A\in {\cal G} \Rightarrow A^c \in \cal G $$ - Unija: $$ A_i\in\cal G \Rightarrow \cup_{i=1}^n A_i\in \cal G $$ - Verjetnost: $P: \cal G \to [0,1]$ - Aditivnost: $$ P\left(\cup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) $$ - Velja: $$ P(G)=1, P(\emptyset) = 0 $$ - Velja: $$ P(A^c) = 1 - P(A) $$ 9 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Slučajna spremenljivka- Slučajna spremenljivka: $$ X:\cal G \to ℝ $$ - Zahteva: $$ X^{-1}([a,b)) = [X\in [a,b)] \in\cal G $$ - Zvezne, diskretne - Zvezna: napetost - Diskretna: dogodek uporabnika - Realizacija slučajne spremenljivke in histogram 10 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Porazdelitev in gostota porazdelitve- Slučajna spremenljivka, histogram in posplošitev histograma- Prazdelitvena funkcija: $$ F_f(x) = P[X\leq x] $$ - Velja $$ P[a \leq X \leq b] = F_X(b) - F_X(a) $$- Gostota porazdelitve: - zvezna $$ P[X \leq b] = \int_a^b p_X(x) dx $$ - diskretna $$ P[X \leq b] = \sum_{k\in\{a,\ldots b\}} p_k $$- Primeri zveznih - Normalna (Gausova) - Chi kvadrat- Primeri diskretnih - Bernoulijeva - Poissonova 11 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Neodvisnost dogodkov, računanje z dogodki- Dogodka $A,B\in \cal G$ sta neodvisna, če velja $$ P[A B] = P[A] P[B] $$- Ujema se z ituitivno definicijo - Zgodita se neodvisno, torej se verjetnosti „ne motita“ tudi če se zgodita hkrati - Računanje z dogodki: - $A$ ali $B$ je $A\cup B$ - $A$ in $B$ je $A\cap B = A B$ - Velja$$ P[A\cup B] = P[A] + P[B] - P[A B] $$ 12 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Pogojna verjetnost in Bayesova formula- Pogojna verjetnst Če je $P[B] > 0$, potem je $$ P[A|_B] = \frac{P[AB]}{P[B]} $$ - Velja $$ P[A_1 A_2 \cdots A_n] = P[A_1] P[A_2|_{A_1}] P[A_3|_{A_1 A_2}] \cdots P[A_n|_{A_1 \cdots A_{n-1}}] $$ - Formula o popolni verjetnosti - Popoln sistem dogodkov – hipotez: $\{H_1, \ldots H_n\}$ - Formula: $$ P[A] = \sum_{i=1}^n P[A|_{H_i}] P[H_i] $$- Bayesova formula $$ P[H_{k}|_{A}] = \frac{P[A|_{H_k}] P[H_k]}{\sum_{i=1}^n P[A|_{H_i}] P[H_i]} $$ 13 ###Code # -*- coding: utf-8 -*- """ @author: andrejk """ """ A = User will churn (leave the provider) Hypotheses H1 = Costs H2 = Service Quality H3 = Other """ # Hypotheses and conditionals # Probabilities of hypothese - based on real data Pr_H1 = 0.6 Pr_H2 = 0.3 Pr_H3 = 0.1 # Conditional probabilities Pr_AH1 = 0.03 Pr_AH2 = 0.01 Pr_AH3 = 0.02 # Total probability of event A Pr_A = Pr_AH1*Pr_H1 + Pr_AH2*Pr_H2 + Pr_AH3*Pr_H3 # Conditionals - aposteriories Pr_H1A = Pr_AH1*Pr_H1/Pr_A Pr_H2A = Pr_AH2*Pr_H2/Pr_A Pr_H3A = Pr_AH3*Pr_H3/Pr_A # Report print ('Probability of A:', Pr_A) print ('Probability od H1 at A:', Pr_H1A) print ('Probability od H2 at A:', Pr_H2A) print ('Probability od H3 at A:', Pr_H3A) ###Output Probability of A: 0.023 Probability od H1 at A: 0.7826086956521738 Probability od H2 at A: 0.13043478260869565 Probability od H3 at A: 0.08695652173913043 ###Markdown 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Momenti – matematično upanje in varianca- Matematično upanje - zvezna poreazdelitev $$ E(X) = \int_{-\infty}^\infty x p_X(x) dx $$ - diskretna porazdelitva $$ E(X) = \sum_{k} k p_k $$ - Momenti: $k$-ti moment glede na $a$: $$ a_k = E((X-a)^k) $$- Matematično upanje: prvi moment glede na $0$- Varianca in standardni odklon: varianca je drugi moment glede na upanje - drugi centralni moment $$ D(X) = \sigma^2(X) = E((X - E(X))^2) $$ 14 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Zaporedje slučajnih spremenljivk- Zaporedje slučajnih spemenljivk$$ X_1, X_2, X_n, \ldots, X_n, \ldots $$ - Slušajni proces: indeks je čas - Namen v TK: analiza prometa, napovedovanje prometa, optimizacija čakalnih vrst, analiza obnašanja uporabnikov, ... 15 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Pomembne porazdelitve- Bernoullijeva: zaporedje diskretnih dogodkov$$ p_k = {n\choose k} p^k (1-p)^{n-k} $$- Normalna: vsota neodvisnih prispevkov$$ p(x; a, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} $$- Chi kvadrat (𝜒^2): analiza neodvisnosti dogodkov$$ p(x; k) = \left\{ \matrix{\frac{1}{2^\frac{k}{2}\Gamma(\frac{k}{2})} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, &amp; x\geq 0 \cr 0, \hfill &amp; x &lt; 0}\right. $$- Poissonova: Število neodvisnih dogodkov na časovno enoto:$$ p(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda} $$- Eksponentna$$ p(t; \lambda) = \left\{\matrix{\lambda e^{-\lambda t}, &amp; t \geq 0 \cr 0, \hfill &amp; t &lt; 0.}\right. $$ 16 8. Elementi teorije verjetnosti in statistike 8.2. Verjetnostni prostor, slučajne spremenljivke ■ Centralni limitni izrek- Zaporedje slučajnih spremenljivk $X_1, X_2, \ldots$, z enakimi končnimi variancami $D(X_n) = d$, in delnimi vsotami$$ S_n = X_1 + \cdots + X_n, $$potem velja$$ \frac{S_n - E(S_n)}{\sigma(S_n)} \quad \underset{n\to\infty}{\longrightarrow} \quad N(0,1), $$kjer je $N(0,1)$ standardna normalna porazdelitev - To je izvor normalne porazdelitve. - Tako „narava skriva porazdelitve“ 17 8. Elementi teorije verjetnosti in statistike 8.3. Testiranje hipotez 8.3. Testiranje hipotez■ Problem: ali je razlika slučajna■ Ničelna hipozeteza $H_0$, p-vrednost■ Stopnja tveganja $\alpha$, sklep glege $H_0$■ Določanje velikosti vzorca 18 8. Elementi teorije verjetnosti in statistike 8.3. Testiranje hipotez ■ Problem in rešitev Problem: - rezultat eksperimenta pri osnovni in izboljšani izvedbi sta $0.61$ in $0.63$. - Ali je razlika **slučajna** ali je **napredek realen**? Rešitev:- statistično testiranje hipotez 19 8. Elementi teorije verjetnosti in statistike 8.3. Testiranje hipotez ■ Ničelna hipozeteza, p-vrednost- Hipoteze: - ničelna hipoteza $H_0$ je privzetek "ni učinka" - alternativna hipotaza je ali njena negacija ali del negacije- p-vrednost je verjetnost, da je dobljen eksperimentalni rezultat toliko ali bolj oddaljen od ničelne hipoteze$$ p = P[x\;\mbox{toliko ali bolj oddaljeni od veljavne $H_0$}|_{H_0}] $$P-vrednost je verjetnost, da **ničlna hipoteza drži ob dobljenih eksperimentalnih rezultatih**- odlčitev na podlagi te verjetnosti- kako jo izračunati: obstajajo statististični testi, ki so paketi - ničelna hipoteza - izdelana enačba za p vrednost - privzetki / pogoji za uporabo testa - implementacija enačb za izračun p vrednosti je na voljo v več različnih jezikih 20 8. Elementi teorije verjetnosti in statistike 8.3. Testiranje hipotez ■ Stopnja tveganja $\alpha$ in odločitev- Osnovni pristop k odločitvi: če je verjetnost ničelne hipoteze (p-vrednost) premajhna, jo zavrnemo- Izberemo stopnjo tveganja $\alpha$ in$$ p \geq \alpha \qquad\Rightarrow\qquad H_0\;\mbox{potrdimo} $$ $$ p < \alpha \qquad\Rightarrow\qquad H_0\;\mbox{zavrnemo} $$ - pri sklepu lahko pride do napake, tega se ni mogoče izogniti - stopnje tveganja ne moremo postaviti na $0$ - Izid sklepanja analiziramo takole $\hat{H_0}$ $\neg\hat{H_0}$ $H_0$ OK Err. Type I. $\neg H_0$ Err. Type II. OK - napaka tipa I.: - zavrnemo ničelno hipotezo ko ta drži - verjetnost te napake je presenetljivo neodvisna od velikosti vzorca $n$ in je enaka stopnji tveganja: $$ P(Err. Type I.) = \alpha $$ - napaka tipa II: - sprejmemo ničelno hipotezo kot ta ne drži - verjetnost te napake je odvisna od velikosti vzorca, označimo $$ P(Err. Type II.) = \beta $$- moč testa: - moč testa je enaka $$ pw = 1 - \beta $$ - gre za občutljivost testa 21 8. Elementi teorije verjetnosti in statistike 8.3. Testiranje hipotez ■ Določanje velikosti vzorca- Potrebno velikost vzorca testa značilnosti določimo na podlagi dejstva, da je moč testa $pw$ odvisna od velikosti vzorca $n$. - Potrebujemo tudi **velikost učinka** (angl. effect size): - to je normirana mera za velikost odklona od ničelne hipoteze, torej za velikost razlike med testiranimi možnostmi - določimo jo za vsak tip statističnega testa posebej- Moč testa $pw\in [0, 1]$ narašča z velikostjo vzorca. Potrebno velikost vzorca tako določimo za - dano velikost učinka - zahtevano moč testa- Velikost vzorca in analizo dosežene moči lahko med drugim določimo z orodjem GPower - povezava na orodje http://www.gpower.hhu.de/en.html - primer odvisnosti dosežene statistične moči in velikosti vzorca, določene z orodjem GPower, podaja naslednja slika 22 ###Code ## An example of t-test import numpy as np from scipy import stats ## Define 2 random distributions #Sample Size N = 30 # Standard deviations s1 = 1 s2 = 1 s = 1 # Random samples x1 = s1*np.random.randn(N) x21 = s2*np.random.randn(N) x22 = s2*np.random.randn(N) + 0.1*s x23 = s2*np.random.randn(N) + 0.2*s x24 = s2*np.random.randn(N) + 0.3*s x25 = s2*np.random.randn(N) + 0.5*s x26 = s2*np.random.randn(N) + 0.8*s x27 = s2*np.random.randn(N) + 1.0*s x28 = s2*np.random.randn(N) + 2.0*s ## Do the testing t1, p1 = stats.ttest_ind(x1, x21) print("P value is: " + str(p1)) t2, p2 = stats.ttest_ind(x1, x22) print("P value is: " + str(p2)) t3, p3 = stats.ttest_ind(x1, x23) print("P value is: " + str(p3)) t4, p4 = stats.ttest_ind(x1, x24) print("P value is: " + str(p4)) t5, p5 = stats.ttest_ind(x1, x25) print("P value is: " + str(p5)) t6, p6 = stats.ttest_ind(x1, x26) print("P value is: " + str(p6)) t7, p7 = stats.ttest_ind(x1, x27) print("P value is: " + str(p7)) t8, p8 = stats.ttest_ind(x1, x28) print("P value is: " + str(p8)) ###Output P value is: 0.5985137835938157 P value is: 0.5731531797683456 P value is: 0.06090209382704392 P value is: 0.21041376280071786 P value is: 0.004189927025963031 P value is: 0.0020099139043966135 P value is: 0.00011539599918335764 P value is: 8.407636950440684e-11
DAY 401 ~ 500/DAY471_[BaekJoon] 내 학점을 구해줘 (Python).ipynb
###Markdown 2021년 9월 2일 목요일 BaekJoon - 내 학점을 구해줘 (Python) 문제 : https://www.acmicpc.net/problem/10984 블로그 : https://somjang.tistory.com/entry/BaekJoon-10984%EB%B2%88-%EB%82%B4-%ED%95%99%EC%A0%90%EC%9D%84-%EA%B5%AC%ED%95%B4%EC%A4%98-Python Solution ###Code def get_my_score(grade_score_list): total_grade, total_score = 0, 0 for grade_score in grade_score_list: grade, score = map(float, grade_score.split()) total_grade += grade total_score += score * grade total_score = total_score / total_grade return f"{int(total_grade)} {round(total_score, 2)}" if __name__ == "__main__": for _ in range(int(input())): grade_score_list = [] for _ in range(int(input())): grade_score = input() grade_score_list.append(grade_score) print(get_my_score(grade_score_list)) ###Output _____no_output_____
3_find_best_kernel-logged_predictors.ipynb
###Markdown Import data ###Code df = pd.read_csv('outputs/ala1_trials_clean.csv') df = df.rename(columns={'project_name': 'basis', 'cluster__n_clusters': 'n', 'test_mean': 'y'}).\ loc[:, ['basis', 'y', 'n']] ###Output _____no_output_____ ###Markdown Scale predictors ###Code to_log = ['n'] for col in to_log: df.loc[:, col] = np.log(df[col]) to_scale = ['n'] scaler = preprocessing.MinMaxScaler() vars_scaled = pd.DataFrame(scaler.fit_transform(df.loc[:, to_scale]), columns=[x+'_s' for x in to_scale]) df = df.join(vars_scaled) df.T x = df.loc[df['basis']=='phipsi', 'n_s'] y = df.loc[df['basis']=='phipsi', 'y'] plt.scatter(x, y) ###Output _____no_output_____ ###Markdown Create design matrix ###Code y = df.loc[:, 'y'] X = df.loc[:, df.columns.difference(['y'])] X_c = pt.dmatrix('~ 0 + n_s + C(basis)', data=df, return_type='dataframe') X_c = X_c.rename(columns=lambda x: re.sub('C|\\(|\\)|\\[|\\]','',x)) ###Output _____no_output_____ ###Markdown Model fitting functions ###Code def gamma(alpha, beta): def g(x): return pm.Gamma(x, alpha=alpha, beta=beta) return g def hcauchy(beta): def g(x): return pm.HalfCauchy(x, beta=beta) return g def fit_model_1(y, X, kernel_type='rbf'): """ function to return a pymc3 model y : dependent variable X : independent variables prop_Xu : number of inducing varibles to use X, y are dataframes. We'll use the column names. """ with pm.Model() as model: # Covert arrays X_a = X.values y_a = y.values X_cols = list(X.columns) # Globals prop_Xu = 0.1 # proportion of observations to use as inducing variables l_prior = gamma(1, 0.05) eta_prior = hcauchy(2) sigma_prior = hcauchy(2) # Kernels # 3 way interaction eta = eta_prior('eta') cov = eta**2 for i in range(X_a.shape[1]): var_lab = 'l_'+X_cols[i] if kernel_type=='RBF': cov = cov*pm.gp.cov.ExpQuad(X_a.shape[1], ls=l_prior(var_lab), active_dims=[i]) if kernel_type=='Exponential': cov = cov*pm.gp.cov.Exponential(X_a.shape[1], ls=l_prior(var_lab), active_dims=[i]) if kernel_type=='M52': cov = cov*pm.gp.cov.Matern52(X_a.shape[1], ls=l_prior(var_lab), active_dims=[i]) if kernel_type=='M32': cov = cov*pm.gp.cov.Matern32(X_a.shape[1], ls=l_prior(var_lab), active_dims=[i]) # Covariance model cov_tot = cov # Model gp = pm.gp.MarginalSparse(cov_func=cov_tot, approx="FITC") # Noise model sigma_n =sigma_prior('sigma_n') # Inducing variables num_Xu = int(X_a.shape[0]*prop_Xu) Xu = pm.gp.util.kmeans_inducing_points(num_Xu, X_a) # Marginal likelihood y_ = gp.marginal_likelihood('y_', X=X_a, y=y_a,Xu=Xu, noise=sigma_n) mp = pm.find_MAP() return gp, mp, model ###Output _____no_output_____ ###Markdown Main testing loop This will loop through the kernels to get cross - validated MSLL and SMSE. Occaisionally a fold won't converge so the algo gets three attempt to restart ( ###Code # Inputs kernels = ['RBF', 'M52', 'M32', 'Exponential' ] # Outputs pred_dfs = [] # iterator max_restarts = 3 for i in range(len(kernels)): print(kernels[i]) converged = False n_restarts = 0 while (not converged) and (n_restarts < max_restarts): # instantiate a new cv-er to ensure folds are different each loop through. kf = StratifiedKFold(n_splits=10) # loop through folds for idx, (train_idx, test_idx) in enumerate(kf.split(X.values, X['basis'])): print('\tfold: {}'.format(idx)) # subset dataframes for training and testin y_train = y.iloc[train_idx] X_train = X_c.iloc[train_idx, :] y_test = y.iloc[test_idx] X_test = X_c.iloc[test_idx, :] try: # Fit gp model gp, mp, model = fit_model_1(y=y_train, X=X_train, kernel_type=kernels[i]) # Get predictions with model: # predict latent mu, var = gp.predict(X_test.values, point=mp, diag=True,pred_noise=False) sd_f = np.sqrt(var) # predict target (includes noise) _, var = gp.predict(X_test.values, point=mp, diag=True,pred_noise=True) sd_y = np.sqrt(var) # log results res = pd.DataFrame({'f_pred': mu, 'sd_f': sd_f, 'sd_y': sd_y, 'y': y_test.values}) res.loc[:, 'kernel'] = kernels[i] res.loc[:, 'fold_num'] = idx pred_dfs.append(pd.concat([X_test.reset_index(), res.reset_index()], axis=1)) except: # break without possibility of reaching convergence n_restarts += 1 break # convergence criterion - must have got this far on the last fold: if idx == kf.n_splits-1: converged = True pred_dfs = pd.concat(pred_dfs) ###Output RBF fold: 0 ###Markdown Evaluate kernels ###Code def ll(f_pred, sigma_pred, y_true): # log predictive density tmp = 0.5*np.log(2*np.pi*sigma_pred**2) tmp += (f_pred-y_true)**2/(2*sigma_pred**2) return tmp null_mu = np.mean(y) null_sd = np.std(y) sll = ll(pred_dfs['f_pred'], pred_dfs['sd_y'], pred_dfs['y']) sll = sll - ll(null_mu, null_sd, pred_dfs['y']) pred_dfs['msll'] = sll pred_dfs['smse'] = (pred_dfs['f_pred']-pred_dfs['y'])**2/np.var(y) pred_dfs.to_pickle('outputs/kernel_cv_fits_logged.p') msll = pred_dfs.groupby(['kernel'])['msll'].mean() smse = pred_dfs.groupby(['kernel'])['smse'].mean() summary = pd.DataFrame(smse).join(other=pd.DataFrame(msll), on=['kernel'], how='left') summary.to_csv('outputs/kernel_cv_fits_logged_summary.csv') summary ###Output _____no_output_____
exercises_pytorch.ipynb
###Markdown PAISS Practical Deep-RL by Criteo Research (Pytorch version) ###Code %pylab inline from utils import RLEnvironment, RLDebugger import random import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F env = RLEnvironment() print(env.observation_space, env.action_space) ###Output _____no_output_____ ###Markdown Random agent ###Code class RandomAgent: """The world's simplest agent!""" def __init__(self, action_space): self.action_space = action_space def get_action(self, state): return self.action_space.sample() ###Output _____no_output_____ ###Markdown Play loopNote that this Gym environment is considered as solved as soon as you find a policy which scores 200 on average. ###Code env.run(RandomAgent(env.action_space), episodes=20, display_policy=True) ###Output _____no_output_____ ###Markdown DQN Agent - OnlineHere is a keras code for training a simple DQN. It is presented first for the sake of clarity. Nevertheless, the trained network is immediatly used to collect the new training data, unless you are lucky you won't be able to find a way to solve the task. Just replace the `???` by some parameters which seems reasonnable to you ($\gamma>1$ is not reasonnable and big steps are prone to numerical instability) and watch the failure of the policy training. ###Code class Model(nn.Module): def __init__(self, input_dim, output_dim): super(Model, self).__init__() self.fc1 = nn.Linear(input_dim, ???) self.fc2 = nn.Linear(???, output_dim) def forward(self, x): x = F.???(self.fc1(x)) # non-linear activation return self.fc2(x) class DQNAgent(RLDebugger): def __init__(self, observation_space, action_space): RLDebugger.__init__(self) # get size of state and action self.state_size = observation_space.shape[0] self.action_size = action_space.n # hyper parameters self.gamma = ??? self.learning_rate = ??? self.build_model() self.target_model = self.model # approximate Q function using Neural Network # state is input and Q Value of each action is output of network def build_model(self): self.model = Model(input_dim=self.state_size, output_dim=self.action_size) self.optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate) self.loss = nn.???Loss() # 1/ You can try different losses. As an logcosh loss is a twice differenciable approximation of Huber loss # 2/ From a theoretical perspective Learning rate should decay with time to guarantee convergence def get_action(self, state): state = torch.from_numpy(state).float() q_value = self.model(state).detach().numpy() best_action = np.argmax(q_value[0]) #The [0] is because keras outputs a set of predictions of size 1 return int(best_action) # train the target network on the selected action and transition def train_model(self, action, state, next_state, reward, done): state = torch.from_numpy(state).float() next_state = torch.from_numpy(next_state).float() val = self.model(state)[0][action] target = self.model(state) target_val = self.target_model(next_state) if done: #We are on a terminal state target[0][action] = reward else: target[0][action] = reward + self.gamma * (torch.max(target_val)) # and do the model fit! self.model.zero_grad() loss = self.loss(val, target.detach()[0][action]) loss.backward() self.optimizer.step() self.record(action, state, target, target_val, loss, reward) agent = DQNAgent(env.observation_space, env.action_space) env.run(agent, episodes=500) agent.plot_loss() ###Output _____no_output_____ ###Markdown Let's try with a fixed initial position ###Code agent = DQNAgent(env.observation_space, env.action_space) env.run(agent, episodes=300, seed=0) agent.plot_loss() ###Output _____no_output_____ ###Markdown DQN Agent with ExplorationThis is our first agent which is going to solve the task. It will typically require to run a few hundred of episodes to collect the data. The difference with the previous agent is that you are going to add an exploration mechanism in order to take care of the data collection for the training. We advise to use an $\varepsilon_n$-greedy, meaning that the value of $\varepsilon$ is going to decay over time. Several kind of decays can be found in the litterature, a simple one is to use a mutiplicative update of $\varepsilon$ by a constant smaller than 1 as long as $\varepsilon$ is smaller than a small minimal rate (typically in the range 1%-5%).You need to:* Code your exploration (area are tagged in the code by some TODOs).* Tune the hyperparameters (including the ones from the previous section) in order to solve the task. This may be not so easy and will likely require more than 500 episodes and a final small value of epsilon. Next sessions will be about techniques to increase sample efficiency (i.e require less episodes). ###Code class DQNAgentWithExploration(DQNAgent): def __init__(self, observation_space, action_space): super(DQNAgentWithExploration, self).__init__(observation_space, action_space) # exploration schedule parameters self.t = 0 self.epsilon = ??? # Designs the probability of taking a random action. # Should be in range [0,1]. The closer to 0 the greedier. # Hint: start close to 1 (exploration) and end close to zero (exploitation). # decay epsilon def update_epsilon(self): # TODO write the code for your decay self.t += 1 self.epsilon = ??? # get action from model using greedy policy def get_action(self, state): # exploration if random.random() < self.epsilon: return random.randrange(self.action_size) state = torch.from_numpy(state).float() q_value = self.model(state).detach().numpy() best_action = np.argmax(q_value[0]) return int(best_action) agent = DQNAgentWithExploration(env.observation_space, env.action_space) env.run(agent, episodes=500, print_delay=50, seed=0) agent.plot_state() ###Output _____no_output_____ ###Markdown DQN Agent with Exploration and Experience ReplayWe are now going to save some samples in a limited memory in order to build minibatches during the training. The exploration policy remains the same than in the previous section. Storage is already coded you just need to modify the tagged section which is about building the mini-batch sent to the optimizer. ###Code from collections import deque class DQNAgentWithExplorationAndReplay(DQNAgentWithExploration): def __init__(self, observation_space, action_space): super(DQNAgentWithExplorationAndReplay, self).__init__(observation_space, action_space) self.batch_size = ??? # Recommended value range [10, 1000] # create replay memory using deque self.memory = deque(maxlen=10000) # Recommended value range [10, 20000] def create_minibatch(self): # pick samples randomly from replay memory (using batch_size) batch_size = min(self.batch_size, len(self.memory)) samples = random.sample(self.memory, batch_size) states = np.array([_[0][0] for _ in samples]) actions = np.array([_[1] for _ in samples]) rewards = np.array([_[2] for _ in samples]) next_states = np.array([_[3][0] for _ in samples]) dones = np.array([_[4] for _ in samples]) return (states, actions, rewards, next_states, dones) def train_model(self, action, state, next_state, reward, done): # save sample <s,a,r,s'> to the replay memory self.memory.append((state, action, reward, next_state, done)) if len(self.memory) >= self.batch_size: states, actions, rewards, next_states, dones = self.create_minibatch() states = torch.from_numpy(states).float() next_states = torch.from_numpy(next_states).float() vals = self.model(states).gather(1,torch.from_numpy(actions).view(-1,1)) targets = self.model(states) targets_val = self.target_model(next_states).detach() for i in range(self.batch_size): # Approx Q Learning if dones[i]: targets[i][actions[i]] = rewards[i] else: targets[i][actions[i]] = rewards[i] + self.gamma * (torch.max(targets_val[i])) # and do the model fit! self.model.zero_grad() loss = self.loss(vals, targets.detach().gather(1,torch.from_numpy(actions).view(-1,1))) loss.backward() self.optimizer.step() for i in range(self.batch_size): self.record(actions[i], states[i], targets[i], targets_val[i], loss / self.batch_size, rewards[i]) agent = DQNAgentWithExplorationAndReplay(env.observation_space, env.action_space) env.run(agent, episodes=300, print_delay=50) agent.plot_state() agent.plot_bellman_residual() ###Output _____no_output_____ ###Markdown Double DQN Agent with Exploration and Experience ReplayNow we want to have two identical networks and keep frozen for some timesteps the one which is in charge of the evaluation (*i.e* which is used to compute the targets).Note that you can find some variants where the target network is updated at each timestep but with a small fraction of the difference with the policy network. ###Code class DoubleDQNAgentWithExplorationAndReplay(DQNAgentWithExplorationAndReplay): def __init__(self, observation_space, action_space): super(DoubleDQNAgentWithExplorationAndReplay, self).__init__(observation_space, action_space) # TODO: initialize a second model self.target_model = Model(input_dim=self.state_size, output_dim=self.action_size) def update_target_model(self): # copy weights from the model used for action selection to the model used for computing targets self.target_model.load_state_dict(self.model.state_dict()) agent = DoubleDQNAgentWithExplorationAndReplay(env.observation_space, env.action_space) env.run(agent, episodes=300, print_delay=10) agent.plot_diagnostics() ###Output _____no_output_____ ###Markdown To observe actual performance of the policy we should set $\varepsilon=0$ ###Code agent.epsilon = 0 agent.memory = deque(maxlen=1) agent.batch_size = 1 env.run(agent, episodes=300, print_delay=33) agent.plot_diagnostics() ###Output _____no_output_____ ###Markdown Duelling DQN If time allows, adapt the description from http://torch.ch/blog/2016/04/30/dueling_dqn.html to our setting ###Code class DuelingModel(nn.Module): def __init__(self, input_dim, output_dim): super(DuelingModel, self).__init__() self.action_dim = output_dim self.value_fc1 = nn.Linear(input_dim, ???) self.value_fc2 = nn.Linear(???, 1) self.advantage_fc1 = nn.Linear(input_dim, ???) self.advantage_fc2 = nn.Linear(???, output_dim) def forward(self, x): latent_values = F.tanh(self.value_fc1(x)) value = self.value_fc2(latent_values) value_repeat = torch.cat([value]*self.action_dim, 1) latent_advantages = F.tanh(self.advantage_fc1(x)) advantage = self.advantage_fc2(latent_advantages) q_values = advantage + value_repeat return q_values class DoubleDuelingDQNAgentWithExplorationAndReplay(DoubleDQNAgentWithExplorationAndReplay): def __init__(self, observation_space, action_space): super(DoubleDuelingDQNAgentWithExplorationAndReplay, self).__init__(observation_space, action_space) self.target_model = DuelingModel(input_dim=self.state_size, output_dim=self.action_size) def build_model(self): self.model = DuelingModel(input_dim=self.state_size, output_dim=self.action_size) self.optimizer = optim.???(self.model.parameters(), lr=self.learning_rate) self.loss = nn.???Loss() agent = DoubleDuelingDQNAgentWithExplorationAndReplay(env.observation_space, env.action_space) env.run(agent, episodes=300, print_delay=50) agent.plot_diagnostics() ###Output _____no_output_____
Homework6_2.ipynb
###Markdown Homework 6 Problem 2 1. How to divide the 24 galaxies into groupsIn Hubble's orginal paper "A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae" 1929, table 1 lists 24 nebulae that are used to plot his famous diagram. Looking at table 1, one realizes that a few nebulae have almost the same distance r, maybe it will be easier to simply group them together as a single data point. This would make sense if the nebulae actually belong to the same cluster of galaxies. I should mention that Hubble called the galaxies, nebulae, since people weren't sure exactly what they were. Nowadays we know they're galaxies, so from this point on, we will just call them galaxies. So let's group the galaxies broadly based on distance r fist. Then we check the positions of these galaxies in the sky. If they are not in roughly the same position in the sky, we can not group them together, since they must be separate galaxies but just happen to have similar distances to Earth. The positions of the galaxies can be found on this website: http://spider.seds.org/ngc/ngc.html. The positions of the galaxies are given by angular measurements in the sky. The right ascension tells the longitudinal position: how far to the East or West in the sky. The Declination tells how high up in the sky is the object located.![Angular position in the sky](https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Ra_and_dec_on_celestial_sphere.png/600px-Ra_and_dec_on_celestial_sphere.png)(Image from wikipedia, https://en.wikipedia.org/wiki/Right_ascension. Attribution: Tfr000 (talk) 15:34, 15 June 2012 (UTC), CC BY-SA 3.0 , via Wikimedia Commons)Looking at table 1, all the galaxies have a catalogue number that we can put into http://spider.seds.org/ngc/ngc.html and find out their positions, except the first two. S.Mag. and L.Mag., what are they? I'm totally guessing here, they're probably the same group, given their similar name and similar distances. S.Mag. might have to do with Andromeda Galaxy, based on google search.Here is my grouping. The group index is the last column of the table:![Grouping Hubble's data](https://github.com/piaohanx/CP1_Hubble/blob/main/grouping.png?raw=true) --- As could be seen, I divided the data into 13 groups. Some groups could be merged together, but not being an astronomer, I don't know how big a variation in the angular position is accpetable for grouping the data points together into a single cluster... So I guess I will just go with my 13 groups rather than Hubble's 9 groups. 2. Fitting the dataIn the previous section, we divided the data points into 13 groups, based on their distances and angular positions. I calculated average distance and velocity in each group. Thus we have the following 13 data points:![Group averages](https://github.com/piaohanx/CP1_Hubble/blob/main/Group%20averages.png?raw=true)---The following is my attempt to try to read in the data from the CSV file I generated named "Hubble2.csv", and then fit it. I used the code from the Jupyter notebook quake.ipynb to import the data. The code are as follows: ###Code import numpy as np import matplotlib.pyplot as plt from least_squares import least_squares # Make the plots a bit bigger to see # NOTE: Must be done in a separate cell plt.rcParams['figure.dpi'] = 100 # Import the distance data from Hubble's original paper r = np.genfromtxt(fname='Hubble2.csv', usecols=(0),skip_header=1, delimiter=',') # Let us check if we indeed imported the distances correctly r # Import the velocity data from Hubble's original paper v = np.genfromtxt(fname='Hubble2.csv', usecols=(1),skip_header=1, delimiter=',') # Let us check if we indeed imported the velocity correctly v ###Output _____no_output_____ ###Markdown ---Now that we have correctly imported the data, we can fit the data. The python code least_square.py however is not my own :( I used the one already inside the data analysis folder. I think I understand the idea how the code works. Essentially, we had to minimized the least square function, and so we need to do differentiation and equate the differentials to zero. This results in a set of simultaneous equations, which we can solve to find the gradient and the intercept of our linear fit line. All these steps are done on paper, the code does not differentiate or solve the system of equations! The python code just calculates the results of our solutions. In Problem 1, I have done on paper the minimization of the chi square function. I arrived at the stage where we have a system of equations, but the solutions to the system of equations are incredibly hard to find. It involves a lot of algebra. If I could find those solutions I could then put them in a python code and let it calculate for me. ###Code # Here I uses the the least_square.py code from the data analysis folder. # It is the not the code I have written myself though :( [a, b, sigma, sigma_a, sigma_b] = least_squares(r,v) n = len(r) # number of galaxies if n <= 2 : print ('Error! Need at least two data points!') exit() # If we want to check our fitting result against numpy's fitting result, we can add the following line. # p,cov = np.polyfit( r, v, 1, cov=True) # Print out results print (' Least squares fit of', n, 'data points') print (' -----------------------------------') print (" Hubble's constant slope b = {0:6.2f} +- {1:6.2f} km/s/Mpc".format( b, sigma_b)) print (" Intercept with r axis a = {0:6.2f} +- {1:6.2f} km/s".format( a, sigma_a)) print (' Estimated v error bar sigma =', round(sigma, 1), 'km/s') # Again, If we want to check our fitting result against numpy's fitting result, we can add these line. # print (" numpy's values: b = {0:6.2f} +- {1:6.2f} km/s/Mpc".format( p[0], np.sqrt(cov[0,0]))) # print (" a = {0:6.2f} +- {1:6.2f} km/s/Mpc".format( p[1], np.sqrt(cov[1,1]))) rvals = np.linspace(0., 2.0, 21) f = a + b * rvals fnp = p[1] + p[0] * rvals plt.figure(1) plt.scatter( r, v, label = "Data" ) plt.plot( rvals, f , label="Our fit") # If we want to compare to numpy fitting result we can add the following line. # plt.plot( rvals, fnp, label = "numpy fit") plt.xlabel("Distance (Mpc)") plt.ylabel("Velocity (km/s)") plt.legend() plt.show() ###Output Least squares fit of 13 data points ----------------------------------- Hubble's constant slope b = 386.59 +- 99.55 km/s/Mpc Intercept with r axis a = 80.39 +- 98.69 km/s Estimated v error bar sigma = 193.7 km/s
Identify Customer Segments.ipynb
###Markdown Project: Identify Customer SegmentsIn this project, you will apply unsupervised learning techniques to identify segments of the population that form the core customer base for a mail-order sales company in Germany. These segments can then be used to direct marketing campaigns towards audiences that will have the highest expected rate of returns. The data that you will use has been provided by our partners at Bertelsmann Arvato Analytics, and represents a real-life data science task.This notebook will help you complete this task by providing a framework within which you will perform your analysis steps. In each step of the project, you will see some text describing the subtask that you will perform, followed by one or more code cells for you to complete your work. **Feel free to add additional code and markdown cells as you go along so that you can explore everything in precise chunks.** The code cells provided in the base template will outline only the major tasks, and will usually not be enough to cover all of the minor tasks that comprise it.It should be noted that while there will be precise guidelines on how you should handle certain tasks in the project, there will also be places where an exact specification is not provided. **There will be times in the project where you will need to make and justify your own decisions on how to treat the data.** These are places where there may not be only one way to handle the data. In real-life tasks, there may be many valid ways to approach an analysis task. One of the most important things you can do is clearly document your approach so that other scientists can understand the decisions you've made.At the end of most sections, there will be a Markdown cell labeled **Discussion**. In these cells, you will report your findings for the completed section, as well as document the decisions that you made in your approach to each subtask. **Your project will be evaluated not just on the code used to complete the tasks outlined, but also your communication about your observations and conclusions at each stage.** ###Code # import libraries here; add more as necessary import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # magic word for producing visualizations in notebook %matplotlib inline ''' Import note: The classroom currently uses sklearn version 0.19. If you need to use an imputer, it is available in sklearn.preprocessing.Imputer, instead of sklearn.impute as in newer versions of sklearn. ''' ###Output _____no_output_____ ###Markdown Step 0: Load the DataThere are four files associated with this project (not including this one):- `Udacity_AZDIAS_Subset.csv`: Demographics data for the general population of Germany; 891211 persons (rows) x 85 features (columns).- `Udacity_CUSTOMERS_Subset.csv`: Demographics data for customers of a mail-order company; 191652 persons (rows) x 85 features (columns).- `Data_Dictionary.md`: Detailed information file about the features in the provided datasets.- `AZDIAS_Feature_Summary.csv`: Summary of feature attributes for demographics data; 85 features (rows) x 4 columnsEach row of the demographics files represents a single person, but also includes information outside of individuals, including information about their household, building, and neighborhood. You will use this information to cluster the general population into groups with similar demographic properties. Then, you will see how the people in the customers dataset fit into those created clusters. The hope here is that certain clusters are over-represented in the customers data, as compared to the general population; those over-represented clusters will be assumed to be part of the core userbase. This information can then be used for further applications, such as targeting for a marketing campaign.To start off with, load in the demographics data for the general population into a pandas DataFrame, and do the same for the feature attributes summary. Note for all of the `.csv` data files in this project: they're semicolon (`;`) delimited, so you'll need an additional argument in your [`read_csv()`](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html) call to read in the data properly. Also, considering the size of the main dataset, it may take some time for it to load completely.Once the dataset is loaded, it's recommended that you take a little bit of time just browsing the general structure of the dataset and feature summary file. You'll be getting deep into the innards of the cleaning in the first major step of the project, so gaining some general familiarity can help you get your bearings. ###Code # Load in the general demographics data. azdias = pd.read_csv('Udacity_AZDIAS_Subset.csv',sep=';') # Load in the feature summary file. feat_info = pd.read_csv('AZDIAS_Feature_Summary.csv',sep=';') np.shape(azdias) # Check the structure of the data after it's loaded (e.g. print the number of # rows and columns, print the first few rows). azdias.head() feat_info.head() ###Output _____no_output_____ ###Markdown > **Tip**: Add additional cells to keep everything in reasonably-sized chunks! Keyboard shortcut `esc --> a` (press escape to enter command mode, then press the 'A' key) adds a new cell before the active cell, and `esc --> b` adds a new cell after the active cell. If you need to convert an active cell to a markdown cell, use `esc --> m` and to convert to a code cell, use `esc --> y`. Step 1: Preprocessing Step 1.1: Assess Missing DataThe feature summary file contains a summary of properties for each demographics data column. You will use this file to help you make cleaning decisions during this stage of the project. First of all, you should assess the demographics data in terms of missing data. Pay attention to the following points as you perform your analysis, and take notes on what you observe. Make sure that you fill in the **Discussion** cell with your findings and decisions at the end of each step that has one! Step 1.1.1: Convert Missing Value Codes to NaNsThe fourth column of the feature attributes summary (loaded in above as `feat_info`) documents the codes from the data dictionary that indicate missing or unknown data. While the file encodes this as a list (e.g. `[-1,0]`), this will get read in as a string object. You'll need to do a little bit of parsing to make use of it to identify and clean the data. Convert data that matches a 'missing' or 'unknown' value code into a numpy NaN value. You might want to see how much data takes on a 'missing' or 'unknown' code, and how much data is naturally missing, as a point of interest.**As one more reminder, you are encouraged to add additional cells to break up your analysis into manageable chunks.** ###Code def unknown_col_correction(unknown_col): unknown_values_corr=pd.DataFrame() for x in unknown_col: x=list(x) x.remove('[') x.remove(']') while ',' in x: x.remove(',') unknown_values=[] flag=0 for i in range(len(x)): if flag==1: flag=0 continue if x[i]=='-': unknown_values.append(int(x[i+1])*-1) flag=1 elif x[i]=='X': unknown_values.append("XX") flag=1 else: unknown_values.append(int(x[i])) unknown_values_corr=unknown_values_corr.append(pd.Series([unknown_values]),ignore_index=True) return unknown_values_corr corrected_unknow_values=unknown_col_correction(feat_info.iloc[:,3]) feat_info['corrected_unknown']=corrected_unknow_values feat_info.head() # Identify missing or unknown data values and convert them to NaNs. def missing_values_convert(df_input): for i in range(len(feat_info)): for unknown_value in feat_info.iloc[i,4]: df_input.iloc[:,i][df_input.iloc[:,i]== unknown_value]=np.nan return df_input azdias=missing_values_convert(azdias) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy """ ###Markdown Step 1.1.2: Assess Missing Data in Each ColumnHow much missing data is present in each column? There are a few columns that are outliers in terms of the proportion of values that are missing. You will want to use matplotlib's [`hist()`](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html) function to visualize the distribution of missing value counts to find these columns. Identify and document these columns. While some of these columns might have justifications for keeping or re-encoding the data, for this project you should just remove them from the dataframe. (Feel free to make remarks about these outlier columns in the discussion, however!)For the remaining features, are there any patterns in which columns have, or share, missing data? ###Code # Perform an assessment of how much missing data there is in each column of the # dataset. missing_data = pd.DataFrame(azdias.isnull().sum().reset_index()) missing_data.columns = ['Column_name','Count_missing_value'] missing_data.hist(bins=85) # features with no missing or unknow values complete_features=missing_data[(missing_data['Count_missing_value']==0)]['Column_name'] complete_features # features with missing values but not outliers features_missing_data=missing_data[(missing_data['Count_missing_value']>0) & (missing_data['Count_missing_value']<200000) ] features_missing_data missing_data[ (missing_data['Count_missing_value']>200000) ] outliers_features=missing_data[(missing_data['Count_missing_value']>200000)]['Column_name'] outliers_features # Investigate patterns in the amount of missing data in each column. missing_data[(missing_data['Count_missing_value']>0) & (missing_data['Count_missing_value']<200000) ].hist() # Remove the outlier columns from the dataset. (You'll perform other data # engineering tasks such as re-encoding and imputation later.) azdias.drop(labels=outliers_features ,axis=1,inplace=True) ###Output _____no_output_____ ###Markdown Discussion 1.1.2: Assess Missing Data in Each Column(Double click this cell and replace this text with your own text, reporting your observations regarding the amount of missing data in each column. Are there any patterns in missing values? Which columns were removed from the dataset?)My observation regarding the number of missing data:The columns which have no missing or unknown are the Personality typology and the Financial typology and both are the core features, so they cannot be missing.Most of the missing values are in the range between 0 and 200,000 and they are centered around 100,000.The columns removed from the dataset are the following:* AGER_TYP* GEBURTSJAHR* TITEL_KZ* ALTER_HH* KK_KUNDENTYP* KBA05_BAUMAX Step 1.1.3: Assess Missing Data in Each RowNow, you'll perform a similar assessment for the rows of the dataset. How much data is missing in each row? As with the columns, you should see some groups of points that have a very different numbers of missing values. Divide the data into two subsets: one for data points that are above some threshold for missing values, and a second subset for points below that threshold.In order to know what to do with the outlier rows, we should see if the distribution of data values on columns that are not missing data (or are missing very little data) are similar or different between the two groups. Select at least five of these columns and compare the distribution of values.- You can use seaborn's [`countplot()`](https://seaborn.pydata.org/generated/seaborn.countplot.html) function to create a bar chart of code frequencies and matplotlib's [`subplot()`](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html) function to put bar charts for the two subplots side by side.- To reduce repeated code, you might want to write a function that can perform this comparison, taking as one of its arguments a column to be compared.Depending on what you observe in your comparison, this will have implications on how you approach your conclusions later in the analysis. If the distributions of non-missing features look similar between the data with many missing values and the data with few or no missing values, then we could argue that simply dropping those points from the analysis won't present a major issue. On the other hand, if the data with many missing values looks very different from the data with few or no missing values, then we should make a note on those data as special. We'll revisit these data later on. **Either way, you should continue your analysis for now using just the subset of the data with few or no missing values.** ###Code # How much data is missing in each row of the dataset? azdias['number_missing_values']=azdias.isnull().sum(axis=1) azdias['number_missing_values'].hist(bins=20) # Write code to divide the data into two subsets based on the number of missing # values in each row. azdias_below_threshold=azdias[azdias['number_missing_values']<30] azdias_above_threshold=azdias[azdias['number_missing_values']>30] def distrubition_compare(features,input1,input2): fig, axes = plt.subplots(5, 2, figsize=(10, 30)) for i,feature in enumerate(features): sns.countplot(ax=axes[i,0],data=input1[feature],x=input1[feature]) axes[i,0].set_title(feature) sns.countplot(ax=axes[i,1],data=input2[feature],x=input2[feature]) axes[i,1].set_title(feature) # Compare the distribution of values for at least five columns where there are # no or few missing values, between the two subsets. no_missing_values_features=['SEMIO_SOZ','SEMIO_MAT','FINANZTYP','FINANZ_HAUSBAUER', 'SEMIO_TRADV'] distrubition_compare(no_missing_values_features,azdias_above_threshold,azdias_below_threshold) ###Output _____no_output_____ ###Markdown Discussion 1.1.3: Assess Missing Data in Each Row(Double-click this cell and replace this text with your own text, reporting your observations regarding missing data in rows. Are the data with lots of missing values are qualitatively different from data with few or no missing values?)yes, the data with lots of missing values are concetated in one value, while the data with few missing values are evenly distrubeted around all the values. Step 1.2: Select and Re-Encode FeaturesChecking for missing data isn't the only way in which you can prepare a dataset for analysis. Since the unsupervised learning techniques to be used will only work on data that is encoded numerically, you need to make a few encoding changes or additional assumptions to be able to make progress. In addition, while almost all of the values in the dataset are encoded using numbers, not all of them represent numeric values. Check the third column of the feature summary (`feat_info`) for a summary of types of measurement.- For numeric and interval data, these features can be kept without changes.- Most of the variables in the dataset are ordinal in nature. While ordinal values may technically be non-linear in spacing, make the simplifying assumption that the ordinal variables can be treated as being interval in nature (that is, kept without any changes).- Special handling may be necessary for the remaining two variable types: categorical, and 'mixed'.In the first two parts of this sub-step, you will perform an investigation of the categorical and mixed-type features and make a decision on each of them, whether you will keep, drop, or re-encode each. Then, in the last part, you will create a new data frame with only the selected and engineered columns.Data wrangling is often the trickiest part of the data analysis process, and there's a lot of it to be done here. But stick with it: once you're done with this step, you'll be ready to get to the machine learning parts of the project! ###Code # How many features are there of each data type? type_count=feat_info['type'].value_counts() type_count ###Output _____no_output_____ ###Markdown Step 1.2.1: Re-Encode Categorical FeaturesFor categorical data, you would ordinarily need to encode the levels as dummy variables. Depending on the number of categories, perform one of the following:- For binary (two-level) categoricals that take numeric values, you can keep them without needing to do anything.- There is one binary variable that takes on non-numeric values. For this one, you need to re-encode the values as numbers or create a dummy variable.- For multi-level categoricals (three or more values), you can choose to encode the values using multiple dummy variables (e.g. via [OneHotEncoder](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html)), or (to keep things straightforward) just drop them from the analysis. As always, document your choices in the Discussion section. ###Code # Assess categorical variables: which are binary, which are multi-level, and # which one needs to be re-encoded? cat_features=feat_info[(feat_info['type']== 'categorical')] for i in range(len(outliers_features.values)): cat_features=cat_features[cat_features['attribute']!=outliers_features.values[i]] cat_feat_unique_values=pd.DataFrame(azdias_below_threshold[cat_features['attribute']].nunique()) cat_feat_unique_values=cat_feat_unique_values.reset_index() cat_feat_unique_values.rename(columns={'index':'features', 0:'number_unique_values'},inplace=True) binary_features= cat_feat_unique_values[cat_feat_unique_values['number_unique_values']==2] multi_level_features= cat_feat_unique_values[cat_feat_unique_values['number_unique_values']>=3] azdias_below_threshold.drop(labels=multi_level_features['features'],axis=1,inplace=True) # Re-encode categorical variable(s) to be kept in the analysis. feature_reencoded=azdias_below_threshold[binary_features['features']].select_dtypes(include=['object']).columns azdias_below_threshold[feature_reencoded]=azdias_below_threshold[feature_reencoded].replace({'W': 1,'O':0}) ###Output /opt/conda/lib/python3.6/site-packages/pandas/core/frame.py:3140: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self[k1] = value[k2] ###Markdown Discussion 1.2.1: Re-Encode Categorical Features(Double-click this cell and replace this text with your own text, reporting your findings and decisions regarding categorical features. Which ones did you keep, which did you drop, and what engineering steps did you perform?)I kept the following features :* ANREDE_KZ* GREEN_AVANTGARDE* SOHO_KZ* VERS_TYP* OST_WEST_KZRemoved the following:* CJT_GESAMTTYP* FINANZTYP* GFK_URLAUBERTYP* LP_FAMILIE_FEIN* LP_FAMILIE_GROB* LP_STATUS_FEIN* LP_STATUS_GROB* NATIONALITAET_KZ* SHOPPER_TYP* ZABEOTYP* GEBAEUDETYP* CAMEO_DEUG_2015* CAMEO_DEU_2015For the feature OST_WEST_KZ , it has non numeric value "W" and it was replaced with numeric value 1 instead and "O" was replaced with 0 Step 1.2.2: Engineer Mixed-Type FeaturesThere are a handful of features that are marked as "mixed" in the feature summary that require special treatment in order to be included in the analysis. There are two in particular that deserve attention; the handling of the rest are up to your own choices:- "PRAEGENDE_JUGENDJAHRE" combines information on three dimensions: generation by decade, movement (mainstream vs. avantgarde), and nation (east vs. west). While there aren't enough levels to disentangle east from west, you should create two new variables to capture the other two dimensions: an interval-type variable for decade, and a binary variable for movement.- "CAMEO_INTL_2015" combines information on two axes: wealth and life stage. Break up the two-digit codes by their 'tens'-place and 'ones'-place digits into two new ordinal variables (which, for the purposes of this project, is equivalent to just treating them as their raw numeric values).- If you decide to keep or engineer new features around the other mixed-type features, make sure you note your steps in the Discussion section.Be sure to check `Data_Dictionary.md` for the details needed to finish these tasks. ###Code mixed_features=feat_info[(feat_info['type']== 'mixed') ] for i in range(len(outliers_features.values)): mixed_features=mixed_features[mixed_features['attribute']!=outliers_features.values[i]] # Investigate "PRAEGENDE_JUGENDJAHRE" and engineer two new variables. azdias_below_threshold['PRAEGENDE_JUGENDJAHRE_age']= azdias_below_threshold['PRAEGENDE_JUGENDJAHRE'].replace({1:1,2:1,3:2,4:2,5:3,6:3,7:3,8:4,9:4,10:5,11:5,12:5,13:5,14:6,15:6}) azdias_below_threshold['PRAEGENDE_JUGENDJAHRE_movment']=azdias_below_threshold['PRAEGENDE_JUGENDJAHRE'].replace({1:0,3:0,5:0,8:0,10:0,12:0,14:0,2:1,4:1,6:1,7:1,9:1,11:1,13:1,15:1}) # Investigate "CAMEO_INTL_2015" and engineer two new variables. unique_values=azdias_below_threshold['CAMEO_INTL_2015'].unique() unique_values=unique_values.astype(float) unique_values=np.delete(unique_values,np.argwhere(np.isnan(unique_values))) unique_values=unique_values.astype(int) azdias_below_threshold['CAMEO_INTL_2015_wealth']=azdias_below_threshold['CAMEO_INTL_2015'] azdias_below_threshold['CAMEO_INTL_2015_family_stage']=azdias_below_threshold['CAMEO_INTL_2015'] for unique_value in unique_values: azdias_below_threshold['CAMEO_INTL_2015_wealth']=azdias_below_threshold['CAMEO_INTL_2015_wealth'].replace({str(unique_value):int(unique_value/10)}) azdias_below_threshold['CAMEO_INTL_2015_family_stage']=azdias_below_threshold['CAMEO_INTL_2015_family_stage'].replace({str(unique_value):int(str(unique_value)[1])}) azdias_below_threshold.drop(labels=mixed_features['attribute'],axis=1,inplace=True) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy import sys /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:8: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:11: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy # This is added back by InteractiveShellApp.init_path() /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:12: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy if sys.path[0] == '': /opt/conda/lib/python3.6/site-packages/pandas/core/frame.py:3697: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy errors=errors) ###Markdown Discussion 1.2.2: Engineer Mixed-Type Features(Double-click this cell and replace this text with your own text, reporting your findings and decisions regarding mixed-value features. Which ones did you keep, which did you drop, and what engineering steps did you perform?)The features that were kept PRAEGENDE_JUGENDJAHRE and CAMEO_INTL_2015, but after being splitted into 4 features.The following were removed: LP_LEBENSPHASE_FEIN* LP_LEBENSPHASE_GROB* WOHNLAGE* PLZ8_BAUMAX Step 1.2.3: Complete Feature SelectionIn order to finish this step up, you need to make sure that your data frame now only has the columns that you want to keep. To summarize, the dataframe should consist of the following:- All numeric, interval, and ordinal type columns from the original dataset.- Binary categorical features (all numerically-encoded).- Engineered features from other multi-level categorical features and mixed features.Make sure that for any new columns that you have engineered, that you've excluded the original columns from the final dataset. Otherwise, their values will interfere with the analysis later on the project. For example, you should not keep "PRAEGENDE_JUGENDJAHRE", since its values won't be useful for the algorithm: only the values derived from it in the engineered features you created should be retained. As a reminder, your data should only be from **the subset with few or no missing values**. ###Code # If there are other re-engineering tasks you need to perform, make sure you # take care of them here. (Dealing with missing data will come in step 2.1.) # Do whatever you need to in order to ensure that the dataframe only contains # the columns that should be passed to the algorithm functions. ###Output _____no_output_____ ###Markdown Step 1.3: Create a Cleaning FunctionEven though you've finished cleaning up the general population demographics data, it's important to look ahead to the future and realize that you'll need to perform the same cleaning steps on the customer demographics data. In this substep, complete the function below to execute the main feature selection, encoding, and re-engineering steps you performed above. Then, when it comes to looking at the customer data in Step 3, you can just run this function on that DataFrame to get the trimmed dataset in a single step. ###Code def removing_columns_rows(df,outliers_features ,row_threshold): missing_data = pd.DataFrame(df.isnull().sum().reset_index()) missing_data.columns = ['Column_name','Count_missing_value'] #outliers_features=missing_data[(missing_data['Count_missing_value']>column_threshold)]['Column_name'] df.drop(labels=outliers_features ,axis=1,inplace=True) df['number_missing_values']=df.isnull().sum(axis=1) df=df[df['number_missing_values']<row_threshold] return df def removing_rencoding_features(df,outliers_features): # categorical features re-encoding cat_features=feat_info[(feat_info['type']== 'categorical')] for i in range(len(outliers_features.values)): cat_features=cat_features[cat_features['attribute']!=outliers_features.values[i]] cat_feat_unique_values=pd.DataFrame(df[cat_features['attribute']].nunique()) cat_feat_unique_values=cat_feat_unique_values.reset_index() cat_feat_unique_values.rename(columns={'index':'features', 0:'number_unique_values'},inplace=True) binary_features= cat_feat_unique_values[cat_feat_unique_values['number_unique_values']==2] multi_level_features= cat_feat_unique_values[cat_feat_unique_values['number_unique_values']>=3] df=df.drop(labels=multi_level_features['features'],axis=1) feature_reencoded=df[binary_features['features']].select_dtypes(include=['object']).columns df[feature_reencoded]=df[feature_reencoded].replace({'W':1,'O':0}) # mixed features re-encoding mixed_features=feat_info[(feat_info['type']== 'mixed') ] for i in range(len(outliers_features.values)): mixed_features=mixed_features[mixed_features['attribute']!=outliers_features.values[i]] df['PRAEGENDE_JUGENDJAHRE_age']= df['PRAEGENDE_JUGENDJAHRE'].replace({1:1,2:1,3:2,4:2,5:3,6:3,7:3,8:4,9:4,10:5,11:5,12:5,13:5,14:6,15:6}) df['PRAEGENDE_JUGENDJAHRE_movment']=df['PRAEGENDE_JUGENDJAHRE'].replace({1:0,3:0,5:0,8:0,10:0,12:0,14:0,2:1,4:1,6:1,7:1,9:1,11:1,13:1,15:1}) unique_values=df['CAMEO_INTL_2015'].unique() unique_values=unique_values.astype(float) unique_values=np.delete(unique_values,np.argwhere(np.isnan(unique_values))) unique_values=unique_values.astype(int) df['CAMEO_INTL_2015_wealth']=df['CAMEO_INTL_2015'] df['CAMEO_INTL_2015_family_stage']=df['CAMEO_INTL_2015'] for unique_value in unique_values: df['CAMEO_INTL_2015_wealth']=df['CAMEO_INTL_2015_wealth'].replace({str(unique_value):int(unique_value/10)}) df['CAMEO_INTL_2015_family_stage']=df['CAMEO_INTL_2015_family_stage'].replace({str(unique_value):int(str(unique_value)[1])}) df=df.drop(labels=mixed_features['attribute'],axis=1) return df def clean_data(df,row_threshold): """ Perform feature trimming, re-encoding, and engineering for demographics data INPUT: Demographics DataFrame OUTPUT: Trimmed and cleaned demographics DataFrame """ # Put in code here to execute all main cleaning steps: # convert missing value codes into NaNs, ... df=missing_values_convert(df) # remove selected columns and rows, ... df_col_row_removed=removing_columns_rows(df,outliers_features ,row_threshold) # select, re-encode, and engineer column values. df_rencoded=removing_rencoding_features(df_col_row_removed,outliers_features) # Return the cleaned dataframe. return df_rencoded ###Output _____no_output_____ ###Markdown Step 2: Feature Transformation Step 2.1: Apply Feature ScalingBefore we apply dimensionality reduction techniques to the data, we need to perform feature scaling so that the principal component vectors are not influenced by the natural differences in scale for features. Starting from this part of the project, you'll want to keep an eye on the [API reference page for sklearn](http://scikit-learn.org/stable/modules/classes.html) to help you navigate to all of the classes and functions that you'll need. In this substep, you'll need to check the following:- sklearn requires that data not have missing values in order for its estimators to work properly. So, before applying the scaler to your data, make sure that you've cleaned the DataFrame of the remaining missing values. This can be as simple as just removing all data points with missing data, or applying an [Imputer](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html) to replace all missing values. You might also try a more complicated procedure where you temporarily remove missing values in order to compute the scaling parameters before re-introducing those missing values and applying imputation. Think about how much missing data you have and what possible effects each approach might have on your analysis, and justify your decision in the discussion section below.- For the actual scaling function, a [StandardScaler](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) instance is suggested, scaling each feature to mean 0 and standard deviation 1.- For these classes, you can make use of the `.fit_transform()` method to both fit a procedure to the data as well as apply the transformation to the data at the same time. Don't forget to keep the fit sklearn objects handy, since you'll be applying them to the customer demographics data towards the end of the project. ###Code # If you've not yet cleaned the dataset of all NaN values, then investigate and # do that now. column_miising=pd.DataFrame(azdias_below_threshold.isna()).sum(axis=0) rows_miising=pd.DataFrame(azdias_below_threshold.isna()).sum(axis=1) column_miising.hist() plt.figure() rows_miising.hist() from sklearn.preprocessing import Imputer simple_imp=Imputer(missing_values=np.nan, strategy='most_frequent') simple_imp_model=simple_imp.fit(azdias_below_threshold) azdias_imputed=simple_imp_model.transform(azdias_below_threshold) # Apply feature scaling to the general population demographics data. from sklearn.preprocessing import StandardScaler stand=StandardScaler() stand.fit(azdias_imputed) azdias_scaled=stand.transform(azdias_imputed) ###Output _____no_output_____ ###Markdown Discussion 2.1: Apply Feature Scaling(Double-click this cell and replace this text with your own text, reporting your decisions regarding feature scaling.)* The missing value was replaced witht the most frequent value for each column and then standarization was applied on the data Step 2.2: Perform Dimensionality ReductionOn your scaled data, you are now ready to apply dimensionality reduction techniques.- Use sklearn's [PCA](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html) class to apply principal component analysis on the data, thus finding the vectors of maximal variance in the data. To start, you should not set any parameters (so all components are computed) or set a number of components that is at least half the number of features (so there's enough features to see the general trend in variability).- Check out the ratio of variance explained by each principal component as well as the cumulative variance explained. Try plotting the cumulative or sequential values using matplotlib's [`plot()`](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html) function. Based on what you find, select a value for the number of transformed features you'll retain for the clustering part of the project.- Once you've made a choice for the number of components to keep, make sure you re-fit a PCA instance to perform the decided-on transformation. ###Code # Apply PCA to the data. from sklearn.decomposition import PCA pca=PCA(n_components=50) pca.fit_transform(azdias_scaled) # Investigate the variance accounted for by each principal component. num_components=len(pca.explained_variance_ratio_) ind = np.arange(num_components) vals = pca.explained_variance_ratio_ plt.figure(figsize=(25, 6)) ax = plt.subplot(111) cumvals = np.cumsum(vals) ax.bar(ind, vals) ax.plot(ind, cumvals) for i in range(num_components): ax.annotate(r"%s%%" % ((str(vals[i]*100)[:4])), (ind[i]+0.15, vals[i]), va="bottom", ha="center", fontsize=8) ax.xaxis.set_tick_params(width=0) ax.yaxis.set_tick_params(width=2, length=12) ax.set_xlabel("Principal Component") ax.set_ylabel("Variance Explained (%)") plt.title('Explained Variance Per Principal Component') # Re-apply PCA to the data while selecting for number of components to retain. pca=PCA(n_components=10) pca_model=pca.fit(azdias_scaled) azdias_pca=pca_model.transform(azdias_scaled) ###Output _____no_output_____ ###Markdown Discussion 2.2: Perform Dimensionality Reduction(Double-click this cell and replace this text with your own text, reporting your findings and decisions regarding dimensionality reduction. How many principal components / transformed features are you retaining for the next step of the analysis?)* The number of principal components retain for the next step is 10 Step 2.3: Interpret Principal ComponentsNow that we have our transformed principal components, it's a nice idea to check out the weight of each variable on the first few components to see if they can be interpreted in some fashion.As a reminder, each principal component is a unit vector that points in the direction of highest variance (after accounting for the variance captured by earlier principal components). The further a weight is from zero, the more the principal component is in the direction of the corresponding feature. If two features have large weights of the same sign (both positive or both negative), then increases in one tend expect to be associated with increases in the other. To contrast, features with different signs can be expected to show a negative correlation: increases in one variable should result in a decrease in the other.- To investigate the features, you should map each weight to their corresponding feature name, then sort the features according to weight. The most interesting features for each principal component, then, will be those at the beginning and end of the sorted list. Use the data dictionary document to help you understand these most prominent features, their relationships, and what a positive or negative value on the principal component might indicate.- You should investigate and interpret feature associations from the first three principal components in this substep. To help facilitate this, you should write a function that you can call at any time to print the sorted list of feature weights, for the *i*-th principal component. This might come in handy in the next step of the project, when you interpret the tendencies of the discovered clusters. ###Code def get_feature_importance(pca_model,i): features_names=azdias_below_threshold.columns.values compnents_df=pd.DataFrame(pca_model.components_) compnents_df.columns=features_names compnents_df=compnents_df.transpose() compnents_name=[] for j in range(len(pca_model.components_)): compnents_name=np.append(compnents_name,'compnent_'+str(j)) compnents_df.columns=compnents_name sorted_df_component=compnents_df.sort_values(by=['compnent_'+str(i-1)],axis=0,ascending=False) return sorted_df_component['compnent_'+str(i-1)] # Map weights for the first principal component to corresponding feature names # and then print the linked values, sorted by weight. # HINT: Try defining a function here or in a new cell that you can reuse in the # other cells. first_component_weitghs=get_feature_importance(pca_model,1) first_component_weitghs # Map weights for the second principal component to corresponding feature names # and then print the linked values, sorted by weight. second_component_weitghs=get_feature_importance(pca_model,2) second_component_weitghs # Map weights for the third principal component to corresponding feature names # and then print the linked values, sorted by weight. third_component_weitghs=get_feature_importance(pca_model,3) third_component_weitghs ###Output _____no_output_____ ###Markdown Discussion 2.3: Interpret Principal Components(Double-click this cell and replace this text with your own text, reporting your observations from detailed investigation of the first few principal components generated. Can we interpret positive and negative values from them in a meaningful way?)* Yes, the postive and negative values arenegatively coorelated for example in teh first compnent, the heighest postive weights features are related for the dreamful, clutur and family orinted personalities while the the heighest negative weights features are for the retional, critical thinking personalities which shows that they are negatively coorelated as one of them increase the other will decrease. Step 3: Clustering Step 3.1: Apply Clustering to General PopulationYou've assessed and cleaned the demographics data, then scaled and transformed them. Now, it's time to see how the data clusters in the principal components space. In this substep, you will apply k-means clustering to the dataset and use the average within-cluster distances from each point to their assigned cluster's centroid to decide on a number of clusters to keep.- Use sklearn's [KMeans](http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.htmlsklearn.cluster.KMeans) class to perform k-means clustering on the PCA-transformed data.- Then, compute the average difference from each point to its assigned cluster's center. **Hint**: The KMeans object's `.score()` method might be useful here, but note that in sklearn, scores tend to be defined so that larger is better. Try applying it to a small, toy dataset, or use an internet search to help your understanding.- Perform the above two steps for a number of different cluster counts. You can then see how the average distance decreases with an increasing number of clusters. However, each additional cluster provides a smaller net benefit. Use this fact to select a final number of clusters in which to group the data. **Warning**: because of the large size of the dataset, it can take a long time for the algorithm to resolve. The more clusters to fit, the longer the algorithm will take. You should test for cluster counts through at least 10 clusters to get the full picture, but you shouldn't need to test for a number of clusters above about 30.- Once you've selected a final number of clusters to use, re-fit a KMeans instance to perform the clustering operation. Make sure that you also obtain the cluster assignments for the general demographics data, since you'll be using them in the final Step 3.3. ###Code from sklearn.cluster import KMeans # Over a number of different cluster counts... K=[10,15,20,25,30] scores=[] for k in K: # run k-means clustering on the data and... kmeans = KMeans(n_clusters=k) model_k=kmeans.fit(azdias_pca) labels=model_k.predict(azdias_pca) # compute the average within-cluster distances. score=model_k.score(azdias_pca) scores=np.append(scores,score) # Investigate the change in within-cluster distance across number of clusters. # HINT: Use matplotlib's plot function to visualize this relationship. plt.plot(K,-1*scores,linestyle='--', marker='o', color='b') # Re-fit the k-means model with the selected number of clusters and obtain # cluster predictions for the general population demographics data. from sklearn.cluster import KMeans best_k=30 kmeans = KMeans(n_clusters=best_k) model_k=kmeans.fit(azdias_pca) labels_demo=model_k.predict(azdias_pca) ###Output _____no_output_____ ###Markdown Discussion 3.1: Apply Clustering to General Population(Double-click this cell and replace this text with your own text, reporting your findings and decisions regarding clustering. Into how many clusters have you decided to segment the population?)k used is 30 Step 3.2: Apply All Steps to the Customer DataNow that you have clusters and cluster centers for the general population, it's time to see how the customer data maps on to those clusters. Take care to not confuse this for re-fitting all of the models to the customer data. Instead, you're going to use the fits from the general population to clean, transform, and cluster the customer data. In the last step of the project, you will interpret how the general population fits apply to the customer data.- Don't forget when loading in the customers data, that it is semicolon (`;`) delimited.- Apply the same feature wrangling, selection, and engineering steps to the customer demographics using the `clean_data()` function you created earlier. (You can assume that the customer demographics data has similar meaning behind missing data patterns as the general demographics data.)- Use the sklearn objects from the general demographics data, and apply their transformations to the customers data. That is, you should not be using a `.fit()` or `.fit_transform()` method to re-fit the old objects, nor should you be creating new sklearn objects! Carry the data through the feature scaling, PCA, and clustering steps, obtaining cluster assignments for all of the data in the customer demographics data. ###Code # Load in the customer demographics data. customers = pd.read_csv('Udacity_CUSTOMERS_Subset.csv',sep=';') # Apply preprocessing, feature transformation, and clustering from the general # demographics onto the customer data, obtaining cluster predictions for the # customer demographics data. customers_cleared=clean_data(customers,30) customer_imputed=simple_imp_model.transform(customers_cleared) customers_stand=stand.transform(customer_imputed) customers_pca=pca_model.transform(customers_stand) labels_customers=model_k.predict(customers_pca) ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy """ ###Markdown Step 3.3: Compare Customer Data to Demographics DataAt this point, you have clustered data based on demographics of the general population of Germany, and seen how the customer data for a mail-order sales company maps onto those demographic clusters. In this final substep, you will compare the two cluster distributions to see where the strongest customer base for the company is.Consider the proportion of persons in each cluster for the general population, and the proportions for the customers. If we think the company's customer base to be universal, then the cluster assignment proportions should be fairly similar between the two. If there are only particular segments of the population that are interested in the company's products, then we should see a mismatch from one to the other. If there is a higher proportion of persons in a cluster for the customer data compared to the general population (e.g. 5% of persons are assigned to a cluster for the general population, but 15% of the customer data is closest to that cluster's centroid) then that suggests the people in that cluster to be a target audience for the company. On the other hand, the proportion of the data in a cluster being larger in the general population than the customer data (e.g. only 2% of customers closest to a population centroid that captures 6% of the data) suggests that group of persons to be outside of the target demographics.Take a look at the following points in this step:- Compute the proportion of data points in each cluster for the general population and the customer data. Visualizations will be useful here: both for the individual dataset proportions, but also to visualize the ratios in cluster representation between groups. Seaborn's [`countplot()`](https://seaborn.pydata.org/generated/seaborn.countplot.html) or [`barplot()`](https://seaborn.pydata.org/generated/seaborn.barplot.html) function could be handy. - Recall the analysis you performed in step 1.1.3 of the project, where you separated out certain data points from the dataset if they had more than a specified threshold of missing values. If you found that this group was qualitatively different from the main bulk of the data, you should treat this as an additional data cluster in this analysis. Make sure that you account for the number of data points in this subset, for both the general population and customer datasets, when making your computations!- Which cluster or clusters are overrepresented in the customer dataset compared to the general population? Select at least one such cluster and infer what kind of people might be represented by that cluster. Use the principal component interpretations from step 2.3 or look at additional components to help you make this inference. Alternatively, you can use the `.inverse_transform()` method of the PCA and StandardScaler objects to transform centroids back to the original data space and interpret the retrieved values directly.- Perform a similar investigation for the underrepresented clusters. Which cluster or clusters are underrepresented in the customer dataset compared to the general population, and what kinds of people are typified by these clusters? ###Code # Compare the proportion of data in each cluster for the customer data to the # proportion of data in each cluster for the general population. from collections import Counter y=Counter(labels_demo) x=Counter(labels_customers) subjects_per_labels_demo=pd.DataFrame(index=list(y.keys()),data=list(y.values()),columns=['demo_data']) subjects_per_labels_demo.sort_index(axis=0,inplace=True) subjects_per_labels_customers=pd.DataFrame(index=list(x.keys()),data=list(x.values()),columns=['customers_data']) subjects_per_labels_customers.sort_index(axis=0,inplace=True) subjects_per_labels=pd.concat([subjects_per_labels_demo,subjects_per_labels_customers],axis=1) subjects_per_labels['demo_data_prop']=100*(subjects_per_labels['demo_data']/sum(subjects_per_labels['demo_data'])) subjects_per_labels['customer_data_prop']=100*(subjects_per_labels['customers_data']/sum(subjects_per_labels['customers_data'])) subjects_per_labels.plot(kind='bar',figsize=(10,10),y=['demo_data_prop','customer_data_prop']) # What kinds of people are part of a cluster that is overrepresented in the # customer data compared to the general population? customers_overrepresented_labels=[2,4,15,16,21,25] overrepresented_subjects_index=np.where(np.in1d(labels_customers,customers_overrepresented_labels))[0] overrepresented_subject_index_25=np.where(np.in1d(labels_customers,customers_overrepresented_labels[5]))[0] overrespsented_comp=customers_pca[overrepresented_subject_index_25,:] average=overrespsented_comp.mean(axis=0) first_component_weitghs=get_feature_importance(pca_model,1) first_component_weitghs third_component_weitghs=get_feature_importance(pca_model,3) third_component_weitghs fourth_component_weitghs=get_feature_importance(pca_model,4) fourth_component_weitghs second_component_weitghs=get_feature_importance(pca_model,2) second_component_weitghs # What kinds of people are part of a cluster that is underrepresented in the # customer data compared to the general population? customers_underrepresented_labels=[0,1,3,5,6,7,17,18,19,20,24,29] underrepresented_subjects_index=np.where(np.in1d(labels_customers,customers_underrepresented_labels))[0] underrepresented_subject_index_5=np.where(np.in1d(labels_customers,customers_underrepresented_labels[3]))[0] underrepresented_comp=customers_pca[underrepresented_subject_index_5,:] average=underrepresented_comp.mean(axis=0) ###Output _____no_output_____
module2/262_assignment_kaggle_challenge_2.ipynb
###Markdown Lambda School Data Science, Unit 2: Predictive Modeling Kaggle Challenge, Module 2 Assignment- [ ] Read [“Adopting a Hypothesis-Driven Workflow”](https://outline.com/5S5tsB), a blog post by a Lambda DS student about the Tanzania Waterpumps challenge.- [ ] Continue to participate in our Kaggle challenge.- [ ] Try Ordinal Encoding.- [ ] Try a Random Forest Classifier.- [ ] Submit your predictions to our Kaggle competition. (Go to our Kaggle InClass competition webpage. Use the blue **Submit Predictions** button to upload your CSV file. Or you can use the Kaggle API to submit your predictions.)- [ ] Commit your notebook to your fork of the GitHub repo. Stretch Goals Doing- [ ] Add your own stretch goal(s) !- [ ] Do more exploratory data analysis, data cleaning, feature engineering, and feature selection.- [ ] Try other [categorical encodings](https://contrib.scikit-learn.org/categorical-encoding/).- [ ] Get and plot your feature importances.- [ ] Make visualizations and share on Slack. ReadingTop recommendations in _**bold italic:**_ Decision Trees- A Visual Introduction to Machine Learning, [Part 1: A Decision Tree](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/), and _**[Part 2: Bias and Variance](http://www.r2d3.us/visual-intro-to-machine-learning-part-2/)**_- [Decision Trees: Advantages & Disadvantages](https://christophm.github.io/interpretable-ml-book/tree.htmladvantages-2)- [How a Russian mathematician constructed a decision tree — by hand — to solve a medical problem](http://fastml.com/how-a-russian-mathematician-constructed-a-decision-tree-by-hand-to-solve-a-medical-problem/)- [How decision trees work](https://brohrer.github.io/how_decision_trees_work.html)- [Let’s Write a Decision Tree Classifier from Scratch](https://www.youtube.com/watch?v=LDRbO9a6XPU) Random Forests- [_An Introduction to Statistical Learning_](http://www-bcf.usc.edu/~gareth/ISL/), Chapter 8: Tree-Based Methods- [Coloring with Random Forests](http://structuringtheunstructured.blogspot.com/2017/11/coloring-with-random-forests.html)- _**[Random Forests for Complete Beginners: The definitive guide to Random Forests and Decision Trees](https://victorzhou.com/blog/intro-to-random-forests/)**_ Categorical encoding for trees- [Are categorical variables getting lost in your random forests?](https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/)- [Beyond One-Hot: An Exploration of Categorical Variables](http://www.willmcginnis.com/2015/11/29/beyond-one-hot-an-exploration-of-categorical-variables/)- _**[Categorical Features and Encoding in Decision Trees](https://medium.com/data-design/visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931)**_- _**[Coursera — How to Win a Data Science Competition: Learn from Top Kagglers — Concept of mean encoding](https://www.coursera.org/lecture/competitive-data-science/concept-of-mean-encoding-b5Gxv)**_- [Mean (likelihood) encodings: a comprehensive study](https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study)- [The Mechanics of Machine Learning, Chapter 6: Categorically Speaking](https://mlbook.explained.ai/catvars.html) Imposter Syndrome- [Effort Shock and Reward Shock (How The Karate Kid Ruined The Modern World)](http://www.tempobook.com/2014/07/09/effort-shock-and-reward-shock/)- [How to manage impostor syndrome in data science](https://towardsdatascience.com/how-to-manage-impostor-syndrome-in-data-science-ad814809f068)- ["I am not a real data scientist"](https://brohrer.github.io/imposter_syndrome.html)- _**[Imposter Syndrome in Data Science](https://caitlinhudon.com/2018/01/19/imposter-syndrome-in-data-science/)**_ ###Code # If you're in Colab... import os, sys in_colab = 'google.colab' in sys.modules if in_colab: # Install required python packages: # category_encoders, version >= 2.0 # pandas-profiling, version >= 2.0 # plotly, version >= 4.0 !pip install --upgrade category_encoders pandas-profiling plotly # Pull files from Github repo os.chdir('/content') !git init . !git remote add origin https://github.com/LambdaSchool/DS-Unit-2-Kaggle-Challenge.git !git pull origin master # Change into directory for module os.chdir('module2') import pandas as pd from sklearn.model_selection import train_test_split # Merge train_features.csv & train_labels.csv train = pd.merge(pd.read_csv('../data/tanzania/train_features.csv'), pd.read_csv('../data/tanzania/train_labels.csv')) # Read test_features.csv & sample_submission.csv test = pd.read_csv('../data/tanzania/test_features.csv') sample_submission = pd.read_csv('../data/tanzania/sample_submission.csv') ###Output _____no_output_____ ###Markdown Assignment- [ ] Read [“Adopting a Hypothesis-Driven Workflow”](https://outline.com/5S5tsB), a blog post by a Lambda DS student about the Tanzania Waterpumps challenge.- [ ] Continue to participate in our Kaggle challenge.- [ ] Try Ordinal Encoding.- [ ] Try a Random Forest Classifier.- [ ] Submit your predictions to our Kaggle competition. (Go to our Kaggle InClass competition webpage. Use the blue **Submit Predictions** button to upload your CSV file. Or you can use the Kaggle API to submit your predictions.)- [ ] Commit your notebook to your fork of the GitHub repo. ###Code #copied from previous days assignment import numpy as np import category_encoders as ce from sklearn.impute import SimpleImputer from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier %matplotlib inline import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier train, validate = train_test_split(train, train_size=0.80, test_size=0.20, stratify=train['status_group'], random_state=42) train.shape, validate.shape, test.shape def cleaner(X): # stop SettingWithCopyWarning X = X.copy() # About 3% of the time, latitude has small values near zero, # outside Tanzania, so we'll treat these values like zero. X['latitude'] = X['latitude'].replace(-2e-08, 0) # When columns have zeros and shouldn't, they are like null values. # So we will replace the zeros with nulls, and impute missing values later. cols_with_zeros = ['longitude', 'latitude', 'construction_year', 'district_code'] for col in cols_with_zeros: X[col] = X[col].replace(0, np.nan) # quantity & quantity_group are duplicates, so drop one # X = X.drop(columns='quantity_group') X = X.drop(columns=['quantity_group', 'installer', 'extraction_type_group', 'extraction_type_class', 'payment_type', 'waterpoint_type_group']) #removing columns negatively impacts validation accuracy #convert date_recorded to datetime X['date_recorded'] = pd.to_datetime(X.date_recorded) #create a new feature for pump_age X['pump_age'] = X.date_recorded.dt.year - X.construction_year # replace negative pump ages with nan # which also decreased validation accuracy slightly X['pump_age'] = X['pump_age'].replace([-7, -6, -5, -4, -3, -2, -1], np.nan) # return the wrangled dataframe return X train = cleaner(train) validate = cleaner(validate) test = cleaner(test) #exclude the target column target = 'status_group' # remove target and id columns train_features = train.drop(columns=[target, 'id']) # list of only the numeric features numeric_features = train_features.select_dtypes(include='number').columns.tolist() # Get a series with the cardinality of the categorical features cardinality = train_features.select_dtypes(exclude='number').nunique() # all categorical features with cardinality <= 50 categorical_features = cardinality[cardinality <= 50].index.tolist() # Combine the lists features = numeric_features + categorical_features print(features) # Arrange data into X features matrices and y target vectors X_train = train[features] y_train = train[target] X_validate = validate[features] y_validate = validate[target] X_test = test[features] random_forest = make_pipeline( # ce.OneHotEncoder(use_cat_names=True), # DecisionTreeClassifier(random_state=42) ce.OrdinalEncoder(), # SimpleImputer(), SimpleImputer(strategy="most_frequent"), # SimpleImputer(strategy="median"), # IterativeImputer(), # lowered validation accuracy StandardScaler(), # RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1) # RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1, min_samples_split=3), # 80.538 RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1, min_samples_split=4), # 80.93 # RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1, min_samples_split=5), # 80.77 # I get best validation accuracy with no max depth but that over fits the # training data ) # Fit on train random_forest.fit(X_train, y_train) print('Train Accuracy', random_forest.score(X_train, y_train)) print('Validation Accuracy', random_forest.score(X_validate, y_validate)) model = random_forest.named_steps['randomforestclassifier'] encoder = random_forest.named_steps['ordinalencoder'] encoded_columns = encoder.fit_transform(X_train).columns importances = pd.Series(model.feature_importances_, encoded_columns) plt.figure(figsize=(10,30)) importances.sort_values().plot.barh(); test_pred = random_forest.predict(X_test) submission = sample_submission.copy() submission['status_group'] = test_pred submission.to_csv('submission-03.csv', index=False) random_forest.named_steps X_train.population ###Output _____no_output_____
5.2-(Colab)using-convnets-with-small-datasets.ipynb
###Markdown 5.2 - Using convnets with small datasetsThis notebook contains the code sample found in Chapter 5, Section 2 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments. Training a convnet from scratch on a small datasetHaving to train an image classification model using only very little data is a common situation, which you likely encounter yourself in practice if you ever do computer vision in a professional context.Having "few" samples can mean anywhere from a few hundreds to a few tens of thousands of images. As a practical example, we will focus on classifying images as "dogs" or "cats", in a dataset containing 4000 pictures of cats and dogs (2000 cats, 2000 dogs). We will use 2000 pictures for training, 1000 for validation, and finally 1000 for testing.In this section, we will review one basic strategy to tackle this problem: training a new model from scratch on what little data we have. We will start by naively training a small convnet on our 2000 training samples, without any regularization, to set a baseline for what can be achieved. This will get us to a classification accuracy of 71%. At that point, our main issue will be overfitting. Then we will introduce *data augmentation*, a powerful technique for mitigating overfitting in computer vision. By leveraging data augmentation, we will improve our network to reach an accuracy of 82%.In the next section, we will review two more essential techniques for applying deep learning to small datasets: *doing feature extraction with a pre-trained network* (this will get us to an accuracy of 90% to 93%), and *fine-tuning a pre-trained network* (this will get us to our final accuracy of 95%). Together, these three strategies -- training a small model from scratch, doing feature extracting using a pre-trained model, and fine-tuning a pre-trained model -- will constitute your future toolbox for tackling the problem of doing computer vision with small datasets. The relevance of deep learning for small-data problemsYou will sometimes hear that deep learning only works when lots of data is available. This is in part a valid point: one fundamental characteristic of deep learning is that it is able to find interesting features in the training data on its own, without any need for manual feature engineering, and this can only be achieved when lots of training examples are available. This is especially true for problems where the input samples are very high-dimensional, like images.However, what constitutes "lots" of samples is relative -- relative to the size and depth of the network you are trying to train, for starters. It isn't possible to train a convnet to solve a complex problem with just a few tens of samples, but a few hundreds can potentially suffice if the model is small and well-regularized and if the task is simple. Because convnets learn local, translation-invariant features, they are very data-efficient on perceptual problems. Training a convnet from scratch on a very small image dataset will still yield reasonable results despite a relative lack of data, without the need for any custom feature engineering. You will see this in action in this section.But what's more, deep learning models are by nature highly repurposable: you can take, say, an image classification or speech-to-text model trained on a large-scale dataset then reuse it on a significantly different problem with only minor changes. Specifically, in the case of computer vision, many pre-trained models (usually trained on the ImageNet dataset) are now publicly available for download and can be used to bootstrap powerful vision models out of very little data. That's what we will do in the next section.For now, let's get started by getting our hands on the data. Downloading the dataThe cats vs. dogs dataset that we will use isn't packaged with Keras. It was made available by Kaggle.com as part of a computer vision competition in late 2013, back when convnets weren't quite mainstream. You can download the original dataset at: `https://www.kaggle.com/c/dogs-vs-cats/data` (you will need to create a Kaggle account if you don't already have one -- don't worry, the process is painless).The pictures are medium-resolution color JPEGs. They look like this:![cats_vs_dogs_samples](https://s3.amazonaws.com/book.keras.io/img/ch5/cats_vs_dogs_samples.jpg) Unsurprisingly, the cats vs. dogs Kaggle competition in 2013 was won by entrants who used convnets. The best entries could achieve up to 95% accuracy. In our own example, we will get fairly close to this accuracy (in the next section), even though we will be training our models on less than 10% of the data that was available to the competitors.This original dataset contains 25,000 images of dogs and cats (12,500 from each class) and is 543MB large (compressed). After downloading and uncompressing it, we will create a new dataset containing three subsets: a training set with 1000 samples of each class, a validation set with 500 samples of each class, and finally a test set with 500 samples of each class.Here are a few lines of code to do this: ###Code import os, shutil # The path to the directory where the original # dataset was uncompressed # original_dataset_dir = '/content/KerasBookApplication/kaggle_original_data/train' # The directory where we will # store our smaller dataset base_dir = '/content/KerasBookApplication/cats_and_dogs_small' #os.mkdir(base_dir) # Directories for our training, # validation and test splits train_dir = os.path.join(base_dir, 'train') #os.mkdir(train_dir) validation_dir = os.path.join(base_dir, 'validation') #os.mkdir(validation_dir) test_dir = os.path.join(base_dir, 'test') #os.mkdir(test_dir) # Directory with our training cat pictures train_cats_dir = os.path.join(train_dir, 'cats') #os.mkdir(train_cats_dir) # Directory with our training dog pictures train_dogs_dir = os.path.join(train_dir, 'dogs') #os.mkdir(train_dogs_dir) # Directory with our validation cat pictures validation_cats_dir = os.path.join(validation_dir, 'cats') #os.mkdir(validation_cats_dir) # Directory with our validation dog pictures validation_dogs_dir = os.path.join(validation_dir, 'dogs') #os.mkdir(validation_dogs_dir) # Directory with our validation cat pictures test_cats_dir = os.path.join(test_dir, 'cats') #os.mkdir(test_cats_dir) # Directory with our validation dog pictures test_dogs_dir = os.path.join(test_dir, 'dogs') #os.mkdir(test_dogs_dir) ''' # Copy first 1000 cat images to train_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(1000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_cats_dir, fname) shutil.copyfile(src, dst) # Copy next 500 cat images to validation_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_cats_dir, fname) shutil.copyfile(src, dst) # Copy next 500 cat images to test_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_cats_dir, fname) shutil.copyfile(src, dst) # Copy first 1000 dog images to train_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(1000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_dogs_dir, fname) shutil.copyfile(src, dst) # Copy next 500 dog images to validation_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_dogs_dir, fname) shutil.copyfile(src, dst) # Copy next 500 dog images to test_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_dogs_dir, fname) shutil.copyfile(src, dst) ''' ###Output _____no_output_____ ###Markdown As a sanity check, let's count how many pictures we have in each training split (train/validation/test): ###Code print('total training cat images:', len(os.listdir(train_cats_dir))) print('total training dog images:', len(os.listdir(train_dogs_dir))) print('total validation cat images:', len(os.listdir(validation_cats_dir))) print('total validation dog images:', len(os.listdir(validation_dogs_dir))) print('total test cat images:', len(os.listdir(test_cats_dir))) print('total test dog images:', len(os.listdir(test_dogs_dir))) ###Output _____no_output_____ ###Markdown So we have indeed 2000 training images, and then 1000 validation images and 1000 test images. In each split, there is the same number of samples from each class: this is a balanced binary classification problem, which means that classification accuracy will be an appropriate measure of success. Building our networkWe've already built a small convnet for MNIST in the previous example, so you should be familiar with them. We will reuse the same general structure: our convnet will be a stack of alternated `Conv2D` (with `relu` activation) and `MaxPooling2D` layers.However, since we are dealing with bigger images and a more complex problem, we will make our network accordingly larger: it will have one more `Conv2D` + `MaxPooling2D` stage. This serves both to augment the capacity of the network, and to further reduce the size of the feature maps, so that they aren't overly large when we reach the `Flatten` layer. Here, since we start from inputs of size 150x150 (a somewhat arbitrary choice), we end up with feature maps of size 7x7 right before the `Flatten` layer.Note that the depth of the feature maps is progressively increasing in the network (from 32 to 128), while the size of the feature maps is decreasing (from 148x148 to 7x7). This is a pattern that you will see in almost all convnets.Since we are attacking a binary classification problem, we are ending the network with a single unit (a `Dense` layer of size 1) and a `sigmoid` activation. This unit will encode the probability that the network is looking at one class or the other. ###Code from keras import layers from keras import models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) ###Output _____no_output_____ ###Markdown Let's take a look at how the dimensions of the feature maps change with every successive layer: ###Code model.summary() ###Output _____no_output_____ ###Markdown For our compilation step, we'll go with the `RMSprop` optimizer as usual. Since we ended our network with a single sigmoid unit, we will use binary crossentropy as our loss (as a reminder, check out the table in Chapter 4, section 5 for a cheatsheet on what loss function to use in various situations). ###Code from keras import optimizers model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc']) ###Output _____no_output_____ ###Markdown Data preprocessingAs you already know by now, data should be formatted into appropriately pre-processed floating point tensors before being fed into our network. Currently, our data sits on a drive as JPEG files, so the steps for getting it into our network are roughly:* Read the picture files.* Decode the JPEG content to RBG grids of pixels.* Convert these into floating point tensors.* Rescale the pixel values (between 0 and 255) to the [0, 1] interval (as you know, neural networks prefer to deal with small input values).It may seem a bit daunting, but thankfully Keras has utilities to take care of these steps automatically. Keras has a module with image processing helper tools, located at `keras.preprocessing.image`. In particular, it contains the class `ImageDataGenerator` which allows to quickly set up Python generators that can automatically turn image files on disk into batches of pre-processed tensors. This is what we will use here. ###Code from keras.preprocessing.image import ImageDataGenerator # All images will be rescaled by 1./255 train_datagen = ImageDataGenerator(rescale=1./255) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( # This is the target directory train_dir, # All images will be resized to 150x150 target_size=(150, 150), batch_size=20, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary') ###Output _____no_output_____ ###Markdown Let's take a look at the output of one of these generators: it yields batches of 150x150 RGB images (shape `(20, 150, 150, 3)`) and binary labels (shape `(20,)`). 20 is the number of samples in each batch (the batch size). Note that the generator yields these batches indefinitely: it just loops endlessly over the images present in the target folder. For this reason, we need to `break` the iteration loop at some point. ###Code for data_batch, labels_batch in train_generator: print('data batch shape:', data_batch.shape) print('labels batch shape:', labels_batch.shape) break ###Output _____no_output_____ ###Markdown Let's fit our model to the data using the generator. We do it using the `fit_generator` method, the equivalent of `fit` for data generators like ours. It expects as first argument a Python generator that will yield batches of inputs and targets indefinitely, like ours does. Because the data is being generated endlessly, the generator needs to know example how many samples to draw from the generator before declaring an epoch over. This is the role of the `steps_per_epoch` argument: after having drawn `steps_per_epoch` batches from the generator, i.e. after having run for `steps_per_epoch` gradient descent steps, the fitting process will go to the next epoch. In our case, batches are 20-sample large, so it will take 100 batches until we see our target of 2000 samples.When using `fit_generator`, one may pass a `validation_data` argument, much like with the `fit` method. Importantly, this argument is allowed to be a data generator itself, but it could be a tuple of Numpy arrays as well. If you pass a generator as `validation_data`, then this generator is expected to yield batches of validation data endlessly, and thus you should also specify the `validation_steps` argument, which tells the process how many batches to draw from the validation generator for evaluation. ###Code history = model.fit_generator( train_generator, steps_per_epoch=100, epochs=30, validation_data=validation_generator, validation_steps=50) ###Output _____no_output_____ ###Markdown It is good practice to always save your models after training: ###Code model.save('cats_and_dogs_small_1.h5') ###Output _____no_output_____ ###Markdown Let's plot the loss and accuracy of the model over the training and validation data during training: ###Code import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown These plots are characteristic of overfitting. Our training accuracy increases linearly over time, until it reaches nearly 100%, while our validation accuracy stalls at 70-72%. Our validation loss reaches its minimum after only five epochs then stalls, while the training loss keeps decreasing linearly until it reaches nearly 0.Because we only have relatively few training samples (2000), overfitting is going to be our number one concern. You already know about a number of techniques that can help mitigate overfitting, such as dropout and weight decay (L2 regularization). We are now going to introduce a new one, specific to computer vision, and used almost universally when processing images with deep learning models: *data augmentation*. Using data augmentationOverfitting is caused by having too few samples to learn from, rendering us unable to train a model able to generalize to new data. Given infinite data, our model would be exposed to every possible aspect of the data distribution at hand: we would never overfit. Data augmentation takes the approach of generating more training data from existing training samples, by "augmenting" the samples via a number of random transformations that yield believable-looking images. The goal is that at training time, our model would never see the exact same picture twice. This helps the model get exposed to more aspects of the data and generalize better.In Keras, this can be done by configuring a number of random transformations to be performed on the images read by our `ImageDataGenerator` instance. Let's get started with an example: ###Code import keras keras.__version__ import os, shutil from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt # The path to the directory where the original # dataset was uncompressed #original_dataset_dir = 'D:/kaggle_original_data/train' # The directory where we will # store our smaller dataset #base_dir = 'D:\cats_and_dogs_small' # Directories for our training, # validation and test splits train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') test_dir = os.path.join(base_dir, 'test') # Directory with our training cat pictures train_cats_dir = os.path.join(train_dir, 'cats') # Directory with our training dog pictures train_dogs_dir = os.path.join(train_dir, 'dogs') # Directory with our validation cat pictures validation_cats_dir = os.path.join(validation_dir, 'cats') # Directory with our validation dog pictures validation_dogs_dir = os.path.join(validation_dir, 'dogs') # Directory with our validation cat pictures test_cats_dir = os.path.join(test_dir, 'cats') # Directory with our validation dog pictures test_dogs_dir = os.path.join(test_dir, 'dogs') datagen = ImageDataGenerator( rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') ###Output _____no_output_____ ###Markdown These are just a few of the options available (for more, see the Keras documentation). Let's quickly go over what we just wrote:* `rotation_range` is a value in degrees (0-180), a range within which to randomly rotate pictures.* `width_shift` and `height_shift` are ranges (as a fraction of total width or height) within which to randomly translate pictures vertically or horizontally.* `shear_range` is for randomly applying shearing transformations.* `zoom_range` is for randomly zooming inside pictures.* `horizontal_flip` is for randomly flipping half of the images horizontally -- relevant when there are no assumptions of horizontal asymmetry (e.g. real-world pictures).* `fill_mode` is the strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift.Let's take a look at our augmented images: ###Code # This is module with image preprocessing utilities from keras.preprocessing import image fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)] # We pick one image to "augment" img_path = fnames[3] # Read the image and resize it img = image.load_img(img_path, target_size=(150, 150)) # Convert it to a Numpy array with shape (150, 150, 3) x = image.img_to_array(img) # Reshape it to (1, 150, 150, 3) x = x.reshape((1,) + x.shape) # The .flow() command below generates batches of randomly transformed images. # It will loop indefinitely, so we need to `break` the loop at some point! i = 0 for batch in datagen.flow(x, batch_size=1): plt.figure(i) imgplot = plt.imshow(image.array_to_img(batch[0])) i += 1 if i % 4 == 0: break plt.show() ###Output _____no_output_____ ###Markdown If we train a new network using this data augmentation configuration, our network will never see twice the same input. However, the inputs that it sees are still heavily intercorrelated, since they come from a small number of original images -- we cannot produce new information, we can only remix existing information. As such, this might not be quite enough to completely get rid of overfitting. To further fight overfitting, we will also add a Dropout layer to our model, right before the densely-connected classifier: ###Code from keras import optimizers from keras import layers from keras import models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc']) ###Output _____no_output_____ ###Markdown Let's train our network using data augmentation and dropout: ###Code train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,) # Note that the validation data should not be augmented! test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( # This is the target directory train_dir, # All images will be resized to 150x150 target_size=(150, 150), batch_size=32, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='binary') history = model.fit_generator( train_generator, steps_per_epoch=100, epochs=100, validation_data=validation_generator, validation_steps=50) ###Output Found 2000 images belonging to 2 classes. Found 1000 images belonging to 2 classes. Epoch 1/100 100/100 [==============================] - 266s 3s/step - loss: 0.6935 - acc: 0.5041 - val_loss: 0.6819 - val_acc: 0.5146 Epoch 2/100 100/100 [==============================] - 247s 2s/step - loss: 0.6761 - acc: 0.5722 - val_loss: 0.6634 - val_acc: 0.5818 Epoch 3/100 100/100 [==============================] - 249s 2s/step - loss: 0.6588 - acc: 0.6153 - val_loss: 0.6294 - val_acc: 0.6250 Epoch 4/100 100/100 [==============================] - 247s 2s/step - loss: 0.6471 - acc: 0.6209 - val_loss: 0.6213 - val_acc: 0.6418 Epoch 5/100 100/100 [==============================] - 247s 2s/step - loss: 0.6351 - acc: 0.6259 - val_loss: 0.6580 - val_acc: 0.5984 Epoch 6/100 100/100 [==============================] - 248s 2s/step - loss: 0.6212 - acc: 0.6506 - val_loss: 0.6204 - val_acc: 0.6186 Epoch 7/100 100/100 [==============================] - 249s 2s/step - loss: 0.6073 - acc: 0.6644 - val_loss: 0.6205 - val_acc: 0.6383 Epoch 8/100 100/100 [==============================] - 248s 2s/step - loss: 0.6045 - acc: 0.6806 - val_loss: 0.5893 - val_acc: 0.6740 Epoch 9/100 100/100 [==============================] - 248s 2s/step - loss: 0.5896 - acc: 0.6875 - val_loss: 0.6914 - val_acc: 0.6166 Epoch 10/100 100/100 [==============================] - 247s 2s/step - loss: 0.5850 - acc: 0.6906 - val_loss: 0.5504 - val_acc: 0.7126 Epoch 11/100 100/100 [==============================] - 246s 2s/step - loss: 0.5748 - acc: 0.6959 - val_loss: 0.5566 - val_acc: 0.6972 Epoch 12/100 100/100 [==============================] - 247s 2s/step - loss: 0.5764 - acc: 0.6934 - val_loss: 0.5533 - val_acc: 0.7138 Epoch 13/100 100/100 [==============================] - 247s 2s/step - loss: 0.5660 - acc: 0.6991 - val_loss: 0.5432 - val_acc: 0.7255 Epoch 14/100 100/100 [==============================] - 247s 2s/step - loss: 0.5506 - acc: 0.7187 - val_loss: 0.5236 - val_acc: 0.7284 Epoch 15/100 100/100 [==============================] - 251s 3s/step - loss: 0.5543 - acc: 0.7212 - val_loss: 0.5537 - val_acc: 0.7081 Epoch 16/100 100/100 [==============================] - 244s 2s/step - loss: 0.5501 - acc: 0.7150 - val_loss: 0.5433 - val_acc: 0.7094 Epoch 17/100 100/100 [==============================] - 244s 2s/step - loss: 0.5502 - acc: 0.7197 - val_loss: 0.5219 - val_acc: 0.7329 Epoch 18/100 100/100 [==============================] - 249s 2s/step - loss: 0.5397 - acc: 0.7344 - val_loss: 0.5260 - val_acc: 0.7326 Epoch 19/100 100/100 [==============================] - 246s 2s/step - loss: 0.5362 - acc: 0.7281 - val_loss: 0.6347 - val_acc: 0.6662 Epoch 20/100 100/100 [==============================] - 244s 2s/step - loss: 0.5277 - acc: 0.7344 - val_loss: 0.4941 - val_acc: 0.7642 Epoch 21/100 100/100 [==============================] - 246s 2s/step - loss: 0.5303 - acc: 0.7381 - val_loss: 0.5494 - val_acc: 0.7214 Epoch 22/100 100/100 [==============================] - 245s 2s/step - loss: 0.5301 - acc: 0.7341 - val_loss: 0.5419 - val_acc: 0.7113 Epoch 23/100 100/100 [==============================] - 248s 2s/step - loss: 0.5142 - acc: 0.7428 - val_loss: 0.5238 - val_acc: 0.7316 Epoch 24/100 100/100 [==============================] - 245s 2s/step - loss: 0.5101 - acc: 0.7419 - val_loss: 0.5043 - val_acc: 0.7332 Epoch 25/100 100/100 [==============================] - 245s 2s/step - loss: 0.5281 - acc: 0.7322 - val_loss: 0.4949 - val_acc: 0.7532 Epoch 26/100 100/100 [==============================] - 248s 2s/step - loss: 0.5116 - acc: 0.7469 - val_loss: 0.5263 - val_acc: 0.7221 Epoch 27/100 100/100 [==============================] - 248s 2s/step - loss: 0.5098 - acc: 0.7453 - val_loss: 0.4634 - val_acc: 0.7771 Epoch 28/100 100/100 [==============================] - 247s 2s/step - loss: 0.4971 - acc: 0.7509 - val_loss: 0.4725 - val_acc: 0.7652 Epoch 29/100 100/100 [==============================] - 247s 2s/step - loss: 0.5023 - acc: 0.7500 - val_loss: 0.5573 - val_acc: 0.7255 Epoch 30/100 100/100 [==============================] - 248s 2s/step - loss: 0.4980 - acc: 0.7562 - val_loss: 0.4806 - val_acc: 0.7589 Epoch 31/100 100/100 [==============================] - 246s 2s/step - loss: 0.4949 - acc: 0.7619 - val_loss: 0.4768 - val_acc: 0.7590 Epoch 32/100 100/100 [==============================] - 245s 2s/step - loss: 0.4867 - acc: 0.7666 - val_loss: 0.5155 - val_acc: 0.7423 Epoch 33/100 100/100 [==============================] - 247s 2s/step - loss: 0.4873 - acc: 0.7606 - val_loss: 0.4927 - val_acc: 0.7608 Epoch 34/100 100/100 [==============================] - 244s 2s/step - loss: 0.4798 - acc: 0.7644 - val_loss: 0.5172 - val_acc: 0.7564 Epoch 35/100 100/100 [==============================] - 245s 2s/step - loss: 0.4727 - acc: 0.7666 - val_loss: 0.4527 - val_acc: 0.7868 Epoch 36/100 100/100 [==============================] - 246s 2s/step - loss: 0.4698 - acc: 0.7700 - val_loss: 0.4987 - val_acc: 0.7590 Epoch 37/100 100/100 [==============================] - 245s 2s/step - loss: 0.4737 - acc: 0.7703 - val_loss: 0.4722 - val_acc: 0.7640 Epoch 38/100 100/100 [==============================] - 244s 2s/step - loss: 0.4756 - acc: 0.7669 - val_loss: 0.4599 - val_acc: 0.7919 Epoch 39/100 100/100 [==============================] - 246s 2s/step - loss: 0.4727 - acc: 0.7769 - val_loss: 0.4800 - val_acc: 0.7525 Epoch 40/100 100/100 [==============================] - 247s 2s/step - loss: 0.4645 - acc: 0.7750 - val_loss: 0.4855 - val_acc: 0.7629 Epoch 41/100 100/100 [==============================] - 246s 2s/step - loss: 0.4706 - acc: 0.7763 - val_loss: 0.4516 - val_acc: 0.7874 Epoch 42/100 100/100 [==============================] - 252s 3s/step - loss: 0.4472 - acc: 0.7959 - val_loss: 0.4728 - val_acc: 0.7684 Epoch 43/100 100/100 [==============================] - 250s 2s/step - loss: 0.4460 - acc: 0.7888 - val_loss: 0.4674 - val_acc: 0.7622 Epoch 44/100 100/100 [==============================] - 251s 3s/step - loss: 0.4542 - acc: 0.7869 - val_loss: 0.5470 - val_acc: 0.7500 Epoch 45/100 100/100 [==============================] - 249s 2s/step - loss: 0.4506 - acc: 0.7841 - val_loss: 0.5237 - val_acc: 0.7610 Epoch 46/100 100/100 [==============================] - 251s 3s/step - loss: 0.4493 - acc: 0.7819 - val_loss: 0.5387 - val_acc: 0.7335 Epoch 47/100 100/100 [==============================] - 250s 3s/step - loss: 0.4458 - acc: 0.7931 - val_loss: 0.4678 - val_acc: 0.7648 Epoch 48/100 100/100 [==============================] - 247s 2s/step - loss: 0.4412 - acc: 0.7878 - val_loss: 0.4687 - val_acc: 0.7758 Epoch 49/100 100/100 [==============================] - 250s 2s/step - loss: 0.4328 - acc: 0.8012 - val_loss: 0.4692 - val_acc: 0.7735 Epoch 50/100 100/100 [==============================] - 251s 3s/step - loss: 0.4402 - acc: 0.7888 - val_loss: 0.4637 - val_acc: 0.7848 Epoch 51/100 100/100 [==============================] - 249s 2s/step - loss: 0.4476 - acc: 0.7859 - val_loss: 0.4361 - val_acc: 0.7925 Epoch 52/100 100/100 [==============================] - 249s 2s/step - loss: 0.4414 - acc: 0.7910 - val_loss: 0.4391 - val_acc: 0.8009 Epoch 53/100 100/100 [==============================] - 252s 3s/step - loss: 0.4388 - acc: 0.7963 - val_loss: 0.4531 - val_acc: 0.7887 Epoch 54/100 100/100 [==============================] - 250s 3s/step - loss: 0.4144 - acc: 0.8078 - val_loss: 0.4510 - val_acc: 0.7899 Epoch 55/100 100/100 [==============================] - 252s 3s/step - loss: 0.4425 - acc: 0.7931 - val_loss: 0.5142 - val_acc: 0.7627 Epoch 56/100 100/100 [==============================] - 251s 3s/step - loss: 0.4224 - acc: 0.8047 - val_loss: 0.4366 - val_acc: 0.7977 Epoch 57/100 100/100 [==============================] - 253s 3s/step - loss: 0.4293 - acc: 0.8025 - val_loss: 0.4692 - val_acc: 0.7777 Epoch 58/100 100/100 [==============================] - 250s 2s/step - loss: 0.4221 - acc: 0.7994 - val_loss: 0.5069 - val_acc: 0.7722 Epoch 59/100 100/100 [==============================] - 250s 3s/step - loss: 0.4096 - acc: 0.8169 - val_loss: 0.4243 - val_acc: 0.7932 Epoch 60/100 100/100 [==============================] - 248s 2s/step - loss: 0.4276 - acc: 0.7938 - val_loss: 0.4769 - val_acc: 0.7938 Epoch 61/100 100/100 [==============================] - 248s 2s/step - loss: 0.4176 - acc: 0.8050 - val_loss: 0.4739 - val_acc: 0.7970 Epoch 62/100 100/100 [==============================] - 250s 2s/step - loss: 0.3962 - acc: 0.8163 - val_loss: 0.4470 - val_acc: 0.7925 Epoch 63/100 100/100 [==============================] - 248s 2s/step - loss: 0.4166 - acc: 0.8056 - val_loss: 0.4288 - val_acc: 0.8086 Epoch 64/100 100/100 [==============================] - 247s 2s/step - loss: 0.4057 - acc: 0.8175 - val_loss: 0.4501 - val_acc: 0.7880 Epoch 65/100 100/100 [==============================] - 248s 2s/step - loss: 0.4043 - acc: 0.8138 - val_loss: 0.4248 - val_acc: 0.8077 Epoch 66/100 100/100 [==============================] - 246s 2s/step - loss: 0.4142 - acc: 0.8106 - val_loss: 0.5105 - val_acc: 0.7571 Epoch 67/100 100/100 [==============================] - 251s 3s/step - loss: 0.4039 - acc: 0.8141 - val_loss: 0.4281 - val_acc: 0.7944 Epoch 68/100 100/100 [==============================] - 248s 2s/step - loss: 0.3973 - acc: 0.8200 - val_loss: 0.4388 - val_acc: 0.8015 Epoch 69/100 100/100 [==============================] - 250s 3s/step - loss: 0.3945 - acc: 0.8238 - val_loss: 0.4082 - val_acc: 0.8198 Epoch 70/100 100/100 [==============================] - 252s 3s/step - loss: 0.3985 - acc: 0.8247 - val_loss: 0.4458 - val_acc: 0.7964 Epoch 71/100 100/100 [==============================] - 254s 3s/step - loss: 0.4009 - acc: 0.8131 - val_loss: 0.4552 - val_acc: 0.8020 Epoch 72/100 100/100 [==============================] - 252s 3s/step - loss: 0.3982 - acc: 0.8125 - val_loss: 0.4419 - val_acc: 0.7977 Epoch 73/100 100/100 [==============================] - 250s 2s/step - loss: 0.3857 - acc: 0.8197 - val_loss: 0.4454 - val_acc: 0.7964 Epoch 74/100 100/100 [==============================] - 250s 3s/step - loss: 0.3917 - acc: 0.8244 - val_loss: 0.5945 - val_acc: 0.7652 Epoch 75/100 100/100 [==============================] - 252s 3s/step - loss: 0.3928 - acc: 0.8247 - val_loss: 0.4436 - val_acc: 0.7912 Epoch 76/100 100/100 [==============================] - 251s 3s/step - loss: 0.3749 - acc: 0.8278 - val_loss: 0.5832 - val_acc: 0.7456 Epoch 77/100 100/100 [==============================] - 251s 3s/step - loss: 0.3939 - acc: 0.8272 - val_loss: 0.4629 - val_acc: 0.7912 Epoch 78/100 100/100 [==============================] - 252s 3s/step - loss: 0.3795 - acc: 0.8306 - val_loss: 0.4035 - val_acc: 0.8350 Epoch 79/100 100/100 [==============================] - 252s 3s/step - loss: 0.3894 - acc: 0.8266 - val_loss: 0.4676 - val_acc: 0.7796 Epoch 80/100 100/100 [==============================] - 249s 2s/step - loss: 0.3689 - acc: 0.8353 - val_loss: 0.4263 - val_acc: 0.8119 Epoch 81/100 100/100 [==============================] - 252s 3s/step - loss: 0.3758 - acc: 0.8391 - val_loss: 0.4286 - val_acc: 0.8192 Epoch 82/100 100/100 [==============================] - 252s 3s/step - loss: 0.3761 - acc: 0.8297 - val_loss: 0.4309 - val_acc: 0.8235 Epoch 83/100 100/100 [==============================] - 252s 3s/step - loss: 0.3719 - acc: 0.8347 - val_loss: 0.4521 - val_acc: 0.8115 Epoch 84/100 100/100 [==============================] - 251s 3s/step - loss: 0.3715 - acc: 0.8375 - val_loss: 0.4751 - val_acc: 0.7945 Epoch 85/100 100/100 [==============================] - 252s 3s/step - loss: 0.3859 - acc: 0.8187 - val_loss: 0.4186 - val_acc: 0.8115 Epoch 86/100 100/100 [==============================] - 252s 3s/step - loss: 0.3685 - acc: 0.8334 - val_loss: 0.5263 - val_acc: 0.7732 Epoch 87/100 100/100 [==============================] - 252s 3s/step - loss: 0.3616 - acc: 0.8416 - val_loss: 0.4270 - val_acc: 0.8179 Epoch 88/100 100/100 [==============================] - 253s 3s/step - loss: 0.3647 - acc: 0.8397 - val_loss: 0.3993 - val_acc: 0.8164 Epoch 89/100 100/100 [==============================] - 251s 3s/step - loss: 0.3733 - acc: 0.8325 - val_loss: 0.4176 - val_acc: 0.8106 Epoch 90/100 100/100 [==============================] - 254s 3s/step - loss: 0.3662 - acc: 0.8372 - val_loss: 0.5454 - val_acc: 0.7557 Epoch 91/100 100/100 [==============================] - 252s 3s/step - loss: 0.3611 - acc: 0.8441 - val_loss: 0.4190 - val_acc: 0.8189 Epoch 92/100 100/100 [==============================] - 253s 3s/step - loss: 0.3584 - acc: 0.8397 - val_loss: 0.4292 - val_acc: 0.8046 Epoch 93/100 100/100 [==============================] - 252s 3s/step - loss: 0.3741 - acc: 0.8272 - val_loss: 0.4161 - val_acc: 0.8164 Epoch 94/100 100/100 [==============================] - 252s 3s/step - loss: 0.3494 - acc: 0.8450 - val_loss: 0.4337 - val_acc: 0.8268 Epoch 95/100 100/100 [==============================] - 253s 3s/step - loss: 0.3528 - acc: 0.8453 - val_loss: 0.5829 - val_acc: 0.7448 Epoch 96/100 100/100 [==============================] - 252s 3s/step - loss: 0.3541 - acc: 0.8400 - val_loss: 0.5641 - val_acc: 0.7758 Epoch 97/100 100/100 [==============================] - 251s 3s/step - loss: 0.3449 - acc: 0.8466 - val_loss: 0.4646 - val_acc: 0.8135 Epoch 98/100 100/100 [==============================] - 255s 3s/step - loss: 0.3456 - acc: 0.8528 - val_loss: 0.4315 - val_acc: 0.8080 Epoch 99/100 100/100 [==============================] - 253s 3s/step - loss: 0.3425 - acc: 0.8516 - val_loss: 0.4561 - val_acc: 0.7906 Epoch 100/100 100/100 [==============================] - 254s 3s/step - loss: 0.3437 - acc: 0.8441 - val_loss: 0.4466 - val_acc: 0.8138 ###Markdown Let's save our model -- we will be using it in the section on convnet visualization. ###Code model.save('cats_and_dogs_small_2.h5') ###Output _____no_output_____ ###Markdown Let's plot our results again: ###Code acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() ###Output _____no_output_____
examples/sketch_rnn/magenta_sketchrnn.ipynb
###Markdown Download model_config.json and edit 1 -> true and 0 -> false. next, upload and move it ###Code !ls /tmp/sketch_rnn/models/aaron_sheep/layer_norm from google.colab import files files.download('/tmp/sketch_rnn/models/aaron_sheep/layer_norm/model_config.json') uploaded = files.upload() !mv model_config.json /tmp/sketch_rnn/models/aaron_sheep/layer_norm/model_config.json [train_set, valid_set, test_set, hps_model, eval_hps_model, sample_hps_model] = load_env(data_dir, model_dir) # construct the sketch-rnn model here: reset_graph() model = Model(hps_model) eval_model = Model(eval_hps_model, reuse=True) sample_model = Model(sample_hps_model, reuse=True) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) # loads the weights from checkpoint into our model load_checkpoint(sess, model_dir) def encode(input_strokes): strokes = to_big_strokes(input_strokes).tolist() strokes.insert(0, [0, 0, 1, 0, 0]) seq_len = [len(input_strokes)] draw_strokes(to_normal_strokes(np.array(strokes))) return sess.run(eval_model.batch_z, feed_dict={eval_model.input_data: [strokes], eval_model.sequence_lengths: seq_len})[0] def decode(z_input=None, draw_mode=True, temperature=0.1, factor=0.2): z = None if z_input is not None: z = [z_input] sample_strokes, m = sample(sess, sample_model, seq_len=eval_model.hps.max_seq_len, temperature=temperature, z=z) strokes = to_normal_strokes(sample_strokes) if draw_mode: draw_strokes(strokes, factor) return strokes # get a sample drawing from the test set, and render it to .svg stroke = test_set.random_sample() draw_strokes(stroke) z = encode(stroke) _ = decode(z, temperature=0.8) # convert z back to drawing at temperature of 0.8 stroke_list = [] for i in range(10): stroke_list.append([decode(z, draw_mode=False, temperature=0.1*i+0.1), [0, i]]) stroke_grid = make_grid_svg(stroke_list) draw_strokes(stroke_grid) # get a sample drawing from the test set, and render it to .svg z0 = z _ = decode(z0) stroke = test_set.random_sample() z1 = encode(stroke) _ = decode(z1) z_list = [] # interpolate spherically between z0 and z1 N = 10 for t in np.linspace(0, 1, N): z_list.append(slerp(z0, z1, t)) # for every latent vector in z_list, sample a vector image reconstructions = [] for i in range(N): reconstructions.append([decode(z_list[i], draw_mode=False), [0, i]]) stroke_grid = make_grid_svg(reconstructions) draw_strokes(stroke_grid) ###Output _____no_output_____
MLEveryday6.ipynb
###Markdown **ML** **day6** >今天的目标是 Pandas ###Code import urllib.request #依旧使用Titanic.csv url="https://raw.githubusercontent.com/marongkang/datasets/main/titanic.csv" response=urllib.request.urlopen(url) page=response.read() f=open('titanic.csv','wb') f.write(page) !ls -1 #从网络获取Titanic数据集 #pandas import pandas as pd ''' def read_csv(filepath_or_buffer: FilePathOrBuffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal: str='.', lineterminator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=_c_parser_defaults['low_memory'], memory_map=False, float_precision=None) 可以传一大堆参数 ''' dataframe=pd.read_csv('titanic.csv',header=0) #header=0 指第0行为表头 dataframe.head() #获取前5行,可修改 #dataframe.head(n=10) #获取前十行 #至此数据集获取成功,下面进行数据分析 ###Output _____no_output_____ ###Markdown 1. pclass: class of travel 2. name: full name of the passenger 3. sex: gender 4. age: numerical age 5. sibsp: of siblings/spouse aboard 6. parch: number of parents/child aboard 7. ticket: ticket number 8. fare: cost of the ticket 9. cabin: location of room 10. emarked: port that the passenger embarked at (C - Cherbourg, S - Southampton, Q= Queenstown) 11. survived: survial metric (0 - died, 1 - survived) ###Code #描述性统计 dataframe.describe() #inclue='all' 会对所有数据进行描述,否则只描述数值列 #dataframe.describe(include='all') ###Output _____no_output_____ ###Markdown * count:数量统计,此列共有多少有效值* unipue:不同的值有多少个* mean:均值* std:标准差* min:最小值* 25%:四分之一分位数* 50%:二分之一分位数* 75%:四分之三分位数* max:最大值 ###Code #通过表头获取数据 print(dataframe['Age'][0:5]) print(dataframe['Ticket'][0:5]) #直方图 dataframe['Age'].hist() #唯一值 dataframe['Embarked'].unique() #选取数据 dataframe['Name'].head() #筛选,Age==35 dataframe[dataframe['Age']==35.0] #排序 ''' def sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key: ValueKeyFunc=None) ''' dataframe.sort_values('Age',ascending=False).head(n=10) #ascending=True 升序,False降序 #聚合与分组 group=dataframe.groupby('Survived') print(type(group)) #group的shape为(2, 2),不是很理解 glist=list(group) import numpy as np print(np.shape(glist)) group.mean() ###Output <class 'pandas.core.groupby.generic.DataFrameGroupBy'> (2, 2)
notebooks/init.ipynb
###Markdown Generic Initialization ###Code %matplotlib inline import os from pathlib import Path import numpy as np import datetime import great_expectations as ge # Pandas import pandas as pd import pandas_profiling pd.set_option('display.max_rows',10) pd.set_option('display.max_info_columns',20) # IPython from IPython.display import display, Markdown from IPython.display import Image # Display multiple outputs per input cell. from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" # http://stackoverflow.com/questions/21971449/how-do-i-increase-the-cell-width-of-the-jupyter-ipython-notebook-in-my-browser from IPython.core.display import display, Markdown, HTML display(HTML("<style>.container { width:80% !important; }</style>")) # Load external packages automatically anytime the code is changed %load_ext autoreload %autoreload 2 # Import Matplotlib import matplotlib.pyplot as plt # Import Seaborn import seaborn as sns import matplotlib.pyplot as plt import matplotlib font = {'family' : 'arial', 'weight' : 'bold', 'size' : 22} matplotlib.rc('font', **font) ###Output _____no_output_____ ###Markdown Project Initialization ###Code from data.data import ExtractData, TransformData from visualization.visualize import importance_plotting from models import predict_model as pm from zeetle.data import eda from zeetle.visualization import visualize as zviz from sklearn.model_selection import train_test_split from sklearn.model_selection import (cross_val_score, cross_val_score, cross_validate, ) from yellowbrick.classifier import ConfusionMatrix from sklearn import metrics import matplotlib.pyplot as plt import matplotlib RANDOM_STATE = 42 ###Output _____no_output_____
ssd_keras/ssd7_training.ipynb
###Markdown SSD7 Training TutorialThis tutorial explains how to train an SSD7 on the Udacity road traffic datasets, and just generally how to use this SSD implementation.Disclaimer about SSD7:As you will see below, training SSD7 on the aforementioned datasets yields alright results, but I'd like to emphasize that SSD7 is not a carefully optimized network architecture. The idea was just to build a low-complexity network that is fast (roughly 127 FPS or more than 3 times as fast as SSD300 on a GTX 1070) for testing purposes. Would slightly different anchor box scaling factors or a slightly different number of filters in individual convolution layers make SSD7 significantly better at similar complexity? I don't know, I haven't tried. ###Code from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, TerminateOnNaN, CSVLogger from keras import backend as K from keras.models import load_model from math import ceil import numpy as np from matplotlib import pyplot as plt from models.keras_ssd7 import build_model from keras_loss_function.keras_ssd_loss import SSDLoss from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes from keras_layers.keras_layer_DecodeDetections import DecodeDetections from keras_layers.keras_layer_DecodeDetectionsFast import DecodeDetectionsFast from ssd_encoder_decoder.ssd_input_encoder import SSDInputEncoder from ssd_encoder_decoder.ssd_output_decoder import decode_detections, decode_detections_fast from data_generator.object_detection_2d_data_generator import DataGenerator from data_generator.object_detection_2d_misc_utils import apply_inverse_transforms from data_generator.data_augmentation_chain_variable_input_size import DataAugmentationVariableInputSize from data_generator.data_augmentation_chain_constant_input_size import DataAugmentationConstantInputSize from data_generator.data_augmentation_chain_original_ssd import SSDDataAugmentation %matplotlib inline ###Output Using TensorFlow backend. ###Markdown 1. Set the model configuration parametersThe cell below sets a number of parameters that define the model configuration. The parameters set here are being used both by the `build_model()` function that builds the model as well as further down by the constructor for the `SSDInputEncoder` object that is needed to to match ground truth and anchor boxes during the training.Here are just some comments on a few of the parameters, read the documentation for more details:* Set the height, width, and number of color channels to whatever you want the model to accept as image input. If your input images have a different size than you define as the model input here, or if your images have non-uniform size, then you must use the data generator's image transformations (resizing and/or cropping) so that your images end up having the required input size before they are fed to the model. to convert your images to the model input size during training. The SSD300 training tutorial uses the same image pre-processing and data augmentation as the original Caffe implementation, so take a look at that to see one possibility of how to deal with non-uniform-size images.* The number of classes is the number of positive classes in your dataset, e.g. 20 for Pascal VOC or 80 for MS COCO. Class ID 0 must always be reserved for the background class, i.e. your positive classes must have positive integers as their IDs in your dataset.* The `mode` argument in the `build_model()` function determines whether the model will be built with or without a `DecodeDetections` layer as its last layer. In 'training' mode, the model outputs the raw prediction tensor, while in 'inference' and 'inference_fast' modes, the raw predictions are being decoded into absolute coordinates and filtered via confidence thresholding, non-maximum suppression, and top-k filtering. The difference between latter two modes is that 'inference' uses the decoding procedure of the original Caffe implementation, while 'inference_fast' uses a faster, but possibly less accurate decoding procedure.* The reason why the list of scaling factors has 5 elements even though there are only 4 predictor layers in tSSD7 is that the last scaling factor is used for the second aspect-ratio-1 box of the last predictor layer. Refer to the documentation for details.* `build_model()` and `SSDInputEncoder` have two arguments for the anchor box aspect ratios: `aspect_ratios_global` and `aspect_ratios_per_layer`. You can use either of the two, you don't need to set both. If you use `aspect_ratios_global`, then you pass one list of aspect ratios and these aspect ratios will be used for all predictor layers. Every aspect ratio you want to include must be listed once and only once. If you use `aspect_ratios_per_layer`, then you pass a nested list containing lists of aspect ratios for each individual predictor layer. This is what the SSD300 training tutorial does. It's your design choice whether all predictor layers should use the same aspect ratios or whether you think that for your dataset, certain aspect ratios are only necessary for some predictor layers but not for others. Of course more aspect ratios means more predicted boxes, which in turn means increased computational complexity.* If `two_boxes_for_ar1 == True`, then each predictor layer will predict two boxes with aspect ratio one, one a bit smaller, the other one a bit larger.* If `clip_boxes == True`, then the anchor boxes will be clipped so that they lie entirely within the image boundaries. It is recommended not to clip the boxes. The anchor boxes form the reference frame for the localization prediction. This reference frame should be the same at every spatial position.* In the matching process during the training, the anchor box offsets are being divided by the variances. Leaving them at 1.0 for each of the four box coordinates means that they have no effect. Setting them to less than 1.0 spreads the imagined anchor box offset distribution for the respective box coordinate.* `normalize_coords` converts all coordinates from absolute coordinate to coordinates that are relative to the image height and width. This setting has no effect on the outcome of the training. ###Code img_height = 720 # Height of the input images img_width = 1280 # Width of the input images img_channels = 3 # Number of color channels of the input images intensity_mean = 127.5 # Set this to your preference (maybe `None`). The current settings transform the input pixel values to the interval `[-1,1]`. intensity_range = 127.5 # Set this to your preference (maybe `None`). The current settings transform the input pixel values to the interval `[-1,1]`. n_classes = 5 # Number of positive classes scales = [0.08, 0.16, 0.32, 0.64, 0.96] # An explicit list of anchor box scaling factors. If this is passed, it will override `min_scale` and `max_scale`. aspect_ratios = [0.5, 1.0, 2.0] # The list of aspect ratios for the anchor boxes two_boxes_for_ar1 = True # Whether or not you want to generate two anchor boxes for aspect ratio 1 steps = None # In case you'd like to set the step sizes for the anchor box grids manually; not recommended offsets = None # In case you'd like to set the offsets for the anchor box grids manually; not recommended clip_boxes = False # Whether or not to clip the anchor boxes to lie entirely within the image boundaries variances = [1.0, 1.0, 1.0, 1.0] # The list of variances by which the encoded target coordinates are scaled normalize_coords = True # Whether or not the model is supposed to use coordinates relative to the image size ###Output _____no_output_____ ###Markdown 2. Build or load the modelYou will want to execute either of the two code cells in the subsequent two sub-sections, not both. 2.1 Create a new modelIf you want to create a new model, this is the relevant section for you. If you want to load a previously saved model, skip ahead to section 2.2.The code cell below does the following things:1. It calls the function `build_model()` to build the model.2. It optionally loads some weights into the model.3. It then compiles the model for the training. In order to do so, we're defining an optimizer (Adam) and a loss function (SSDLoss) to be passed to the `compile()` method.`SSDLoss` is a custom Keras loss function that implements the multi-task log loss for classification and smooth L1 loss for localization. `neg_pos_ratio` and `alpha` are set as in the paper. ###Code # 1: Build the Keras model K.clear_session() # Clear previous models from memory. model = build_model(image_size=(img_height, img_width, img_channels), n_classes=n_classes, mode='training', l2_regularization=0.0005, scales=scales, aspect_ratios_global=aspect_ratios, aspect_ratios_per_layer=None, two_boxes_for_ar1=two_boxes_for_ar1, steps=steps, offsets=offsets, clip_boxes=clip_boxes, variances=variances, normalize_coords=normalize_coords, subtract_mean=intensity_mean, divide_by_stddev=intensity_range) # 2: Optional: Load some weights #model.load_weights('./ssd7_weights.h5', by_name=True) # 3: Instantiate an Adam optimizer and the SSD loss function and compile the model adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0) model.compile(optimizer=adam, loss=ssd_loss.compute_loss) ###Output _____no_output_____ ###Markdown 2.2 Load a saved modelIf you have previously created and saved a model and would now like to load it, simply execute the next code cell. The only thing you need to do is to set the path to the saved model HDF5 file that you would like to load.The SSD model contains custom objects: Neither the loss function, nor the anchor box or detection decoding layer types are contained in the Keras core library, so we need to provide them to the model loader.This next code cell assumes that you want to load a model that was created in 'training' mode. If you want to load a model that was created in 'inference' or 'inference_fast' mode, you'll have to add the `DecodeDetections` or `DecodeDetectionsFast` layer type to the `custom_objects` dictionary below. ###Code # TODO: Set the path to the `.h5` file of the model to be loaded. model_path = 'ssd7.h5' # We need to create an SSDLoss object in order to pass that to the model loader. ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0) K.clear_session() # Clear previous models from memory. model = load_model(model_path, custom_objects={'AnchorBoxes': AnchorBoxes, 'compute_loss': ssd_loss.compute_loss}) ###Output _____no_output_____ ###Markdown 3. Set up the data generators for the trainingThe code cells below set up data generators for the training and validation datasets to train the model. You will have to set the file paths to your dataset. Depending on the annotations format of your dataset, you might also have to switch from the CSV parser to the XML or JSON parser, or you might have to write a new parser method in the `DataGenerator` class that can handle whatever format your annotations are in. The [README](https://github.com/pierluigiferrari/ssd_keras/blob/master/README.md) of this repository provides a summary of the design of the `DataGenerator`, which should help you in case you need to write a new parser or adapt one of the existing parsers to your needs.Note that the generator provides two options to speed up the training. By default, it loads the individual images for a batch from disk. This has two disadvantages. First, for compressed image formats like JPG, this is a huge computational waste, because every image needs to be decompressed again and again every time it is being loaded. Second, the images on disk are likely not stored in a contiguous block of memory, which may also slow down the loading process. The first option that `DataGenerator` provides to deal with this is to load the entire dataset into memory, which reduces the access time for any image to a negligible amount, but of course this is only an option if you have enough free memory to hold the whole dataset. As a second option, `DataGenerator` provides the possibility to convert the dataset into a single HDF5 file. This HDF5 file stores the images as uncompressed arrays in a contiguous block of memory, which dramatically speeds up the loading time. It's not as good as having the images in memory, but it's a lot better than the default option of loading them from their compressed JPG state every time they are needed. Of course such an HDF5 dataset may require significantly more disk space than the compressed images. You can later load these HDF5 datasets directly in the constructor.Set the batch size to to your preference and to what your GPU memory allows, it's not the most important hyperparameter. The Caffe implementation uses a batch size of 32, but smaller batch sizes work fine, too.The `DataGenerator` itself is fairly generic. I doesn't contain any data augmentation or bounding box encoding logic. Instead, you pass a list of image transformations and an encoder for the bounding boxes in the `transformations` and `label_encoder` arguments of the data generator's `generate()` method, and the data generator will then apply those given transformations and the encoding to the data. Everything here is preset already, but if you'd like to learn more about the data generator and its data augmentation capabilities, take a look at the detailed tutorial in [this](https://github.com/pierluigiferrari/data_generator_object_detection_2d) repository.The image processing chain defined further down in the object named `data_augmentation_chain` is just one possibility of what a data augmentation pipeline for unform-size images could look like. Feel free to put together other image processing chains, you can use the `DataAugmentationConstantInputSize` class as a template. Or you could use the original SSD data augmentation pipeline by instantiting an `SSDDataAugmentation` object and passing that to the generator instead. This procedure is not exactly efficient, but it evidently produces good results on multiple datasets.An `SSDInputEncoder` object, `ssd_input_encoder`, is passed to both the training and validation generators. As explained above, it matches the ground truth labels to the model's anchor boxes and encodes the box coordinates into the format that the model needs. Note:The example setup below was used to train SSD7 on two road traffic datasets released by [Udacity](https://github.com/udacity/self-driving-car/tree/master/annotations) with around 20,000 images in total and 5 object classes (car, truck, pedestrian, bicyclist, traffic light), although the vast majority of the objects are cars. The original datasets have a constant image size of 1200x1920 RGB. I consolidated the two datasets, removed a few bad samples (although there are probably many more), and resized the images to 300x480 RGB, i.e. to one sixteenth of the original image size. In case you'd like to train a model on the same dataset, you can download the consolidated and resized dataset I used [here](https://drive.google.com/open?id=1tfBFavijh4UTG4cGqIKwhcklLXUDuY0D) (about 900 MB). ###Code # 1: Instantiate two `DataGenerator` objects: One for training, one for validation. # Optional: If you have enough memory, consider loading the images into memory for the reasons explained above. train_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None) val_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None) # 2: Parse the image and label lists for the training and validation datasets. # TODO: Set the paths to your dataset here. # Images images_dir = 'training_images' # [Ajinkya]: add training and validation set for xml training_set_filename = 'training_set_filename.txt' validation_set_filename = 'validation_set_filename.txt' annotation_dir = 'training_annotations' # Ground truth # train_labels_filename = '../../datasets/udacity_driving_datasets/labels_train.csv' # val_labels_filename = '../../datasets/udacity_driving_datasets/labels_val.csv' # train_dataset.parse_csv(images_dir=images_dir, # labels_filename=train_labels_filename, # input_format=['image_name', 'xmin', 'xmax', 'ymin', 'ymax', 'class_id'], # This is the order of the first six columns in the CSV file that contains the labels for your dataset. If your labels are in XML format, maybe the XML parser will be helpful, check the documentation. # include_classes='all') # val_dataset.parse_csv(images_dir=images_dir, # labels_filename=val_labels_filename, # input_format=['image_name', 'xmin', 'xmax', 'ymin', 'ymax', 'class_id'], # include_classes='all') # [Ajinkya]: Using the XML parser instead train_dataset.parse_xml(images_dirs=images_dir, image_set_filenames=training_set_filename, annotations_dirs=annotation_dir, classes=['background', 'cone'], include_classes='all', exclude_truncated=False, exclude_difficult=False, ret=False, verbose=True) val_dataset.parse_xml(images_dirs=images_dir, image_set_filenames=validation_set_filename, annotations_dirs=annotation_dir, classes=['background', 'cone'], include_classes='all', exclude_truncated=False, exclude_difficult=False, ret=False, verbose=True) # Optional: Convert the dataset into an HDF5 dataset. This will require more disk space, but will # speed up the training. Doing this is not relevant in case you activated the `load_images_into_memory` # option in the constructor, because in that cas the images are in memory already anyway. If you don't # want to create HDF5 datasets, comment out the subsequent two function calls. # train_dataset.create_hdf5_dataset(file_path='dataset_udacity_traffic_train.h5', # resize=False, # variable_image_size=True, # verbose=True) # val_dataset.create_hdf5_dataset(file_path='dataset_udacity_traffic_val.h5', # resize=False, # variable_image_size=True, # verbose=True) # Get the number of samples in the training and validations datasets. train_dataset_size = train_dataset.get_dataset_size() val_dataset_size = val_dataset.get_dataset_size() print("Number of images in the training dataset:\t{:>6}".format(train_dataset_size)) print("Number of images in the validation dataset:\t{:>6}".format(val_dataset_size)) # 3: Set the batch size. batch_size = 16 # 4: Define the image processing chain. data_augmentation_chain = DataAugmentationConstantInputSize(random_brightness=(-48, 48, 0.5), random_contrast=(0.5, 1.8, 0.5), random_saturation=(0.5, 1.8, 0.5), random_hue=(18, 0.5), random_flip=0.5, random_translate=((0.03,0.5), (0.03,0.5), 0.5), random_scale=(0.5, 2.0, 0.5), n_trials_max=3, clip_boxes=True, overlap_criterion='area', bounds_box_filter=(0.3, 1.0), bounds_validator=(0.5, 1.0), n_boxes_min=1, background=(0,0,0)) # 5: Instantiate an encoder that can encode ground truth labels into the format needed by the SSD loss function. # The encoder constructor needs the spatial dimensions of the model's predictor layers to create the anchor boxes. predictor_sizes = [model.get_layer('classes4').output_shape[1:3], model.get_layer('classes5').output_shape[1:3], model.get_layer('classes6').output_shape[1:3], model.get_layer('classes7').output_shape[1:3]] ssd_input_encoder = SSDInputEncoder(img_height=img_height, img_width=img_width, n_classes=n_classes, predictor_sizes=predictor_sizes, scales=scales, aspect_ratios_global=aspect_ratios, two_boxes_for_ar1=two_boxes_for_ar1, steps=steps, offsets=offsets, clip_boxes=clip_boxes, variances=variances, matching_type='multi', pos_iou_threshold=0.5, neg_iou_limit=0.3, normalize_coords=normalize_coords) # 6: Create the generator handles that will be passed to Keras' `fit_generator()` function. train_generator = train_dataset.generate(batch_size=batch_size, shuffle=True, transformations=[data_augmentation_chain], label_encoder=ssd_input_encoder, returns={'processed_images', 'encoded_labels'}, keep_images_without_gt=False) val_generator = val_dataset.generate(batch_size=batch_size, shuffle=False, transformations=[], label_encoder=ssd_input_encoder, returns={'processed_images', 'encoded_labels'}, keep_images_without_gt=False) ###Output _____no_output_____ ###Markdown 4. Set the remaining training parameters and train the modelWe've already chosen an optimizer and a learning rate and set the batch size above, now let's set the remaining training parameters.I'll set a few Keras callbacks below, one for early stopping, one to reduce the learning rate if the training stagnates, one to save the best models during the training, and one to continuously stream the training history to a CSV file after every epoch. Logging to a CSV file makes sense, because if we didn't do that, in case the training terminates with an exception at some point or if the kernel of this Jupyter notebook dies for some reason or anything like that happens, we would lose the entire history for the trained epochs. Feel free to add more callbacks if you want TensorBoard summaries or whatever. ###Code # Define model callbacks. # TODO: Set the filepath under which you want to save the weights. model_checkpoint = ModelCheckpoint(filepath='ssd7_epoch-{epoch:02d}_loss-{loss:.4f}_val_loss-{val_loss:.4f}.h5', monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1) csv_logger = CSVLogger(filename='ssd7_training_log.csv', separator=',', append=True) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.0, patience=10, verbose=1) reduce_learning_rate = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=8, verbose=1, epsilon=0.001, cooldown=0, min_lr=0.00001) callbacks = [model_checkpoint, csv_logger, early_stopping, reduce_learning_rate] ###Output _____no_output_____ ###Markdown I'll set one epoch to consist of 1,000 training steps I'll arbitrarily set the number of epochs to 20 here. This does not imply that 20,000 training steps is the right number. Depending on the model, the dataset, the learning rate, etc. you might have to train much longer to achieve convergence, or maybe less.Instead of trying to train a model to convergence in one go, you might want to train only for a few epochs at a time.In order to only run a partial training and resume smoothly later on, there are a few things you should note:1. Always load the full model if you can, rather than building a new model and loading previously saved weights into it. Optimizers like SGD or Adam keep running averages of past gradient moments internally. If you always save and load full models when resuming a training, then the state of the optimizer is maintained and the training picks up exactly where it left off. If you build a new model and load weights into it, the optimizer is being initialized from scratch, which, especially in the case of Adam, leads to small but unnecessary setbacks every time you resume the training with previously saved weights.2. You should tell `fit_generator()` which epoch to start from, otherwise it will start with epoch 0 every time you resume the training. Set `initial_epoch` to be the next epoch of your training. Note that this parameter is zero-based, i.e. the first epoch is epoch 0. If you had trained for 10 epochs previously and now you'd want to resume the training from there, you'd set `initial_epoch = 10` (since epoch 10 is the eleventh epoch). Furthermore, set `final_epoch` to the last epoch you want to run. To stick with the previous example, if you had trained for 10 epochs previously and now you'd want to train for another 10 epochs, you'd set `initial_epoch = 10` and `final_epoch = 20`.3. Callbacks like `ModelCheckpoint` or `ReduceLROnPlateau` are stateful, so you might want ot save their state somehow if you want to pick up a training exactly where you left off. ###Code # TODO: Set the epochs to train for. # If you're resuming a previous training, set `initial_epoch` and `final_epoch` accordingly. initial_epoch = 0 final_epoch = 20 steps_per_epoch = 1000 history = model.fit_generator(generator=train_generator, steps_per_epoch=steps_per_epoch, epochs=final_epoch, callbacks=callbacks, validation_data=val_generator, validation_steps=ceil(val_dataset_size/batch_size), initial_epoch=initial_epoch) ###Output _____no_output_____ ###Markdown Let's look at how the training and validation loss evolved to check whether our training is going in the right direction: ###Code plt.figure(figsize=(20,12)) plt.plot(history.history['loss'], label='loss') plt.plot(history.history['val_loss'], label='val_loss') plt.legend(loc='upper right', prop={'size': 24}); ###Output _____no_output_____ ###Markdown The validation loss has been decreasing at a similar pace as the training loss, indicating that our model has been learning effectively over the last 30 epochs. We could try to train longer and see if the validation loss can be decreased further. Once the validation loss stops decreasing for a couple of epochs in a row, that's when we will want to stop training. Our final weights will then be the weights of the epoch that had the lowest validation loss. 5. Make predictionsNow let's make some predictions on the validation dataset with the trained model. For convenience we'll use the validation generator which we've already set up above. Feel free to change the batch size.You can set the `shuffle` option to `False` if you would like to check the model's progress on the same image(s) over the course of the training. ###Code # 1: Set the generator for the predictions. predict_generator = val_dataset.generate(batch_size=1, shuffle=True, transformations=[], label_encoder=None, returns={'processed_images', 'processed_labels', 'filenames'}, keep_images_without_gt=False) # 2: Generate samples batch_images, batch_labels, batch_filenames = next(predict_generator) i = 0 # Which batch item to look at print("Image:", batch_filenames[i]) print() print("Ground truth boxes:\n") print(batch_labels[i]) # 3: Make a prediction y_pred = model.predict(batch_images) ###Output _____no_output_____ ###Markdown Now let's decode the raw predictions in `y_pred`.Had we created the model in 'inference' or 'inference_fast' mode, then the model's final layer would be a `DecodeDetections` layer and `y_pred` would already contain the decoded predictions, but since we created the model in 'training' mode, the model outputs raw predictions that still need to be decoded and filtered. This is what the `decode_detections()` function is for. It does exactly what the `DecodeDetections` layer would do, but using Numpy instead of TensorFlow (i.e. on the CPU instead of the GPU).`decode_detections()` with default argument values follows the procedure of the original SSD implementation: First, a very low confidence threshold of 0.01 is applied to filter out the majority of the predicted boxes, then greedy non-maximum suppression is performed per class with an intersection-over-union threshold of 0.45, and out of what is left after that, the top 200 highest confidence boxes are returned. Those settings are for precision-recall scoring purposes though. In order to get some usable final predictions, we'll set the confidence threshold much higher, e.g. to 0.5, since we're only interested in the very confident predictions. ###Code # 4: Decode the raw prediction `y_pred` y_pred_decoded = decode_detections(y_pred, confidence_thresh=0.5, iou_threshold=0.45, top_k=200, normalize_coords=normalize_coords, img_height=img_height, img_width=img_width) np.set_printoptions(precision=2, suppress=True, linewidth=90) print("Predicted boxes:\n") print(' class conf xmin ymin xmax ymax') print(y_pred_decoded[i]) ###Output _____no_output_____ ###Markdown Finally, let's draw the predicted boxes onto the image. Each predicted box says its confidence next to the category name. The ground truth boxes are also drawn onto the image in green for comparison. ###Code # 5: Draw the predicted boxes onto the image plt.figure(figsize=(20,12)) plt.imshow(batch_images[i]) current_axis = plt.gca() colors = plt.cm.hsv(np.linspace(0, 1, n_classes+1)).tolist() # Set the colors for the bounding boxes classes = ['background', 'car', 'truck', 'pedestrian', 'bicyclist', 'light'] # Just so we can print class names onto the image instead of IDs # Draw the ground truth boxes in green (omit the label for more clarity) for box in batch_labels[i]: xmin = box[1] ymin = box[2] xmax = box[3] ymax = box[4] label = '{}'.format(classes[int(box[0])]) current_axis.add_patch(plt.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin, color='green', fill=False, linewidth=2)) #current_axis.text(xmin, ymin, label, size='x-large', color='white', bbox={'facecolor':'green', 'alpha':1.0}) # Draw the predicted boxes in blue for box in y_pred_decoded[i]: xmin = box[-4] ymin = box[-3] xmax = box[-2] ymax = box[-1] color = colors[int(box[0])] label = '{}: {:.2f}'.format(classes[int(box[0])], box[1]) current_axis.add_patch(plt.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin, color=color, fill=False, linewidth=2)) current_axis.text(xmin, ymin, label, size='x-large', color='white', bbox={'facecolor':color, 'alpha':1.0}) ###Output _____no_output_____
V4/v4_exercises_material/solutions/1_Text_Analysis/3_Word_Count_Gutenberg.ipynb
###Markdown Init Connection ###Code %load_ext sql %sql hive://hadoop@localhost:10000/text ###Output _____no_output_____ ###Markdown Saving the result to a new table ###Code %%sql CREATE TABLE word_gutenberg AS select lower(word) as word from ( select explode(sentence) word from ( select explode(sentences(trim(line))) sentence from raw_gutenberg where line != '' ) sentence_table ) word_table ###Output * hive://hadoop@localhost:10000/text Done. ###Markdown Word Count ###Code %%sql CREATE TABLE word_count_gutenberg AS SELECT word, count(word) as count FROM word_gutenberg GROUP BY word ORDER BY count DESC %sql select * from word_count_gutenberg where word in ('he', 'she', 'it') %sql select * from word_count_gutenberg limit 10 ###Output * hive://hadoop@localhost:10000/text Done. ###Markdown Comparing Gutenberg WordCount with OEC Rank for the Top 20 WordsFrom Wikipedia [100 most common words](https://en.wikipedia.org/wiki/Most_common_words_in_English) Can you compare our findings with the ones listed here (from wikipedia)|word|place|| ----------- | ----------- ||the|1||be|2||to|3||of|4||and|5||a|6||in|7||that|9||have|9||i|10||it|11||for|12||not| 13||on|14||with|15||he|16||as| 17||you|18||do|19||at|20| ###Code %%sql gutenberg_top_20 << SELECT *, ROW_NUMBER() OVER () AS gutenberg_place FROM ( SELECT word FROM word_count_gutenberg LIMIT 20 ) ranked_words %%sql oec_top_20 << select explode(map ('the',1,'be',2,'to',3,'of',4,'and',5,'a',6,'in',7,'that',9,'have',9,'i',10,'it',11,'for',12,'not', 13,'on',14,'with',15,'he',16,'as', 17,'you',18,'do',19,'at',20) ) as (word,oec_place) df_gutenberg = gutenberg_top_20.DataFrame() df_oec = oec_top_20.DataFrame() df_gutenberg.merge( right = df_oec, how="outer", ) ###Output _____no_output_____
workflow.ipynb
###Markdown ENRON Person of Interest Identifierby Fernando Maletski IntroductionThe famous ENRON scandal was the largest bankruptcy reorganization in the United States at the time it was publicized, October 2001. Due to the Federal investigation, a significant amount of confidential information was released to the public, including tens of thousands of emails and detailed financial data.The objective of this project is to use this large dataset to create a machine learning model that correctly identifiers the Persons of Interest (POI) based on the data made public. Workspace Setup ###Code import sys import numpy as np import pandas as pd import pickle import matplotlib import operator %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns matplotlib.style.use('ggplot') #Set a decent style matplotlib.rcParams['image.cmap'] = 'bwr' #Diverging colors with open("final_project_dataset_py3.pkl", "rb") as data_file: data_dict = pickle.load(data_file) ###Output _____no_output_____ ###Markdown EDA and Feature EngineeringIn this section we will explore the dataset, explain features and clean issues, such as missing values and outliers. ###Code len(sorted(data_dict.keys())) ###Output _____no_output_____ ###Markdown There are 146 datapoints, each of them should represent a person whose records were made public, the key of this dictionary is their name in this format: LAST NAME FIRST NAME (MIDDLE INICIAL). As this is a small dataset, it is possible to check each persons name for inconsistencies: ###Code persons = sorted(data_dict.keys()) for person in persons: print(person) ###Output ALLEN PHILLIP K BADUM JAMES P BANNANTINE JAMES M BAXTER JOHN C BAY FRANKLIN R BAZELIDES PHILIP J BECK SALLY W BELDEN TIMOTHY N BELFER ROBERT BERBERIAN DAVID BERGSIEKER RICHARD P BHATNAGAR SANJAY BIBI PHILIPPE A BLACHMAN JEREMY M BLAKE JR. NORMAN P BOWEN JR RAYMOND M BROWN MICHAEL BUCHANAN HAROLD G BUTTS ROBERT H BUY RICHARD B CALGER CHRISTOPHER F CARTER REBECCA C CAUSEY RICHARD A CHAN RONNIE CHRISTODOULOU DIOMEDES CLINE KENNETH W COLWELL WESLEY CORDES WILLIAM R COX DAVID CUMBERLAND MICHAEL S DEFFNER JOSEPH M DELAINEY DAVID W DERRICK JR. JAMES V DETMERING TIMOTHY J DIETRICH JANET R DIMICHELE RICHARD G DODSON KEITH DONAHUE JR JEFFREY M DUNCAN JOHN H DURAN WILLIAM D ECHOLS JOHN B ELLIOTT STEVEN FALLON JAMES B FASTOW ANDREW S FITZGERALD JAY L FOWLER PEGGY FOY JOE FREVERT MARK A FUGH JOHN L GAHN ROBERT S GARLAND C KEVIN GATHMANN WILLIAM D GIBBS DANA R GILLIS JOHN GLISAN JR BEN F GOLD JOSEPH GRAMM WENDY L GRAY RODNEY HAEDICKE MARK E HANNON KEVIN P HAUG DAVID L HAYES ROBERT E HAYSLETT RODERICK J HERMANN ROBERT J HICKERSON GARY J HIRKO JOSEPH HORTON STANLEY C HUGHES JAMES A HUMPHREY GENE E IZZO LAWRENCE L JACKSON CHARLENE R JAEDICKE ROBERT KAMINSKI WINCENTY J KEAN STEVEN J KISHKILL JOSEPH G KITCHEN LOUISE KOENIG MARK E KOPPER MICHAEL J LAVORATO JOHN J LAY KENNETH L LEFF DANIEL P LEMAISTRE CHARLES LEWIS RICHARD LINDHOLM TOD A LOCKHART EUGENE E LOWRY CHARLES P MARTIN AMANDA K MCCARTY DANNY J MCCLELLAN GEORGE MCCONNELL MICHAEL S MCDONALD REBECCA MCMAHON JEFFREY MENDELSOHN JOHN METTS MARK MEYER JEROME J MEYER ROCKFORD G MORAN MICHAEL P MORDAUNT KRISTINA M MULLER MARK S MURRAY JULIA H NOLES JAMES L OLSON CINDY K OVERDYKE JR JERE C PAI LOU L PEREIRA PAULO V. FERRAZ PICKERING MARK R PIPER GREGORY F PIRO JIM POWERS WILLIAM PRENTICE JAMES REDMOND BRIAN L REYNOLDS LAWRENCE RICE KENNETH D RIEKER PAULA H SAVAGE FRANK SCRIMSHAW MATTHEW SHANKMAN JEFFREY A SHAPIRO RICHARD S SHARP VICTORIA T SHELBY REX SHERRICK JEFFREY B SHERRIFF JOHN R SKILLING JEFFREY K STABLER FRANK SULLIVAN-SHAKLOVITZ COLLEEN SUNDE MARTIN TAYLOR MITCHELL S THE TRAVEL AGENCY IN THE PARK THORN TERENCE H TILNEY ELIZABETH A TOTAL UMANOFF ADAM S URQUHART JOHN A WAKEHAM JOHN WALLS JR ROBERT H WALTERS GARETH W WASAFF GEORGE WESTFAHL RICHARD K WHALEY DAVID A WHALLEY LAWRENCE G WHITE JR THOMAS E WINOKUR JR. HERBERT S WODRASKA JOHN WROBEL BRUCE YEAGER F SCOTT YEAP SOON ###Markdown There are 2 problematic datapoins, TOTAL and THE TRAVEL AGENCY IN THE PARK.While TOTAL is self explanatory and safe to be removed, THE TRAVEL AGENCY IN THE PARK is actually a company (http://www.businesstravelnews.com/More-News/Enron-s-Agency-Changes-Name-Reaffirms-Corp-Commitment).Taking a closer look to it: ###Code data_dict['THE TRAVEL AGENCY IN THE PARK'] ###Output _____no_output_____ ###Markdown With most of its features being missing and due to the fact it is not a person, much less a Person of Interest, this datapoint should be removed, along with TOTAL. ###Code data_dict.pop('TOTAL') data_dict.pop('THE TRAVEL AGENCY IN THE PARK') len(sorted(data_dict.keys())) ###Output _____no_output_____ ###Markdown Now the dataset has 144 person in it. The values of the dictionary are another dictionary that follows this schema (key: value): feature: value.Extracting the list of features: ###Code feature_list = sorted(data_dict['ALLEN PHILLIP K']) print(len(feature_list)) feature_list ###Output 21 ###Markdown We have 20 features and the hand coded Person of Interest (poi) label. Testing to see if all the datapoints have the same features: ###Code count = 0 for person, data in data_dict.items(): for feature, value in data.items(): if feature not in feature_list: print(person, feature) else: count += 1 total_count = len(feature_list) * len(data_dict.keys()) print('{} of {} found'.format(count, total_count)) ###Output 3024 of 3024 found ###Markdown This is all the features of the dataset, the structure supports a table schema. So it's possible to convert this dataset to an exploration friendly format, a pandas DataFrame: ###Code df = pd.DataFrame(data_dict) df = df.transpose() df.head() ###Output _____no_output_____ ###Markdown Replacing 'NaN' string with np.NaN for compatibility with numeric methods: ###Code df.replace('NaN', np.NaN, inplace=True) ###Output _____no_output_____ ###Markdown To check is there is a person in the dataset with all their values missing (as the POI label is hand coded, it may not be missing): ###Code checknull = df.T.isnull().sum() >= 20 checknull.any() df[checknull].T ###Output _____no_output_____ ###Markdown This datapoint has no values, with the exception of the poi label, it brings no information and should be removed. ###Code df.drop('LOCKHART EUGENE E', inplace=True) len(df) ###Output _____no_output_____ ###Markdown The analysis will proceed with the final count of 143 persons. Here's a print from a random person to have an idea of the information from each datapoint: ###Code df.iloc[12] ###Output _____no_output_____ ###Markdown An overview: ###Code total_dps = len(df) poi_dps = df.poi.sum() print('Total Data Points: {:>3}'.format(total_dps)) print('Total POI : {:>3}'.format(poi_dps)) ###Output Total Data Points: 143 Total POI : 18 ###Markdown There is 2 classes of features, finance related and email related:* **financial features:** ['salary', 'deferral_payments', 'total_payments', 'loan_advances', 'bonus', 'restricted_stock_deferred', 'deferred_income', 'total_stock_value', 'expenses', 'exercised_stock_options', 'other', 'long_term_incentive', 'restricted_stock', 'director_fees'] (all units are in US dollars)* **email features:** ['to_messages', 'email_address', 'from_poi_to_this_person', 'from_messages', 'from_this_person_to_poi', 'shared_receipt_with_poi'] (units are generally number of emails messages; notable exception is ‘email_address’, which is a text string) ###Code financial_features = ['salary', 'deferral_payments', 'total_payments', 'loan_advances', 'bonus', 'restricted_stock_deferred', 'deferred_income', 'total_stock_value', 'expenses', 'exercised_stock_options', 'other', 'long_term_incentive', 'restricted_stock', 'director_fees'] email_features = ['to_messages', 'email_address', 'from_poi_to_this_person', 'from_messages', 'from_this_person_to_poi', 'shared_receipt_with_poi'] ###Output _____no_output_____ ###Markdown Email Features ###Code print(email_features) ###Output ['to_messages', 'email_address', 'from_poi_to_this_person', 'from_messages', 'from_this_person_to_poi', 'shared_receipt_with_poi'] ###Markdown Missing Values ###Code print_list = [] for feature in email_features: title = feature count = df[feature].count() missing = total_dps - count poi_count = len(df.query(feature+' != "NaN" and poi==True')) pct_missing = 100*missing/total_dps print_list.append((title, count, missing, poi_count, pct_missing)) print('{:>30}: {:<8} {:<8} {:<10} {:<8}'.format('Title', 'Count', 'Missing', 'POI Count', '% Missing')) for (title, count, missing, poi_count, pct_missing) in sorted(print_list, key=operator.itemgetter(4), reverse=True): print('{:>30}: {:<8} {:<8} {:<10} {:<8.2f}'.format(title, count, missing, poi_count, pct_missing)) ###Output Title: Count Missing POI Count % Missing to_messages: 86 57 14 39.86 from_poi_to_this_person: 86 57 14 39.86 from_messages: 86 57 14 39.86 from_this_person_to_poi: 86 57 14 39.86 shared_receipt_with_poi: 86 57 14 39.86 email_address: 111 32 18 22.38 ###Markdown There's no email feature with a relatively high amount of missing values, so they are valid. New Features The first approach we can take is to see if POIs communicate to each other a lot, using the features from_poi_to_this_person and from_this_person_to_poi: ###Code plt.scatter(df.from_poi_to_this_person, df.from_this_person_to_poi, c=df.poi, alpha=0.5) ###Output _____no_output_____ ###Markdown It is a good idea, but there are people who sends a lot of emails and those that don't, so, engineering 2 new features, from_poi_ratio and to_poi_ratio may help: ###Code df['from_poi_ratio'] = df.from_poi_to_this_person/df.to_messages df['to_poi_ratio'] = df.from_this_person_to_poi/df.from_messages plt.scatter(df.from_poi_ratio, df.to_poi_ratio, c=df.poi, alpha=0.5) ###Output _____no_output_____ ###Markdown Good, these features will help to filter a lot of people. Using the same line of thought with the feature "shared_receipt_with_poi" doesn't help too much: ###Code plt.scatter(df.shared_receipt_with_poi/df.to_messages, df.to_poi_ratio, c=df.poi, alpha=0.5) selected_email_features = ['from_poi_ratio', 'to_poi_ratio'] ###Output _____no_output_____ ###Markdown Financial FeaturesThere is a lot of financial features: ###Code print(financial_features) print(len(financial_features)) ###Output ['salary', 'deferral_payments', 'total_payments', 'loan_advances', 'bonus', 'restricted_stock_deferred', 'deferred_income', 'total_stock_value', 'expenses', 'exercised_stock_options', 'other', 'long_term_incentive', 'restricted_stock', 'director_fees'] 14 ###Markdown Missing Values If there is features with too much missing values, they won't help with the classification. ###Code print_list = [] for feature in financial_features: title = feature count = df[feature].count() missing = total_dps - count poi_count = len(df.query(feature+' != "NaN" and poi==True')) pct_missing = 100*missing/total_dps print_list.append((title, count, missing, poi_count, pct_missing)) print('{:>30}: {:<8} {:<8} {:<10} {:<8}'.format('Title', 'Count', 'Missing', 'POI Count', '% Missing')) for (title, count, missing, poi_count, pct_missing) in sorted(print_list, key=operator.itemgetter(4), reverse=True): print('{:>30}: {:<8} {:<8} {:<10} {:<8.2f}'.format(title, count, missing, poi_count, pct_missing)) ###Output Title: Count Missing POI Count % Missing loan_advances: 3 140 1 97.90 director_fees: 16 127 0 88.81 restricted_stock_deferred: 17 126 0 88.11 deferral_payments: 38 105 5 73.43 deferred_income: 48 95 11 66.43 long_term_incentive: 65 78 12 54.55 bonus: 81 62 16 43.36 other: 91 52 18 36.36 salary: 94 49 17 34.27 expenses: 94 49 18 34.27 exercised_stock_options: 101 42 12 29.37 restricted_stock: 109 34 17 23.78 total_payments: 123 20 18 13.99 total_stock_value: 125 18 18 12.59 ###Markdown Features with a high amount of missing values and low POI count won't be useful. Removing them: ###Code features_to_remove = ['loan_advances', 'director_fees', 'restricted_stock_deferred'] for feature in features_to_remove: financial_features.remove(feature) print(financial_features) len(financial_features) ###Output ['salary', 'deferral_payments', 'total_payments', 'bonus', 'deferred_income', 'total_stock_value', 'expenses', 'exercised_stock_options', 'other', 'long_term_incentive', 'restricted_stock'] ###Markdown Exploration ###Code for feature in financial_features: plt.hist(df[feature].dropna(),20) plt.title(feature) plt.show() ###Output _____no_output_____ ###Markdown With the exception of salary, all features are skewed. Using it as a basis for scatterplots to have an idea of the POI/non-POI distribution: ###Code for feature in financial_features[1:]: plt.scatter(np.sqrt(df.salary), df[feature], c=df.poi, alpha=0.5) plt.title(feature) plt.show() ###Output _____no_output_____ ###Markdown Pre Selected Features ###Code features = selected_email_features+financial_features print(features) len(features) ###Output ['from_poi_ratio', 'to_poi_ratio', 'salary', 'deferral_payments', 'total_payments', 'bonus', 'deferred_income', 'total_stock_value', 'expenses', 'exercised_stock_options', 'other', 'long_term_incentive', 'restricted_stock'] ###Markdown Feature Scaling and Handling of Missing Values A few of the chosen models to test, namely SVMs, will benefit from feature scaling as the features are of varying magnitudes.The MinMaxScaler is a simple yet effective way to bring all the features to comparable values, between 0 and 1.From now on, missing values (NaN) will be replaced by 0. ###Code df.fillna(0, inplace=True) from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() df[features] = scaler.fit_transform(df[features]) df.head() ###Output _____no_output_____ ###Markdown Feature Selection Evaluation Metrics The dataset is very unbalanced towards non-POI: ###Code print('POI: {} | Total: {}'.format(len(df), np.sum(df.poi==True))) ###Output POI: 143 | Total: 18 ###Markdown Using precision, or F1, generates warnings because a lot of the times they end up dividing by 0. Ignoring warnings for now on: ###Code import warnings warnings.filterwarnings('ignore') print('Accuracy if predicted all non-POI: {:0.6f}'.format((143-18)/143)) ###Output Accuracy if predicted all non-POI: 0.874126 ###Markdown Ideally, the classifier should be more accurate than 0.8759, while having high recall and precision. Due to the imbalanced nature of the dataset (way more non-POI than POI), using just accuracy, or even F1, results in poor detection performance.The objective here is fraud detection! A model that is accurate but doesn't detect a lot of POI is not a good one.There is a metric specifically created to deal with highly imbalanced classes, called Matthews correlation coefficient:The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes.[source: Wikipedia | http://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html | https://en.wikipedia.org/wiki/Matthews_correlation_coefficient]The MCC is the chosen metric in this project for parameter tuning and evaluation. Preparing the metrics for iteration using GridSearchCV: ###Code from sklearn.metrics import matthews_corrcoef from sklearn.metrics import make_scorer mcc = make_scorer(matthews_corrcoef) scorers = {'mcc': mcc, 'accuracy': 'accuracy', 'f1': 'f1', 'recall': 'recall', 'precision': 'precision'} from sklearn.model_selection import GridSearchCV def print_summary(clf): print(clf.best_estimator_) mcc = clf.cv_results_['mean_test_mcc'][clf.best_index_] print('MCC: {:0.4f}'.format(mcc)) f1 = clf.cv_results_['mean_test_f1'][clf.best_index_] print('F1: {:0.4f}'.format(f1)) pre = clf.cv_results_['mean_test_precision'][clf.best_index_] print('Precision: {:0.4f}'.format(pre)) rec = clf.cv_results_['mean_test_recall'][clf.best_index_] print('Recall: {:0.4f}'.format(rec)) acc = clf.cv_results_['mean_test_accuracy'][clf.best_index_] print('Accuracy: {:0.4f}'.format(acc)) return (str(clf.best_estimator_).split('(')[0], mcc, f1, pre, rec, acc) ###Output _____no_output_____ ###Markdown Validation Strategy With the class imbalance present in the dataset, a stratified solution of cross-validation is needed. Scikit-learn provides us with 2:* StratifiedKFold http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html* StratifiedShuffleSplit http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.htmlBoth will preserve the percentage of samples for each class. The key difference is the splitting method.StratifiedKFold will split the dataset k times, and use k-1 folds for training and the remaining for testing. The process is repeated k times.StratifiedShuffleSplit will shuffle the dataset and split it n_splits times respecting to the chosen test_size.While both are valid ways of cross validation, due to the small size of the dataset, StratifiedShuffleSplit provides less chance of overfitting. ###Code from sklearn.model_selection import StratifiedShuffleSplit cv = StratifiedShuffleSplit(n_splits=50, test_size=0.3, random_state=42) ###Output _____no_output_____ ###Markdown The random state is set to 42 for test–retest reliability. Model Pre-Selection As per http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html, the workflow should be:* Linear SVC* KN Classifier* SVC (other kernels)* Ensemble Classifiers + Random Forest + Adaboost ###Code from sklearn.svm import SVC, LinearSVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier ###Output _____no_output_____ ###Markdown Both ensemble classifiers use Decision Trees as a base, so it makes sense to add it to the pre-selection too. Adaboost, in particular, sometimes benefits greatly from a tuned DecisionTreeClassifier as its base. ###Code from sklearn.tree import DecisionTreeClassifier ###Output _____no_output_____ ###Markdown Testing methodology To test the pre-selected models and features, a solid testing method must be chosen. Scikit-learn has GridSerchCV, the main function of this object is actually parameter tuning, but passing an empty dictionary as the parameters turn it into a robust testing method, that handles dataset splitting in accordance with a selected cross-validator, with the added bonus of an easy to use parallel processing, drasticaly speeding up the process. ###Code from sklearn.model_selection import GridSearchCV ###Output _____no_output_____ ###Markdown Feature Selection While exploring and selecting them by hand is a valid approach, so is using statistics to do it and testing to do it. This code will print the p_values and ANOVA F-scores of each feature (NaN is filled with 0):FORMAT: p_value : feature : F-score ###Code from sklearn.feature_selection import SelectKBest selector = SelectKBest() selector.fit(df[features], df.poi) features_ranked = [] print('{:>30} :{:^30}: {}'.format('p_value', 'Feature', 'F-score')) print('') for (feature, score, pvalue) in sorted(zip(features, selector.scores_, selector.pvalues_), key=operator.itemgetter(1), reverse=True): features_ranked.append(feature) print('{:>30} :{:^30}: {}'.format(pvalue, feature, score)) ###Output p_value : Feature : F-score 1.8182048777865317e-06 : exercised_stock_options : 24.815079733218194 2.4043152760437106e-06 : total_stock_value : 24.182898678566872 1.10129873239521e-05 : bonus : 20.792252047181538 3.4782737683651706e-05 : salary : 18.289684043404513 8.388953356704216e-05 : to_poi_ratio : 16.40971254803579 0.0009220367084670714 : deferred_income : 11.458476579280697 0.001994181245353672 : long_term_incentive : 9.922186013189839 0.002862802957909168 : restricted_stock : 9.212810621977086 0.0035893261725152385 : total_payments : 8.772777730091681 0.01475819996537172 : expenses : 6.094173310638967 0.042581747012345836 : other : 4.1874775069953785 0.07911610566379423 : from_poi_ratio : 3.128091748156737 0.636281647458697 : deferral_payments : 0.2246112747360051 ###Markdown SelectKBest provides a good way to choose the right features for a machine learning model. However, using just univariate statistics for feature selection doesn't take into account feature interaction, the ideal k is hard to pinpoint without further testing.Ideally, testing every single feature combination would yield the best result, but it is both time and processing power expensive to do so.The next best thing is to rank the features as it is done above, and recursively remove the lowest ranked one to test its value.For the testing, two classifiers will be used, the simplest SVM: LinearSVC, and the base of the ensemble classifiers: DecisionTreeClassifier. Both will be run using stock parameter for now, with the exception of: * class_weight='balanced' - highly beneficial for imbalanced datasets;* and random_state=42 - for test–retest reliability. ###Code def test_k(features_list, k): features = df[features_list[0:k]].values labels = df.poi.values parameters = {'class_weight': ['balanced'], 'random_state': [42]} clf1 = GridSearchCV(LinearSVC(), parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=0) clf1.fit(features, labels) mcc1 = clf1.cv_results_['mean_test_mcc'][clf1.best_index_] f11 = clf1.cv_results_['mean_test_f1'][clf1.best_index_] pre1 = clf1.cv_results_['mean_test_precision'][clf1.best_index_] rec1 = clf1.cv_results_['mean_test_recall'][clf1.best_index_] acc1 = clf1.cv_results_['mean_test_accuracy'][clf1.best_index_] clf2 = GridSearchCV(DecisionTreeClassifier(), parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=0) clf2.fit(features, labels) mcc2 = clf2.cv_results_['mean_test_mcc'][clf2.best_index_] f12 = clf2.cv_results_['mean_test_f1'][clf2.best_index_] pre2 = clf2.cv_results_['mean_test_precision'][clf2.best_index_] rec2 = clf2.cv_results_['mean_test_recall'][clf2.best_index_] acc2 = clf2.cv_results_['mean_test_accuracy'][clf2.best_index_] results = [features_list[k-1], k, mcc1, f11, pre1, rec1, acc1, mcc2, f12, pre2, rec2, acc2] return results test_results = [] for k in range(1,14): print('Testing k={}'.format(k)) result = test_k(features_ranked, k) test_results.append(result) print('Finished') result = pd.DataFrame(test_results, columns=['feature added', 'k', 'svc_mcc', 'svc_f1', 'svc_pre', 'svc_rec', 'svc_acc', 'dt_mcc', 'dt_f1', 'dt_pre', 'dt_rec', 'dt_acc']) result plt.plot(result['k'], result['svc_mcc'], 'o-', result['k'], result['dt_mcc'], 'o-') plt.title('MCC') plt.legend(['SVM', 'Decision Tree']) plt.show() plt.plot(result['k'], result['svc_rec'], 'o-', result['k'], result['dt_rec'], 'o-') plt.title('Recall') plt.legend(['SVM', 'Decision Tree']) plt.show() plt.plot(result['k'], result['svc_pre'], 'o-', result['k'], result['dt_pre'], 'o-') plt.title('Precision') plt.legend(['SVM', 'Decision Tree']) plt.show() ###Output _____no_output_____ ###Markdown In these plots, it becomes evident that the best value for k is 5, for both algorithms and the MCC and Recall metrics. However, there's a one interesting observations:* The addition of features 2, 4, 6, 7, 8, 9 and (to a lesser extent) 11 appear to decrease the performance across the board (with few exceptions). What if removing those features yields better results? ###Code hand_picked = features_ranked.copy() j=0 for i in [1,3,5,6,7,8,10]: hand_picked.remove(features_ranked[i]) hand_picked test_results = [] for k in range(1,7): print('Testing k={}'.format(k)) result = test_k(hand_picked, k) test_results.append(result) print('Finished') result_hp = pd.DataFrame(test_results, columns=['feature added', 'k', 'svc_mcc', 'svc_f1', 'svc_pre', 'svc_rec', 'svc_acc', 'dt_mcc', 'dt_f1', 'dt_pre', 'dt_rec', 'dt_acc']) result_hp plt.plot(result_hp['k'], result_hp['svc_mcc'], 'o-', result_hp['k'], result_hp['dt_mcc'], 'o-') plt.title('MCC') plt.legend(['SVM', 'Decision Tree']) plt.show() plt.plot(result_hp['k'], result_hp['svc_rec'], 'o-', result_hp['k'], result_hp['dt_rec'], 'o-') plt.title('Recall') plt.legend(['SVM', 'Decision Tree']) plt.show() plt.plot(result_hp['k'], result_hp['svc_pre'], 'o-', result_hp['k'], result_hp['dt_pre'], 'o-') plt.title('Precision') plt.legend(['SVM', 'Decision Tree']) plt.show() ###Output _____no_output_____ ###Markdown This approach was extremely beneficial for the Decision Tree algorithm. The SVC suffered a bit, but not enough to not use the hand picked features for the rest of the project. ###Code selector = SelectKBest(k=6) filtered = selector.fit_transform(df[hand_picked], df.poi) selected_features = [] for (feature, selected) in zip(hand_picked, selector.get_support()): if selected: selected_features.append(feature) selected = pd.DataFrame(filtered, columns = selected_features) corr = selected.corr() sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, cmap='RdBu', vmin = -1.0, vmax = 1.0, annot = True) features = df[hand_picked].values labels = df.poi.values ###Output _____no_output_____ ###Markdown Model Selection Everything is in order to start the tests. Each model will be run in 3 times (2 if the model has already reached its best performance):* First run: General range of parameters of different magnitudes* Second run: Specific parameter range* Third run: Fine tuningAfterwards a summary of findings is presented. Linear SVM Classifier First run ###Code parameters = {'C': [1,2,3,5,10,15,20,50,100,200,300,400,500,1000,2500,5000,10000], 'class_weight': [None, 'balanced']} bclf = LinearSVC(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) lsvm = print_summary(clf) ###Output LinearSVC(C=200, class_weight='balanced', dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=42, tol=0.0001, verbose=0) MCC: 0.3045 F1: 0.3827 Precision: 0.3649 Recall: 0.4720 Accuracy: 0.8181 ###Markdown Second run ###Code parameters = {'C': [100,110,120,130,140,150,160,170,180,190,200, 210,220,230,240,250,260,270,280,290,300], 'class_weight': [None, 'balanced']} bclf = LinearSVC(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) lsvm = print_summary(clf) ###Output LinearSVC(C=270, class_weight='balanced', dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=42, tol=0.0001, verbose=0) MCC: 0.3185 F1: 0.3863 Precision: 0.3890 Recall: 0.4440 Accuracy: 0.8400 ###Markdown Third run ###Code parameters = {'C': [260,261,262,263,264,265,266,267,268,269,270, 271,272,273,274,275,276,277,278,279,280], 'class_weight': [None, 'balanced']} bclf = LinearSVC(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) lsvm = print_summary(clf) ###Output LinearSVC(C=269, class_weight='balanced', dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=42, tol=0.0001, verbose=0) MCC: 0.3242 F1: 0.3897 Precision: 0.3931 Recall: 0.4600 Accuracy: 0.8349 ###Markdown SummaryThis model is limited, even tuning the parameters to a wide range of values can't increase it's performance to an acceptable level. KNeighbors Classifier First run ###Code parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'weights': ['uniform', 'distance'], 'algorithm' : ['ball_tree', 'kd_tree', 'brute'], 'leaf_size': [1,2,5,10,20,30,40,50], 'p': [1,2] } bclf = KNeighborsClassifier() clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) knc = print_summary(clf) ###Output KNeighborsClassifier(algorithm='ball_tree', leaf_size=1, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=3, p=2, weights='distance') MCC: 0.2595 F1: 0.2798 Precision: 0.4807 Recall: 0.2120 Accuracy: 0.8823 ###Markdown Second run ###Code parameters = {'n_neighbors': [1, 2, 3, 4, 5], 'weights': ['distance'], 'algorithm' : ['ball_tree'], 'leaf_size': [1,2,3,4,5,6,7,8,9,10], 'p': [1,2] } bclf = KNeighborsClassifier() clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) knc = print_summary(clf) ###Output KNeighborsClassifier(algorithm='ball_tree', leaf_size=1, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=3, p=2, weights='distance') MCC: 0.2595 F1: 0.2798 Precision: 0.4807 Recall: 0.2120 Accuracy: 0.8823 ###Markdown SummaryWhile it achieved a higher accuracy, it came with the cost of much lower recall. The relatively good precision might be an asset. SVM Classifier (other kernels) First run ###Code parameters = {'kernel': ['poly', 'rbf', 'sigmoid'], 'C': [1,2,3,5,10,15,20,50,100,200,300,400,500,1000,2500,5000,10000], 'gamma': [0.0001, 0.001, 0.01, 0.1, 1, 10, 25, 50], 'class_weight': [None, 'balanced']} bclf = SVC(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) svm = print_summary(clf) ###Output SVC(C=15, cache_size=200, class_weight='balanced', coef0=0.0, decision_function_shape='ovr', degree=3, gamma=10, kernel='poly', max_iter=-1, probability=False, random_state=42, shrinking=True, tol=0.001, verbose=False) MCC: 0.3421 F1: 0.4107 Precision: 0.4054 Recall: 0.4600 Accuracy: 0.8521 ###Markdown Second run ###Code parameters = {'kernel': ['poly', 'rbf', 'sigmoid'], 'C': [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], 'gamma': [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23,24,25,26,27,28,29,30], 'class_weight': ['balanced']} bclf = SVC(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) svm = print_summary(clf) ###Output SVC(C=6, cache_size=200, class_weight='balanced', coef0=0.0, decision_function_shape='ovr', degree=3, gamma=3, kernel='sigmoid', max_iter=-1, probability=False, random_state=42, shrinking=True, tol=0.001, verbose=False) MCC: 0.3540 F1: 0.4022 Precision: 0.2679 Recall: 0.8280 Accuracy: 0.7140 ###Markdown Third run ###Code parameters = {'kernel': ['sigmoid'], 'C': [5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6, 6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7], 'gamma': [2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3, 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4], 'class_weight': ['balanced']} bclf = SVC(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) svm = print_summary(clf) ###Output SVC(C=5.4, cache_size=200, class_weight='balanced', coef0=0.0, decision_function_shape='ovr', degree=3, gamma=3.9, kernel='sigmoid', max_iter=-1, probability=False, random_state=42, shrinking=True, tol=0.001, verbose=False) MCC: 0.3776 F1: 0.4163 Precision: 0.2766 Recall: 0.8680 Accuracy: 0.7149 ###Markdown SummaryThis model was able to get a high recall score. However, it came with the price of lower accuracy and abysmal precision. Decision Trees First run ###Code parameters = {'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2', None], 'min_samples_leaf': [1,2,5,10,15,20,30], 'class_weight': [None, 'balanced']} bclf = DecisionTreeClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) dt = print_summary(clf) ###Output DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=20, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=42, splitter='best') MCC: 0.4682 F1: 0.5258 Precision: 0.4432 Recall: 0.6960 Accuracy: 0.8428 ###Markdown Second run ###Code parameters = {'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2', None], 'min_samples_leaf': [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, 31,32,33,34,35,36,37,38,39,40], 'class_weight': [None, 'balanced']} bclf = DecisionTreeClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) dt = print_summary(clf) ###Output DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=19, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=42, splitter='best') MCC: 0.4798 F1: 0.5365 Precision: 0.4583 Recall: 0.6880 Accuracy: 0.8544 ###Markdown SummaryThis model has the best overall performance. This would be the model of choice, because it presents the best balance between precision and recall, if choosing was necessary, but it is not. More on that later. Ensemble Classifiers: Random Forest First run ###Code parameters = {'n_estimators': [2,5,10,15,20,50], 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2', None], 'min_samples_leaf': [1,2,5,10,15,20,30,40,50], 'class_weight': [None, 'balanced', 'balanced_subsample']} bclf = RandomForestClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) rf = print_summary(clf) ###Output RandomForestClassifier(bootstrap=True, class_weight='balanced_subsample', criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=10, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False) MCC: 0.4227 F1: 0.4838 Precision: 0.4178 Recall: 0.6360 Accuracy: 0.8409 ###Markdown Second run ###Code parameters = {'n_estimators': [20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100], 'criterion': ['entropy'], 'max_features': ['auto'], 'min_samples_leaf': [5,6,7,8,9,10,11,12,13,14,15], 'class_weight': [None, 'balanced', 'balanced_subsample']} bclf = RandomForestClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) rf = print_summary(clf) ###Output RandomForestClassifier(bootstrap=True, class_weight='balanced', criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=10, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=85, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False) MCC: 0.4385 F1: 0.4997 Precision: 0.4233 Recall: 0.6480 Accuracy: 0.8484 ###Markdown Third run ###Code parameters = {'n_estimators': [80,81,82,83,84,85,86,87,88,90], 'criterion': ['entropy'], 'max_features': ['auto'], 'min_samples_leaf': [5,6,7,8,9,10,11,12,13,14,15], 'class_weight': [None, 'balanced', 'balanced_subsample']} bclf = RandomForestClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) rf = print_summary(clf) ###Output RandomForestClassifier(bootstrap=True, class_weight='balanced', criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=10, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=85, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False) MCC: 0.4385 F1: 0.4997 Precision: 0.4233 Recall: 0.6480 Accuracy: 0.8484 ###Markdown SummaryThe performance is worse than using just 1 Decision Tree. Ensemble Classifiers: Adaboost First run ###Code parameters = {'base_estimator': [DecisionTreeClassifier(criterion='entropy', class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', class_weight='balanced', max_depth=1), #Stumps DecisionTreeClassifier(criterion='entropy', min_samples_leaf=19, class_weight='balanced')], 'n_estimators': [2,5,10,20,30,40,50,60,70,80,90,100,200,300,400,500], 'learning_rate': [0.5,1,1.5,2], 'algorithm': ['SAMME','SAMME.R'] } bclf = AdaBoostClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) ada = print_summary(clf) ###Output AdaBoostClassifier(algorithm='SAMME', base_estimator=DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=19, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'), learning_rate=0.5, n_estimators=5, random_state=42) MCC: 0.4395 F1: 0.4996 Precision: 0.4335 Recall: 0.6600 Accuracy: 0.8363 ###Markdown Second run ###Code parameters = {'base_estimator': [DecisionTreeClassifier(criterion='entropy', class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', class_weight='balanced', max_depth=1), #Stumps DecisionTreeClassifier(criterion='entropy', min_samples_leaf=19, class_weight='balanced')], 'n_estimators': [1,2,3,4,5,6,7,8,9,10], 'learning_rate': [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3, 1.4,1.5,1.6,1.7,1.8,1.9,2.0], 'algorithm': ['SAMME'] } bclf = AdaBoostClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) ada = print_summary(clf) ###Output AdaBoostClassifier(algorithm='SAMME', base_estimator=DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=19, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'), learning_rate=0.4, n_estimators=4, random_state=42) MCC: 0.4698 F1: 0.5240 Precision: 0.4536 Recall: 0.6840 Accuracy: 0.8502 ###Markdown Third Run ###Code parameters = {'base_estimator': [DecisionTreeClassifier(criterion='entropy', min_samples_leaf=1, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=2, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=3, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=4, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=5, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=6, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=7, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=8, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=9, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=10, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=11, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=12, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=13, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=14, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=15, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=16, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=17, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=18, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=19, class_weight='balanced'), DecisionTreeClassifier(criterion='entropy', min_samples_leaf=20, class_weight='balanced')], 'n_estimators': [1,2,3,4,5,6,7,8,9,10], 'learning_rate': [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3, 1.4,1.5,1.6,1.7,1.8,1.9,2.0], 'algorithm': ['SAMME'] } bclf = AdaBoostClassifier(random_state=42) clf = GridSearchCV(bclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=1) clf.fit(features, labels) ada = print_summary(clf) ###Output AdaBoostClassifier(algorithm='SAMME', base_estimator=DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=19, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'), learning_rate=0.4, n_estimators=4, random_state=42) MCC: 0.4698 F1: 0.5240 Precision: 0.4536 Recall: 0.6840 Accuracy: 0.8502 ###Markdown SummaryWhile the performance is better than the Random Forest, both are worse than using just a properly calibrated Decision Tree. Chosen Model: Voting Classifier After exhaustively testing and parameter tuning, here are the models ranked, by the Matthews Correlation Coefficient: ###Code models = sorted([lsvm, knc, svm, dt, rf, ada], key=operator.itemgetter(1), reverse=True) print('{:>25}{:^10}{:^10}{:^10}{:^10}{:^10}'.format('Classifier', 'MCC', 'F1', 'Precision', 'Recall', 'Accuracy')) print('') for (name, mcc, f1, pre, rec, acc) in models: print('{:>25}{:^10.4f}{:^10.4f}{:^10.4f}{:^10.4f}{:^10.4f}'.format(name.split('Classifier')[0], mcc, f1, pre, rec, acc)) ###Output Classifier MCC F1 Precision Recall Accuracy DecisionTree 0.4798 0.5365 0.4583 0.6880 0.8544 AdaBoost 0.4698 0.5240 0.4536 0.6840 0.8502 RandomForest 0.4385 0.4997 0.4233 0.6480 0.8484 SVC 0.3776 0.4163 0.2766 0.8680 0.7149 LinearSVC 0.3242 0.3897 0.3931 0.4600 0.8349 KNeighbors 0.2595 0.2798 0.4807 0.2120 0.8823 ###Markdown The top 3 models are all based around Decision Trees, and the best performance is obtained by the single Decision Tree Classifier.However, there are useful features in other models. Combined, the following models will result in the best classifier:* KNeighbors : Best precision and accuracy* Decision Tree: Best F1 (balance between precision and recall)* SVC: Best recallUsing a voting classifier enables the models to achieve a performance that none of them could on their own. Each classifier have one vote, and the predicted class is determined my the majority.http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html ###Code from sklearn.ensemble import VotingClassifier clf1 = DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=19, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=42, splitter='best') clf2 = SVC(C=5.4, cache_size=200, class_weight='balanced', coef0=0.0, decision_function_shape='ovr', degree=3, gamma=3.9, kernel='sigmoid', max_iter=-1, probability=False, random_state=42, shrinking=True, tol=0.001, verbose=False) clf3 = KNeighborsClassifier(algorithm='ball_tree', leaf_size=1, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=3, p=2, weights='distance') eclf = VotingClassifier(estimators=[('dt', clf1), ('svc', clf2), ('kn', clf3)], voting='hard') parameters = {} # Using GridSearchCV just for CV clf = GridSearchCV(eclf, parameters, scoring=scorers, n_jobs=10, cv=cv, refit='mcc', verbose=0) clf.fit(features, labels) vc = print_summary(clf) ###Output VotingClassifier(estimators=[('dt', DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=19, min_samples_split=2, min_weight_f...wski', metric_params=None, n_jobs=1, n_neighbors=3, p=2, weights='distance'))], flatten_transform=None, n_jobs=1, voting='hard', weights=None) MCC: 0.5277 F1: 0.5762 Precision: 0.5261 Recall: 0.6720 Accuracy: 0.8870 ###Markdown Building your own container as Algorithm / Model PackageWith Amazon SageMaker, you can package your own algorithms that can than be trained and deployed in the SageMaker environment. This notebook will guide you through an example that shows you how to build a Docker container for SageMaker and use it for training and inference.This is an extension of the [scikit-bring-your-own notebook](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb). We append specific steps that help you create a new Algorithm / Model Package SageMaker entities, which can be sold on AWS MarketplaceBy packaging an algorithm in a container, you can bring almost any code to the Amazon SageMaker environment, regardless of programming language, environment, framework, or dependencies. 1. [Building your own algorithm container](Building-your-own-algorithm-container) 1. [When should I build my own algorithm container?](When-should-I-build-my-own-algorithm-container?) 1. [Permissions](Permissions) 1. [The example](The-example) 1. [The presentation](The-presentation)1. [Part 1: Packaging and Uploading your Algorithm for use with Amazon SageMaker](Part-1:-Packaging-and-Uploading-your-Algorithm-for-use-with-Amazon-SageMaker) 1. [An overview of Docker](An-overview-of-Docker) 1. [How Amazon SageMaker runs your Docker container](How-Amazon-SageMaker-runs-your-Docker-container) 1. [Running your container during training](Running-your-container-during-training) 1. [The input](The-input) 1. [The output](The-output) 1. [Running your container during hosting](Running-your-container-during-hosting) 1. [The parts of the sample container](The-parts-of-the-sample-container) 1. [The Dockerfile](The-Dockerfile) 1. [Building and registering the container](Building-and-registering-the-container) 1. [Testing your algorithm on your local machine or on an Amazon SageMaker notebook instance](Testing-your-algorithm-on-your-local-machine-or-on-an-Amazon-SageMaker-notebook-instance)1. [Part 2: Training and Hosting your Algorithm in Amazon SageMaker](Part-2:-Training-and-Hosting-your-Algorithm-in-Amazon-SageMaker) 1. [Set up the environment](Set-up-the-environment) 1. [Create the session](Create-the-session) 1. [Upload the data for training](Upload-the-data-for-training) 1. [Create an estimator and fit the model](Create-an-estimator-and-fit-the-model) 1. [Run a Batch Transform Job](Batch-Transform-Job) 1. [Deploy the model](Deploy-the-model) 1. [Optional cleanup](Cleanup-Endpoint)1. [Part 3: Package your resources as an Amazon SageMaker Algorithm](Part-3---Package-your-resources-as-an-Amazon-SageMaker-Algorithm) 1. [Algorithm Definition](Algorithm-Definition)1. [Part 4: Package your resources as an Amazon SageMaker ModelPackage](Part-4---Package-your-resources-as-an-Amazon-SageMaker-ModelPackage) 1. [Model Package Definition](Model-Package-Definition)1. [Debugging Creation Issues](Debugging-Creation-Issues)1. [List on AWS Marketplace](List-on-AWS-Marketplace) When should I build my own algorithm container?You may not need to create a container to bring your own code to Amazon SageMaker. When you are using a framework (such as Apache MXNet or TensorFlow) that has direct support in SageMaker, you can simply supply the Python code that implements your algorithm using the SDK entry points for that framework. This set of frameworks is continually expanding, so we recommend that you check the current list if your algorithm is written in a common machine learning environment.Even if there is direct SDK support for your environment or framework, you may find it more effective to build your own container. If the code that implements your algorithm is quite complex on its own or you need special additions to the framework, building your own container may be the right choice.If there isn't direct SDK support for your environment, don't worry. You'll see in this walk-through that building your own container is quite straightforward. PermissionsRunning this notebook requires permissions in addition to the normal `SageMakerFullAccess` permissions. This is because we'll creating new repositories in Amazon ECR. The easiest way to add these permissions is simply to add the managed policy `AmazonEC2ContainerRegistryFullAccess` to the role that you used to start your notebook instance. There's no need to restart your notebook instance when you do this, the new permissions will be available immediately. The exampleHere, we'll show how to package a simple Python example which showcases the [decision tree][] algorithm from the widely used [scikit-learn][] machine learning package. The example is purposefully fairly trivial since the point is to show the surrounding structure that you'll want to add to your own code so you can train and host it in Amazon SageMaker.The ideas shown here will work in any language or environment. You'll need to choose the right tools for your environment to serve HTTP requests for inference, but good HTTP environments are available in every language these days.In this example, we use a single image to support training and hosting. This is easy because it means that we only need to manage one image and we can set it up to do everything. Sometimes you'll want separate images for training and hosting because they have different requirements. Just separate the parts discussed below into separate Dockerfiles and build two images. Choosing whether to have a single image or two images is really a matter of which is more convenient for you to develop and manage.If you're only using Amazon SageMaker for training or hosting, but not both, there is no need to build the unused functionality into your container.[scikit-learn]: http://scikit-learn.org/stable/[decision tree]: http://scikit-learn.org/stable/modules/tree.html The presentationThis presentation is divided into two parts: _building_ the container and _using_ the container. Part 1: Packaging and Uploading your Algorithm for use with Amazon SageMaker An overview of DockerIf you're familiar with Docker already, you can skip ahead to the next section.For many data scientists, Docker containers are a new concept, but they are not difficult, as you'll see here. Docker provides a simple way to package arbitrary code into an _image_ that is totally self-contained. Once you have an image, you can use Docker to run a _container_ based on that image. Running a container is just like running a program on the machine except that the container creates a fully self-contained environment for the program to run. Containers are isolated from each other and from the host environment, so the way you set up your program is the way it runs, no matter where you run it.Docker is more powerful than environment managers like conda or virtualenv because (a) it is completely language independent and (b) it comprises your whole operating environment, including startup commands, environment variable, etc.In some ways, a Docker container is like a virtual machine, but it is much lighter weight. For example, a program running in a container can start in less than a second and many containers can run on the same physical machine or virtual machine instance.Docker uses a simple file called a `Dockerfile` to specify how the image is assembled. We'll see an example of that below. You can build your Docker images based on Docker images built by yourself or others, which can simplify things quite a bit.Docker has become very popular in the programming and devops communities for its flexibility and well-defined specification of the code to be run. It is the underpinning of many services built in the past few years, such as [Amazon ECS].Amazon SageMaker uses Docker to allow users to train and deploy arbitrary algorithms.In Amazon SageMaker, Docker containers are invoked in a certain way for training and a slightly different way for hosting. The following sections outline how to build containers for the SageMaker environment.Some helpful links:* [Docker home page](http://www.docker.com)* [Getting started with Docker](https://docs.docker.com/get-started/)* [Dockerfile reference](https://docs.docker.com/engine/reference/builder/)* [`docker run` reference](https://docs.docker.com/engine/reference/run/)[Amazon ECS]: https://aws.amazon.com/ecs/ How Amazon SageMaker runs your Docker containerBecause you can run the same image in training or hosting, Amazon SageMaker runs your container with the argument `train` or `serve`. How your container processes this argument depends on the container:* In the example here, we don't define an `ENTRYPOINT` in the Dockerfile so Docker will run the command `train` at training time and `serve` at serving time. In this example, we define these as executable Python scripts, but they could be any program that we want to start in that environment.* If you specify a program as an `ENTRYPOINT` in the Dockerfile, that program will be run at startup and its first argument will be `train` or `serve`. The program can then look at that argument and decide what to do.* If you are building separate containers for training and hosting (or building only for one or the other), you can define a program as an `ENTRYPOINT` in the Dockerfile and ignore (or verify) the first argument passed in. Running your container during trainingWhen Amazon SageMaker runs training, your `train` script is run just like a regular Python program. A number of files are laid out for your use, under the `/opt/ml` directory: /opt/ml |-- input | |-- config | | |-- hyperparameters.json | | `-- resourceConfig.json | `-- data | `-- | `-- |-- model | `-- `-- output `-- failure The input* `/opt/ml/input/config` contains information to control how your program runs. `hyperparameters.json` is a JSON-formatted dictionary of hyperparameter names to values. These values will always be strings, so you may need to convert them. `resourceConfig.json` is a JSON-formatted file that describes the network layout used for distributed training. Since scikit-learn doesn't support distributed training, we'll ignore it here.* `/opt/ml/input/data//` (for File mode) contains the input data for that channel. The channels are created based on the call to CreateTrainingJob but it's generally important that channels match what the algorithm expects. The files for each channel will be copied from S3 to this directory, preserving the tree structure indicated by the S3 key structure. * `/opt/ml/input/data/_` (for Pipe mode) is the pipe for a given epoch. Epochs start at zero and go up by one each time you read them. There is no limit to the number of epochs that you can run, but you must close each pipe before reading the next epoch. The output* `/opt/ml/model/` is the directory where you write the model that your algorithm generates. Your model can be in any format that you want. It can be a single file or a whole directory tree. SageMaker will package any files in this directory into a compressed tar archive file. This file will be available at the S3 location returned in the `DescribeTrainingJob` result.* `/opt/ml/output` is a directory where the algorithm can write a file `failure` that describes why the job failed. The contents of this file will be returned in the `FailureReason` field of the `DescribeTrainingJob` result. For jobs that succeed, there is no reason to write this file as it will be ignored. Running your container during hostingHosting has a very different model than training because hosting is reponding to inference requests that come in via HTTP. In this example, we use our recommended Python serving stack to provide robust and scalable serving of inference requests:![Request serving stack](images/stack.png)This stack is implemented in the sample code here and you can mostly just leave it alone. Amazon SageMaker uses two URLs in the container:* `/ping` will receive `GET` requests from the infrastructure. Your program returns 200 if the container is up and accepting requests.* `/invocations` is the endpoint that receives client inference `POST` requests. The format of the request and the response is up to the algorithm. If the client supplied `ContentType` and `Accept` headers, these will be passed in as well. The container will have the model files in the same place they were written during training: /opt/ml `-- model `-- The parts of the sample containerIn the `container` directory are all the components you need to package the sample algorithm for Amazon SageMager: . |-- Dockerfile |-- build_and_push.sh `-- decision_trees |-- nginx.conf |-- predictor.py |-- serve |-- train `-- wsgi.pyLet's discuss each of these in turn:* __`Dockerfile`__ describes how to build your Docker container image. More details below.* __`build_and_push.sh`__ is a script that uses the Dockerfile to build your container images and then pushes it to ECR. We'll invoke the commands directly later in this notebook, but you can just copy and run the script for your own algorithms.* __`decision_trees`__ is the directory which contains the files that will be installed in the container.* __`local_test`__ is a directory that shows how to test your new container on any computer that can run Docker, including an Amazon SageMaker notebook instance. Using this method, you can quickly iterate using small datasets to eliminate any structural bugs before you use the container with Amazon SageMaker. We'll walk through local testing later in this notebook.In this simple application, we only install five files in the container. You may only need that many or, if you have many supporting routines, you may wish to install more. These five show the standard structure of our Python containers, although you are free to choose a different toolset and therefore could have a different layout. If you're writing in a different programming language, you'll certainly have a different layout depending on the frameworks and tools you choose.The files that we'll put in the container are:* __`nginx.conf`__ is the configuration file for the nginx front-end. Generally, you should be able to take this file as-is.* __`predictor.py`__ is the program that actually implements the Flask web server and the decision tree predictions for this app. You'll want to customize the actual prediction parts to your application. Since this algorithm is simple, we do all the processing here in this file, but you may choose to have separate files for implementing your custom logic.* __`serve`__ is the program started when the container is started for hosting. It simply launches the gunicorn server which runs multiple instances of the Flask app defined in `predictor.py`. You should be able to take this file as-is.* __`train`__ is the program that is invoked when the container is run for training. You will modify this program to implement your training algorithm.* __`wsgi.py`__ is a small wrapper used to invoke the Flask app. You should be able to take this file as-is.In summary, the two files you will probably want to change for your application are `train` and `predictor.py`. The DockerfileThe Dockerfile describes the image that we want to build. You can think of it as describing the complete operating system installation of the system that you want to run. A Docker container running is quite a bit lighter than a full operating system, however, because it takes advantage of Linux on the host machine for the basic operations. For the Python science stack, we will start from a standard Ubuntu installation and run the normal tools to install the things needed by scikit-learn. Finally, we add the code that implements our specific algorithm to the container and set up the right environment to run under.Along the way, we clean up extra space. This makes the container smaller and faster to start.Let's look at the Dockerfile for the example: ###Code !cat container/Dockerfile ###Output # Build an image that can do training and inference in SageMaker # This is a Python 2 image that uses the nginx, gunicorn, flask stack # for serving inferences in a stable way. FROM ubuntu:18.04 MAINTAINER Amazon AI <[email protected]> RUN apt-get -y update && apt-get install -y --no-install-recommends \ wget \ python \ nginx \ ca-certificates \ && rm -rf /var/lib/apt/lists/* # Here we get all python packages. # There's substantial overlap between scipy and numpy that we eliminate by # linking them together. Likewise, pip leaves the install caches populated which uses # a significant amount of space. These optimizations save a fair amount of space in the # image, which reduces start up time. RUN wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py && \ pip install numpy scipy scikit-learn pandas flask gevent gunicorn && \ rm -rf /root/.cache # Set some environment variables. PYTHONUNBUFFERED keeps Python from buffering our standard # output stream, which means that logs can be delivered to the user quickly. PYTHONDONTWRITEBYTECODE # keeps Python from writing the .pyc files which are unnecessary in this case. We also update # PATH so that the train and serve programs are found when the container is invoked. ENV PYTHONUNBUFFERED=TRUE ENV PYTHONDONTWRITEBYTECODE=TRUE ENV PATH="/opt/program:${PATH}" # Set up the program in the image COPY decision_trees /opt/program WORKDIR /opt/program ###Markdown Building and registering the containerThe following shell code shows how to build the container image using `docker build` and push the container image to ECR using `docker push`. This code is also available as the shell script `container/build-and-push.sh`, which you can run as `build-and-push.sh decision_trees_sample` to build the image `decision_trees_sample`. This code looks for an ECR repository in the account you're using and the current default region (if you're using an Amazon SageMaker notebook instance, this will be the region where the notebook instance was created). If the repository doesn't exist, the script will create it. ###Code %%sh # The name of our algorithm algorithm_name="decisiontrees" cd container chmod +x decision_trees/train chmod +x decision_trees/serve account=$(aws sts get-caller-identity --query Account --output text) # Get the region defined in the current configuration (default to us-west-2 if none defined) region=$(aws configure get region) # specifically setting to us-east-2 since during the pre-release period, we support only that region. region=${region:-eu-west-1} fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest" # If the repository doesn't exist in ECR, create it. aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null 2>&1 if [ $? -ne 0 ] then aws ecr create-repository --repository-name "${algorithm_name}" > /dev/null fi # Build the docker image locally with the image name and then push it to ECR # with the full name. docker build -t ${algorithm_name} . docker tag ${algorithm_name} ${fullname} aws ecr get-login-password \ --region ${region} \ | docker login \ --username AWS \ --password-stdin ${account}.dkr.ecr.${region}.amazonaws.com ###Output Sending build context to Docker daemon 51.71kB Step 1/9 : FROM ubuntu:18.04 ---> 72300a873c2c Step 2/9 : MAINTAINER Amazon AI <[email protected]> ---> Using cache ---> 964992c9d672 Step 3/9 : RUN apt-get -y update && apt-get install -y --no-install-recommends wget python nginx ca-certificates && rm -rf /var/lib/apt/lists/* ---> Using cache ---> c7d874ac8fd5 Step 4/9 : RUN wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py && pip install numpy scipy scikit-learn pandas flask gevent gunicorn && rm -rf /root/.cache ---> Using cache ---> 7ffad4e512e7 Step 5/9 : ENV PYTHONUNBUFFERED=TRUE ---> Using cache ---> b57c951f0cd9 Step 6/9 : ENV PYTHONDONTWRITEBYTECODE=TRUE ---> Using cache ---> f356f77cfaa6 Step 7/9 : ENV PATH="/opt/program:${PATH}" ---> Using cache ---> b85c935db183 Step 8/9 : COPY decision_trees /opt/program ---> Using cache ---> 7f8724b1dcfc Step 9/9 : WORKDIR /opt/program ---> Using cache ---> 1d319e477f05 Successfully built 1d319e477f05 Successfully tagged decisiontrees:latest Login Succeeded ###Markdown Testing your algorithm on your local machine or on an Amazon SageMaker notebook instanceWhile you're first packaging an algorithm use with Amazon SageMaker, you probably want to test it yourself to make sure it's working right. In the directory `container/local_test`, there is a framework for doing this. It includes three shell scripts for running and using the container and a directory structure that mimics the one outlined above.The scripts are:* `train_local.sh`: Run this with the name of the image and it will run training on the local tree. You'll want to modify the directory `test_dir/input/data/...` to be set up with the correct channels and data for your algorithm. Also, you'll want to modify the file `input/config/hyperparameters.json` to have the hyperparameter settings that you want to test (as strings).* `serve_local.sh`: Run this with the name of the image once you've trained the model and it should serve the model. It will run and wait for requests. Simply use the keyboard interrupt to stop it.* `predict.sh`: Run this with the name of a payload file and (optionally) the HTTP content type you want. The content type will default to `text/csv`. For example, you can run `$ ./predict.sh payload.csv text/csv`.The directories as shipped are set up to test the decision trees sample algorithm presented here. Part 2: Training, Batch Inference and Hosting your Algorithm in Amazon SageMakerOnce you have your container packaged, you can use it to train and serve models. Let's do that with the algorithm we made above. Set up the environmentHere we specify a bucket to use and the role that will be used for working with Amazon SageMaker. ###Code # S3 prefix common_prefix = "DEMO-scikit-byo-iris" training_input_prefix = common_prefix + "/training-input-data" batch_inference_input_prefix = common_prefix + "/batch-inference-input-data" import os import sagemaker ###Output _____no_output_____ ###Markdown Create the sessionThe session remembers our connection parameters to Amazon SageMaker. We'll use it to perform all of our SageMaker operations. ###Code import sagemaker as sage sess = sage.Session() ###Output _____no_output_____ ###Markdown Upload the data for trainingWhen training large models with huge amounts of data, you'll typically use big data tools, like Amazon Athena, AWS Glue, or Amazon EMR, to create your data in S3. For the purposes of this example, we're using some the classic [Iris dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set), which we have included. We can use use the tools provided by the Amazon SageMaker Python SDK to upload the data to a default bucket. ###Code TRAINING_WORKDIR = "data/training" training_input = sess.upload_data(TRAINING_WORKDIR, key_prefix=training_input_prefix) print ("Training Data Location " + training_input) ###Output Training Data Location s3://sagemaker-eu-west-1-252328296877/DEMO-scikit-byo-iris/training-input-data ###Markdown Create an estimator and fit the modelIn order to use Amazon SageMaker to fit our algorithm, we'll create an `Estimator` that defines how to use the container to train. This includes the configuration we need to invoke SageMaker training:* The __container name__. This is constructed as in the shell commands above.* The __role__. As defined above.* The __instance count__ which is the number of machines to use for training.* The __instance type__ which is the type of machine to use for training.* The __output path__ determines where the model artifact will be written.* The __session__ is the SageMaker session object that we defined above.Then we use fit() on the estimator to train against the data that we uploaded above. ###Code account = sess.boto_session.client('sts').get_caller_identity()['Account'] region = sess.boto_session.region_name image = '{}.dkr.ecr.{}.amazonaws.com/decision-trees:latest'.format(account, region) role = "arn:aws:iam::252328296877:role/Sagemaker-notebook" account, region, image tree = sage.estimator.Estimator(image, role, 1, 'ml.c4.2xlarge', output_path="s3://{}/output".format(sess.default_bucket()), sagemaker_session=sess) tree.fit(training_input) ###Output 2020-08-15 17:30:16 Starting - Starting the training job... 2020-08-15 17:30:18 Starting - Launching requested ML instances...... 2020-08-15 17:31:21 Starting - Preparing the instances for training... 2020-08-15 17:32:11 Downloading - Downloading input data... 2020-08-15 17:32:46 Training - Training image download completed. Training in progress..Starting the training. validation-accuracy: 0.96 Training complete. 2020-08-15 17:32:57 Uploading - Uploading generated training model 2020-08-15 17:32:57 Completed - Training job completed Training seconds: 46 Billable seconds: 46 ###Markdown Batch Transform JobNow let's use the model built to run a batch inference job and verify it works. Batch Transform Input PreparationThe snippet below is removing the "label" column (column indexed at 0) and retaining the rest to be batch transform's input. NOTE: This is the same training data, which is a no-no from a statistical/ML science perspective. But the aim of this notebook is to demonstrate how things work end-to-end. ###Code import pandas as pd ## Remove first column that contains the label shape=pd.read_csv(TRAINING_WORKDIR + "/iris.csv", header=None).drop([0], axis=1) TRANSFORM_WORKDIR = "data/transform" shape.to_csv(TRANSFORM_WORKDIR + "/batchtransform_test.csv", index=False, header=False) transform_input = sess.upload_data(TRANSFORM_WORKDIR, key_prefix=batch_inference_input_prefix) + "/batchtransform_test.csv" print("Transform input uploaded to " + transform_input) ###Output Transform input uploaded to s3://sagemaker-eu-west-1-252328296877/DEMO-scikit-byo-iris/batch-inference-input-data/batchtransform_test.csv ###Markdown Run Batch TransformNow that our batch transform input is setup, we run the transformation job next ###Code transformer = tree.transformer(instance_count=1, instance_type='ml.m4.xlarge') transformer.transform(transform_input, content_type='text/csv') transformer.wait() print("Batch Transform output saved to " + transformer.output_path) ###Output .....................2020-08-15T17:39:38.338:[sagemaker logs]: MaxConcurrentTransforms=1, MaxPayloadInMB=6, BatchStrategy=MULTI_RECORD Starting the inference server with 4 workers. 2020/08/15 17:39:37 [crit] 10#10: *1 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" Starting the inference server with 4 workers. 2020/08/15 17:39:37 [crit] 10#10: *1 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" 2020/08/15 17:39:37 [crit] 10#10: *3 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" [2020-08-15 17:39:37 +0000] [9] [INFO] Starting gunicorn 19.10.0 [2020-08-15 17:39:37 +0000] [9] [INFO] Listening at: unix:/tmp/gunicorn.sock (9) [2020-08-15 17:39:37 +0000] [9] [INFO] Using worker: gevent [2020-08-15 17:39:37 +0000] [14] [INFO] Booting worker with pid: 14 [2020-08-15 17:39:37 +0000] [15] [INFO] Booting worker with pid: 15 [2020-08-15 17:39:37 +0000] [17] [INFO] Booting worker with pid: 17 [2020-08-15 17:39:37 +0000] [18] [INFO] Booting worker with pid: 18 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /ping HTTP/1.1" 200 1 "-" "Go-http-client/1.1" 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /execution-parameters HTTP/1.1" 404 2 "-" "Go-http-client/1.1" Invoked with 150 records 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "POST /invocations HTTP/1.1" 200 1400 "-" "Go-http-client/1.1" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" 2020/08/15 17:39:37 [crit] 10#10: *3 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" [2020-08-15 17:39:37 +0000] [9] [INFO] Starting gunicorn 19.10.0 [2020-08-15 17:39:37 +0000] [9] [INFO] Listening at: unix:/tmp/gunicorn.sock (9) [2020-08-15 17:39:37 +0000] [9] [INFO] Using worker: gevent [2020-08-15 17:39:37 +0000] [14] [INFO] Booting worker with pid: 14 [2020-08-15 17:39:37 +0000] [15] [INFO] Booting worker with pid: 15 [2020-08-15 17:39:37 +0000] [17] [INFO] Booting worker with pid: 17 [2020-08-15 17:39:37 +0000] [18] [INFO] Booting worker with pid: 18 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /ping HTTP/1.1" 200 1 "-" "Go-http-client/1.1" 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /execution-parameters HTTP/1.1" 404 2 "-" "Go-http-client/1.1" Invoked with 150 records 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "POST /invocations HTTP/1.1" 200 1400 "-" "Go-http-client/1.1" 2020-08-15T17:39:38.338:[sagemaker logs]: MaxConcurrentTransforms=1, MaxPayloadInMB=6, BatchStrategy=MULTI_RECORD Starting the inference server with 4 workers. 2020/08/15 17:39:37 [crit] 10#10: *1 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" Starting the inference server with 4 workers. 2020/08/15 17:39:37 [crit] 10#10: *1 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" 2020/08/15 17:39:37 [crit] 10#10: *3 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" [2020-08-15 17:39:37 +0000] [9] [INFO] Starting gunicorn 19.10.0 [2020-08-15 17:39:37 +0000] [9] [INFO] Listening at: unix:/tmp/gunicorn.sock (9) [2020-08-15 17:39:37 +0000] [9] [INFO] Using worker: gevent [2020-08-15 17:39:37 +0000] [14] [INFO] Booting worker with pid: 14 [2020-08-15 17:39:37 +0000] [15] [INFO] Booting worker with pid: 15 [2020-08-15 17:39:37 +0000] [17] [INFO] Booting worker with pid: 17 [2020-08-15 17:39:37 +0000] [18] [INFO] Booting worker with pid: 18 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /ping HTTP/1.1" 200 1 "-" "Go-http-client/1.1" 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /execution-parameters HTTP/1.1" 404 2 "-" "Go-http-client/1.1" Invoked with 150 records 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "POST /invocations HTTP/1.1" 200 1400 "-" "Go-http-client/1.1" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" 2020/08/15 17:39:37 [crit] 10#10: *3 connect() to unix:/tmp/gunicorn.sock failed (2: No such file or directory) while connecting to upstream, client: 169.254.255.130, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock:/ping", host: "169.254.255.131:8080" 169.254.255.130 - - [15/Aug/2020:17:39:37 +0000] "GET /ping HTTP/1.1" 502 182 "-" "Go-http-client/1.1" [2020-08-15 17:39:37 +0000] [9] [INFO] Starting gunicorn 19.10.0 [2020-08-15 17:39:37 +0000] [9] [INFO] Listening at: unix:/tmp/gunicorn.sock (9) [2020-08-15 17:39:37 +0000] [9] [INFO] Using worker: gevent [2020-08-15 17:39:37 +0000] [14] [INFO] Booting worker with pid: 14 [2020-08-15 17:39:37 +0000] [15] [INFO] Booting worker with pid: 15 [2020-08-15 17:39:37 +0000] [17] [INFO] Booting worker with pid: 17 [2020-08-15 17:39:37 +0000] [18] [INFO] Booting worker with pid: 18 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /ping HTTP/1.1" 200 1 "-" "Go-http-client/1.1" 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "GET /execution-parameters HTTP/1.1" 404 2 "-" "Go-http-client/1.1" Invoked with 150 records 169.254.255.130 - - [15/Aug/2020:17:39:38 +0000] "POST /invocations HTTP/1.1" 200 1400 "-" "Go-http-client/1.1" Batch Transform output saved to s3://sagemaker-eu-west-1-252328296877/decision-trees-2020-08-15-17-36-12-879 ###Markdown Inspect the Batch Transform Output in S3 ###Code from urllib.parse import urlparse parsed_url = urlparse(transformer.output_path) bucket_name = parsed_url.netloc file_key = '{}/{}.out'.format(parsed_url.path[1:], "batchtransform_test.csv") s3_client = sess.boto_session.client('s3') response = s3_client.get_object(Bucket = sess.default_bucket(), Key = file_key) response_bytes = response['Body'].read().decode('utf-8') print(response_bytes) ###Output setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica ###Markdown Deploy the modelDeploying the model to Amazon SageMaker hosting just requires a `deploy` call on the fitted model. This call takes an instance count, instance type, and optionally serializer and deserializer functions. These are used when the resulting predictor is created on the endpoint. ###Code from sagemaker.serializers import CSVSerializer model = tree.create_model() predictor = tree.deploy(1, 'ml.m4.xlarge', serializer=CSVSerializer()) ###Output -----------! ###Markdown Choose some data and use it for a predictionIn order to do some predictions, we'll extract some of the data we used for training and do predictions against it. This is, of course, bad statistical practice, but a good way to see how the mechanism works. ###Code shape=pd.read_csv(TRAINING_WORKDIR + "/iris.csv", header=None) import itertools a = [50*i for i in range(3)] b = [40+i for i in range(10)] indices = [i+j for i,j in itertools.product(a,b)] test_data=shape.iloc[indices[:-1]] test_X=test_data.iloc[:,1:] test_y=test_data.iloc[:,0] ###Output _____no_output_____ ###Markdown Prediction is as easy as calling predict with the predictor we got back from deploy and the data we want to do predictions with. The serializers take care of doing the data conversions for us. ###Code print(predictor.predict(test_X.values).decode('utf-8')) ###Output setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor virginica virginica virginica virginica virginica virginica virginica virginica virginica ###Markdown Cleanup EndpointWhen you're done with the endpoint, you'll want to clean it up. ###Code predictor.delete_endpoint() ###Output _____no_output_____ ###Markdown Part 3 - Package your resources as an Amazon SageMaker Algorithm(If you looking to sell a pretrained model (ModelPackage), please skip to Part 4.)Now that you have verified that the algorithm code works for training, live inference and batch inference in the above sections, you can start packaging it up as an Amazon SageMaker Algorithm. Region LimitationSeller onboarding is limited to us-east-2 region (CMH) only. The client we are creating below will be hard-coded to talk to our us-east-2 endpoint only. ###Code import boto3 smmp = boto3.client('sagemaker', region_name='us-east-2', endpoint_url="https://sagemaker.us-east-2.amazonaws.com") ###Output _____no_output_____ ###Markdown Algorithm DefinitionSageMaker Algorithm is comprised of 2 parts:1. A training image2. An inference image (optional)The key requirement is that the training and inference images (if provided) remain compatible with each other. Specifically, the model artifacts generated by the code in training image should be readable and compatible with the code in inference image. You can reuse the same image to perform both training and inference or you can choose to separate them. This sample notebook has already created a single algorithm image that perform both training and inference. This image has also been pushed to your ECR registry at {{image}}. You need to provide the following details as part of this algorithm specification: Training SpecificationYou specify details pertinent to your training algorithm in this section. Supported Hyper-parametersThis section captures the hyper-parameters your algorithm supports, their names, types, if they are required, default values, valid ranges etc. This serves both as documentation for buyers and is used by Amazon SageMaker to perform validations of buyer requests in the synchronous request path.Please Note: While this section is optional, we strongly recommend you provide comprehensive information here to leverage our validations and serve as documentation. Additionally, without this being specified, customers cannot leverage your algorithm for Hyper-parameter tuning.*** NOTE: The code below has hyper-parameters hard-coded in the json present in src/training_specification.py. Until we have better functionality to customize it, please update the json in that file appropriately*** ###Code from src.training_specification import TrainingSpecification from src.training_channels import TrainingChannels from src.metric_definitions import MetricDefinitions from src.tuning_objectives import TuningObjectives import json training_specification = TrainingSpecification().get_training_specification_dict( ecr_image=image, supports_gpu=True, supported_channels=[ TrainingChannels("training", description="Input channel that provides training data", supported_content_types=["text/csv"])], supported_metrics=[MetricDefinitions("validation:accuracy", "validation-accuracy: (\\S+)")], supported_tuning_job_objective_metrics=[TuningObjectives("Maximize", "validation:accuracy")] ) print(json.dumps(training_specification, indent=2, sort_keys=True)) ###Output _____no_output_____ ###Markdown Inference SpecificationYou specify details pertinent to your inference code in this section. ###Code from src.inference_specification import InferenceSpecification import json inference_specification = InferenceSpecification().get_inference_specification_dict( ecr_image=image, supports_gpu=True, supported_content_types=["text/csv"], supported_mime_types=["text/csv"]) print(json.dumps(inference_specification, indent=4, sort_keys=True)) ###Output _____no_output_____ ###Markdown Validation SpecificationIn order to provide confidence to the sellers (and buyers) that the products work in Amazon SageMaker before listing them on AWS Marketplace, SageMaker needs to perform basic validations. The product can be listed in AWS Marketplace only if this validation process succeeds. This validation process uses the validation profile and sample data provided by you to run the following validations:1. Create a training job in your account to verify your training image works with SageMaker.2. Once the training job completes successfully, create a Model in your account using the algorithm's inference image and the model artifacts produced as part of the training job we ran. 3. Create a transform job in your account using the above Model to verify your inference image works with SageMaker ###Code from src.algorithm_validation_specification import AlgorithmValidationSpecification import json validation_specification = AlgorithmValidationSpecification().get_algo_validation_specification_dict( validation_role = role, training_channel_name = "training", training_input = training_input, batch_transform_input = transform_input, content_type = "text/csv", instance_type = "ml.c4.xlarge", output_s3_location = 's3://{}/{}'.format(sess.default_bucket(), common_prefix)) print(json.dumps(validation_specification, indent=4, sort_keys=True)) ###Output _____no_output_____ ###Markdown Putting it all togetherNow we put all the pieces together in the next cell and create an Amazon SageMaker Algorithm ###Code import json import time algorithm_name = "scikit-decision-trees-" + str(round(time.time())) create_algorithm_input_dict = { "AlgorithmName" : algorithm_name, "AlgorithmDescription" : "Decision trees using Scikit", "CertifyForMarketplace" : True } create_algorithm_input_dict.update(training_specification) create_algorithm_input_dict.update(inference_specification) create_algorithm_input_dict.update(validation_specification) print(json.dumps(create_algorithm_input_dict, indent=4, sort_keys=True)) print ("Now creating an algorithm in SageMaker") smmp.create_algorithm(**create_algorithm_input_dict) ###Output _____no_output_____ ###Markdown Describe the algorithmThe next cell describes the Algorithm and waits until it reaches a terminal state (Completed or Failed) ###Code import time import json while True: response = smmp.describe_algorithm(AlgorithmName=algorithm_name) status = response["AlgorithmStatus"] print (status) if (status == "Completed" or status == "Failed"): print (response["AlgorithmStatusDetails"]) break time.sleep(5) ###Output _____no_output_____ ###Markdown Part 4 - Package your resources as an Amazon SageMaker ModelPackageIn this section, we will see how you can package your artifacts (ECR image and the trained artifact from your previous training job) into a ModelPackage. Once you complete this, you can list your product as a pretrained model in the AWS Marketplace. Model Package DefinitionA Model Package is a reusable model artifacts abstraction that packages all ingredients necessary for inference. It consists of an inference specification that defines the inference image to use along with an optional model weights location. Region LimitationSeller onboarding is limited to us-east-2 region (CMH) only. The client we are creating below will be hard-coded to talk to our us-east-2 endpoint only. (Note: You may have previous done this step in Part 3. Repeating here to keep Part 4 self contained.) ###Code smmp = boto3.client('sagemaker', region_name='us-east-2', endpoint_url="https://sagemaker.us-east-2.amazonaws.com") ###Output _____no_output_____ ###Markdown Inference SpecificationYou specify details pertinent to your inference code in this section. ###Code from src.inference_specification import InferenceSpecification import json modelpackage_inference_specification = InferenceSpecification().get_inference_specification_dict( ecr_image=image, supports_gpu=True, supported_content_types=["text/csv"], supported_mime_types=["text/csv"]) # Specify the model data resulting from the previously completed training job modelpackage_inference_specification["InferenceSpecification"]["Containers"][0]["ModelDataUrl"]=tree.model_data print(json.dumps(modelpackage_inference_specification, indent=4, sort_keys=True)) ###Output _____no_output_____ ###Markdown Validation SpecificationIn order to provide confidence to the sellers (and buyers) that the products work in Amazon SageMaker before listing them on AWS Marketplace, SageMaker needs to perform basic validations. The product can be listed in the AWS Marketplace only if this validation process succeeds. This validation process uses the validation profile and sample data provided by you to run the following validations:* Create a transform job in your account using the above Model to verify your inference image works with SageMaker. ###Code from src.modelpackage_validation_specification import ModelPackageValidationSpecification import json modelpackage_validation_specification = ModelPackageValidationSpecification().get_validation_specification_dict( validation_role = role, batch_transform_input = transform_input, content_type = "text/csv", instance_type = "ml.c4.xlarge", output_s3_location = 's3://{}/{}'.format(sess.default_bucket(), common_prefix)) print(json.dumps(modelpackage_validation_specification, indent=4, sort_keys=True)) ###Output _____no_output_____ ###Markdown Putting it all togetherNow we put all the pieces together in the next cell and create an Amazon SageMaker Model Package. ###Code import json import time model_package_name = "scikit-iris-detector-" + str(round(time.time())) create_model_package_input_dict = { "ModelPackageName" : model_package_name, "ModelPackageDescription" : "Model to detect 3 different types of irises (Setosa, Versicolour, and Virginica)", "CertifyForMarketplace" : True } create_model_package_input_dict.update(modelpackage_inference_specification) create_model_package_input_dict.update(modelpackage_validation_specification) print(json.dumps(create_model_package_input_dict, indent=4, sort_keys=True)) smmp.create_model_package(**create_model_package_input_dict) ###Output _____no_output_____ ###Markdown Describe the ModelPackage The next cell describes the ModelPackage and waits until it reaches a terminal state (Completed or Failed) ###Code import time import json while True: response = smmp.describe_model_package(ModelPackageName=model_package_name) status = response["ModelPackageStatus"] print (status) if (status == "Completed" or status == "Failed"): print (response["ModelPackageStatusDetails"]) break time.sleep(5) ###Output _____no_output_____ ###Markdown Data preparation for AI training by NaturalisThis notebook executes all steps required to train a species recognition model based on various data sources, predominantly Artsobservasjoner. ###Code from process_AO import process_AO import os process_AO(os.path.join("./Input", "Artsobservasjoner.csv"), "./Output") from process_GBIF import process_GBIF import os process_GBIF(os.path.join("./Input", "GBIF.zip"), "./Output") from process_ML import process_ML import os process_ML( [ os.path.join("./Input", "ML_snegl.csv"), os.path.join("./Input", "ML_fugl.csv"), os.path.join("./Input", "ML_lepi.csv"), os.path.join("./Input", "ML_meitemark.csv"), os.path.join("./Input", "ML_fremmed.csv"), ], "./Output") from process_SUPP import process_supp import os process_supp( [ os.path.join("./Input", "lichens_bold.csv"), ], "./Output", "Lichens" ) from process_SUPP import process_supp import os process_supp( [ os.path.join("./Input", "Fiskebilder.csv"), ], "./Output", "Fish", checkfolder="/path/to/folder/with/img/files" ) from process_SUPP import process_supp import os process_supp( [ os.path.join("./Input", "Slugs.csv"), ], "./Output", "Slugs" ) from combine import combine import os combine( [ os.path.join("./Output", "AO_taxa.csv"), os.path.join("./Output", "GBIF_taxa.csv"), os.path.join("./Output", "ML_taxa.csv"), os.path.join("./Output", "Lichens_taxa.csv"), os.path.join("./Output", "Fish_taxa.csv"), os.path.join("./Output", "Slugs_taxa.csv"), ], [ os.path.join("./Output", "AO_images.csv"), os.path.join("./Output", "GBIF_images.csv"), os.path.join("./Output", "ML_images.csv"), os.path.join("./Output", "Lichens_images.csv"), os.path.join("./Output", "Fish_images.csv"), os.path.join("./Output", "Slugs_images.csv"), ], outputfolder="./Output", previousImageList=".Input/previous_images.csv" ) from extensions import filter_extensions filter_extensions(os.path.join("./Output", "images.csv"), ["png", "jpeg", "jpg"]) import pandas as pd from tqdm import tqdm tqdm.pandas() # There are some taxa that have multiple "valid" entries. Replace those with the correct ones df = pd.read_csv(os.path.join("./Output", "images.csv")) df["accepted_taxon_id_at_source"] = df["accepted_taxon_id_at_source"].progress_apply(lambda x: "NBIC:100959" if x == "NBIC:217764" else ("NBIC:100392" if x == "NBIC:162803" else x)) df["taxon_id_at_source"] = df["accepted_taxon_id_at_source"] print(f"{len(df)} images") df.to_csv(os.path.join("./Output", "images.csv"), index=False) df = pd.read_csv(os.path.join("./Output", "taxa.csv")) df = df[(df["accepted_taxon_id_at_source"] != "NBIC:217764") & (df["accepted_taxon_id_at_source"] != "NBIC:162803")] print(f"{len(df)} taxa") df.to_csv(os.path.join("./Output", "taxa.csv"), index=False) ###Output /tmp/ipykernel_9296/145595103.py:8: DtypeWarning: Columns (8,10) have mixed types. Specify dtype option on import or set low_memory=False. df = pd.read_csv(os.path.join("./Output", "images.csv")) 100%|██████████| 1702829/1702829 [00:01<00:00, 1562923.91it/s] ###Markdown Import the data ###Code mails = pd.read_csv("datasets\spam_ham_dataset.csv") ###Output _____no_output_____ ###Markdown Take a quick look at the dataset ###Code mails.head() ###Output _____no_output_____ ###Markdown I will not need the first two columns: the model will not operate on string category and the first one does not give me any additional information. I check how many of the mails are spam and how many ham. ###Code mails['label'].value_counts() ###Output _____no_output_____ ###Markdown I split the data into features and labels: ###Code x, y = mails["text"].values, mails["label_num"].values ###Output _____no_output_____ ###Markdown I check the length of the first element to see the effects of data cleaning later on. ###Code len(x[0]) ###Output _____no_output_____ ###Markdown Data cleaning I will clean the data first a little bit: I will make sure the lower and uppercase starting words meing the same thing are treated the same way, remove the special characters and numbers. I should also get rid of the "Subject:" at the beginning of each message - not treating it as a stopword, as they should be taken care of as well, but as the starting of each message - I do not want to remove it from the inside of some mails if it happens to occur. ###Code StopWords = stopwords.words("english") def clean(text): text = text[len('subject: '):] text = text.lower() text = ' '.join([word for word in text.split() if word not in StopWords]) text = re.sub(r'([^a-zA-Z ]+?)',' ', text) text = re.sub(' +', ' ', text) return text x = [clean(text) for text in x] ###Output _____no_output_____ ###Markdown I check the length of the first mail now: ###Code len(x[0]) ###Output _____no_output_____ ###Markdown That's quite a difference. It will also speed up the model as I removed the stopwords. Get the words Here I will find how many different words are in the dataset and check their frequency. ###Code counts = Counter() for sentence in x: counts.update(word.strip('') for word in sentence.split()) sorted_counts = counts.most_common() num_words = len(sorted_counts) num_words ###Output _____no_output_____ ###Markdown That's a lot of unique words! I will now check the frequences of their occurences in the mails. ###Code fig = px.histogram(x=counts.values(), range_x=[1,150]) fig.update_layout(xaxis_title="Number of occurences", yaxis_title="Number of words", title="Count of words distribution") fig.show() ###Output _____no_output_____ ###Markdown Most of the words are not used even 10 times. The encoding will probably use only a part of them. Split into train and test data I divide the set into two parts - training and testing set. I do not shuffle the data as it already is unordered. ###Code x_train, x_test = x[: int(len(x) * .8)], x[int(len(x) * .8):] y_train, y_test = y[: int(len(y) * .8)], y[int(len(y) * .8):] ###Output _____no_output_____ ###Markdown Encoding - bag of words I will use the Bag of Words provided by the scikit learn. ###Code vectorizer = CountVectorizer() X_train = vectorizer.fit_transform(x_train) X_test = vectorizer.transform(x_test) ###Output _____no_output_____ ###Markdown Model training I will use Support Vector Machine to classify the mails. ###Code from sklearn import svm model = svm.SVC().fit(X_train, y_train) ###Output _____no_output_____ ###Markdown I check how the model performs on the previously prepared train data. ###Code model.score(X_test, y_test) ###Output _____no_output_____ ###Markdown Ligandnet workflow ###Code #************************************** # Govinda KC # # UTEP, Computational Science # # Last modified: 1/25/20 # # ************************************* ###Output _____no_output_____ ###Markdown Import libraries ###Code import warnings import os, sys, json, glob sys.path.append('utilities') from train2 import Train from fetch_ligand2 import Pharos_Data from utility import FeatureGenerator # for features generation of txt file from utility2 import FeatureGenerator2 # for features generation of sdf file import pandas as pd import numpy as np from tqdm import tqdm from rdkit import Chem from rdkit.Chem import AllChem from sklearn import metrics from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.utils.class_weight import compute_class_weight import joblib from sklearn.neural_network import MLPClassifier # from sklearn.metrics import make_scorer, roc_auc_score, recall_score, accuracy_score, precision_score class Run_Workflow: def __init__(self, actives, decoys): self.actives = actives self.decoys = decoys self.results = dict() def get_fingerprints(self,smiles): try: fg = FeatureGenerator(smiles) features = fg.toTPATF() return features except Exception as e: print(e) def get_models(self): # Get features at first! if not self.fp_generation(): print('Error: features extraction failed!') return try: t = Train(self.actives_x, self.decoys_x) t.train_models() except Exception as e: print(e) def fp_generation(self): # Fingerprint generation print('Pleae wait! Fingerprints are getting generated......') if self.decoys[-4:] == '.sdf' and self.actives[-4:] == '.sdf': # Get fingerprints for actives self.actives_x = self.sdf_fp_active() # Get fingerprints for decoys self.decoys_x = self.sdf_fp_decoy() return True elif self.decoys[-4:] == '.sdf': df = pd.read_csv(self.actives) # df = pd.read_csv(open(self.actives,'rU'))#, encoding='utf-8', engine='c') # Get fingerprints for actives df['tpatf'] = df.SMILES.apply(self.get_fingerprints) self.actives_x = np.array([f for f in df.tpatf.values], dtype = np.float32) # Get fingerprints for decoys self.decoys_x = self.sdf_fp_decoy() return True else: df = pd.read_csv(self.actives) df2 = pd.read_csv(self.decoys) # df = pd.read_csv(open(self.actives,'rU'))#, encoding='utf-8', engine='c') # df2 = pd.read_csv(open(self.decoys, 'rU'))#, encoding='utf-8', engine='c') # Get fingerprints for actives df['tpatf'] = df.SMILES.apply(self.get_fingerprints) # Get fingerprints for decoys df2['tpatf'] = df2.SMILES.apply(self.get_fingerprints) # numpy arrays self.actives_x = np.array([f for f in df.tpatf.values], dtype = np.float32) self.decoys_x = np.array([f for f in df2.tpatf.values], dtype = np.float32) return True return False def sdf_fp_decoy(self): try: fg2 = FeatureGenerator2(self.decoys) feat_decoy = fg2.sepTPATF() return feat_decoy except Exception as e: print(e) def sdf_fp_active(self): try: fg2 = FeatureGenerator2(self.actives) feat_active = fg2.sepTPATF() return feat_active except Exception as e: print(e) # If users have their own actives and decoys def actives_decoys(): active_file = input("Uniprot id of the file? Example: P07948 \n") active_file = active_file.strip() print('Looking for active and decoy files....') # active in .txt actives = main_path+'actives/'+active_file+'.txt' if not os.path.isfile(actives): # active in .sdf actives = main_path+'actives/'+active_file+'.sdf' # decoy in .txt.. decoys = main_path+'decoys/'+"decoys_" + active_file +".txt" if not os.path.isfile(decoys): # decoy in .sdf.. decoys = main_path+'decoys/'+ "decoys_" +active_file+".sdf" if os.path.isfile(actives) and os.path.isfile(decoys): print('Actives and Decoys are found!') return actives, decoys # Searches decoys in our database for give active file (Uniprot id) def actives_bt_not_decoys(): active_file = input("Uniprot id of the file? Example: P07948 \n") active_file = active_file.strip() actives = main_path+'actives/'+active_file+'.txt' if not os.path.isfile(actives): actives = main_path+'actives/'+active_file+'.sdf' # Path for decoys database decoys_database = '../decoys_database' # if not os.path.isfile(os.path.join(decoys_database, active_file+".txt")): print('Searching decoys .....') if not os.path.isfile(os.path.join(decoys_database, active_file+".sdf")): print("Decoys are not found, exiting! Look for decoys in DUDE website and come back!") sys.exit(1) # decoys = os.path.join(decoys_database, active_file+".txt") decoys = os.path.join(decoys_database, "decoys_" +active_file+".sdf") if os.path.isfile(actives) and os.path.isfile(decoys): print('Actives and decoys are extracted!') return actives, decoys def no_actives_and_decoys(): active_file = input("Uniprot id of the file? Example: P07948 \n") active_file = active_file.strip() active_dir = main_path+'/'+ "actives" pdata = Pharos_Data(active_file, active_dir ) print('Actives for a given protein are getting downloaded from Pharos website!') pdata.fetch_ligand() actives = main_path+'actives/'+active_file+'.txt' print('Searching decoys .....') decoys_database = '../decoys_database/' if not os.path.isfile(os.path.join(decoys_database, "decoys_" +active_file+".sdf")): print("Decoys are not found, exiting! Look for decoys in DUDE website and come back!") sys.exit(1) decoys = os.path.join(decoys_database, active_file+".sdf") if os.path.isfile(actives) and os.path.isfile(decoys): print('Actives and decoys are extracted!') return actives, decoys # Start here def start_workflow(): print('Actives and decoys should either be in sdf file or text file (with header "SMILES" for txt files!)') print('ACTIVES AND DECOYS FILE NAMES SHOULD BE LIKE THAT: P07948.txt(or .sdf) and decoys_P07948.txt (or .sdf) ') print('PLEASE, MAKE SURE YOU HAVE FOLDERS "actives" and "decoys"') print('DO YOU HAVE "actives" and "decoys" FOLDERS? Type y for Yes and n for No!') check = input() if check != 'y': print('Exiting...') sys.exit(1) print("Do you have actives? Please type y for Yes and n for No !") answer1 = input() print("Do you have decoys? Please type y for Yes and n for No !") answer2 = input() if answer1 == 'y' and answer2 == 'y': actives, decoys = actives_decoys() rw = Run_Workflow(actives, decoys) rw.get_models() elif answer1 == 'y' and answer2 == 'n': actives, decoys = actives_bt_not_decoys() rw = Run_Workflow(actives, decoys) rw.get_models() elif answer1 == 'n' and answer2 == 'n': actives, decoys = no_actives_and_decoys() rw = Run_Workflow(actives, decoys) rw.get_models() else: print('Please provide the right information!. Exiting!') sys.exit(1) if __name__ == '__main__': # Path for working directory print("Please, provide the path for working directory. Example: /Users/gvin/ligandnet_workflow/test_ligandnet/ \n") main_path = input() main_path = main_path.strip() os.chdir(main_path) dirs = ["actives", "decoys"] for _dir in dirs: if not os.path.isdir(_dir): os.makedirs(_dir) if main_path[-1]!='/': main_path = main_path+'/' # Start Function start_workflow() ###Output Please, provide the path for working directory. Example: /Users/gvin/ligandnet_workflow/test_ligandnet/ /Users/gvin/ligandnet_workflow/test_ligandnet/ Actives and decoys should either be in sdf file or text file (with header "SMILES" for txt files!) ACTIVES AND DECOYS FILE NAMES SHOULD BE LIKE THAT: P07948.txt(or .sdf) and decoys_P07948.txt (or .sdf) PLEASE, MAKE SURE YOU HAVE FOLDERS "actives" and "decoys" DO YOU HAVE "actives" and "decoys" FOLDERS? Type y for Yes and n for No! y Do you have actives? Please type y for Yes and n for No ! y Do you have decoys? Please type y for Yes and n for No ! y Uniprot id of the file? Example: P07948 P07948 Looking for active and decoy files.... Actives and Decoys are found! Pleae wait! Fingerprints are getting generated...... Please choose the name (Example type 1 for Random Forest) of the model from the following options! 1. Random Forest Classifier 2. Extreme Gradient Boosting 3. Support Vector Classifier 4. Artificial Neural Network 5. All 6. Exit with out running any model 2 Training xgboost.. Results: {'xgb': {'roc_auc': 0.9576923076923077, 'accuracy': 0.9393939393939394, 'f1_score': 0.9393939393939394, 'cohen_kappa': 0.8730769230769231, 'mcc': 0.8730769230769231, 'data_info': {'train_count': 129, 'test_count': 33, 'actives_count': 62, 'decoys_count': 100}}} Writing results Done ###Markdown Setting up libcudnn7-doc (7.6.5.32-1+cuda10.0) ...This notebook will take a dataset of images, run them through TSNE to group them up (if enabled) then create a stylegan2 model with or without ADA.Below are setting to choose when running this workflow. Make sure before running to have all images you want to use in a folder inside of the images folder. For example have a folder inside images called mona-lisa filled with pictures of different versions of the Mona Lisa. Please have the subfolder have no whitespaces in the name.If TSNE is enable the program will halt after processing the images and ask you to choose which cluster to use. The clusters will be in the folder clusters.Before running make sure your kernal is set to Python 3 (TensorFlow 1.15 Python 3.7 GPU Optimized) ###Code dataset_name = 'mona-lisa' use_ada = True use_tsne = False use_spacewalk = True gpus = 2 # Crop Settings # Choose center or no-crop # TODO: Add random crop_type = 'no-crop' resolution = 512 # TSNE Settings # Choose number of clusters to make or None for auto clustering num_clusters = None # ADA Settings knum = 10 # Spacewalk Settings fps = 24 seconds = 10 #Leave seeds = None for random seeds or # enter a list in the form of [int, int, int..] to define the seeds seeds = None # set walk_type to 'line', 'sphere', 'noiseloop', or 'circularloop' walk_type = 'sphere' !pip install -r requirements.txt import os import train from PIL import Image, ImageFile, ImageOps import shutil import math ImageFile.LOAD_TRUNCATED_IMAGES = True def resize(pil_img, res): return pil_img.resize((res, res)) def crop_center(pil_img, res): crop = res img_width, img_height = pil_img.size if img_width < crop: crop = img_width if img_height < crop: crop = img_height a = (img_width - crop) // 2 b = (img_height - crop) // 2 c = (img_width + crop) // 2 d = (img_height + crop) // 2 cropped_image = pil_img.crop((a,b,c,d)) return resize(cropped_image, res) def no_crop(pil_img, res): color = [0, 0, 0] img_width, img_height = pil_img.size if img_width < img_height: top = 0 bottom = 0 left = math.ceil((img_height - img_width) / 2.0) right = math.floor((img_height - img_width) / 2.0) else: top = math.ceil((img_height - img_width) / 2.0) bottom = math.floor((img_height - img_width) / 2.0) left = 0 right = 0 border_image = ImageOps.expand(pil_img, border=(left, top, right, bottom), fill='white') return resize(border_image, res) image_dir = './images/' tmp_dir = './tmp/' image_dir = os.path.join(image_dir, dataset_name) tmp_dir = os.path.join(tmp_dir, dataset_name) if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) else: try: shutil.rmtree(tmp_dir) except OSError as e: print("Error: %s : %s" % (dir_path, e.strerror)) os.makedirs(tmp_dir) for filename in os.listdir(image_dir): file_extension = os.path.splitext(filename)[-1] if file_extension != '.jpg' and file_extension != '.png': print(file_extension) continue image_path = os.path.join(image_dir, filename) image = Image.open(image_path) mode = image.mode if str(mode) != 'RGB': continue if crop_type == "center": image = crop_center(image, resolution) if crop_type == "no-crop": image = no_crop(image, resolution) tmp_path = os.path.join(tmp_dir, filename) image.save(tmp_path) if use_tsne: !python tsne.py --path={tmp_dir} else: print('TSNE is not in use') ###Output _____no_output_____ ###Markdown If TSNE is enabled when it is finished running check the Clusters folder and choose the cluster you want to use below ###Code if use_tsne: clusters = [] while True: x = input("Enter a cluster you want to use or Enter to continue: ") if x == '': break clusters.append(int(x)) dataset_dir = os.path.join("./datasets", dataset_name) if use_ada and use_tsne: image_dir = os.path.join("./tmp", str(dataset_name + "_clusters")) !python dataset_tool.py create_from_images {dataset_dir} {image_dir} !python train.py --outdir=./training-runs --gpus={gpus} --res={resolution} --data={dataset_dir} --kimg={knum} elif use_ada: image_dir = os.path.join("./tmp", dataset_name) !python dataset_tool.py create_from_images {dataset_dir} {image_dir} !python train.py --outdir=./training-runs --gpus={gpus} --res={resolution} --data={dataset_dir} --kimg={knum} else: print("ADA is not in use") ###Output _____no_output_____ ###Markdown 機械学習ハンズオン(ワークフロー編) 1. ハンズオンの概要[UCIのAdultデータセット](https://archive.ics.uci.edu/ml/datasets/Adult)を使って、年齢や職業などのデータから、その人の収入が5万ドル以上あるかどうかの2値分類(binary classification)を行います。このハンズオンの流れは次のとおりです。 1. データの取得 1. データの分析 1. データの前処理 1. 学習モデルの作成 1. 学習モデルの評価 2. 事前準備 2.1. ランタイムの確認Google Colabを使っている場合は、メニューから「ランタイム」→「ランタイムのタイプを変更」を選択して、「ハードウェア アクセラレータ」を「GPU」に設定してください。 2.2. ライブラリのロード ###Code !pip install pandas tensorflow numpy matplotlib seaborn scikit-learn import pandas as pd import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score ###Output _____no_output_____ ###Markdown 3. データ取得 pandasのAPIを使ってデータファイルを読み込みます。 * このファイルにはヘッダー行がないので、ヘッダーは自分で設定します。 * 不明値を表す "?" はN/Aに変換しておきます。 * のちほど不明値を処理します。 ###Code headers = ('age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income') df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data', sep=', ', names=headers, na_values='?') ###Output _____no_output_____ ###Markdown 読み込んだデータを表示してみましょう。 ###Code df.head(10) ###Output _____no_output_____ ###Markdown 4. データ分析 4.1. ラベルごとのデータ件数5万ドル未満が約76%あるので、**学習モデルがすべて5万ドル未満と予測しても76%前後の正答率が出てしまう**ことに注意が必要です。 ###Code df.groupby('income').size() df.groupby('income').size() / len(df) ###Output _____no_output_____ ###Markdown 4.2. 量的変数の分析 ラベル別の特徴量の分布fntwgtは、5万ドル超も5万ドル以下も同じ分布を取っているので、ラベルとは無関係と判断し、特徴量から除外することにします。 ###Code plt.figure(figsize=(20, 10)) features = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] for i in range(len(features)): plt.subplot(2, 3, i+1) plt.title(features[i]) sns.kdeplot(df[df['income']=='<=50K'][features[i]], label='<=50K') sns.kdeplot(df[df['income']=='>50K'][features[i]], label='>50K') df[df['income']=='<=50K'].describe() df[df['income']=='>50K'].describe() ###Output _____no_output_____ ###Markdown 4.3. 質的変数の分析 ラベル別の特徴量の分布 ###Code pd.crosstab(index=df['income'], columns=df['workclass'], normalize='columns') pd.crosstab(index=df['income'], columns=df['marital-status'], normalize='columns') pd.crosstab(index=df['income'], columns=df['occupation'], normalize='columns') pd.crosstab(index=df['income'], columns=df['relationship'], normalize='columns') pd.crosstab(index=df['income'], columns=df['race'], normalize='columns') pd.crosstab(index=df['income'], columns=df['sex'], normalize='columns') pd.crosstab(index=df['income'], columns=df['native-country'], normalize='columns') ###Output _____no_output_____ ###Markdown 4.4. 特徴量間の関係の分析 "education" vs "education-num"下図から同値だと判断できるため、"education"は除外することにします。 ###Code sns.boxplot(y='education', x='education-num', data=df) ###Output _____no_output_____ ###Markdown 4.5. 欠損値のチェック欠損値があるので、あとでこのレコードを削除します。 ###Code df.isnull().sum() ###Output _____no_output_____ ###Markdown 5. データ前処理 5.1. 前処理をする前の状態 ###Code df.head(10) ###Output _____no_output_____ ###Markdown 5.2. 欠損値のあるレコードの削除 ###Code df = df.dropna() df.isnull().sum() ###Output _____no_output_____ ###Markdown 5.3. ラベルの作成データから"income"列を抜き出し、"50K"をそれぞれ0, 1の数値に変換します。 ###Code ys = pd.get_dummies(df['income'], drop_first=True) ys.head(10) ###Output _____no_output_____ ###Markdown 5.4. 不要な特徴量の削除 * "income"はラベルなので削除 * "fnlwgt"はラベルと相関がないので削除 * "education"は"education-num"と同一の特徴なので削除 ###Code drop_columns = ['income', 'fnlwgt', 'education'] df = df.drop(drop_columns, axis=1) df.head(10) ###Output _____no_output_____ ###Markdown 5.5. 質的変数のダミー化 ###Code xs = pd.get_dummies(df) xs.head(10) ###Output _____no_output_____ ###Markdown 6. 学習モデルの作成 6.1. データ分割データを訓練データ・検証データ・テストデータの3つに分割します。まず、全体の20%をテストデータに回し、残ったデータの20%を検証データに回します。 ###Code all_xs = xs.values all_ys = ys.values tmp_xs, test_xs, tmp_ys, test_ys = train_test_split(all_xs, all_ys, test_size=0.2) train_xs, valid_xs, train_ys, valid_ys = train_test_split(tmp_xs, tmp_ys, test_size=0.2) print(train_xs.shape, valid_xs.shape, test_xs.shape, train_ys.shape, valid_ys.shape, test_ys.shape) ###Output _____no_output_____ ###Markdown 6.2. 正規化特徴量を $0.0\le{}x\le{}1.0$ の範囲に収まるように正規化します。 ###Code scaler = MinMaxScaler() scaler.fit(all_xs) train_xs = scaler.transform(train_xs) valid_xs = scaler.transform(valid_xs) test_xs = scaler.transform(test_xs) ###Output _____no_output_____ ###Markdown 6.3. 学習モデル構築 まずは単層のパーセプトロンモデルを作りましょう。 * パラメータ数は特徴量の数と同じ * 出力次元数は2値分類なので1 ###Code model = tf.keras.models.Sequential([ tf.keras.layers.Dense(1, input_dim=train_xs.shape[1], activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() ###Output _____no_output_____ ###Markdown 7. 学習モデルの評価 7.1. 学習実行実際に学習エポック(すべての訓練データを1回学習させることを**1エポック**と呼びます)ごとに、訓練データ・検証データそれぞれに対する損失・正答率が出力されます。 * `loss` : 訓練データの損失 * `acc` : 訓練データの正答率 * `val_loss`: 検証データの損失 * `val_acc`: 検証データの正答率 ###Code hist = model.fit(train_xs, train_ys, batch_size=128, epochs=100, validation_data=(valid_xs, valid_ys)) ###Output _____no_output_____ ###Markdown 7.2. モデルの評価訓練データ・学習データに対する損失と正答率をグラフ化してみましょう。 ###Code %matplotlib inline plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(range(1, 101), hist.history["loss"]) plt.plot(range(1, 101), hist.history["val_loss"]) plt.title("loss") plt.xlabel("epoch") plt.ylabel("loss") plt.subplot(1, 2, 2) plt.plot(range(1, 101), hist.history["acc"]) plt.plot(range(1, 101), hist.history["val_acc"]) plt.title("accuracy") plt.xlabel("epoch") plt.ylabel("accuracy") ###Output _____no_output_____ ###Markdown テストデータに対する性能を求めてみましょう。 ###Code pred = model.predict_classes(test_xs, batch_size=128) accuracy = accuracy_score(test_ys, pred) precision = precision_score(test_ys, pred) recall = recall_score(test_ys, pred) f1 = f1_score(test_ys, pred) print("accuracy = {:.2f}, precision = {:.2f}, recall = {:.2f}, F1-score = {:.2f}".format(accuracy, precision, recall, f1)) ###Output _____no_output_____ ###Markdown 7.3. 別のモデルの評価今度はパーセプトロンを3層にしたモデルを試してみましょう。 ###Code model = tf.keras.models.Sequential([ tf.keras.layers.Dense(128, input_dim=train_xs.shape[1], activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() hist = model.fit(train_xs, train_ys, batch_size=128, epochs=100, validation_data=(valid_xs, valid_ys)) %matplotlib inline plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(range(1, 101), hist.history["loss"]) plt.plot(range(1, 101), hist.history["val_loss"]) plt.title("loss") plt.xlabel("epoch") plt.ylabel("loss") plt.subplot(1, 2, 2) plt.plot(range(1, 101), hist.history["acc"]) plt.plot(range(1, 101), hist.history["val_acc"]) plt.title("accuracy") plt.xlabel("epoch") plt.ylabel("accuracy") pred = model.predict_classes(test_xs, batch_size=128) accuracy = accuracy_score(test_ys, pred) precision = precision_score(test_ys, pred) recall = recall_score(test_ys, pred) f1 = f1_score(test_ys, pred) print("accuracy = {:.2f}, precision = {:.2f}, recall = {:.2f}, F1-score = {:.2f}".format(accuracy, precision, recall, f1)) ###Output _____no_output_____ ###Markdown Macro-Pipeline Workflow Set Run-Specific InputFill in the username/password for the SURF dCache. LAZ files updated since the last workflow run will be re-run through the full pipeline. ###Code webdav_login = input('WebDAV username: ') webdav_password = getpass.getpass('WebDAV password: ') last_run = datetime.datetime.strptime(input('Date last run (YYYY-MM-DD): '), '%Y-%m-%d') ###Output _____no_output_____ ###Markdown Check Connection to Remote Storage ###Code remote_path_root = pathlib.Path('/pnfs/grid.sara.nl/data/projects.nl/eecolidar/01_Escience/') wd_opts = { 'webdav_hostname': 'https://webdav.grid.surfsara.nl:2880', 'webdav_login': webdav_login, 'webdav_password': webdav_password } assert get_wdclient(wd_opts).check(remote_path_root.as_posix()) ###Output _____no_output_____ ###Markdown Setup ClusterSetup Dask cluster used for all the macro-pipeline calculations. ###Code local_tmp = pathlib.Path('/tmp') cluster = LocalCluster(processes=True, n_workers=2, threads_per_worker=1, local_directory=local_tmp/'dask-worker-space') # nprocs_per_node = 2 # cluster = SSHCluster(hosts=['172.17.0.2', # '172.17.0.2', # '172.17.0.3'], # connect_options={'known_hosts': None, # 'username': 'ubuntu', # 'client_keys': '/home/ubuntu/.ssh/id_rsa'}, # worker_options={'nthreads': 1, # 'nprocs': nprocs_per_node, # 'local_directory': local_tmp/'dask-worker-space'}, # scheduler_options={'dashboard_address': '8787'}) cluster ###Output _____no_output_____ ###Markdown RetilingThe raw point-cloud files are downloaded and retiled to a regular grid. ###Code # dCache path to raw LAZ files remote_path_ahn = remote_path_root / 'test_pipeline/test_full/raw' # dCache path where to copy retiled PLY files remote_path_retiled = remote_path_ahn.parent / 'retiled' # details of the retiling schema grid = { 'min_x': -113107.81, 'max_x': 398892.19, 'min_y': 214783.87, 'max_y': 726783.87, 'n_tiles_side': 512 } # determine which LAZ files have been updated since the last run laz_files = [f for f in list_remote(get_wdclient(wd_opts), remote_path_ahn.as_posix()) if f.lower().endswith('.laz') and last_modified(wd_opts, remote_path_ahn/f) > last_run] print('Retrieve and retile: {} LAZ files'.format(len(laz_files))) # setup input dictionary to configure the retiling pipeline retiling_input = { 'setup_local_fs': {'tmp_folder': local_tmp.as_posix()}, 'pullremote': remote_path_ahn.as_posix(), 'set_grid': grid, 'split_and_redistribute': {}, 'validate': {}, 'pushremote': remote_path_retiled.as_posix(), 'cleanlocalfs': {} } # write input dictionary to JSON file with open('retiling.json', 'w') as f: json.dump(retiling_input, f) macro = MacroPipeline() # add pipeline list to macro-pipeline object and set the corresponding labels macro.tasks = [Retiler(file).config(retiling_input).setup_webdav_client(wd_opts) for file in laz_files] macro.set_labels([os.path.splitext(file)[0] for file in laz_files]) macro.setup_cluster(cluster=cluster) # run! macro.run() # save outcome results and check that no error occurred before continuing macro.print_outcome(to_file='retiling.out') assert not macro.get_failed_pipelines() ###Output _____no_output_____ ###Markdown Feature ExtractionFeatures computed for the retiled point-cloud data are assigned to a regular 'target' grid. ###Code # target mesh size & list of features tile_mesh_size = 10. features = ['perc_95_normalized_height', 'pulse_penetration_ratio', 'entropy_normalized_height', 'point_density'] # dCache path where to copy the feature-enriched target data remote_path_targets = remote_path_ahn.parent / 'targets' # determine which tiles have been updated since last run, and extract tile index numbers tiles = [t.strip('/') for t in list_remote(get_wdclient(wd_opts), remote_path_retiled.as_posix()) if fnmatch.fnmatch(t, 'tile_*_*/') and last_modified(wd_opts, remote_path_retiled/t) > last_run] tile_indices = [[int(el) for el in tile.split('_')[1:]] for tile in tiles] print('Retrieve and process: {} tiles'.format(len(tile_indices))) # setup input dictionary to configure the feature extraction pipeline feature_extraction_input = { 'setup_local_fs': {'tmp_folder': local_tmp.as_posix()}, 'pullremote': remote_path_retiled.as_posix(), 'load': {'attributes': ['raw_classification']}, 'normalize': 1, 'apply_filter': { 'filter_type': 'select_equal', 'attribute': 'raw_classification', 'value': [1, 6]#ground surface (2), water (9), buildings (6), artificial objects (26), vegetation (?), and unclassified (1) }, 'generate_targets': { 'tile_mesh_size' : tile_mesh_size, 'validate' : True, **grid }, 'extract_features': { 'feature_names': features, 'volume_type': 'cell', 'volume_size': tile_mesh_size }, 'export_targets': { 'attributes': features, 'multi_band_files': False }, 'pushremote': remote_path_targets.as_posix(), # 'cleanlocalfs': {} } # write input dictionary to JSON file with open('feature_extraction.json', 'w') as f: json.dump(feature_extraction_input, f) macro = MacroPipeline() # add pipeline list to macro-pipeline object and set the corresponding labels macro.tasks = [DataProcessing(t, tile_index=idx).config(feature_extraction_input).setup_webdav_client(wd_opts) for t, idx in zip(tiles, tile_indices)] macro.set_labels(tiles) macro.setup_cluster(cluster=cluster) # run! macro.run() # save outcome results and check that no error occurred before continuing macro.print_outcome(to_file='feature_extraction.out') assert not macro.get_failed_pipelines() ###Output _____no_output_____ ###Markdown GeoTIFF ExportExport the rasterized features from the target grid to GeoTIFF files. ###Code # dCache path where to copy the GeoTIFF files remote_path_geotiffs = remote_path_ahn.parent / 'geotiffs' # setup input dictionary to configure the GeoTIFF export pipeline geotiff_export_input = { 'setup_local_fs': {'tmp_folder': local_tmp.as_posix()}, 'pullremote': remote_path_targets.as_posix(), 'parse_point_cloud': {}, 'data_split': {'xSub': 1, 'ySub': 1}, 'create_subregion_geotiffs': {'output_handle': 'geotiff'}, 'pushremote': remote_path_geotiffs.as_posix(), 'cleanlocalfs': {} } # write input dictionary to JSON file with open('geotiff_export.json', 'w') as f: json.dump(geotiff_export_input, f) macro = MacroPipeline() # add pipeline list to macro-pipeline object and set the corresponding labels macro.tasks = [GeotiffWriter(input_dir=feature, bands=feature).config(geotiff_export_input).setup_webdav_client(wd_opts) for feature in features] macro.set_labels(features) macro.setup_cluster(cluster=cluster) # run! macro.run() # save outcome results and check that no error occurred before continuing macro.print_outcome(to_file='geotiff_export.out') assert not macro.get_failed_pipelines() ###Output _____no_output_____ ###Markdown Terminate cluster ###Code cluster.close() ###Output _____no_output_____ ###Markdown Load data into dataframes ###Code # Load data vcf_df, feature_mapping = gwasio.load_vcf(vcf_path, info_keys=[], format_keys=["GT"]) #vcf_df = cudf.io.parquet.read_parquet("/data/1000-genomes/hail-dataset/1kg_full_jdaw_v2.pqt") ann_df = gwasio.load_annotations(annotation_path) print(vcf_df) print("==") print(ann_df) ###Output _____no_output_____ ###Markdown Generate phenotype dataframe by merging vcf and annotation DF ###Code phenotypes_df, features = dp.create_phenotype_df(vcf_df, ann_df, ['CaffeineConsumption','isFemale','SuperPopulation'], "call_GT", vcf_sample_col="sample", ann_sample_col="Sample") ###Output _____no_output_____ ###Markdown Run PCA on phenotype matrix ###Code # Run PCA on phenotype dataframe phenotypes_df = algos.PCA_concat(phenotypes_df, 2) print(phenotypes_df) colors = {'AFR':'red', 'AMR':'green', 'EAS':'blue', 'EUR':'yellow', 'SAS':'purple'} from matplotlib.lines import Line2D plt.scatter(phenotypes_df.PC0.to_array(), phenotypes_df.PC1.to_array(), c=phenotypes_df.SuperPopulation.to_pandas().map(colors).values, s=9) legend_elements = [Line2D([0], [0], marker='o', color='w', label=key, markerfacecolor=value) for key, value in colors.items()] plt.legend(handles=legend_elements) ###Output _____no_output_____ ###Markdown Run GWAS with linear regression for each independent variant ###Code # Fit linear regression model for each variant feature print("Fitting linear regression model") df = runner.run_gwas(phenotypes_df, 'CaffeineConsumption', features, algos.cuml_LinearReg, add_cols=['PC0', 'PC1']) print(df) plt.hist(-np.log(df["p_value"].to_array()), bins = np.linspace(0,1,100)); df.drop(columns="chrom", inplace=True) g_feature_mapping = cudf.DataFrame(feature_mapping[["feature_id", "pos", "chrom"]]) df = df.merge(g_feature_mapping, how="inner", left_on=["feature"], right_on=["feature_id"]) df.chrom = df.chrom.astype("int64") #plt.plot(result["feature"].to_array(), -np.log10(result["p_value"].to_array()), "."); show_manhattan_plot(result, 'chrom', 'p_value', 'feature') a = df["p_value"].to_array() a.sort() expect_p = np.linspace(0, 1, len(a)) #plt.plot(-np.log10(expect_p), -np.log10(a), '.') #plt.plot([0,5],[0,5]) df["e_value"] = np.linspace(0, 1, len(a)) df["p_s_value"] = a show_qq_plot(df, 'e_value', 'p_s_value', x_max=3, y_max=3) from bokeh.plotting import figure from bokeh.io import output_notebook, push_notebook, show output_notebook() plot = figure() plot.circle(-np.log10(expect_p+1e-10), -np.log10(a)) handle = show(plot, notebook_handle=True) # Update the plot title in the earlier cell plot.title.text = "qqplot" push_notebook(handle=handle) !wget https://www.broadinstitute.org/files/shared/diabetes/scandinavs/DGI_chr3_pvals.txt pvals = [] with open('DGI_chr3_pvals.txt') as f: for r in f: r = r.strip() if r == 'PVAL': continue pvals.append(float(r)) pvals = np.array(pvals) pvals.sort() expect_p = np.linspace(0, 1, len(pvals)) plt.plot(-np.log10(expect_p), -np.log10(pvals), '.') plt.plot([0,5],[0,5]) from bokeh.plotting import figure from bokeh.io import output_notebook, push_notebook, show f#rom bokeh.models import Range1d output_notebook() plot = figure(plot_width=300, plot_height=300, y_range=(0,5), x_range=(0,5)) plot.circle(-np.log10(expect_p+1e-10), -np.log10(pvals)) plot.line([0,5],[0,5]) handle = show(plot, notebook_handle=True) # Update the plot title in the earlier cell plot.title.text = "qqplot" push_notebook(handle=handle) pvals ###Output _____no_output_____ ###Markdown Load data into dataframes ###Code # Load data vcf_df, feature_mapping = gwasio.load_vcf(vcf_path, info_keys=[], format_keys=["GT"]) #vcf_df = cudf.io.parquet.read_parquet("data/1kg_full_jdaw_v2.pqt") #feature_mapping = vcf_df[["chrom", "pos", "feature_id"]].to_pandas() ann_df = gwasio.load_annotations(annotation_path) print(vcf_df) print("==") print(ann_df) ###Output _____no_output_____ ###Markdown Generate phenotype dataframe by merging vcf and annotation DF ###Code phenotypes_df, features = dp.create_phenotype_df(vcf_df, ann_df, ['CaffeineConsumption','isFemale','SuperPopulation'], "call_GT", vcf_sample_col="sample", ann_sample_col="Sample") ###Output _____no_output_____ ###Markdown Run PCA on phenotype matrix ###Code # Run PCA on phenotype dataframe phenotypes_df = algos.PCA_concat(phenotypes_df, 2) print(phenotypes_df) colors = {'AFR':'red', 'AMR':'green', 'EAS':'blue', 'EUR':'yellow', 'SAS':'purple'} from matplotlib.lines import Line2D plt.scatter(phenotypes_df.PC0.to_array(), phenotypes_df.PC1.to_array(), c=phenotypes_df.SuperPopulation.to_pandas().map(colors).values, s=9) legend_elements = [Line2D([0], [0], marker='o', color='w', label=key, markerfacecolor=value) for key, value in colors.items()] plt.legend(handles=legend_elements) ###Output _____no_output_____ ###Markdown Run GWAS with linear regression for each independent variant ###Code # Fit linear regression model for each variant feature print("Fitting linear regression model") df = runner.run_gwas(phenotypes_df, 'CaffeineConsumption', features, algos.cuml_LinearReg, add_cols=['PC0', 'PC1']) print(df) plt.hist(-np.log(df["p_value"].to_array()), bins = np.linspace(0,1,100)); df.drop(columns="chrom", inplace=True) g_feature_mapping = cudf.DataFrame(feature_mapping[["feature_id", "pos", "chrom"]]) df = df.merge(g_feature_mapping, how="inner", left_on=["feature"], right_on=["feature_id"]) df.chrom = df.chrom.astype("int64") show_manhattan_plot(df, 'chrom', 'pos', 'p_value', title='GWAS Manhattan Plot') a = df["p_value"].to_array() a.sort() expect_p = np.linspace(0, 1, len(a)) df["e_value"] = np.linspace(0, 1, len(a)) df["p_s_value"] = a show_qq_plot(df, 'e_value', 'p_s_value', x_max=3, y_max=3) ###Output _____no_output_____ ###Markdown Imports ###Code import ml_pdf.py import gen_pdfs.py import dns_plotter.py import utilities ###Output _____no_output_____ ###Markdown Plot DNS data ###Code fdir = '/projects/exact/Shashank/plt_DRM_0.7_1095_ML_Output' plot_dns(fdir) ###Output _____no_output_____ ###Markdown Generate subvolume (aka dice) data You first need to generate the sub-volumes ("dices") by running:```$ python dicer.py -f $PELE_OUTPUT_FILE```where `$PELE_OUTPUT_FILE` is the output files from the Pele DNS. The default arguments will generate the necessary files for the analysis below. But one could also get a continuous series of dices (a single one would require too much memory) for a large part of the domain by doing:```$ python dicer.py -f /projects/exact/Shashank/plt_DRM_0.7_1095_ML_Output -z 0.003125 0.009375 0.015625 0.021875 0.028125 0.034375 0.040625 0.046875 0.053125 0.059375 0.065625 0.071875 0.078125 0.084375 0.090625 0.096875 0.103125 0.109375 0.115625 0.121875 0.128125 0.134375 0.140625 0.146875 0.153125 -ht 0.00625 --extent -0.125 0.125 --output data_full``` You can concatenate dices together by doing the following (e.g., for that last command) ###Code dices = ["dice_{0:04d}".format(i) for i in range(25)] concatenate_dices(dices=dices, datadir=os.path.abspath("data_full")) ###Output _____no_output_____ ###Markdown Generate the PDFs from the DNS subvolume data ###Code dice = "dice_0004" datadir = os.path.abspath('data') pdf, bins, means = gen_pdf_from_dice(os.path.join(datadir, f"{dice}.npz")) ###Output _____no_output_____ ###Markdown Alternatively, load the pdf, bins, and means (if they have already been generated) ###Code pdf = pd.read_pickle(os.path.join(datadir, f"{dice}_pdfs.gz")) bins = pd.read_pickle(os.path.join(datadir, "bins.gz")) means = pd.read_pickle(os.path.join(datadir, f"{dice}_src_pv_means.gz")) ###Output _____no_output_____ ###Markdown If you have all the dice, you can concatenate them into one large dataframe ###Code dices = ["dice_0001","dice_0002","dice_0003","dice_0004","dice_0005"] pdf = pd.concat([pd.read_pickle(os.path.join(datadir, f"{dice}_pdfs.gz")) for dice in dices], ignore_index=True) means = pd.concat([pd.read_pickle(os.path.join(datadir, f"{dice}_src_pv_means.gz")) for dice in dices], ignore_index=True) pdf.to_pickle(os.path.join(datadir, "dices_pdfs.gz")) means.to_pickle(os.path.join(datadir, "dices_src_pv_means.gz")) ###Output _____no_output_____ ###Markdown This is how to get the bin edges ###Code cbin_edges = utilities.midpoint_to_edges(np.unique(bins.Cbins)) zbin_edges = utilities.midpoint_to_edges(np.unique(bins.Zbins)) ###Output _____no_output_____ ###Markdown Plot slices in the dices, the input space and some sample pdfs ###Code [plot_dice_slices(os.path.join(datadir, f"{dice}.npz")) for dice in dices] for dice in dices: pdf = pd.read_pickle(os.path.join(datadir, f"{dice}_pdfs.gz")) plot_input_space(pdf, fname=f"inputs_{dice}.pdf") # Find PDFs with points closest to these: points = pd.DataFrame({'Z':[0, 0.4, 0.6255, 0.6714,0.8, 0.9252], 'Zvar': [0, 0.0066, 0.0134, 0.0128, 0.01, 0.0043], 'C':[0, 0.0269, 0.0318, 0.0822, 0.05, 0.1209], 'Cvar':[0, 0.0006, 0.0016, 0.0034, 0.0029, 0.0046]}) idx = [closest_point(points.loc[i,:], pdf.loc[:,points.columns]).name for i in points.index] plot_pdfs(pdf.loc[idx], means.loc[idx], bins) # Or (fewer points) points = pd.DataFrame({'Z':[0, 0.4, 0.6714, 0.9252], 'Zvar': [0, 0.0066, 0.0128, 0.0043], 'C':[0, 0.0269, 0.0822, 0.1209], 'Cvar':[0, 0.0006, 0.0034, 0.0046]}) idx = [closest_point(points.loc[i,:], pdf.loc[:,points.columns]).name for i in points.index] plot_pdfs(pdf.loc[idx], means.loc[idx], bins) ###Output _____no_output_____ ###Markdown Find distances between PDFs in different dice ###Code distances = pdf_distances("dice_0004") plot_pdf_distances("dice_0004") ###Output _____no_output_____ ###Markdown Generate the training data ###Code Xtrain, Xdev, Xtest, Ytrain, Ydev, Ytest, scaler = gen_training(pdf, dice) ###Output _____no_output_____ ###Markdown Alternatively, load the training data (if it has already been generated) ###Code Xtrain = pd.read_pickle(os.path.join(datadir, f"{dice}_xtrain.gz")) Xdev = pd.read_pickle(os.path.join(datadir, f"{dice}_xdev.gz")) Ytrain = pd.read_pickle(os.path.join(datadir, f"{dice}_ytrain.gz")) Ydev = pd.read_pickle(os.path.join(datadir, f"{dice}_ydev.gz")) ###Output _____no_output_____ ###Markdown Sometimes, one might need to switch scalers (e.g. you train on one dice and want to predict on another) ###Code scaler_dice_0002 = joblib.load(os.path.join(datadir, "dice_0002_scaler.pkl")) scaler_dice_0003 = joblib.load(os.path.join(datadir, "dice_0003_scaler.pkl")) Xtrain = utilities.switch_scaler(Xtrain, scaler_dice_0003, scaler_dice_0002) Xdev = utilities.switch_scaler(Xdev, scaler_dice_0003, scaler_dice_0002); ###Output _____no_output_____ ###Markdown PDF predictions with machine learning Random Forest ###Code mtrain_rf, mdev_rf, RF = rf_training(Xtrain, Xdev, Ytrain, Ydev) plot_result( Ytrain, mtrain_rf, Ydev, mdev_rf, pdf.loc[Xdev.index,Xdev.columns], bins, fname = "RF.pdf") conv_rf = convolution_means(mdev_rf, means.loc[Ydev.index]) plot_scatter(pdf.SRC_PV.loc[Ydev.index], conv_rf, fname = "convolution_RF.pdf") ###Output _____no_output_____ ###Markdown Linear regression ###Code mtrain_lr, mdev_lr, LR = lr_training(Xtrain, Xdev, Ytrain, Ydev) ###Output _____no_output_____ ###Markdown Polynomial regression ###Code mtrain_pr, mdev_pr, PR = pr_training(Xtrain, Xdev, Ytrain, Ydev, order=6) ###Output _____no_output_____ ###Markdown Feed-forward Neural Network ###Code mtrain_dnn, mdev_dnn, DNN = dnn_training(Xtrain, Xdev, Ytrain, Ydev, use_gpu=True) ###Output _____no_output_____ ###Markdown Alternatively, load a pretrained network ###Code device = torch.device("cpu") dtype = torch.double vh = VariableHandler(device=device, dtype=dtype) batch_size = 64 input_size = Xtrain.shape[1] layer_sizes = [256, 512, Ytrain.shape[1]] DNN = Net(input_size, layer_sizes, vh).to(device=device, dtype=dtype) DNN.load('DNN.pkl') mtrain_dnn = DNN.predict(Xtrain) mdev_dnn = DNN.predict(Xdev) plot_result( Ytrain, mtrain_dnn, Ydev, mdev_dnn, pdf.loc[Xdev.index,Xdev.columns], bins, fname = "DNN.pdf") conv_dnn = convolution_means(mdev_dnn, means.loc[Ydev.index]) plot_scatter(pdf.SRC_PV.loc[Ydev.index], conv_dnn, fname = "convolution_DNN.pdf") ###Output _____no_output_____ ###Markdown Estimate of feature importance through the shuffled input loss ###Code imp_dnn = shuffled_input_loss(DNN, Xdev, Ydev) imp_dnn.div(imp_dnn.original, axis=0) ###Output _____no_output_____ ###Markdown PDF predictions with generative models Conditional Variational Autoencoder ###Code mtrain_cvae, mdev_cvae, cvae = cvae_training(Xtrain, Xdev, Ytrain, Ydev, use_gpu=True) ###Output _____no_output_____ ###Markdown Alternatively, load a pre-trained model: ###Code device = torch.device("cpu") vh = VariableHandler(device=device, dtype=torch.double) nlabels = Xtrain.shape[1] input_size = Ytrain.shape[1] batch_size = 64 encoder_layer_sizes = [input_size + nlabels, 512, 256] latent_size = 10 decoder_layer_sizes = [256, 512, input_size] cvae = CVAE( encoder_layer_sizes=encoder_layer_sizes, latent_size=latent_size, decoder_layer_sizes=decoder_layer_sizes, nlabels=nlabels, vh=vh, ).to(device=device) cvae.load("CVAE.pkl") mtrain_cvae = cvae.predict(Xtrain) mdev_cvae = cvae.predict(Xdev) plot_result( Ytrain, mtrain_cvae, Ydev, mdev_cvae, pdf.loc[Xdev.index,Xdev.columns], bins, fname='CVAE.pdf') conv_cvae = convolution_means(mdev_cvae, means.loc[Ydev.index]) plot_scatter(pdf.SRC_PV.loc[Ydev.index], conv_cvae, fname = "convolution_CVAE.pdf") ###Output _____no_output_____ ###Markdown You can also use the model to predict on all the dices ###Code scaler_dice_0002 = joblib.load(os.path.join(datadir, "dice_0002_scaler.pkl")) predict_all_dice(cvae, scaler_dice_0002) ###Output _____no_output_____ ###Markdown Conditional Generative Adversarial Network ###Code mtrain_cgan, mdev_cgan, cgan = cgan_training(Xtrain, Xdev, Ytrain, Ydev, use_gpu=True) plot_result( Ytrain, mtrain_cgan, Ydev, mdev_cgan, pdf.loc[Xdev.index,Xdev.columns], bins, fname='CGAN.pdf') conv_cgan = convolution_means(mdev_cgan, means.loc[Ydev.index]) plot_scatter(pdf.SRC_PV.loc[Ydev.index], conv_cgan, fname = "convolution_CGAN.pdf") ###Output _____no_output_____ ###Markdown PDF predictions with analytical models delta-delta model ###Code dd = DD(zbin_edges, cbin_edges) mtrain_dd = dd.predict(pdf.loc[Xtrain.index,['C','Z']]) mdev_dd = dd.predict(pdf.loc[Xdev.index,['C','Z']]) summarize_training(Ytrain, mtrain_dd, Ydev, mdev_dd, fname="DD.log") plot_result( Ytrain, mtrain_dd, Ydev, mdev_dd, pdf.loc[Xdev.index,Xdev.columns], bins, fname = "DD.pdf") conv_dd = convolution_means(mdev_dd, means.loc[Ydev.index]) plot_scatter(pdf.SRC_PV.loc[Ydev.index], conv_dd, fname = "convolution_DD.pdf") ###Output _____no_output_____ ###Markdown beta-delta model ###Code bd = BD(zbin_edges, cbin_edges) mtrain_bd = bd.predict(pdf.loc[Xtrain.index,['C','Z','Zvar']]) mdev_bd = bd.predict(pdf.loc[Xdev.index,['C','Z','Zvar']]) summarize_training(Ytrain, mtrain_bd, Ydev, mdev_bd, fname="BD.log") plot_result( Ytrain, mtrain_bd, Ydev, mdev_bd, pdf.loc[Xdev.index,Xdev.columns], bins, fname = "BD.pdf") conv_bd = convolution_means(mdev_bd, means.loc[Ydev.index]) plot_scatter(pdf.SRC_PV.loc[Ydev.index], conv_bd, fname = "convolution_BD.pdf") ###Output _____no_output_____ ###Markdown beta-beta model ###Code bb = BB(zbin_edges, cbin_edges) mtrain_bb = bb.predict(pdf.loc[Xtrain.index,['C','Cvar','Z','Zvar']]) mdev_bb = bb.predict(pdf.loc[Xdev.index,['C','Cvar','Z','Zvar']]) summarize_training(Ytrain, mtrain_bb, Ydev, mdev_bb, fname="BB.log") plot_result( Ytrain, mtrain_bb, Ydev, mdev_bb, pdf.loc[Xdev.index,Xdev.columns], bins, fname = "BB.pdf") conv_bb = convolution_means(mdev_bb, means.loc[Ydev.index]) plot_scatter(pdf.SRC_PV.loc[Ydev.index], conv_bb, fname = "convolution_BB.pdf") ###Output _____no_output_____ ###Markdown Good, medium, bad beta models: ###Code # Find index m_bb = bb.predict(pdf.loc[:,['C','Cvar','Z','Zvar']]) jsd_bb = calculate_jsd(pdf.loc[:,Ytrain.columns], m_bb) idx = [jsd_bb.argmin(), np.fabs(jsd_bb - np.log(2)/2).argmin(), jsd_bb.argmax()] # Plot PDFs for i, index in enumerate(idx): m_bb = {'BB': bb.predict(pdf.loc[[index],['C','Cvar','Z','Zvar']])} plot_pdfs(pdf.loc[[index]], means.loc[[index]], bins, fname=f"pdfs_{index}.pdf", models=m_bb) ###Output _____no_output_____ ###Markdown Training and predicting on a subset of the data ###Code idx = pdf.xc < 0 Xtrain_sub = Xtrain.loc[idx.loc[Xtrain.index]] Xdev_sub = Xdev.loc[idx.loc[Xdev.index]] Ytrain_sub = Ytrain.loc[idx.loc[Ytrain.index]] Ydev_sub = Ydev.loc[idx.loc[Ydev.index]] mtrain_dnn, mdev_dnn, DNN = dnn_training(Xtrain_sub, Xdev_sub, Ytrain_sub, Ydev_sub, use_gpu=True) dnn_h = predict_all_dice(DNN, scaler_dice_0004, half=True) plot_dice_predictions({'DNN':dnn_h}) ###Output _____no_output_____ ###Markdown Prediction timings ###Code # Load all the models and then: pt = prediction_times({'RF':RF, 'DNN':DNN, 'CVAE': cvae}, Xdev, Ydev) pt.loc[:,['model','time','error']].to_latex() # For the analytical models, you can do pt = prediction_times({'BB': bb}, pdf.loc[Xdev.index,['C','Cvar','Z','Zvar']], Ydev) ###Output _____no_output_____ ###Markdown Summary graphs JSD plots ###Code jsd = pd.DataFrame({'RF': calculate_jsd(Ydev, mdev_rf), 'DNN': calculate_jsd(Ydev, mdev_dnn), 'CVAE': calculate_jsd(Ydev, mdev_cvae), 'BB': calculate_jsd(Ydev, mdev_bb)}) plot_jsd(jsd) ###Output _____no_output_____ ###Markdown Convolution plots ###Code convolutions = pd.DataFrame({'RF': convolution_means(mdev_rf, means.loc[Ydev.index]), 'DNN': convolution_means(mdev_dnn, means.loc[Ydev.index]), 'CVAE': convolution_means(mdev_cvae, means.loc[Ydev.index]), 'BB': convolution_means(mdev_bb, means.loc[Ydev.index])}) plot_convolution(pdf.loc[Ydev.index], convolutions, bins) ###Output _____no_output_____ ###Markdown Good, bad, medium PDFs ###Code # based on BB predictions (use with dice_0004) jsd_bb = calculate_jsd(Ydev, mdev_bb) idx = [jsd_bb.argmin(), np.fabs(jsd_bb - np.log(2)/2).argmin(), jsd_bb.argmax()] for i, index in zip(idx, Ydev.index[idx]): model_pdfs = {'RF': mdev_rf[np.newaxis, i,:], 'DNN': mdev_dnn[np.newaxis, i,:], 'CVAE': mdev_cvae[np.newaxis, i,:], 'BB': mdev_bb[np.newaxis, i,:]} plot_pdfs(pdf.loc[[index]], means.loc[[index]], bins, fname=f"pdfs_{index}.pdf", models=model_pdfs) # based on PDF of DNN predictions and higher filtered reaction rates (use with dices_skip) omega_lim = 15 jsd_dnn = calculate_jsd(Ydev, mdev_dnn) points = [jsd_dnn[pdf.SRC_PV.loc[Ydev.index].values > omega_lim].min(), np.median(jsd_dnn[pdf.SRC_PV.loc[Ydev.index].values > omega_lim]), jsd_dnn[pdf.SRC_PV.loc[Ydev.index].values > omega_lim][np.fabs(jsd_dnn[pdf.SRC_PV.loc[Ydev.index].values > omega_lim] - 0.1).argmin()], jsd_dnn[pdf.SRC_PV.loc[Ydev.index].values > omega_lim].max()] idx = [np.fabs(jsd_dnn - point).argmin() for point in points] src_pv_err_dnn = np.fabs(pdf.SRC_PV.loc[Ydev.index] - convolution_means(mdev_dnn, means.loc[Ydev.index])).values for i, index in zip(idx, Ydev.index[idx]): model_pdfs = {'RF': mdev_rf[np.newaxis, i,:], 'DNN': mdev_dnn[np.newaxis, i,:], 'CVAE': mdev_cvae[np.newaxis, i,:], 'BB': mdev_bb[np.newaxis, i,:]} plot_pdfs(pdf.loc[[index]], means.loc[[index]], bins, fname=f"pdfs_{index}.pdf", models=model_pdfs) ###Output _____no_output_____ ###Markdown Predictions across dices (load models first) ###Code bbp = predict_all_dice(bb, None) rf_4 = predict_all_dice(RF, scaler_dice_0004) dnn_4 = predict_all_dice(DNN, scaler_dice_0004) cvae_4 = predict_all_dice(cvae, scaler_dice_0004) predictions_4 = {'RF': rf_4, 'DNN':dnn_4, 'CVAE': cvae_4, 'BB': bbp} with open(os.path.join(datadir, 'predictions_4.pkl'), 'wb') as f: pickle.dump(predictions_4, f, pickle.HIGHEST_PROTOCOL) # or load with open(os.path.join(datadir, 'predictions_4.pkl'), 'rb') as f: predictions_4 = pickle.load(f) # plot plot_dice_predictions(predictions_4) ###Output _____no_output_____ ###Markdown Layerwise relevance propagation (LRP) ###Code scaler_dices_skip = joblib.load(os.path.join(datadir, "dices_skip_scaler.pkl")) lrps = lrp_all_dice(DNN, scaler_dices_skip) ###Output _____no_output_____ ###Markdown DrugEx APIAn example DrugEx workflow showcasing some basic DrugEx API features. The API provides interface definitions to handle data operations and training of models needed for obtaining a molecule designer. The interface should ensure that the current code base is extensible and loosely coupled to make interoperability with different data sources seamless and to also aid in monitoring of the training processes involved.Let's import and explain some of the important API features: ###Code # main package import drugex # important classes for data access from drugex.api.environ.data import ChEMBLCSV from drugex.api.corpus import CorpusCSV, BasicCorpus, CorpusChEMBL # important classes for QSAR modelling # and (de)serialization of QSAR models from drugex.api.environ.models import RF from drugex.api.environ.serialization import FileEnvSerializer, FileEnvDeserializer # classes that handle training of the exploration # and exploitation networks and also handle monitoring # of the process from drugex.api.model.callbacks import BasicMonitor from drugex.api.pretrain.generators import BasicGenerator # ingredients needed for DrugEx agent training from drugex.api.agent.agents import DrugExAgent from drugex.api.agent.callbacks import BasicAgentMonitor from drugex.api.agent.policy import PG # designer API (wraps the agent after it was trained) from drugex.api.designer.designers import BasicDesigner, CSVConsumer ###Output _____no_output_____ ###Markdown Next let's define some global settings: ###Code import torch for device in range(torch.cuda.device_count()): print(device, torch.cuda.get_device_capability(device)) import os if torch.cuda.is_available(): # choose a GPU device based on the info above # (the higher the capability, the better) torch.cuda.set_device(2) DATA_DIR="data" # folder with input data files OUT_DIR="output/workflow" # folder to store the output of this workflow os.makedirs(OUT_DIR, exist_ok=True) # create the output folder # define a set of gene IDs that are interesting for # the target that we want to design molecules for GENE_IDS = ["ADORA2A"] ###Output _____no_output_____ ###Markdown Data AquisitionIt's time to aquire the data we will need for training of our models. There are three models that we need to build so we need three separate data sets:1. Data for the exploitation model based on a random sample of 1 million molecules from the ZINC set.2. Data for the exploration model based on ChEMBL data we downloaded for the desired target.3. Data for the QSAR modelling of the environment model -> this model will bias the final generator towards more active molecules throug the a policy gradient. Exploitation NetworkThe exploitation network will be based on a large data set of known chemical structures. The ZINC database is a great source of data for the network: ###Code # Randomly selected sample of 1 million molecules # from the ZINC database. # We only use this file for illustration purposes. # In practice, the pretrained exploitation network should # be provided so there will be no need for this data, # but we are starting from square one here. ZINC_CSV=os.path.join(DATA_DIR, "ZINC.txt") # Load SMILES data into a corpus from a CSV file (we assume # that we have the structures saved in a csv file in DATA_DIR). # Corpus is a class which provides both the vocabulary and # training data for a generator. # This corupus will be used to train the exploitation network later. corpus_pre = CorpusCSV( update_file=ZINC_CSV # The input CSV file with chemical structures as SMILES. # This is the only required parameter of this class. , vocabulary=drugex.VOC_DEFAULT # A vocabulary object that defines the tokens # and other options used to construct and parse SMILES. # VOC_DEFAULT is a reasonable "catch all" default. , smiles_column="CANONICAL_SMILES" # Instructs the corpus object what column to look for when # extracting SMILES to update the data. , sep='\t' # The column separator used in the CSV file ) # Next we update the corpus (if we did not do it already). # The updateData() method loads and tokenizes the SMILES it finds in the CSV. # The tokenized data and updated vocabulary are returned to us. corpus_out_zinc = os.path.join(OUT_DIR, "zinc_corpus.txt") vocab_out_zinc = os.path.join(OUT_DIR, "zinc_voc.txt") if not os.path.exists(corpus_out_zinc): df, voc = corpus_pre.updateData(update_voc=True) # We don't really use the return values here, but they are # still there if we need them for logging purposes or # something else. The update_voc flag tells the # update method to also update the vocabulary # based on the tokens found in the SMILES strings. # We can save our corpus data if we want to reuse it later. # The CorpusCSV class has a methods # that we can use to save the vocabulary and tokenized data set. corpus_pre.saveCorpus(corpus_out_zinc) corpus_pre.saveVoc(vocab_out_zinc) else: # If we initialized and saved # the corpus before, we just overwrite the # current one with the saved one corpus_pre = CorpusCSV.fromFiles(corpus_out_zinc, vocab_out_zinc) ###Output Reading SMILES: 100%|██████████| 1018452/1018452 [00:02<00:00, 395864.75it/s] Collecting tokens: 100%|██████████| 1018451/1018451 [20:45<00:00, 817.97it/s] ###Markdown Exploration NetworkWe will also need a corpus for the exploration network. We will load it from ChEMBL using a different implementation of the Corpus interface than we saw above. When we update a CorpusChEMBL instance, it downloads the data for us automatically: ###Code # CorpusChEMBL uses a list of gene identifiers # and download activity dat`a for all tested compounds # related to the particular genes. corpus_out_chembl = os.path.join(OUT_DIR, "chembl_corpus.txt") vocab_out_chembl = os.path.join(OUT_DIR, "chembl_voc.txt") env_data_path = os.path.join(OUT_DIR, "{0}.txt".format(GENE_IDS[0])) if not os.path.exists(corpus_out_chembl): corpus_ex = CorpusChEMBL(GENE_IDS, clean_raw=False) # lets update this corpus and save the results # (same procedure as above) df, voc = corpus_ex.updateData(update_voc=True) corpus_ex.saveCorpus(corpus_out_chembl) corpus_ex.saveVoc(vocab_out_chembl) # in addition we will also save the raw downloaded data # (this is what we will also use as a basis for the environment QSAR model) corpus_ex.raw_data.to_csv(env_data_path, sep="\t", index=False) else: # If we already generated the corpus file, # we can load it using the CorpusCSV class corpus_ex = CorpusCSV.fromFiles(corpus_out_chembl, vocab_out_chembl) ###Output Found following target chembl IDs related to ADORA2A ['CHEMBL251'] ###Markdown Since in both cases we requested to update the vocabulary according totokens found in the underlying smiles for both the zincand ChEMBL corpus, we now need to unify them. Vocabulariescan be combined using the plus operator: ###Code voc_all = corpus_pre.voc + corpus_ex.voc corpus_pre.voc = voc_all corpus_ex.voc = voc_all corpus_pre.saveVoc(os.path.join(OUT_DIR, "voc.txt")) ###Output _____no_output_____ ###Markdown If we did not do this, the exploitation andexploration networks might not be compatibleand we would run into issues during modelling. Environment QSAR modelWe also need activity data totrain the environment QSAR model which will provide the activityvalues for policy gradient.Luckily, we already have the file to do this: ###Code environ_data = ChEMBLCSV( env_data_path # we got this file from ChEMBL thanks to CorpusChEMBL , 6.5 # this is the activity threshold for the pChEMBL value , id_col='MOLECULE_CHEMBL_ID' # column by which we group multiple results per molecule ) ###Output _____no_output_____ ###Markdown The ChEMBLCSV class not only loads the activity data,but also provides access to it for theQSAR learning algorithms (see below). Model Training Exploitation NetworkTraining the exploitation generator takes a long time (we have over a million molecules in our ZINC sample)so we would like to monitorthis process. We can use the Monitorinterface for that. The "BasicMonitor" justsaves log files and model checkpointsin the given directory: ###Code pr_monitor = BasicMonitor( out_dir=OUT_DIR , identifier="pr" ) ###Output _____no_output_____ ###Markdown TODO: it would be nice to also have a method inthe monitor that would stop the training processHowever, we could easily implement our own monitor that could do a bit more than just what the basic monitor does. Here is an example: ###Code from matplotlib import pyplot as plt %matplotlib inline class MyMonitor(BasicMonitor): """ This monitor adds some functionality on top of the basic monitor. """ def close(self): """ This method is called after training has completed. """ super().close() # We just get the performance figure. return self.getPerfFigure() pr_monitor = MyMonitor( out_dir=OUT_DIR , identifier="pr" ) ###Output _____no_output_____ ###Markdown The monitor actually does more than just monitoringof the process. It also keeps track of the bestmodel built yet and can be used to initializea generator based on that.We use that feature below. If there already isa network state saved somewhere in our output directory, we do not do any training and just load the model from disk: ###Code if not pr_monitor.getState(): # this will be False if the monitor cannot find an existing state print("Pretraining exploitation network...") pretrained = BasicGenerator( monitor=pr_monitor , corpus=corpus_pre , train_params={ # these parameters are fed directly to the # fit method of the underlying pytorch model "epochs" : 30 # lets just make this one quick , "monitor_freq" : 10 } ) pretrained.pretrain() # This method also has parameters # regarding partioning of the training data. # We just use the defaults in this case. else: pretrained = BasicGenerator( monitor=pr_monitor , initial_state=pr_monitor # the monitor provides initial state , corpus=corpus_pre ) # we will not do any training this time, # but we could just continue by # specifying the training parameters and # calling pretrain again # TODO: maybe it would be nice if the monitor # keeps track of the settings as well ###Output Pretraining exploitation network... ###Markdown See the figure above? That is from our customized pretrainer monitor. There will also be a CSV file (`net_pr.csv`) in the output folder with the collected training data. So we could configure the monitor to do much more (there are more methods besides `close` in the basic monitor that we can override). We could also implement our own monitor entirely by implementing all the methods in the `PretrainingMonitor` abstract class (also defined in the same module as the `BasicMonitor`). Exploration NetworkNext comes the exploration network. The approach is the same, but we use the previously trained network as the initial state. First, we define the monitor, though. We will use the one we defined above, but give it a different identifier: ###Code ex_monitor = MyMonitor( out_dir=OUT_DIR , identifier="ex" ) ###Output _____no_output_____ ###Markdown The exploration network fine-tunes the pretrainedone so we have to use the pr_monitor to initializethe initial state of the exploartion network: ###Code if not ex_monitor.getState(): print("Pretraining exploration network...") exploration = BasicGenerator( monitor=ex_monitor , initial_state=pr_monitor # initialize from the states of the best pretrained network , corpus=corpus_ex # use target-specific corpus for exploration , train_params={ "epochs" : 60 # We have less data so we might need to do more epochs. } ) exploration.pretrain(validation_size=512) # In this case we want to use a validation set. # This set will be used to estimate the # loss instead of the training set. else: exploration = BasicGenerator( monitor=ex_monitor , initial_state=ex_monitor , corpus=corpus_ex ) ###Output Epoch: 0%| | 0/60 [00:00<?, ?it/s] ###Markdown Environment ModelThis model will provide the environment for the policy gradient. We already got the data to train this model and saved it to the `environ_data`. This is a data provider for the QSAR model and can be used with other algorithms implemented in the library. However, we will just limit ourselves to random forest in this case: ###Code # let's see if we can load the model already from disk # using the standard deserializer... identifier = 'environ_rf' des = FileEnvDeserializer(OUT_DIR, identifier) try: # The deserializer automatically looks for # a model in the given directory with the given identifier environ_model = des.getModel() print("Model found at:", des.path) except FileNotFoundError: # if the model is nowhere to be found, we train and save it print("Training environment model...") environ_model = RF(train_provider=environ_data) environ_model.fit() # we save the model so that we don't have to train again next time # we also choose to save the performance data (this will # also save a ROC curve figure in our output directory # to check performance) ser = FileEnvSerializer(OUT_DIR, identifier, include_perf=True) ser.saveModel(environ_model) ###Output Training environment model... ###Markdown DrugEx AgentWe now have all ingredients to trainthe DrugEx agent. First, weneed to define the policy gradientstrategy: ###Code policy = PG( # So far this is the only policy there is in the API batch_size=512 , mc=10 # number of repeated samples , epsilon=0.01 , beta=0.1 ) ###Output _____no_output_____ ###Markdown DrugEx agents have their own monitors.The basic one saves monitoring results to files as well and generally uses the same pattern as we have seen with generators to keep up to date with the best state of the model and so on: ###Code identifier = 'e_%.2f_%.1f_%dx%d' % (policy.epsilon, policy.beta, policy.batch_size, policy.mc) agent_monitor = BasicAgentMonitor(OUT_DIR, identifier) ###Output _____no_output_____ ###Markdown Finally, the DrugEx agent itself: ###Code if not agent_monitor.getState(): print("Training DrugEx agent...") agent = DrugExAgent( agent_monitor # our monitor , environ_model # environment for the policy gradient , pretrained # the pretrained model , policy # our policy gradient implemntation , exploration # the fine-tuned model , { "n_epochs" : 30 # quick again } ) agent.train() else: # The DrugEx agent monitor also provides # a generator state -> it is the # best model from training. We can # therefore create a generator # based on this initial state just like we did before: agent = BasicGenerator( initial_state=agent_monitor , corpus=BasicCorpus( # If we are not training the generator, # we can just provide a basic corpus # that only provides vocabulary # and no corpus data -> we # only have to specify the right # vocabulary, which is the one of # the exploration or exploitation network. # We choose the exploration network here: vocabulary=corpus_pre.voc ) ) ###Output Epoch: 0%| | 0/30 [00:00<?, ?it/s] ###Markdown We can now analyze the `net_e_0.01_0.1_512x10.log` file in the output directory for an overview of the agent training process.TODO: rewrite the agent monitor so that the results can be visualized and saved in a CSV file. Initializing DrugEx DesignerFrom a fully trained DrugEx agent generator,we can create a designer class whichwill handle sampling of SMILES: ###Code consumer = CSVConsumer( # a CSV file containing not just SMILES, # but also scores as determined by the environment model. os.path.join(OUT_DIR, 'designer_mols.csv') ) designer = BasicDesigner( agent=agent # our agent , consumer=consumer # use this consumer to return results , n_samples=1000 # number of SMILES to sample in total , batch_size=512 # number of SMILES to sample in one batch ) designer() # design the molecules consumer.save() # save them ###Output _____no_output_____ ###Markdown Install external libraries ###Code !pip install requests # library for making HTTP req !pip install lxml # library for working with XML !pip install bs4 # yet another library for working with XML ###Output _____no_output_____ ###Markdown Clone git repository with tools (to follow adopted contributing protocol it may be useful to make a fork of this repository at github first) ###Code !git clone https://github.com/galaxyproject/tools-iuc ###Output _____no_output_____ ###Markdown Import classes and functions from installed libraries ###Code import requests import json from lxml import etree from os import walk import os import glob import re from bs4 import BeautifulSoup import csv from urllib.request import urlopen ###Output _____no_output_____ ###Markdown Create utility functions Function to download bio.tools data ###Code def fetch(p="", c=[]): try: url = "https://bio.tools/api/t" + p + "&format=json" json = requests.get(url).json() print("Page: {}".format(p)) return fetch(json['next'], (c + json['list'])) except: return c data = fetch(p="?page=1") ###Output _____no_output_____ ###Markdown Save data to file (to reuse in the next runs, but be careful, google collab provides no guarantees on data persistence) ###Code with open('data.json', 'w') as outfile: json.dump(data, outfile) ###Output _____no_output_____ ###Markdown Function that enriches data with doi lists ###Code def enrich_publication_data(biotool_description): biotool_description['dois'] = [] for publication in biotool_description['publication']: if publication['doi']: biotool_description['dois'].append({ 'doi': publication['doi'], 'type': publication['type'], 'source': 'doi' }) else: if publication['pmid']: doi = get_doi(publication['pmid']) if doi: biotool_description['dois'].append({ 'doi': doi, 'type': publication['type'], 'source': 'pmid' }) elif publication['pmcid']: doi = get_doi(publication['pmcid']) if doi: biotool_description['dois'].append({ 'doi': doi, 'type': publication['type'], 'source': 'pmid' }) ###Output _____no_output_____ ###Markdown Function to convert PMID and PMCID to DOI ###Code def get_doi(pid): # Based on implementation of DOI fetcher by Kenzo-Hugo Hillion url = "https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0/?ids=" + pid xml = etree.fromstring(requests.get(url).text) if xml.find('record') is not None: try: doi = xml.find('record').attrib['doi'] print("DOI was found for {}".format(pid)) return doi except: print("DOI was not found for {}".format(pid)) return None ###Output _____no_output_____ ###Markdown Enrich tools description with DOIs ###Code i = 0 for tool in data: print("Tool #{}".format(i)) enrich_publication_data(tool) i += 1 ###Output _____no_output_____ ###Markdown Save results to file ###Code with open('data_enriched.json', 'w') as outfile: json.dump(data, outfile) ###Output _____no_output_____ ###Markdown Get the list of XML files ###Code path ="{}/tools-iuc/tools/".format(os.getcwd()) filepathes = [] for (dirpath, dirnames, filenames) in walk(path): for d in dirnames: p = dirpath + d filelist = dirList = glob.glob(p + "/*.xml") filepathes += filelist ###Output _____no_output_____ ###Markdown Function for extracting DOI from Galaxy tool description ###Code tools_dois = {} for filepath in filepathes: #print("{}: Tool #{} parsed".format(filepath, i)) with open(filepath) as f: xml = BeautifulSoup(f, 'xml') dois = xml.find_all('citation', {"type" : "doi"}) if len(dois) > 0: tools_dois[filepath] = list(map(lambda x: x.get_text(), dois)) ###Output _____no_output_____ ###Markdown Function to extract EDAM topics' and operations' IDs from bio.tools description ###Code def enrich_from_biotools(biotool, galaxy_tool_path, results): # extract edam topic and edam operation topics = biotool.get('topic', []) if len(topics) > 0: results['biotools_topics'] += list(map(lambda x: x['uri'].split('/')[-1], topics)) results['biotools_topics'] = list(set(results['biotools_topics'])) functions = biotool.get('function', []) if "biotools_operations" in results and results['biotools_operations'] != None: results['biotools_operations'] = [] if len(functions) > 0: for function in functions: operations = function.get('operation', []) if len(operations) > 0: results['biotools_operations'].append(list(set(list(map(lambda x: x['uri'].split('/')[-1], operations))))) results['biotools_id'] = biotool.get('biotoolsID', None) return results ###Output _____no_output_____ ###Markdown Function to extract EDAM topics' and operations' IDs from Debian Med repositories ###Code def enrich_from_debmed(debtool, galaxy_tool_path, results): topics = debtool.get('topics', []) if topics and len(topics) > 0: for topic in topics: t = edam_data.get(topic, None) results['deb_topics'].append({ 'url': t, 'value': topic }) functions = debtool.get('edam_scopes', []) if functions and len(functions) > 0: for function in functions: operations = function.get('function', []) if isinstance(operations, str): op = edam_data.get(operations, None) results['deb_operations'].append([{ 'url': op, 'value': function }]) else: if len(operations) > 0: ops = [] for operation in operations: op = edam_data.get(operation, None) ops.append({ 'url': op, 'value': operation }) if len(ops) > 0: results['deb_operations'].append(ops) results['deb_biotools_id'] = debtool.get('bio.tools', None) return results # The script `edam.sh` is written by Andreas Tille (https://github.com/tillea) # and copied from https://github.com/bio-tools/biotoolsConnect # It generates a file `edam.json` !bash edam.sh -j ###Output _____no_output_____ ###Markdown Load the JSON output of `edam.sh` ###Code with open('edam.json') as json_file: debian_data = json.load(json_file) ###Output _____no_output_____ ###Markdown Download EDAM ###Code version = '1.21' url = 'http://edamontology.org/EDAM_{}.tsv'.format(version) file = urlopen(url) with open('edam.tsv','wb') as output: output.write(file.read()) with open('edam.tsv','r') as tsv: tsv = csv.reader(tsv, delimiter='\t') edam_data = {} for row in tsv: edam_data[row[0]] = { 'label': row[1], 'synonyms': row[2].split('|'), 'definition': row[54], 'comments': row[3].split('|'), } edam_data['_version'] = version ###Output _____no_output_____ ###Markdown Create tools annotations (match Galaxy tool's DOI against bio.tools' DOI and Debian Med tools' DOI to get topics and operations) ###Code i = 0 j = 0 tool_annotations = {} for path, galaxy_dois in tools_dois.items(): tool_annotations[path] = [] for galaxy_doi in galaxy_dois: for biotool in data: for biotool_doi in biotool['dois']: if galaxy_doi == biotool_doi['doi']: i += 1 tool_edam = enrich_from_biotools(biotool, path, { 'type': 'bio.tools', 'biotools_topics': [], 'biotools_operations': [], 'biotools_id': None, 'biotools_doi': biotool_doi }) tool_annotations[path].append(tool_edam) for deb_tool in debian_data: if galaxy_doi == deb_tool['doi']: j += 1 tool_edam = enrich_from_debmed(deb_tool, path, { 'type': 'debmed', 'deb_topics': [], 'deb_operations': [], 'deb_biotools_id': None, }) tool_annotations[path].append(tool_edam) print("Total bio.tools matches:", i) print("Total Debian Med matches:", j) with open('./client/src/tool_annotations.json', 'w') as outfile: json.dump(tool_annotations, outfile) ###Output _____no_output_____ ###Markdown RNA-Seq Workflow by @furkanmtorun [[email protected]](mailto:[email protected]) | GitHub: [@furkanmtorun](https://github.com/furkanmtorun) | [Google Scholar](https://scholar.google.com/citations?user=d5ZyOZ4AAAAJ) | [Personal Website](https://furkanmtorun.github.io/) Libraries , packages and required functions ###Code # +--------------------------------------------------+ # Import required libraries & packages # +--------------------------------------------------+ import pandas as pd import glob2 import subprocess # +--------------------------------------------------+ # Define folders and bin for tools # +--------------------------------------------------+ fastq_folder, genome_folder, index_folder, bam_sam_folder, logs_folder, results_folder, \ FastQC_bin, STAR_bin, cufflinks_bin, bowtie_bin, TopHat_bin, R_bin = ["./files/fastq/", "./files/genome/", "./files/index/", "./files/bam_sam/", "./files/logs/", "./files/results/", "./softs/FastQC/", "./softs/STAR-2.7.3a/bin/Linux_x86_64/", "./softs/cufflinks-2.2.1.Linux_x86_64/", "./softs/bowtie2-2.3.5.1-linux-x86_64/", "./softs/tophat-2.1.1.Linux_x86_64/", "./softs/R/R-3.6.1/bin/Rscript"] # +--------------------------------------------------+ # Define files # +--------------------------------------------------+ fasta_files = " ".join(glob2.glob(genome_folder + "*.fa*")) gtf_files = " ".join(glob2.glob(genome_folder + "*.gtf*")) fastq_files = " ".join(glob2.glob(fastq_folder + "*.fastq*")) # +--------------------------------------------------+ # The function for messages # +--------------------------------------------------+ def msg_output(text): dash = "-"*len(text) dash = "-"*70 if len(dash) > 70 else "-"*len(dash) msg_txt = "\n# +" + dash + "+\n> {}\n# +" + dash + "+\n" print(msg_txt.format(text)) # +--------------------------------------------------+ # Execute and track the shell commands # +--------------------------------------------------+ def run_command(command): try: return subprocess.check_output(command, shell=True) except (Exception, TypeError): msg_output("! Error!: Your command was:\n\t" + command) # +--------------------------------------------------+ # Execute and track the shell commands # +--------------------------------------------------+ def confirmation_runCommand(command): msg_output("Your command is:\n\t" + command) qa = input("> Are you OK with that command? Type 'YES' or 'NO': ") if qa.upper() == "YES": output = run_command(command).decode("utf-8") msg_output(output) elif qa.upper() == "NO": print("! You can change the command and then, re-run the cell") else: print("! Just type YES or NO: Please, re-run the cell") ###Output _____no_output_____ ###Markdown Quality Control using FastQC Website: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ ###Code fastqc_command = "{}fastqc {} -f fastq -o {}".format(FastQC_bin, fastq_files, results_folder + "QC_reports") confirmation_runCommand(fastqc_command) ###Output _____no_output_____ ###Markdown Adapter Trimming using cutadapt Website: https://cutadapt.readthedocs.io/en/ ###Code preprocessing_ans = input("> Are the adapter sequnces of your FASTQ files trimmed? 'YES' or 'NO' : ") if preprocessing_ans.upper() == "YES": msg_output("! The process was terminaled because the adapter sequences already trimmed.") elif preprocessing_ans.upper() == "NO": adapter_seq = input("> Paste your adapter sequence: ") number_of_threads = input("> Number Of Threads: ") if True == number_of_threads.isdigit() == adapter_seq.isalpha(): for fastq_file in fastq_files.split(" "): fastq_file_name = fastq_file.split("\\")[1] cutadapt_command = "cutadapt -a {} -j {} {} -o {}trimmed_{}"\ .format(adapter_seq, number_of_threads, fastq_file, fastq_folder, fastq_file_name) confirmation_runCommand(cutadapt_command) else: msg_output("! Check the number of threads or the adapter sequence you have typed!") else: msg_output("! Type only 'YES' or 'NO'.") ###Output _____no_output_____ ###Markdown Curation of Genome Index using BowTie2 Website: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml ###Code bowtie_base_name = input("Type a basename for the files (e.g.: speciesName): ") number_of_threads = input("> Number Of Threads: ") extra_option = input("> Type your extra options: \n Check manual from http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml: \n") if True == number_of_threads.isdigit(): bowtie_build_command = "{}bowtie2-build --threads {} {} {} {}"\ .format(bowtie_bin, number_of_threads, fasta_files, index_folder + bowtie_base_name, extra_option) confirmation_runCommand(bowtie_build_command) # To check your index, use following command: bowtie2-inspect -s <base_name> else: msg_output("! Check the number of threads you have typed!") ###Output _____no_output_____ ###Markdown [Alternative] : Curation of Genome Index using STAR Website: https://github.com/alexdobin/STAR ###Code run_mode = "genomeGenerate" number_of_threads = input("> Number Of Threads: ") overhang_number = input("> Overhang (ideally: ReadLength - 1): ") extra_option = input("> Paste your extra options: \nUse formal manual: https://raw.githubusercontent.com/alexdobin/STAR/921a50b1b4730a2c8b6bffc03b85081e9de3f777/doc/STARmanual.pdf \nExample: --limitSjdbInsertNsj 4000 --limitGenomeGenerateRAM 269860224 --genomeSAindexNbases 12\n") if True == number_of_threads.isdigit() == overhang_number.isdigit(): if len(glob2.glob(genome_folder+"*.fasta")) > 0: run_command("gzip {}".format(genome_folder + "*fasta")).decode("utf-8") indexing_command = "{}STAR --runThreadN {} --runMode {} --genomeDir {} --genomeFastaFiles {} --sjdbGTFfile {} --sjdbOverhang {} {}" \ .format(STAR_bin, number_of_threads, run_mode, index_folder, fasta_files, gtf_files, overhang_number, extra_option) confirmation_runCommand(indexing_command) else: msg_output("! Check the number of threads and overhang number you have typed!") ###Output _____no_output_____ ###Markdown Mapping/Alignment using TopHat Website: http://ccb.jhu.edu/software/tophat/index.shtml ###Code library_type = input("> Library type 'fr-unstranded', ' fr-firststrand' or 'fr-secondstrand' : ") number_of_threads = input("> Number Of Threads: ") extra_option = input("> Type your extra options: \n Check manual from http://ccb.jhu.edu/software/tophat/manual.shtml#toph: \n") msg_output("Please note that it is highly recommended that a FASTA file with the sequence(s) the genome being indexed be present \n in the same directory with the Bowtie index files and having the name <genome_index_base>.fa. \nIf not present, TopHat will automatically rebuild this FASTA file from the Bowtie index files.") if True == number_of_threads.isdigit(): # TO-DO: Find an elegant way to handle that problem with regex! reading_before_names = [] # To take only file names of FASTQ files for fastq_file in fastq_files.split(" "): reading_before_names.append(fastq_file.split("_")[0].split("\\")[1]) for read_file in list(set(reading_before_names)): read_files_together = ",".join(glob2.glob(fastq_folder + read_file + "*")) tophat_command = "{}tophat2 -p {} -o {} --library-type {} -G {} {} {} {}"\ .format(TopHat_bin, number_of_threads, bam_sam_folder + read_file, library_type, gtf_files, index_folder + "bowtie_base_name", read_files_together, extra_option) confirmation_runCommand(tophat_command) else: msg_output("! Check the number of threads you have typed!") ###Output _____no_output_____ ###Markdown [Alternative]: Mapping/Alignment using STAR Website: https://github.com/alexdobin/STAR ###Code number_of_threads = input("> Number Of Threads: ") extra_option = input("> Type your extra options: \nUse formal manual: https://github.com/alexdobin/STAR\nExample: --outSAMunmapped Within --outSAMattributes Standard\n") if True == number_of_threads.isdigit(): reading_before_names = [] # To take only file names of FASTQ files for fastq_file in fastq_files.split(" "): reading_before_names.append(fastq_file.split("_")[0].split("\\")[1]) for read_file in list(set(reading_before_names)): read_files_together = ",".join(glob2.glob(fastq_folder + read_file + "*")) star_command = "{}STAR --runThreadN {} --genomeDir {} --readFilesIn {} --outFileNamePrefix {} --readFilesCommand zcat --outSAMtype BAM SortedByCoordinate {}" \ .format(STAR_bin, number_of_threads, index_folder, read_files_together, bam_sam_folder + read_file, extra_option) confirmation_runCommand(star_command) else: msg_output("! Check the number of threads you have typed!") ###Output _____no_output_____ ###Markdown Index BAM files (.BAI) using samtools Website: http://www.htslib.org/ ###Code bam_files = glob2.glob(bam_sam_folder + "*.bam") bai_files = [bam_file + ".bai" for bam_file in bam_files] for i in range(len(bam_files)): bai_command = "samtools index {} {}".format(bam_files[i], bai_files[i]) confirmation_runCommand(bai_command) msg_output("! Your .BAI and .BAM files are stored in the 'bam_sam' folder.\n You can visualize them using IGV.") ###Output _____no_output_____ ###Markdown Counting reads using HTSeq Website: https://htseq.readthedocs.io/en/latest/count.html ###Code mode = input("> Choose a mode from 'union', 'intersection-strict' or 'intersection-nonempty' :") stranded = input("> Data is stranded? 'yes', 'reverse' or 'no' : ") order = input("> How the input data has been sorted? 'name' or 'pos' : ") id_attribute = input("> Choose an id attribute? e.g: 'gene_id'") feature_type = input("> Feature type (3rd column in GFF file) to be used? e.g: 'exon' : ") extra_option = input("> Paste your extra options: e.g: --additional-attr=gene_name : ") for bam_file in bam_files: output_fn = results_folder + "counts/" + bam_file.split("\\")[-1] + "_HTSeq.txt" htseq_command = "htseq-count -f bam -m {} -s {} -r {} -i {} -t {} {} {} {} > {}"\ .format(mode, stranded, order, id_attribute, feature_type, extra_option, bam_file, gtf_files, output_fn) confirmation_runCommand(htseq_command) ###Output _____no_output_____ ###Markdown [Alternative]: Counting reads using featureCounts Website: http://subread.sourceforge.net/ ###Code number_of_threads = input("> Number Of Threads: ") stranded = input("> Data is stranded? 'yes', 'reverse' or 'no' : ") id_attribute = input("> Choose an id attribute? e.g: 'gene_id'") feature_type = input("> Feature type (3rd column in GFF file) to be used? e.g: 'exon' : ") extra_option = input("> Type your extra options: (Check manual from http://bioinf.wehi.edu.au/featureCounts/)\n ") # featureCount strand information strand_conversion = {"no" : 0, "yes" : 1, "reverse" : 2} try: stranded = strand_conversion[xz.lower()] except Exception: msg_output("! Data is stranded? Select one of those: 'yes', 'reverse' or 'no' .") if True == number_of_threads.isdigit(): for bam_file in bam_files: output_fn = results_folder + "counts/" + bam_file.split("\\")[-1] + "_featureCounts.txt" featureCounts_command = "featureCounts -T {} -t {} -g {} -s {} {} -a {} -o {} {}"\ .format(number_of_threads, feature_type, id_attribute, stranded, extra_option, gtf_files, output_fn, bam_file) confirmation_runCommand(featureCounts_command) else: msg_output("! Check the number of threads you have typed!") ###Output _____no_output_____ ###Markdown Creating meta data file for the files ###Code ms_presence = input("Do you have a meta data with a full of comma seperated values? : 'YES' or 'NO' : ") counts_files = [temp_file.split("\\")[1].split("_")[0] for temp_file in glob2.glob(results_folder + "counts/*.txt")] print(counts_files) if ms_presence.upper() == "YES": msg_output("! Your meta data file must be in the 'results' folder as 'meta_data.csv'\n\twith a full of comma seperated values including 'id,condition' header.") elif ms_presence.upper() == "NO": meta_data_table = {"id" : "condition"} for count_file in counts_files: condition = input("> What is the condition for {} such as 'Control' or 'XYZ_gene_mutant' ?".format(count_file)) meta_data_table[count_file] = condition with open(results_folder + "meta_data.csv", "w") as meta_data_file: for meta_data_key in meta_data_table: meta_data_file.write(meta_data_key + "," + meta_data_table[meta_data_key] + "\n") msg_output("! Your meta data file has been created in the 'results' folder.") else: msg_output("! Please, type either 'YES' or 'NO'.") ###Output _____no_output_____ ###Markdown Differential Expression Analysis using DESeq2 Website: https://bioconductor.org/packages/DESeq2 ###Code # Merge all count files in a single count file count_files = glob2.glob(results_folder + "/counts/" + "*.txt") count_files_dfs = [pd.read_csv(count_file, index_col=0, sep="\t") for count_file in count_files] merged_count_files = count_files_dfs[0].join(count_files_dfs[1:]) merged_count_files.to_csv(results_folder + "/counts/" + "merged_Counts.txt", sep="\t") #The R script containing DESeq2 library namely DESeq2.R is used as following: # DESeq2.R count_data.csv meta_data.csv control_label sample_label label_qa = input("> Did you prepare your meta data file on your own or using previous cell 'CELL' or 'OWN' ?") if label_qa.upper() == "CELL": labels = " ".join(list(meta_data_table.values())[1:]) elif label_qa.upper() == "OWN": labels = input("> Just type your labels which are identical to ones in meta_data file in 'condition' column. \nBring a single space between two terms.\n Example: 'Control XYZ_gene_mutant'") if not labels: msg_output("Please type your design two labels with a single space such as 'Control XYZ_gene_mutant' . Re-run the cell!") else: msg_output("Just type either 'CELL' or 'OWN' ! ") count_file = results_folder + "/counts/" + "merged_Counts.txt" meta_data_file = results_folder + "meta_data.csv" R_command = "{} DESeq2.R {} {} {}".format(R_bin, count_file, meta_data_file, labels) confirmation_runCommand(R_command) ###Output _____no_output_____
courses/coursera/deeplearning_ai/01_nn_and_dl_week_02/python-numpy vectors.ipynb
###Markdown Tips: Avoid data structures where shape is 5, or n, (rank 1 array) -> Use column vectors or row vectors ###Code a = np.random.rand(5, 1) print(a) # column vector print(a.shape) print(a.T) # row vector print(np.dot(a, a.T)) ###Output [[ 7.64012894e-05 2.59284184e-03 5.86300553e-03 7.39467054e-04 3.29404467e-04] [ 2.59284184e-03 8.79936564e-02 1.98973684e-01 2.50954026e-02 1.11790480e-02] [ 5.86300553e-03 1.98973684e-01 4.49924787e-01 5.67464170e-02 2.52783720e-02] [ 7.39467054e-04 2.50954026e-02 5.67464170e-02 7.15709811e-03 3.18821518e-03] [ 3.29404467e-04 1.11790480e-02 2.52783720e-02 3.18821518e-03 1.42022868e-03]] ###Markdown Tips: Use assert to check the data structures ###Code assert(a.shape == (5, 1)) ###Output _____no_output_____
docs/source/_build/html/examples/Benchmark.ipynb
###Markdown Benchmark=========----------------------We assessed the performance of two main functions of stmetrics: `get_metrics` and `sits2metrics`. For that, we used a core i7-8700 CPU @ 3.2 GHz and 16GB of RAM. With this test, we wanted to assess the performance of the package to compute the metrics available under different scenarios.We compared the time and memory performance of those functions using different approaches. For `get_metrics` function, we assessed the performance using a random time series, created with NumPy, with different lengths. For the `sits2metrics` function, we used images with different dimensions in columns and rows, maintaining the same length. Install stmetrics-----------------------pip install git+https://github.com/andersonreisoares/stmetrics.git@spatial --upgrade `get_metrics`--------------------To evaluate the performance of `get_metrics` function, we implemented a simple test using a random time series built with `NumPy` package, using the following code. ###Code import time from stmetrics import metrics import numpy import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown The `get_metrics` function was designed to be used for compute the metrics of one time series. The stmetrics is currently composed by 4 modules:* Metrics - With some functions to compute the all metrics available* Basics - That has the implementation of the basics metrics* Polar - That has the implementation of the polar metrics proposed by Körting (2013).* Fractal - That has the implementatio of fractal metrics that are currently under assessment.Along with the metrics, `get_metrics` function also returns the polar plot of the inpute time series. ###Code metrics.get_metrics(numpy.random.rand(1,20)[0], show = True) tempos = [] for i in range(5,1000): start = time.time() metrics.get_metrics(numpy.random.rand(1,i)[0]) end = time.time() tempos.append(end - start) figure = plt.figure(figsize=(13,5)) plt.plot(tempos) plt.ylabel('Time (s)') plt.xlabel('Time Series Lenght') plt.grid() plt.show() ###Output _____no_output_____ ###Markdown As shown above, the `get_metrics` function presents a quadratic response regarding the length of the time series. It is able to compute the metrics for a time series with 1,000 data points in less than **two second**. This beahaviour is explained by some polar metrics that requires more computational time, for example the `symmetry_ts` function. For the following versions, we will try to improve the performance of the package. `sits2metrics`------------------- To evaluate the `sits2metrics` function we used a sample image with the following dimensions: 249x394 and 12 dates. With this test, we aim to assess how the size of the image impacts the total time to compute the metrics. This function uses the multiprocessing library to speed up the process. According to the previous test, a time series with 12 dates as our sample requires 0.015s to compute the metrics for one pixel, therefore using a single core this should require 1,318s or approximately 21minutes. With the parallel implementation, according to our tests, the package performs the same task in 6 minutes. ###Code import rasterio sits = rasterio.open('https://github.com/tkorting/remote-sensing-images/blob/master/evi_corte.tif?raw=true').read() tempos_sits = [] dim = [] for i in range(10,210,10): dim.append(str(i)+'x'+str(i)) start = time.time() metrics.sits2metrics(sits[:,:i,:i]) end = time.time() tempos_sits.append(end - start) fig = plt.figure(figsize=(15,5)) plt.bar(dim, tempos_sits) plt.ylabel('Time (s)') plt.xlabel('SITS dimensions (HxW)') plt.xticks(rotation=45) plt.grid() plt.show() ###Output _____no_output_____
linked_lists/linked_list/linked_list_challenge.ipynb
###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a linked list with insert, append, find, delete, length, and print methods* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume this is a non-circular, singly linked list? * Yes* Do we keep track of the tail or just the head? * Just the head* Can we insert None values? * No Test Cases Insert to Front* Insert a None* Insert in an empty list* Insert in a list with one element or more elements Append* Append a None* Append in an empty list* Insert in a list with one element or more elements Find* Find a None* Find in an empty list* Find in a list with one element or more matching elements* Find in a list with no matches Delete* Delete a None* Delete in an empty list* Delete in a list with one element or more matching elements* Delete in a list with no matches Length* Length of zero or more elements Print* Print an empty list* Print a list with one or more elements AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/linked_lists/linked_list/linked_list_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class Node(object): # TODO: use dunder magic methods for iteration! def __init__(self, data, next_node=None): self.data = data self.next_node = next_node def __str__(self): return self.data class LinkedList(object): def __init__(self, head=None): self.head = head def __len__(self): lenght = 0 current_node = self.head while current_node is not None: current_node = current_node.next_node lenght += 1 return lenght def insert_to_front(self, data): if data is None: return node_to_insert = Node(data, next_node=self.head) self.head = node_to_insert def append(self, data): if data is None: return node_to_append = Node(data) if self.head == None: self.head = node_to_append return node_to_append current_node = self.head while current_node.next_node is not None: current_node = current_node.next_node current_node.next_node = node_to_append return node_to_append def find(self, data): if data is None: return current_node = self.head while current_node is not None: if current_node.data == data: return current_node current_node = current_node.next_node def delete(self, data): if data is None: return if self.head is None: return prev_node = self.head curr_node = prev_node.next_node while curr_node is not None: if curr_node.data == data: prev_node.next_node = curr_node.next_node return else: prev_node = curr_node curr_node = curr_node.next_node def print_list(self): current_node = self.head while current_node is not None: print(current_node) current_node = current_node.next_node def get_all_data(self): data = [] current_node = self.head while current_node is not None: data.append(current_node.data) current_node = current_node.next_node return data ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_linked_list.py from nose.tools import assert_equal class TestLinkedList(object): def test_insert_to_front(self): print('Test: insert_to_front on an empty list') linked_list = LinkedList(None) linked_list.insert_to_front(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front on a None') linked_list.insert_to_front(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front general case') linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(linked_list.get_all_data(), ['bc', 'a', 10]) print('Success: test_insert_to_front\n') def test_append(self): print('Test: append on an empty list') linked_list = LinkedList(None) linked_list.append(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: append a None') linked_list.append(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: append general case') linked_list.append('a') linked_list.append('bc') assert_equal(linked_list.get_all_data(), [10, 'a', 'bc']) print('Success: test_append\n') def test_find(self): print('Test: find on an empty list') linked_list = LinkedList(None) node = linked_list.find('a') assert_equal(node, None) print('Test: find a None') head = Node(10) linked_list = LinkedList(head) node = linked_list.find(None) assert_equal(node, None) print('Test: find general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') node = linked_list.find('a') assert_equal(str(node), 'a') print('Test: find general case with no matches') node = linked_list.find('aaa') assert_equal(node, None) print('Success: test_find\n') def test_delete(self): print('Test: delete on an empty list') linked_list = LinkedList(None) linked_list.delete('a') assert_equal(linked_list.get_all_data(), []) print('Test: delete a None') head = Node(10) linked_list = LinkedList(head) linked_list.delete(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: delete general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') linked_list.delete('a') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Test: delete general case with no matches') linked_list.delete('aa') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Success: test_delete\n') def test_len(self): print('Test: len on an empty list') linked_list = LinkedList(None) assert_equal(len(linked_list), 0) print('Test: len general case') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(len(linked_list), 3) print('Success: test_len\n') def main(): test = TestLinkedList() test.test_insert_to_front() test.test_append() test.test_find() test.test_delete() test.test_len() if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a linked list with insert, append, find, delete, length, and print methods* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Is this a singly or doubly linked list? * Singly* Is this a circular list? * No* Do we keep track of the tail or just the head? * Just the head Test Cases Insert to Front* Insert a None* Insert in an empty list* Insert in a list with one element or more elements Append* Append a None* Append in an empty list* Insert in a list with one element or more elements Find* Find a None* Find in an empty list* Find in a list with one element or more matching elements* Find in a list with no matches Delete* Delete a None* Delete in an empty list* Delete in a list with one element or more matching elements* Delete in a list with no matches Length* Length of zero or more elements Print* Print an empty list* Print a list with one or more elements AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/linked_lists/linked_list/linked_list_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class Node(object): def __init__(self, data, next_node=None): pass # TODO: Implement me def __str__(self): pass # TODO: Implement me class LinkedList(object): def __init__(self, head=None): pass # TODO: Implement me def __len__(self): pass # TODO: Implement me def insert_to_front(self, data): pass # TODO: Implement me def append(self, data, next_node=None): pass # TODO: Implement me def find(self, data): pass # TODO: Implement me def delete(self, data): pass # TODO: Implement me def print_list(self): pass # TODO: Implement me def get_all_data(self): pass # TODO: Implement me ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_linked_list.py from nose.tools import assert_equal class TestLinkedList(object): def test_insert_to_front(self): print('Test: insert_to_front on an empty list') linked_list = LinkedList(None) linked_list.insert_to_front(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front on a None') linked_list.insert_to_front(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front general case') linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(linked_list.get_all_data(), ['bc', 'a', 10]) print('Success: test_insert_to_front\n') def test_append(self): print('Test: append on an empty list') linked_list = LinkedList(None) linked_list.append(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: append a None') linked_list.append(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: append general case') linked_list.append('a') linked_list.append('bc') assert_equal(linked_list.get_all_data(), [10, 'a', 'bc']) print('Success: test_append\n') def test_find(self): print('Test: find on an empty list') linked_list = LinkedList(None) node = linked_list.find('a') assert_equal(node, None) print('Test: find a None') head = Node(10) linked_list = LinkedList(head) node = linked_list.find(None) assert_equal(node, None) print('Test: find general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') node = linked_list.find('a') assert_equal(str(node), 'a') print('Test: find general case with no matches') node = linked_list.find('aaa') assert_equal(node, None) print('Success: test_find\n') def test_delete(self): print('Test: delete on an empty list') linked_list = LinkedList(None) linked_list.delete('a') assert_equal(linked_list.get_all_data(), []) print('Test: delete a None') head = Node(10) linked_list = LinkedList(head) linked_list.delete(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: delete general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') linked_list.delete('a') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Test: delete general case with no matches') linked_list.delete('aa') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Success: test_delete\n') def test_len(self): print('Test: len on an empty list') linked_list = LinkedList(None) assert_equal(len(linked_list), 0) print('Test: len general case') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(len(linked_list), 3) print('Success: test_len\n') def main(): test = TestLinkedList() test.test_insert_to_front() test.test_append() test.test_find() test.test_delete() test.test_len() if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a linked list with insert, append, find, delete, length, and print methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume this is a non-circular, singly linked list? * Yes* Do we keep track of the tail or just the head? * Just the head* Can we insert None values? * No Test Cases Insert to Front* Insert a None* Insert in an empty list* Insert in a list with one element or more elements Append* Append a None* Append in an empty list* Insert in a list with one element or more elements Find* Find a None* Find in an empty list* Find in a list with one element or more matching elements* Find in a list with no matches Delete* Delete a None* Delete in an empty list* Delete in a list with one element or more matching elements* Delete in a list with no matches Length* Length of zero or more elements Print* Print an empty list* Print a list with one or more elements AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/linked_lists/linked_list/linked_list_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class Node(object): def __init__(self, data, next_node=None): self.data = data self.next = next_node def __str__(self): return str(self.data) class LinkedList(object): def __init__(self, head=None): self.head = head def __len__(self): pass def insert_to_front(self, data): if data is None: return None node = Node(data, self.head) self.head = node return node def append(self, data): if data is None: return None if self.head is None: self.head = Node(data) return self.head node = self.head while node.next is not None: node = node.next node.next = Node(data) return node def find(self, data): pass # TODO: Implement me def delete(self, data): pass # TODO: Implement me def print_list(self): pass # TODO: Implement me def get_all_data(self): data = [] node = self.head while node is not None: data.append(node.data) node = node.next return data ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_linked_list.py from nose.tools import assert_equal class TestLinkedList(object): def test_insert_to_front(self): print('Test: insert_to_front on an empty list') linked_list = LinkedList(None) linked_list.insert_to_front(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front on a None') linked_list.insert_to_front(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front general case') linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(linked_list.get_all_data(), ['bc', 'a', 10]) print('Success: test_insert_to_front\n') def test_append(self): print('Test: append on an empty list') linked_list = LinkedList(None) linked_list.append(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: append a None') linked_list.append(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: append general case') linked_list.append('a') linked_list.append('bc') assert_equal(linked_list.get_all_data(), [10, 'a', 'bc']) print('Success: test_append\n') def test_find(self): print('Test: find on an empty list') linked_list = LinkedList(None) node = linked_list.find('a') assert_equal(node, None) print('Test: find a None') head = Node(10) linked_list = LinkedList(head) node = linked_list.find(None) assert_equal(node, None) print('Test: find general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') node = linked_list.find('a') assert_equal(str(node), 'a') print('Test: find general case with no matches') node = linked_list.find('aaa') assert_equal(node, None) print('Success: test_find\n') def test_delete(self): print('Test: delete on an empty list') linked_list = LinkedList(None) linked_list.delete('a') assert_equal(linked_list.get_all_data(), []) print('Test: delete a None') head = Node(10) linked_list = LinkedList(head) linked_list.delete(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: delete general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') linked_list.delete('a') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Test: delete general case with no matches') linked_list.delete('aa') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Success: test_delete\n') def test_len(self): print('Test: len on an empty list') linked_list = LinkedList(None) assert_equal(len(linked_list), 0) print('Test: len general case') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(len(linked_list), 3) print('Success: test_len\n') def main(): test = TestLinkedList() test.test_insert_to_front() test.test_append() test.test_find() test.test_delete() test.test_len() if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a linked list with insert, append, find, delete, length, and print methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume this is a non-circular, singly linked list? * Yes* Do we keep track of the tail or just the head? * Just the head* Can we insert None values? * No Test Cases Insert to Front* Insert a None* Insert in an empty list* Insert in a list with one element or more elements Append* Append a None* Append in an empty list* Insert in a list with one element or more elements Find* Find a None* Find in an empty list* Find in a list with one element or more matching elements* Find in a list with no matches Delete* Delete a None* Delete in an empty list* Delete in a list with one element or more matching elements* Delete in a list with no matches Length* Length of zero or more elements Print* Print an empty list* Print a list with one or more elements AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/linked_lists/linked_list/linked_list_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class Node(object): def __init__(self, data, next_node=None): pass # TODO: Implement me def __str__(self): pass # TODO: Implement me class LinkedList(object): def __init__(self, head=None): pass # TODO: Implement me def __len__(self): pass # TODO: Implement me def insert_to_front(self, data): pass # TODO: Implement me def append(self, data): pass # TODO: Implement me def find(self, data): pass # TODO: Implement me def delete(self, data): pass # TODO: Implement me def print_list(self): pass # TODO: Implement me def get_all_data(self): pass # TODO: Implement me ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_linked_list.py from nose.tools import assert_equal class TestLinkedList(object): def test_insert_to_front(self): print('Test: insert_to_front on an empty list') linked_list = LinkedList(None) linked_list.insert_to_front(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front on a None') linked_list.insert_to_front(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front general case') linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(linked_list.get_all_data(), ['bc', 'a', 10]) print('Success: test_insert_to_front\n') def test_append(self): print('Test: append on an empty list') linked_list = LinkedList(None) linked_list.append(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: append a None') linked_list.append(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: append general case') linked_list.append('a') linked_list.append('bc') assert_equal(linked_list.get_all_data(), [10, 'a', 'bc']) print('Success: test_append\n') def test_find(self): print('Test: find on an empty list') linked_list = LinkedList(None) node = linked_list.find('a') assert_equal(node, None) print('Test: find a None') head = Node(10) linked_list = LinkedList(head) node = linked_list.find(None) assert_equal(node, None) print('Test: find general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') node = linked_list.find('a') assert_equal(str(node), 'a') print('Test: find general case with no matches') node = linked_list.find('aaa') assert_equal(node, None) print('Success: test_find\n') def test_delete(self): print('Test: delete on an empty list') linked_list = LinkedList(None) linked_list.delete('a') assert_equal(linked_list.get_all_data(), []) print('Test: delete a None') head = Node(10) linked_list = LinkedList(head) linked_list.delete(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: delete general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') linked_list.delete('a') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Test: delete general case with no matches') linked_list.delete('aa') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Success: test_delete\n') def test_len(self): print('Test: len on an empty list') linked_list = LinkedList(None) assert_equal(len(linked_list), 0) print('Test: len general case') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(len(linked_list), 3) print('Success: test_len\n') def main(): test = TestLinkedList() test.test_insert_to_front() test.test_append() test.test_find() test.test_delete() test.test_len() if __name__ == '__main__': main() ###Output _____no_output_____ ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a linked list with insert, append, find, delete, length, and print methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume this is a non-circular, singly linked list? * Yes* Do we keep track of the tail or just the head? * Just the head* Can we insert None values? * No Test Cases Insert to Front* Insert a None* Insert in an empty list* Insert in a list with one element or more elements Append* Append a None* Append in an empty list* Insert in a list with one element or more elements Find* Find a None* Find in an empty list* Find in a list with one element or more matching elements* Find in a list with no matches Delete* Delete a None* Delete in an empty list* Delete in a list with one element or more matching elements* Delete in a list with no matches Length* Length of zero or more elements Print* Print an empty list* Print a list with one or more elements AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/linked_lists/linked_list/linked_list_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code from nose.tools import assert_equal class Node(object): def __init__(self, data, next_node=None): self.data=data self.next_node=next_node #print('create node') # TODO: Implement me def __str__(self): pass # TODO: Implement me class LinkedList(object): def __init__(self, head=None): #print('create LinkedList') self.head=head self.prevNode=head self.length=0 def __len__(self): self.length=0 node=self.head while node: #print('inside while ') self.length+=1 node=node.next_node return self.length # TODO: Implement me def insert_to_front(self, data): #len() #print('insert to front') if data is None: return 0 if self.head is None: node=Node(data) self.head=node self.prevNode=node else: node=Node(data,self.prevNode) self.head=node self.prevNode=node #self.head=node #print(f'{node.data}') def append(self, data): if self.head is None or data is None: #print('append when head is None') self.insert_to_front(data) return 0 append_node=Node(data) #head=node node=self.head while node: self.prevNode=node node=node.next_node self.prevNode.next_node=append_node #previous=self.head def find(self, data): node=self.head l=self.__len__() for i in range(l): if node.data==data: return node.data elif node.next_node is None: return None break else: node=node.next_node return None def delete(self, data): if data is None: return self.get_all_data() l=self.__len__() node=self.head for i in range(l): #print(f'i val is {i}') if node.data==data: #print('found') self.prevNode.next_node=node.next_node del node return self.get_all_data() elif node.next_node is None: #print('not found') break else: #print(f'inside else block of delete') self.prevNode=node node=node.next_node return self.get_all_data() def print_list(self): pass # TODO: Implement me def get_all_data(self): l=self.__len__() #print(f'lenth is {l}') list1=[] node=self.head for i in range(l): #print('inside for') list1.append(node.data) if node.next_node: #print(f'{node.next_node}') node=node.next_node #print(list1) return list1 #def get_reverse(self,head=sef.head): #this wont work becoz a default value cannot access self def get_reverse(self,head=None): # if head is None: # head=self.head head = head or self.head #shortform for above if conditon with None print(id(self.head)) l=self.__len__() node=head current=node next=node.next_node if next: print(f'data is {node.data}') print('next is not none') self.get_reverse(next) print('returned to recurse fun') #print(self.q.data) if next is None: print(f'data is {node.data}') print('next is none') #self.head=next #global x self.head=current print(id(self.head)) return current.next_node.next_node=current print(current.next_node.next_node.data) current.next_node=None print(node.data) print(next.data) #print(node.next_node.next_node.data) current.next_node=None print(f'gloabal head x is {head.data}') return def get_loop(self,head=None): head = head or self.head #shortform for above if conditon with None print(id(self.head)) l=self.__len__() node=head current=self.head next=self.head while(current and next and next.next_node): current=current.next_node next=node.next_node.next_node if(current==next): return current return None print('Test: insert_to_front on an empty list') linked_list = LinkedList(None) linked_list.insert_to_front(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front on a None') linked_list.insert_to_front(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front general case') linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(linked_list.get_all_data(), ['bc', 'a', 10]) print('Success: test_insert_to_front\n') #print(linked_list.head) print(id(linked_list.head)) #linked_list.get_reverse(linked_list.head) linked_list.get_reverse() print(linked_list.get_loop()) print(id(linked_list.head)) #print(linked_list.head) linked_list.get_all_data() ###Output Test: insert_to_front on an empty list Test: insert_to_front on a None Test: insert_to_front general case Success: test_insert_to_front 1915963401288 1915963401288 data is bc next is not none 1915963401288 data is a next is not none 1915963401288 data is 10 next is none 1915952055560 returned to recurse fun a a 10 gloabal head x is a returned to recurse fun bc bc a gloabal head x is bc 1915952055560 None 1915952055560 ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_linked_list.py from nose.tools import assert_equal class TestLinkedList(object): def test_insert_to_front(self): print('Test: insert_to_front on an empty list') linked_list = LinkedList(None) linked_list.insert_to_front(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front on a None') linked_list.insert_to_front(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: insert_to_front general case') linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(linked_list.get_all_data(), ['bc', 'a', 10]) print('Success: test_insert_to_front\n') def test_append(self): print('Test: append on an empty list') linked_list = LinkedList(None) linked_list.append(10) assert_equal(linked_list.get_all_data(), [10]) print('Test: append a None') linked_list.append(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: append general case') linked_list.append('a') linked_list.append('bc') assert_equal(linked_list.get_all_data(), [10, 'a', 'bc']) print('Success: test_append\n') def test_find(self): print('Test: find on an empty list') linked_list = LinkedList(None) node = linked_list.find('a') assert_equal(node, None) print('Test: find a None') head = Node(10) linked_list = LinkedList(head) node = linked_list.find(None) assert_equal(node, None) print('Test: find general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') node = linked_list.find('a') assert_equal(str(node), 'a') print('Test: find general case with no matches') node = linked_list.find('aaa') assert_equal(node, None) print('Success: test_find\n') def test_delete(self): print('Test: delete on an empty list') linked_list = LinkedList(None) linked_list.delete('a') assert_equal(linked_list.get_all_data(), []) print('Test: delete a None') head = Node(10) linked_list = LinkedList(head) linked_list.delete(None) assert_equal(linked_list.get_all_data(), [10]) print('Test: delete general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') linked_list.delete('a') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Test: delete general case with no matches') linked_list.delete('aa') assert_equal(linked_list.get_all_data(), ['bc', 10]) print('Success: test_delete\n') def test_len(self): print('Test: len on an empty list') linked_list = LinkedList(None) assert_equal(len(linked_list), 0) print('Test: len general case') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') assert_equal(len(linked_list), 3) print('Success: test_len\n') def main(): test = TestLinkedList() test.test_insert_to_front() # test.test_append() # test.test_find() # test.test_delete() # test.test_len() if __name__ == '__main__': main() ###Output Test: insert_to_front on an empty list Test: insert_to_front on a None Test: insert_to_front general case Success: test_insert_to_front ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Implement a linked list with insert, append, find, delete, length, and print methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume this is a non-circular, singly linked list? * Yes* Do we keep track of the tail or just the head? * Just the head* Can we insert None values? * No Test Cases Insert to Front* Insert a None* Insert in an empty list* Insert in a list with one element or more elements Append* Append a None* Append in an empty list* Insert in a list with one element or more elements Find* Find a None* Find in an empty list* Find in a list with one element or more matching elements* Find in a list with no matches Delete* Delete a None* Delete in an empty list* Delete in a list with one element or more matching elements* Delete in a list with no matches Length* Length of zero or more elements Print* Print an empty list* Print a list with one or more elements AlgorithmRefer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/linked_lists/linked_list/linked_list_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code ###Code class Node(object): def __init__(self, data, next_node=None): pass # TODO: Implement me def __str__(self): pass # TODO: Implement me class LinkedList(object): def __init__(self, head=None): pass # TODO: Implement me def __len__(self): pass # TODO: Implement me def insert_to_front(self, data): pass # TODO: Implement me def append(self, data): pass # TODO: Implement me def find(self, data): pass # TODO: Implement me def delete(self, data): pass # TODO: Implement me def print_list(self): pass # TODO: Implement me def get_all_data(self): pass # TODO: Implement me ###Output _____no_output_____ ###Markdown Unit Test **The following unit test is expected to fail until you solve the challenge.** ###Code # %load test_linked_list.py import unittest class TestLinkedList(unittest.TestCase): def test_insert_to_front(self): print('Test: insert_to_front on an empty list') linked_list = LinkedList(None) linked_list.insert_to_front(10) self.assertEqual(linked_list.get_all_data(), [10]) print('Test: insert_to_front on a None') linked_list.insert_to_front(None) self.assertEqual(linked_list.get_all_data(), [10]) print('Test: insert_to_front general case') linked_list.insert_to_front('a') linked_list.insert_to_front('bc') self.assertEqual(linked_list.get_all_data(), ['bc', 'a', 10]) print('Success: test_insert_to_front\n') def test_append(self): print('Test: append on an empty list') linked_list = LinkedList(None) linked_list.append(10) self.assertEqual(linked_list.get_all_data(), [10]) print('Test: append a None') linked_list.append(None) self.assertEqual(linked_list.get_all_data(), [10]) print('Test: append general case') linked_list.append('a') linked_list.append('bc') self.assertEqual(linked_list.get_all_data(), [10, 'a', 'bc']) print('Success: test_append\n') def test_find(self): print('Test: find on an empty list') linked_list = LinkedList(None) node = linked_list.find('a') self.assertEqual(node, None) print('Test: find a None') head = Node(10) linked_list = LinkedList(head) node = linked_list.find(None) self.assertEqual(node, None) print('Test: find general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') node = linked_list.find('a') self.assertEqual(str(node), 'a') print('Test: find general case with no matches') node = linked_list.find('aaa') self.assertEqual(node, None) print('Success: test_find\n') def test_delete(self): print('Test: delete on an empty list') linked_list = LinkedList(None) linked_list.delete('a') self.assertEqual(linked_list.get_all_data(), []) print('Test: delete a None') head = Node(10) linked_list = LinkedList(head) linked_list.delete(None) self.assertEqual(linked_list.get_all_data(), [10]) print('Test: delete general case with matches') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') linked_list.delete('a') self.assertEqual(linked_list.get_all_data(), ['bc', 10]) print('Test: delete general case with no matches') linked_list.delete('aa') self.assertEqual(linked_list.get_all_data(), ['bc', 10]) print('Success: test_delete\n') def test_len(self): print('Test: len on an empty list') linked_list = LinkedList(None) self.assertEqual(len(linked_list), 0) print('Test: len general case') head = Node(10) linked_list = LinkedList(head) linked_list.insert_to_front('a') linked_list.insert_to_front('bc') self.assertEqual(len(linked_list), 3) print('Success: test_len\n') def main(): test = TestLinkedList() test.test_insert_to_front() test.test_append() test.test_find() test.test_delete() test.test_len() if __name__ == '__main__': main() ###Output _____no_output_____
Python-Programming/Python-3-Bootcamp/16-Bonus Material - Introduction to GUIs/.ipynb_checkpoints/07-Advanced Widget List-checkpoint.ipynb
###Markdown Advanced Widget ListThis notebook is an extension of **Widget List**, describing even more of the GUI widgets available! ###Code import ipywidgets as widgets ###Output _____no_output_____ ###Markdown OutputThe `Output` widget can capture and display stdout, stderr and [rich output generated by IPython](http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.htmlmodule-IPython.display). After the widget is created, direct output to it using a context manager. ###Code out = widgets.Output() out ###Output _____no_output_____ ###Markdown You can print text to the output area as shown below. ###Code with out: for i in range(10): print(i, 'Hello world!') ###Output _____no_output_____ ###Markdown Rich material can also be directed to the output area. Anything which displays nicely in a Jupyter notebook will also display well in the `Output` widget. ###Code from IPython.display import YouTubeVideo with out: display(YouTubeVideo('eWzY2nGfkXk')) ###Output _____no_output_____ ###Markdown Play (Animation) widgetThe `Play` widget is useful to perform animations by iterating on a sequence of integers with a certain speed. The value of the slider below is linked to the player. ###Code play = widgets.Play( # interval=10, value=50, min=0, max=100, step=1, description="Press play", disabled=False ) slider = widgets.IntSlider() widgets.jslink((play, 'value'), (slider, 'value')) widgets.HBox([play, slider]) ###Output _____no_output_____ ###Markdown Date pickerThe date picker widget works in Chrome and IE Edge, but does not currently work in Firefox or Safari because they do not support the HTML date input field. ###Code widgets.DatePicker( description='Pick a Date', disabled=False ) ###Output _____no_output_____ ###Markdown Color picker ###Code widgets.ColorPicker( concise=False, description='Pick a color', value='blue', disabled=False ) ###Output _____no_output_____ ###Markdown ControllerThe `Controller` allows a game controller to be used as an input device. ###Code widgets.Controller( index=0, ) ###Output _____no_output_____ ###Markdown Container/Layout widgetsThese widgets are used to hold other widgets, called children. Each has a `children` property that may be set either when the widget is created or later. Box ###Code items = [widgets.Label(str(i)) for i in range(4)] widgets.Box(items) ###Output _____no_output_____ ###Markdown HBox ###Code items = [widgets.Label(str(i)) for i in range(4)] widgets.HBox(items) ###Output _____no_output_____ ###Markdown VBox ###Code items = [widgets.Label(str(i)) for i in range(4)] left_box = widgets.VBox([items[0], items[1]]) right_box = widgets.VBox([items[2], items[3]]) widgets.HBox([left_box, right_box]) ###Output _____no_output_____ ###Markdown Accordion ###Code accordion = widgets.Accordion(children=[widgets.IntSlider(), widgets.Text()]) accordion.set_title(0, 'Slider') accordion.set_title(1, 'Text') accordion ###Output _____no_output_____ ###Markdown TabsIn this example the children are set after the tab is created. Titles for the tabes are set in the same way they are for `Accordion`. ###Code tab_contents = ['P0', 'P1', 'P2', 'P3', 'P4'] children = [widgets.Text(description=name) for name in tab_contents] tab = widgets.Tab() tab.children = children for i in range(len(children)): tab.set_title(i, str(i)) tab ###Output _____no_output_____ ###Markdown Accordion and Tab use `selected_index`, not valueUnlike the rest of the widgets discussed earlier, the container widgets `Accordion` and `Tab` update their `selected_index` attribute when the user changes which accordion or tab is selected. That means that you can both see what the user is doing *and* programmatically set what the user sees by setting the value of `selected_index`.Setting `selected_index = None` closes all of the accordions or deselects all tabs.In the cells below try displaying or setting the `selected_index` of the `tab` and/or `accordion`. ###Code tab.selected_index = 3 accordion.selected_index = None ###Output _____no_output_____ ###Markdown Nesting tabs and accordionsTabs and accordions can be nested as deeply as you want. If you have a few minutes, try nesting a few accordions or putting an accordion inside a tab or a tab inside an accordion.The example below makes a couple of tabs with an accordion children in one of them ###Code tab_nest = widgets.Tab() tab_nest.children = [accordion, accordion] tab_nest.set_title(0, 'An accordion') tab_nest.set_title(1, 'Copy of the accordion') tab_nest ###Output _____no_output_____
r/assignment.ipynb
###Markdown Applied Process Mining ModuleThis notebook is part of an Applied Process Mining module. The collection of notebooks is a *living document* and subject to change. Assignment - BPI Challenge 2020 SetupIn this notebook, we are going to need the `tidyverse` and the `bupaR` packages. ###Code ## Perform the commented out commands below in a separate R session # install.packages("tidyverse") # install.packages("bupaR") # for larger and readable plots options(jupyter.plot_scale=1.25) # the initial execution of these may give you warnings that you can safely ignore library(tidyverse) library(bupaR) library(processanimateR) ###Output Attaching package: 'bupaR' The following object is masked from 'package:stats': filter The following object is masked from 'package:utils': timestamp ###Markdown Assignment In the first hands-on session, you are going to explore a real-life dataset and apply what was presented in the lecture about event logs and basic process mining visualizations. The objective is to explore your dataset and as an event log and with the learned process mining visualizations in mind.* Analyse basic properties of the the process (business process or other process) that has generated it. * What are possible case notions / what is the or what are the case identifiers? * What are the activities? Are all activities on the same abstraction level? Can activities be derived from other data? * Can activities or actions be derived from other (non-activity) data?* Discovery a map of the process (or a sub-process) behind it. * Are there multiple processes that can be discovered? * What is the effect of taking a subset of the data? Dataset The proposed real-life dataset to investigate is the *BPI Challenge 2020* dataset. The dataset is captured from the travel reimbursment process of Eindhoven University of Technolog and has been collected for usage in the BPI challenge. The BPI challenge is a yearly event in the Process Mining research community in which an event log is released along with some business questions that shall be addressed with process analytics techniques.Here is more informaation on the dataset and downloads links to the data files:* [Overview of the Case](https://icpmconference.org/2020/bpi-challenge/)* [Dataset](https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51)On the BPI Challenge 2020 website above, there are several reports (including the winners of the challenge) that describe and analyze the dataset in detail. However, we suggest that you first try to explore the dataset without reading the reports. The business questions and a description of the process flow can be also found at the BPI Challenge 2020 website. We repeat it here for convenience: Process FlowThe various declaration documents (domestic and international declarations, pre-paid travel costs and requests for payment) all follow a similar process flow. After submission by the employee, the request is sent for approval to the travel administration. If approved, the request is then forwarded to the budget owner and after that to the supervisor. If the budget owner and supervisor are the same person, then only one of the these steps it taken. In some cases, the director also needs to approve the request.In all cases, a rejection leads to one of two outcomes. Either the employee resubmits the request, or the employee also rejects the request.If the approval flow has a positive result, the payment is requested and made.The travel permits follow a slightly different flow as there is no payment involved. Instead, after all approval steps a trip can take place, indicated with an estimated start and end date. These dates are not exact travel dates, but rather estimated by the employee when the permit request is submitted. The actual travel dates are not recorded in the data, but should be close to the given dates in most cases.After the end of a trip, an employee receives several reminders to submit a travel declaration.After a travel permit is approved, but before the trip starts, employees can ask for a reimbursement of pre-paid travel costs. Several requests can be submitted independently of each other. After the trip ends, an international declaration can be submitted, although sometimes multiple declarations are seen for specific cases.It’s important to realize that the process described above is the process for 2018. For 2017, there are some differences as this was a pilot year and the process changed slightly on several occasions. Business QuestionsThe following questions are of interest:* What is the throughput of a travel declaration from submission (or closing) to paying?* Is there are difference in throughput between national and international trips?* Are there differences between clusters of declarations, for example between cost centers/departments/projects etc.?* What is the throughput in each of the process steps, i.e. the submission, judgement by various responsible roles and payment?* Where are the bottlenecks in the process of a travel declaration?* Where are the bottlenecks in the process of a travel permit (note that there can be mulitple requests for payment and declarations per permit)?* How many travel declarations get rejected in the various processing steps and how many are never approved?Then there are more detailed questions* How many travel declarations are booked on projects?* How many corrections have been made for declarations?* Are there any double payments?* Are there declarations that were not preceded properly by an approved travel permit? Or are there even declarations for which no permit exists?* How many travel declarations are submitted by the traveler and how many by a mandated person?* How many travel declarations are first rejected because they are submitted more than 2 months after the end of a trip and are then re-submitted?* Is this different between departments?* How many travel declarations are not approved by budget holders in time (7 days) and are then automatically rerouted to supervisors?* Next to travel declarations, there are also requests for payments. These are specific for non-TU/e employees. Are there any TU/e employees that submitted a request for payment instead of a travel declaration?Similar to the task at the BPI challenge, we are aware that not all questions can be answered on this dataset and we encourage you to come up with new and interesting insights. Data Loading Several datasets have been released as part of the BPI challenge. The data is split into travel permits and several request types, namely domestic declarations, international declarations, prepaid travel costs and requests for payment, where the latter refers to expenses which should not be related to trips (think of representation costs, hardware purchased for work, etc.). At Eindhoven University of Technology (TU/e), this is no different. The TU/e staff travels a lot to conferences or to other universities for project meetings and/or to meet up with colleagues in the field. And, as many companies, they have procedures in place for arranging the travels as well as for the reimbursement of costs.To make your life a bit easier, we have created the initial code to load the dataset that is already stored in the [XES format](http://xes-standard.org/) for event logs. ###Code read_xes_gzip <- function(xes_url) { temp <- tempfile(fileext = ".xes.gz") download.file(xes_url, temp, mode = "wb") temp_xes <- tempfile() R.utils::gunzip(temp, temp_xes) xes <- xesreadR::read_xes(temp_xes) unlink(temp) unlink(temp_xes) return(xes) } # some warnings are expected here (bupaR needs an updating) rfp_data <- read_xes_gzip("https://data.4tu.nl/ndownloader/files/24061154") ptc_data <- read_xes_gzip("https://data.4tu.nl/ndownloader/files/24043835") int_decl_data <- read_xes_gzip("https://data.4tu.nl/ndownloader/files/24023492") dom_decl_data <- read_xes_gzip("https://data.4tu.nl/ndownloader/files/24031811") rfp_data %>% summary() ptc_data %>% summary() int_decl_data %>% summary() dom_decl_data %>% summary() ###Output Number of events: 56437 Number of cases: 10500 Number of traces: 99 Number of distinct activities: 17 Average trace length: 5.374952 Start eventlog: 2017-01-09 08:49:50 End eventlog: 2019-06-17 15:30:58
notebooks/1_preprocessing.ipynb
###Markdown Preprocessing This notebook is first in the series of soiling detection pipeline notebooksData from other parks (eg Park1) can be used by changing the filepaths and working_dirAuthor: Lisa Crowther ###Code import pandas as pd import numpy as np import matplotlib import copy import matplotlib.pyplot as plt from pathlib import Path from sys import path as syspath syspath.insert(1, '../src/') ###Output _____no_output_____ ###Markdown Import dataframes from previous notebook ###Code root_path = "../data/raw/New_data/" park1_power_filepath = root_path + "SolarPark2_Oct_2019_Oct2020_string_production.csv" park1_environment_filepath = root_path + "Solarpark2_Oct_2019_Oct2020_environmental.csv" park1_capacity_filepath = root_path + "Solarpark_2_CB_capacity.csv" working_dir = "../data/temp/park2/" def read_data(power_data_filepath, env_data_filepath, cap_data_filepath): df_pow = pd.read_csv(power_data_filepath, delimiter=';',parse_dates=['datetime'], date_parser = pd.to_datetime, index_col='datetime') df_env = pd.read_csv(env_data_filepath, delimiter = ',',parse_dates=['datetime'], date_parser = pd.to_datetime, index_col='datetime') df_cap = pd.read_csv(cap_data_filepath) return [df_pow, df_env, df_cap] df_pow, df_env, df_cap = read_data(park1_power_filepath, park1_environment_filepath, park1_capacity_filepath) ###Output _____no_output_____ ###Markdown Clean dataframes:Rename columns ###Code df_env.columns = ['Temp_A', 'Temp_P', 'Irradiance'] df_cap.columns= ['displayname', 'capacity_kW', 'number_panels'] Inversors =df_pow.columns[(df_pow.columns).str.contains('Inv')] RCBs =df_pow.columns[(df_pow.columns).str.contains('RCB')] strings = df_pow.columns[(df_pow.columns).str.contains('ST')] CBs=df_pow.columns[(df_pow.columns).str.contains('CB')] ###Output _____no_output_____ ###Markdown Remove RCB columns (in park 1 contains NAs only)Remove inversors columns (want to analyse individual strings or CBs) ###Code df_pow.drop(columns=(RCBs), inplace=True) df_pow.drop(columns=(Inversors), inplace=True) df_cap.dropna(inplace=True) ###Output _____no_output_____ ###Markdown Calculate efficiency of panels ###Code pan_No = df_cap.number_panels pan_No.index=df_cap.displayname cap= df_cap.capacity_kW cap.index=df_cap.displayname panelArea=1.956*.992 #in m2, from datasheet totalPanelA= pan_No*panelArea totalPanelA.dropna(inplace=True) Efficiency = cap/totalPanelA Efficiency= round(Efficiency.tail(1).values[0],4) ###Output _____no_output_____ ###Markdown Merge power and environment dataframes, drop rows where Irradiance is NA ###Code power_env = pd.merge(df_pow,df_env, on=['datetime'], how='inner') power_env_sub = power_env.dropna(subset=['Irradiance']) df_env_sub =df_env.dropna(subset=['Irradiance']) ###Output _____no_output_____ ###Markdown Calculate theoretical outputs (maxP) ###Code # env data without nas df_env_sub = df_env_sub.dropna() # Irradiance and temperature adjustment To = 25 gamma = -0.004 df_env_sub['irr_T_adj'] = df_env_sub.Irradiance/1000 * (1+((df_env_sub.Temp_P-To) * gamma)) factor_Irr_Temp = df_env_sub.drop(columns=['Temp_A','Temp_P','Irradiance']) # Panel area and efficiency adjustment AE = (totalPanelA*Efficiency).dropna() AE.unique() #multiply the area and efficiency for each string by the irradiance and temperature adjustment factor #this has only dates where irradiance was not NA for i in range(len(AE)): factor_Irr_Temp[AE.index[i]]=factor_Irr_Temp.irr_T_adj*AE[i] #this is the A * E for each string multiplied by the irradiance * temperature adjustment factor : ie power max in Watts ## Theoretical output dataframe: adjusted power output values and drop the adjustment factor column maxP_df = copy.deepcopy(factor_Irr_Temp.drop(columns=['irr_T_adj'])) # Output dataframe where irradiance is not NA output_sub= power_env_sub.drop(columns=['Temp_A','Temp_P', 'Irradiance']) output_sub.head() maxP_df.columns=output_sub.columns ###Output _____no_output_____ ###Markdown Calculate Energy Performance Index (EPI)Power output/ theoretical calculated output ###Code EPI= output_sub.div(maxP_df) EPI.median(axis=1).plot() ###Output _____no_output_____ ###Markdown Save csvs: Output data of strings/CBs only, EPIs of strings/CBs, theoretical output of strings/CBs ###Code ##save data function from Marcus's scripts def save_data(dataframes, names, root_dir, sub_dir): if root_dir[-1] != "/": root_dir += "/" if sub_dir[-1] != "/": root_dir += sub_dir + "/" for data, name in zip(dataframes, names): try: filepath_out = root_dir + name + ".csv" Path(root_dir).mkdir(parents=True, exist_ok=True) print(f"\tSaving {filepath_out}...") data.to_csv(filepath_out) print("\tDone.") except Exception as e: print(e) pass save_data([output_sub, EPI, maxP_df], ["df_output", "df_EPI", 'df_theor_output'], working_dir, "preprocessing") ###Output Saving ../data/temp/park2/preprocessing/df_output.csv... Done. Saving ../data/temp/park2/preprocessing/df_EPI.csv... Done. Saving ../data/temp/park2/preprocessing/df_theor_output.csv... Done. ###Markdown Loading Articles ###Code # Load in each article a1 = pd.read_parquet('~/Documents/bert-news/data/articles1.gzip') a2 = pd.read_parquet('~/Documents/bert-news/data/articles2.gzip') a3 = pd.read_parquet('~/Documents/bert-news/data/articles3.gzip') # Concatenate articles together articles = pd.concat([a1, a2, a3], ignore_index=True) del a1, a2, a3 # For now, including 140K articles should be enough articles.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 142570 entries, 0 to 142569 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 title 142570 non-null object 1 author 142570 non-null object 2 publication 142570 non-null object 3 content 142570 non-null object dtypes: object(4) memory usage: 4.4+ MB ###Markdown Only Include Top Publications ###Code # Maybe, focus on top news sources articles['publication'].value_counts() # Only include Breitbart and CNN pubs = ['Breitbart', 'New York Post', 'NPR', 'CNN', 'Washington Post', 'New York Times'] articles = articles[articles['publication'].isin(pubs)] # Another glimpse! articles['publication'].value_counts() ###Output _____no_output_____ ###Markdown Only Include Articles with Authors ###Code # Occurrence of NULL authors articles['author'].value_counts() # Remove NAN authors articles = articles[articles['author'] != 'nan'] # Another glimpse! articles['author'].value_counts() ###Output _____no_output_____ ###Markdown Assign Publications to Political Party ###Code # Determine party based on PEW survey right_pubs = ['Breitbart', 'New York Post'] # Assign publication to party articles['party'] = 'left' articles.loc[articles['publication'].isin(right_pubs), 'party'] = 'right' # Another glimpse! articles['party'].value_counts() ###Output _____no_output_____ ###Markdown Stratify on Publications ###Code # For each publication, # randomly select the same number of # articles as the publication with the # fewest number of articles articles['publication'].value_counts() # Stratify articles by publication min_strat = articles.groupby('publication').size().min() articles = articles.groupby('publication').apply(lambda x: x.sample(min_strat)) # Another glimpse! articles['publication'].value_counts() ###Output _____no_output_____ ###Markdown Save and Serialize Data ###Code # Save preprocessed data articles.to_parquet('~/Downloads/proc_articles.gzip', compression='gzip') ###Output _____no_output_____ ###Markdown Preprocessing of Topic Modeling Project for Emergency Medicine ###Code import pandas as pd import os def read_files(): files = os.listdir("../data") files_xls = [f for f in files if f[-3:] == 'xls'] df = pd.DataFrame() for f in files_xls: data = pd.read_excel("../data/" + f, header=1, index_col=0) df = df.append(data) return df df = read_files() df.head() print("Number of articles prior to processing: ", len(df)) df.to_csv('../Data/data_uncleaned.csv', index=False) def process_initial(df): """ cleans intial data set""" # filter for only journal articles df = df[~df['PT'].str.contains('Case|Comment|Review|Editorial|Letter')] df = df.filter(items = ['AB', 'SO', 'TI','YR']) df['SO'] = df['SO'].str.split('.').str[0] df = df.rename(index=str, columns={"AB": "abstract", "SO": "journal", "TI": "title", "YR":"year"}) df = df.reset_index() # add column with title + abstract df['title_abstract'] = df[['title', 'abstract']].apply(lambda x: ' '.join(x.astype(str)), axis=1) df = df.filter(items = ['title', 'abstract', 'title_abstract', 'journal', 'year']) df = df.reset_index(drop=True) return df df = process_initial(df) df.head() print("Number of articles after removing Cases, Comments, Review, etc.: ", len(df)) df = df.dropna() print("Number of articles after ones without abstracts: ", len(df)) # save file df.to_csv('../Data/data_cleaned.csv', index=False) ###Output _____no_output_____
notebooks/lstm_conditional_.ipynb
###Markdown Imports ###Code import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.optimizers.schedules import ExponentialDecay # from https://arxiv.org/pdf/1506.02078.pdf from tensorflow.keras.callbacks import EarlyStopping from tqdm.notebook import tqdm print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) ###Output Num GPUs Available: 0 ###Markdown Hyper-parameters ###Code tunable_hparams = { 'stateful_generation' : True, 'mapping_type' : 'seq2seq', 'early_stopping' : False, 'seq_length' : 200, 'game' : 'mario' } fixed_hparams = { 'hidden_size' : 128, 'learning_rate' : 2e-3, 'learning_rate_decay' : 0.95, 'dropout' : 0.5, 'batch_size' : 100, 'num_layers' : 3, 'max_epochs' : 50 } for key, val in tunable_hparams.items(): exec(key + '=val') for key, val in fixed_hparams.items(): exec(key + '=val') ###Output _____no_output_____ ###Markdown Data ###Code data = open('corpuses/mario_corpus_conditional.txt', 'r').read() level_strs = data.rstrip().split(')')[:-1] print(len(level_strs)) chars = [] for level_str in level_strs: chars.extend(list(level_str)) chars = list(set(chars)) vocab_size = len(chars) print(chars, vocab_size) char_to_ix = { ch:i for i, ch in enumerate(chars) } ix_to_char = { i:ch for i, ch in enumerate(chars) } ix_to_char level_arrays = [] for level_str in level_strs: level_arrays.append(np.array([char_to_ix[char] for char in list(level_str)])) def get_inputs_and_targets_from_level_array(level_array): inputs, targets = [], [] for i in range(len(level_array) - seq_length): inputs.append(level_array[i:i+seq_length]) targets.append(level_array[i+1:i+seq_length+1]) inputs, targets = map(np.array, [inputs, targets]) inputs = np.eye(vocab_size)[inputs] return inputs, targets inputs, targets = [], [] for level_array in tqdm(level_arrays, leave=False): inputs_temp, targets_temp = get_inputs_and_targets_from_level_array(level_array) inputs.extend(inputs_temp); targets.extend(targets_temp) inputs, targets = map(np.array, [inputs, targets]) inputs.shape, targets.shape ###Output _____no_output_____ ###Markdown Model callbacks ###Code lr_scheduler = ExponentialDecay( initial_learning_rate=learning_rate, decay_steps=len(inputs) // batch_size, decay_rate=learning_rate_decay, ) optimizer = RMSprop(learning_rate=lr_scheduler) es_callback = EarlyStopping( monitor='val_out_acc_custom_acc', mode='max', patience=2, restore_best_weights=early_stopping ) def custom_loss(y_true, y_pred): scce = tf.keras.losses.SparseCategoricalCrossentropy() return scce( tf.reshape(y_true, shape=(tf.shape(y_true)[0] * seq_length, )), tf.reshape(y_pred, shape=(tf.shape(y_pred)[0] * seq_length, vocab_size)) ) def custom_acc(y_true, y_pred): return tf.math.reduce_mean( tf.cast( tf.math.equal( tf.math.argmax(tf.reshape(y_pred, shape=(tf.shape(y_pred)[0] * seq_length, vocab_size)), axis=-1), tf.cast(tf.reshape(y_true, shape=(tf.shape(y_true)[0] * seq_length, )), dtype=tf.int64) ), dtype=tf.float32 ) ) ###Output _____no_output_____ ###Markdown Model definition ###Code lstm_1_state_h_in = keras.layers.Input(shape=[hidden_size]) lstm_1_state_c_in = keras.layers.Input(shape=[hidden_size]) lstm_2_state_h_in = keras.layers.Input(shape=[hidden_size]) lstm_2_state_c_in = keras.layers.Input(shape=[hidden_size]) lstm_3_state_h_in = keras.layers.Input(shape=[hidden_size]) lstm_3_state_c_in = keras.layers.Input(shape=[hidden_size]) input = keras.layers.Input(shape=[seq_length, vocab_size]) out, lstm_1_state_h_out, lstm_1_state_c_out = keras.layers.LSTM(hidden_size, return_sequences=True, return_state=True)( input, initial_state=[lstm_1_state_h_in, lstm_1_state_c_in] ) out = layers.Dropout(dropout)(out) out, lstm_2_state_h_out, lstm_2_state_c_out = keras.layers.LSTM(hidden_size, return_sequences=True, return_state=True)( out, initial_state=[lstm_2_state_h_in, lstm_2_state_c_in] ) out = layers.Dropout(dropout)(out) out, lstm_3_state_h_out, lstm_3_state_c_out = keras.layers.LSTM(hidden_size, return_sequences=True, return_state=True)( out, initial_state=[lstm_3_state_h_in, lstm_3_state_c_in] ) out = layers.Dropout(dropout)(out) out = layers.Dense(vocab_size)(out) out = layers.Activation('softmax')(out) out_acc = layers.Lambda(lambda x:x, name = "out_acc")(out) model = keras.models.Model( inputs=[ input, lstm_1_state_h_in, lstm_1_state_c_in, lstm_2_state_h_in, lstm_2_state_c_in, lstm_3_state_h_in, lstm_3_state_c_in ], outputs=[ out_acc, lstm_1_state_h_out, lstm_1_state_c_out, lstm_2_state_h_out, lstm_2_state_c_out, lstm_3_state_h_out, lstm_3_state_c_out ] ) model.compile( loss=[custom_loss, None, None, None, None, None, None], loss_weights=[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], metrics={'out_acc':custom_acc}, optimizer=optimizer ) ###Output _____no_output_____ ###Markdown Model training ###Code dummy = np.zeros((len(inputs), hidden_size)) history = model.fit( [inputs, dummy, dummy, dummy, dummy, dummy, dummy], [targets, dummy, dummy, dummy, dummy, dummy, dummy], batch_size=batch_size, validation_split=0.1, shuffle=True, epochs=max_epochs, callbacks=[es_callback] ) for i in range(10): model.save('lstm_conditional.h5') ###Output Epoch 1/50 1140/1140 [==============================] - 158s 138ms/step - loss: 0.4111 - out_acc_loss: 0.4111 - out_acc_custom_acc: 0.8785 - val_loss: 0.3668 - val_out_acc_loss: 0.3668 - val_out_acc_custom_acc: 0.8844 Epoch 2/50 1140/1140 [==============================] - 156s 137ms/step - loss: 0.1537 - out_acc_loss: 0.1537 - out_acc_custom_acc: 0.9533 - val_loss: 0.3750 - val_out_acc_loss: 0.3750 - val_out_acc_custom_acc: 0.9099 Epoch 4/50 1140/1140 [==============================] - 156s 137ms/step - loss: 0.1356 - out_acc_loss: 0.1356 - out_acc_custom_acc: 0.9586 - val_loss: 0.4130 - val_out_acc_loss: 0.4130 - val_out_acc_custom_acc: 0.9105 ###Markdown Load trained model ###Code model = keras.models.load_model( 'trained_models/lstm_conditional_elements.h5', custom_objects={'custom_loss':custom_loss, 'custom_acc':custom_acc} ) model.evaluate( [inputs, dummy, dummy, dummy, dummy, dummy, dummy], [targets, dummy, dummy, dummy, dummy, dummy, dummy], batch_size=5, verbose=1 ) # sanity check ###Output 151/25319 [..............................] - ETA: 20:55 - loss: 0.1233 - out_acc_loss: 0.1233 - out_acc_custom_acc: 0.9629 ###Markdown Generate level ###Code def onehot_to_string(onehot): ints = np.argmax(onehot, axis=-1) chars = [ix_to_char[ix] for ix in ints] string = "".join(chars) char_array = [] if len(string.rstrip().split('\n')[-1]) < 17: for line in string.rstrip().split('\n')[:-1]: char_array.append(list(line)) else: for line in string.rstrip().split('\n'): char_array.append(list(line)) char_array = np.array(char_array).T string = "" for row in char_array: string += "".join(row) + "\n" return string seed = inputs[0][:3 * 18 - 2].copy() # 3 cols * 18 tiles per col - newline char - condition char seed[17+16] = 0 seed[17+16][12] = 1 seed[17*2+17] = 0 seed[17*2+17][12] = 1 print(seed.shape) print(onehot_to_string(seed)) num_chunks_to_gen = 5# just for testing purposed num_tile_to_gen = 1 + num_chunks_to_gen * 16 * 17 # 1 newline char for the 3rd col, condition char are offered directly condition_tape_question = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0] * num_chunks_to_gen condition_tape_coin = [1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] * num_chunks_to_gen condition_tape_enemy = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0] * num_chunks_to_gen condition_tape_pipe = [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0] * num_chunks_to_gen condition_tape_cannon = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] * num_chunks_to_gen print(len(condition_tape_question)) # should be of length 16 for j in tqdm(range(1, 20+1)): seed = inputs[0][:3 * 18 - 2].copy() # 3 cols * 18 tiles per col - newline char - condition char seed[17+16] = 0 seed[17+16][10] = 1 seed[17*2+17] = 0 seed[17*2+17][10] = 1 gen = seed.copy() # initialize all hidden and cell states to zeros lstm1_h = np.zeros((1, hidden_size)) lstm1_c = np.zeros((1, hidden_size)) lstm2_h = np.zeros((1, hidden_size)) lstm2_c = np.zeros((1, hidden_size)) lstm3_h = np.zeros((1, hidden_size)) lstm3_c = np.zeros((1, hidden_size)) add_condition_char_next = False col_ix_generating = -1 for i in tqdm(range(num_tile_to_gen), leave=False): seed = np.expand_dims(seed, axis=0) # predict probas and update hidden and cell states probas, lstm1_h, lstm1_c, lstm2_h, lstm2_c, lstm3_h, lstm3_c = model.predict([ seed, lstm1_h, lstm1_c, lstm2_h, lstm2_c, lstm3_h, lstm3_c ]) # ========== generic prediction ========== if not add_condition_char_next: probas = probas[0][-1] # first batch, last timestep idx = np.random.choice(np.arange(len(probas)), p=probas) seed = np.zeros((1, vocab_size)) seed[:, idx] = 1. gen = np.vstack([gen, seed]) if ix_to_char[idx] == '\n': add_condition_char_next = True col_ix_generating += 1 # ========== condition char are not generated, they are loaded from the condition tape ========== else: seed = np.zeros((1, vocab_size)) if condition_tape[col_ix_generating] == 0: seed[:, char_to_ix['N']] = 1 elif condition_tape[col_ix_generating] == 1: seed[:, char_to_ix['Y']] = 1 gen = np.vstack([gen, seed]) add_condition_char_next = False with open(f'./lstm_conditional_generated_levels_txt/{j}.txt', 'w+') as txt_f: txt_f.write(onehot_to_string(gen)) ###Output _____no_output_____
NYC House Prediction XGBoost/NYC_House_Prediction.ipynb
###Markdown Preprocessing ###Code def preprocess_inputs(df): df = df.copy() df.columns = df.columns.str.lower().str.replace(' ', '_') df = df.rename(columns={"ease-ment": "easement"}) df['sale_price'] = df['sale_price'].replace(' - ', np.NaN).astype(np.float) #dropping the rows in sale_price column having missing value df = df.dropna(axis=0).reset_index(drop=True) df = df.drop(["unnamed:_0", "block", "lot", "easement", "address", "apartment_number"], axis=1) #fill all missing value with NaN df = df.replace(' - ', np.NaN) #fill missing values with column mean for column in ["land_square_feet", "gross_square_feet"]: df[column] = df[column].astype(np.float) df[column] = df[column].fillna(df[column].mean()) df['sale_date'] = pd.to_datetime(df['sale_date']) df['year']= df['sale_date'].apply(lambda x: x.year) df['month']= df['sale_date'].apply(lambda x: x.month) df['day']= df['sale_date'].apply(lambda x: x.day) df = df.drop('sale_date', axis=1) #make numerical and categorical columns in string columns for column in ["borough", "zip_code"]: df[column] = df[column].astype(str) #one hot encoding df = onehot_encode( df, columns=[ 'borough', 'zip_code', 'neighborhood', 'building_class_category', 'tax_class_at_present', 'building_class_at_present', 'building_class_at_time_of_sale' ], prefixes=['bo', 'zc', 'ne', 'bc', 'tx', 'bp', 'bs'] ) #X and y X = df.drop("sale_price", axis=1) y = df['sale_price'] scaler = StandardScaler() X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns) return X, y X, y = preprocess_inputs(data) X X.info() y y.unique() y.isna().sum() print("Percentage of missing value is :", (y.isna().mean())*100) X.isna().sum() ###Output _____no_output_____ ###Markdown Training the model using XGBoost ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, random_state=123) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=123) dtrain = xgb.DMatrix(X_train, label=y_train) dval = xgb.DMatrix(X_val, label=y_val) dtest = xgb.DMatrix(X_test, label=y_test) params = {'learning_rate': 0.001, 'max_depth': 6, 'lambda': 0.01} model = xgb.train(params, dtrain, num_boost_round=10000, evals=[(dval, 'eval')], early_stopping_rounds=10) y_true = np.array(y_test) y_pred = model.predict(dtest) print("Model R^2 Score: {:.4f}".format(r2_score(y_true, y_pred))) ###Output _____no_output_____
NRPyPN/PN-p_t.ipynb
###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); $p_t$, the tangential component of the momentum vector, up to and including 3.5 post-Newtonian order This notebook constructs the tangential component of the momentum vector**Notebook Status:** Validated **Validation Notes:** All expressions in this notebook were transcribed twice by hand on separate occasions, and expressions were corrected as needed to ensure consistency with published work. Published work was cross-validated and typo(s) in published work were corrected. In addition, this tutorial notebook has been confirmed to be self-consistent with its corresponding NRPy+ module, as documented [below](code_validation). **Additional validation tests may have been performed, but are as yet, undocumented.** Author: Zach Etienne This notebook exists as the following Python module:1. [PN_p_t.py](../../edit/NRPyPN/PN_p_t.py) This notebook & corresponding Python module depend on the following NRPy+/NRPyPN Python modules:1. [indexedexp.py](../../edit/indexedexp.py): [**documentation+tutorial**](../Tutorial-Indexed_Expressions.ipynb)1. [NRPyPN_shortcuts.py](../../edit/NRPyPN/NRPyPN_shortcuts.py): [**documentation**](NRPyPN_shortcuts.ipynb) Table of Contents$$\label{toc}$$1. Part 1: [$p_t$](p_t), up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)1. Part 2: [Validation against second transcription and corresponding Python module](code_validation)1. Part 3: [Validation against trusted numerical values](code_validationv2) (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036))1. Part 4: [LaTeX PDF output](latex_pdf_output): $\LaTeX$ PDF Output Part 1: $p_t$, up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036) \[Back to [top](toc)\]$$\label{p_t}$$ As described in the [nonspinning Hamiltonian notebook](PN-Hamiltonian-Nonspinning.ipynb), the basic physical system assumes two point particles of mass $m_1$ and $m_2$ with corresponding momentum vectors $\mathbf{P}_1$ and $\mathbf{P}_2$, and displacement vectors $\mathbf{X}_1$ and $\mathbf{X}_2$ with respect to the center of mass. Here we also consider the spin vectors of each point mass $\mathbf{S}_1$ and $\mathbf{S}_2$, respectively.To reduce possibility of copying error, the equation for $p_t$ is taken directly from the arXiv LaTeX source code of Eq A2 in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036), and only mildly formatted to (1) improve presentation in Jupyter notebooks, (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks, and (3) to correct any errors. In particular, the boxed negative sign at 2.5PN order ($a_5$ below) was missing in the original equation. We will later show that this negative sign is necessary for consistency with other expressions in the same paper, as well as with the expression up to 3PN order in [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872):$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\\a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} Let's divide and conquer, by tackling the coefficients one at a time:\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\end{align} ###Code # Step 0: Add NRPy's directory to the path # https://stackoverflow.com/questions/16780014/import-file-from-parent-directory import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import indexedexpNRPyPN as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support from NRPyPN_shortcuts import div # NRPyPN: shortcuts for e.g., vector operations # Step 1: Construct terms a_2, a_3, and a_4, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 def p_t__a_2_thru_a_4(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2,a_3,a_4 a_2 = 2 a_3 = (-3*(4*q**2+3*q)*chi2z/(4*(q+1)**2) - 3*(3*q+4)*chi1z/(4*(q+1)**2)) a_4 = (-3*q**2*chi2x**2/(2*(q+1)**2) +3*q**2*chi2y**2/(4*(q+1)**2) +3*q**2*chi2z**2/(4*(q+1)**2) +(+42*q**2 + 41*q + 42)/(16*(q+1)**2) -3*chi1x**2/(2*(q+1)**2) -3*q*chi1x*chi2x/(q+1)**2 +3*chi1y**2/(4*(q+1)**2) +3*q*chi1y*chi2y/(2*(q+1)**2) +3*chi1z**2/(4*(q+1)**2) +3*q*chi1z*chi2z/(2*(q+1)**2)) # Second version, for validation purposes only. def p_t__a_2_thru_a_4v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2v2,a_3v2,a_4v2 # Validated against HLNZ2017 version a_2v2 = 2 # Validated against HLNZ2017 version a_3v2 = (-(3*(4*q**2+3*q)*chi2z)/(4*(q+1)**2)-(3*(3*q+4)*chi1z)/(4*(q+1)**2)) # Validated against HLNZ2017 version a_4v2 = -(3*q**2*chi2x**2)/(2*(q+1)**2)+(3*q**2*chi2y**2)/(4*(q+1)**2)+(3*q**2*chi2z**2)/(4*(q+1)**2)+(42*q**2+41*q+42)/(16*(q+1)**2)-(3*chi1x**2)/(2*(q+1)**2)-(3*q*chi1x*chi2x)/((q+1)**2)+(3*chi1y**2)/(4*(q+1)**2)+(3*q*chi1y*chi2y)/(2*(q+1)**2)+(3*chi1z**2)/(4*(q+1)**2)+(3*q*chi1z*chi2z)/(2*(q+1)**2) ###Output _____no_output_____ ###Markdown Next, $a_5$ and $a_6$:\begin{align}a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\\end{align} ###Code # Construct terms a_5 and a_6, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 # and a sign error was corrected in the a_5 # expression. def p_t__a_5_thru_a_6(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5,a_6 a_5 = (SignFix*(13*q**3 + 60*q**2 + 116*q + 72)*chi1z/(16*(q+1)**4) +(-72*q**4 - 116*q**3 - 60*q**2 - 13*q)*chi2z/(16*(q+1)**4)) a_6 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q +512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +( -64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*sp.pi**2*q**3 - 2636*q**3 + 326*sp.pi**2*q**2 - 6128*q**2 + 163*sp.pi**2*q-2636*q+480) /(128*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_5_thru_a_6v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. pi = sp.pi global a_5v2,a_6v2 # Validated (separately) against HLNZ2017, as well as row 3 of Table V in RHP2018 a_5v2 = SignFix*((13*q**3+60*q**2+116*q+72)*chi1z)/(16*(q+1)**4)+((-72*q**4-116*q**3-60*q**2-13*q)*chi2z)/(16*(q+1)**4) # Validated (separately) against HLNZ2017 version a_6v2 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q + 512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +(- 64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*pi**2*q**3 - 2636*q**3 + 326*pi**2*q**2 - 6128*q**2 + 163*pi**2*q - 2636*q + 480) /(128*(q+1)**4)) ###Output _____no_output_____ ###Markdown Next we compare the expression for $a_5$ with Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), as additional validation that there at least is a sign inconsistency:To reduce possibility of copying error, the following equation for $a_5$ is taken directly from the arXiv LaTeX source code of Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), and only mildly formatted to (1) improve presentation in Jupyter notebooks and (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks.**Important: Note that [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872) adopts notation such that particle labels are interchanged: $1\leftrightarrow 2$, with respect to [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)**\begin{align}a_5 &= + \left( -\frac{1}{16}\,{\frac {q \left( 72\,{q}^{3}+116\,{q}^{2}+60\,q+13 \right) {\chi_{1z}}}{ \left( 1+q \right) ^{4}}}-\frac{1}{16}\,{\frac { \left( 13\,{q}^{3}+60\,{q}^{2}+116\,q+72 \right) {\chi_{2z}}}{ \left( 1+q \right) ^{4}}} \right)\\\end{align} ###Code # Third version, for addtional validation. def p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5_HLNZ2017 a_5_HLNZ2017 = (-div(1,16)*(q*(72*q**3 + 116*q**2 + 60*q + 13)*chi1z/(1+q)**4) -div(1,16)*( (13*q**3 + 60*q**2 +116*q + 72)*chi2z/(1+q)**4)) ###Output _____no_output_____ ###Markdown Finally, we validate that all 3 expressions for $a_5$ agree. (At the bottom, we confirm that all v2 expressions for $a_i$ match.) ###Code from NRPyPN_shortcuts import m1,m2, chi1U,chi2U # Import needed input variables p_t__a_5_thru_a_6( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) p_t__a_5_thru_a_6v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) # Again, the particle labels are interchanged in Healy, Lousto, Nakano, and Zlochower (2017): p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi2U[0],chi2U[1],chi2U[2], chi1U[0],chi1U[1],chi1U[2]) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) if sp.simplify(a_5 - a_5v2) != 0: error("a_5v2") if sp.simplify(a_5 - a_5_HLNZ2017) != 0: error("a_5_HLNZ2017") ###Output _____no_output_____ ###Markdown Finally $a_7$:\begin{align}a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} ###Code # Construct term a_7, from Eq A2 of # Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 def p_t__a_7(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7 a_7 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3 /(8*(q+1)**4) +chi1x*(+15*(2*q+1)*q**2*chi2x*chi2z/(4*(q+1)**4) +15*(1*q+2)*q *chi2x*chi1z/(4*(q+1)**4)) +chi1y*(+15*q**2*chi2y*chi1z/(4*(q+1)**4) +15*q**2*chi2y*chi2z/(4*(q+1)**4)) +chi1z*(+15*q**2*(2*q+3)*chi2x**2/(4*(q+1)**4) -15*q**2*( q+2)*chi2y**2/(4*(q+1)**4) -15*q**2 *chi2z**2/(4*(q+1)**3) -(103*q**5 + 145*q**4 - 27*q**3 + 252*q**2 + 670*q + 348)/(32*(q+1)**6)) -(+348*q**5 + 670*q**4 + 252*q**3 - 27*q**2 + 145*q + 103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) +15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) -15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) -5*(q+4)*chi1z**3/(8*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_7v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7v2 a_7v2 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3/(8*(q+1)**4) +chi1x*(+(15*(2*q+1)*q**2*chi2x*chi2z)/(4*(q+1)**4) +(15*( q+2)*q *chi2x*chi1z)/(4*(q+1)**4)) +chi1y*(+(15*q**2*chi2y*chi1z)/(4*(q+1)**4) +(15*q**2*chi2y*chi2z)/(4*(q+1)**4)) +chi1z*(+(15*q**2*(2*q+3)*chi2x**2)/(4*(q+1)**4) -(15*q**2*( q+2)*chi2y**2)/(4*(q+1)**4) -(15*q**2* chi2z**2)/(4*(q+1)**3) -(103*q**5+145*q**4-27*q**3+252*q**2+670*q+348)/(32*(q+1)**6)) -(348*q**5+670*q**4+252*q**3-27*q**2+145*q+103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) + 15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) - 15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) - 5*(q+4)*chi1z**3/(8*(q+1)**4)) ###Output _____no_output_____ ###Markdown Putting it all together, recall that$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where $k/2$ is the post-Newtonian order. ###Code # Finally, sum the expressions for a_k to construct p_t as prescribed: # p_t = q/(sqrt(r)*(1+q)^2) (1 + \sum_{k=2}^7 (a_k/r^{k/2})) def f_p_t(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2 a[3] = a_3 a[4] = a_4 p_t__a_5_thru_a_6(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5 a[6] = a_6 p_t__a_7( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7 global p_t p_t = 1 # Term prior to the sum in parentheses for k in range(8): p_t += a[k]/r**div(k,2) p_t *= q / (1+q)**2 * 1/r**div(1,2) # Second version, for validation purposes only. def f_p_tv2(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2v2 a[3] = a_3v2 a[4] = a_4v2 p_t__a_5_thru_a_6v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5v2 a[6] = a_6v2 p_t__a_7v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7v2 global p_tv2 p_tv2 = 1 # Term prior to the sum in parentheses for k in range(8): p_tv2 += a[k]/r**div(k,2) p_tv2 *= q / (1+q)**2 * 1/r**div(1,2) ###Output _____no_output_____ ###Markdown Part 2: Validation against second transcription and corresponding Python module \[Back to [top](toc)\]$$\label{code_validation}$$ As a code validation check, we verify agreement between * the SymPy expressions transcribed from the cited published work on two separate occasions, and* the SymPy expressions generated in this notebook, and the corresponding Python module. ###Code from NRPyPN_shortcuts import q, num_eval # Import needed input variable & numerical evaluation routine f_p_t(m1,m2, chi1U,chi2U, q) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) # Validation against second transcription of the expressions: f_p_tv2(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - p_tv2) != 0: error("p_tv2") # Validation against corresponding Python module: import PN_p_t as pt pt.f_p_t(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - pt.p_t) != 0: error("pt.p_t") print("ALL TESTS PASS") ###Output ALL TESTS PASS ###Markdown Part 3: Validation against trusted numerical values (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)) \[Back to [top](toc)\]$$\label{code_validationv2}$$ ###Code # Useful function for comparing published & NRPyPN results def compare_pub_NPN(desc, pub,NPN,NPN_with_a5_chi1z_sign_error): print("##################################################") print(" "+desc) print("##################################################") print(str(pub) + " <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018)") print(str(NPN) + " <- Result from NRPyPN") relerror = abs(pub-NPN)/pub resultstring = "Relative error between NRPyPN & published: "+str(relerror*100)+"%" if relerror > 1e-3: resultstring += " <--- NOT GOOD! (see explanation below)" else: resultstring += " <--- EXCELLENT AGREEMENT!" print(resultstring+"\n") print(str(NPN_with_a5_chi1z_sign_error) + " <- Result from NRPyPN, with chi1z sign error in a_5 expression.") # 1. Let's consider the case: # * Mass ratio q=1, chi1=chi2=(0,0,0), radial separation r=12 pub_result = 0.850941e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0850940927209620 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 1.0, # must be >= 1 nr = 12.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = +0., nchi2y = +0., nchi2z = +0.) compare_pub_NPN("Case: q=1, nonspinning, initial separation 12", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 2. Let's consider the case: # * Mass ratio q=1.5, chi1= (0,0,-0.6); chi2=(0,0,0.6), radial separation r=10.8 pub_result = 0.868557e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0867002374951143 NPN_result = num_eval(p_t, qmassratio = 1.5, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.6, nchi2x = +0., nchi2y = +0., nchi2z = +0.6) compare_pub_NPN("Case: q=1.5, chi1z=-0.6, chi2z=0.6, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 3. Let's consider the case: # * Mass ratio q=4, chi1= (0,0,-0.8); chi2=(0,0,0.8), radial separation r=11 pub_result = 0.559207e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0557629777874552 NPN_result = num_eval(p_t, qmassratio = 4.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.8, nchi2x = +0., nchi2y = +0., nchi2z = +0.8) compare_pub_NPN("Case: q=4.0, chi1z=-0.8, chi2z=0.8, initial separation 11.0", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) print("0.0558369 <- Second iteration value in pub result. Note that NRPyPN value is *closer* to this value.") # 4. Let's consider the case: # * Mass ratio q=2, chi1= (0,0,0); chi2=(−0.3535, 0.3535, 0.5), radial separation r=10.8 pub_result = 0.7935e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0793500403866190 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 2.0, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = -0.3535, nchi2y = +0.3535, nchi2z = +0.5) compare_pub_NPN("Case: q=2.0, chi2x=-0.3535, chi2y=+0.3535, chi2z=+0.5, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 5. Let's consider the case: # * Mass ratio q=8, chi1= (0, 0, 0.5); chi2=(0, 0, 0.5), radial separation r=11 pub_result = 0.345755e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0345584951081129 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 8.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0.5, nchi2x = +0., nchi2y = +0., nchi2z = +0.5) compare_pub_NPN(""" Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. """,pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) ###Output ################################################## Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. ################################################## 0.0345755 <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) 0.0345503689803291 <- Result from NRPyPN Relative error between NRPyPN & published: 0.0726844721578464% <--- EXCELLENT AGREEMENT! 0.0345584951081129 <- Result from NRPyPN, with chi1z sign error in a_5 expression. ###Markdown Part 4: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[PN-p_t.pdf](PN-p_t.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) ###Code import os,sys # Standard Python modules for multiplatform OS-level functions import cmdline_helperNRPyPN as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("PN-p_t",location_of_template_file=os.path.join("..")) ###Output Created PN-p_t.tex, and compiled LaTeX file to PDF file PN-p_t.pdf ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); $p_t$, the tangential component of the momentum vector, up to and including 3.5 post-Newtonian order This notebook constructs the tangential component of the momentum vector**Notebook Status:** Validated **Validation Notes:** All expressions in this notebook were transcribed twice by hand on separate occasions, and expressions were corrected as needed to ensure consistency with published work. Published work was cross-validated and typo(s) in published work were corrected. In addition, this tutorial notebook has been confirmed to be self-consistent with its corresponding NRPy+ module, as documented [below](code_validation). **Additional validation tests may have been performed, but are as yet, undocumented.** Author: Zach Etienne This notebook exists as the following Python module:1. [PN_p_t.py](../../edit/NRPyPN/PN_p_t.py) This notebook & corresponding Python module depend on the following NRPy+/NRPyPN Python modules:1. [indexedexp.py](../../edit/indexedexp.py): [**documentation+tutorial**](../Tutorial-Indexed_Expressions.ipynb)1. [NRPyPN_shortcuts.py](../../edit/NRPyPN/NRPyPN_shortcuts.py): [**documentation**](NRPyPN_shortcuts.ipynb) Table of Contents$$\label{toc}$$1. Part 1: [$p_t$](p_t), up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)1. Part 2: [Validation against second transcription and corresponding Python module](code_validation)1. Part 3: [Validation against trusted numerical values](code_validationv2) (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036))1. Part 4: [LaTeX PDF output](latex_pdf_output): $\LaTeX$ PDF Output Part 1: $p_t$, up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036) \[Back to [top](toc)\]$$\label{p_t}$$ As described in the [nonspinning Hamiltonian notebook](PN-Hamiltonian-Nonspinning.ipynb), the basic physical system assumes two point particles of mass $m_1$ and $m_2$ with corresponding momentum vectors $\mathbf{P}_1$ and $\mathbf{P}_2$, and displacement vectors $\mathbf{X}_1$ and $\mathbf{X}_2$ with respect to the center of mass. Here we also consider the spin vectors of each point mass $\mathbf{S}_1$ and $\mathbf{S}_2$, respectively.To reduce possibility of copying error, the equation for $p_t$ is taken directly from the arXiv LaTeX source code of Eq A2 in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036), and only mildly formatted to (1) improve presentation in Jupyter notebooks, (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks, and (3) to correct any errors. In particular, the boxed negative sign at 2.5PN order ($a_5$ below) was missing in the original equation. We will later show that this negative sign is necessary for consistency with other expressions in the same paper, as well as with the expression up to 3PN order in [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872):$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\\a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} Let's divide and conquer, by tackling the coefficients one at a time:\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\end{align} ###Code # Step 0: Add NRPy's directory to the path # https://stackoverflow.com/questions/16780014/import-file-from-parent-directory import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import indexedexpNRPyPN as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support from NRPyPN_shortcuts import div # NRPyPN: shortcuts for e.g., vector operations # Step 1: Construct terms a_2, a_3, and a_4, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 def p_t__a_2_thru_a_4(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2,a_3,a_4 a_2 = 2 a_3 = (-3*(4*q**2+3*q)*chi2z/(4*(q+1)**2) - 3*(3*q+4)*chi1z/(4*(q+1)**2)) a_4 = (-3*q**2*chi2x**2/(2*(q+1)**2) +3*q**2*chi2y**2/(4*(q+1)**2) +3*q**2*chi2z**2/(4*(q+1)**2) +(+42*q**2 + 41*q + 42)/(16*(q+1)**2) -3*chi1x**2/(2*(q+1)**2) -3*q*chi1x*chi2x/(q+1)**2 +3*chi1y**2/(4*(q+1)**2) +3*q*chi1y*chi2y/(2*(q+1)**2) +3*chi1z**2/(4*(q+1)**2) +3*q*chi1z*chi2z/(2*(q+1)**2)) # Second version, for validation purposes only. def p_t__a_2_thru_a_4v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2v2,a_3v2,a_4v2 # Validated against HLNZ2017 version a_2v2 = 2 # Validated against HLNZ2017 version a_3v2 = (-(3*(4*q**2+3*q)*chi2z)/(4*(q+1)**2)-(3*(3*q+4)*chi1z)/(4*(q+1)**2)) # Validated against HLNZ2017 version a_4v2 = -(3*q**2*chi2x**2)/(2*(q+1)**2)+(3*q**2*chi2y**2)/(4*(q+1)**2)+(3*q**2*chi2z**2)/(4*(q+1)**2)+(42*q**2+41*q+42)/(16*(q+1)**2)-(3*chi1x**2)/(2*(q+1)**2)-(3*q*chi1x*chi2x)/((q+1)**2)+(3*chi1y**2)/(4*(q+1)**2)+(3*q*chi1y*chi2y)/(2*(q+1)**2)+(3*chi1z**2)/(4*(q+1)**2)+(3*q*chi1z*chi2z)/(2*(q+1)**2) ###Output _____no_output_____ ###Markdown Next, $a_5$ and $a_6$:\begin{align}a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\\end{align} ###Code # Construct terms a_5 and a_6, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 # and a sign error was corrected in the a_5 # expression. def p_t__a_5_thru_a_6(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5,a_6 a_5 = (SignFix*(13*q**3 + 60*q**2 + 116*q + 72)*chi1z/(16*(q+1)**4) +(-72*q**4 - 116*q**3 - 60*q**2 - 13*q)*chi2z/(16*(q+1)**4)) a_6 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q +512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +( -64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*sp.pi**2*q**3 - 2636*q**3 + 326*sp.pi**2*q**2 - 6128*q**2 + 163*sp.pi**2*q-2636*q+480) /(128*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_5_thru_a_6v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. pi = sp.pi global a_5v2,a_6v2 # Validated (separately) against HLNZ2017, as well as row 3 of Table V in RHP2018 a_5v2 = SignFix*((13*q**3+60*q**2+116*q+72)*chi1z)/(16*(q+1)**4)+((-72*q**4-116*q**3-60*q**2-13*q)*chi2z)/(16*(q+1)**4) # Validated (separately) against HLNZ2017 version a_6v2 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q + 512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +(- 64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*pi**2*q**3 - 2636*q**3 + 326*pi**2*q**2 - 6128*q**2 + 163*pi**2*q - 2636*q + 480) /(128*(q+1)**4)) ###Output _____no_output_____ ###Markdown Next we compare the expression for $a_5$ with Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), as additional validation that there at least is a sign inconsistency:To reduce possibility of copying error, the following equation for $a_5$ is taken directly from the arXiv LaTeX source code of Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), and only mildly formatted to (1) improve presentation in Jupyter notebooks and (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks.**Important: Note that [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872) adopts notation such that particle labels are interchanged: $1\leftrightarrow 2$, with respect to [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)**\begin{align}a_5 &= + \left( -\frac{1}{16}\,{\frac {q \left( 72\,{q}^{3}+116\,{q}^{2}+60\,q+13 \right) {\chi_{1z}}}{ \left( 1+q \right) ^{4}}}-\frac{1}{16}\,{\frac { \left( 13\,{q}^{3}+60\,{q}^{2}+116\,q+72 \right) {\chi_{2z}}}{ \left( 1+q \right) ^{4}}} \right)\\\end{align} ###Code # Third version, for addtional validation. def p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5_HLNZ2017 a_5_HLNZ2017 = (-div(1,16)*(q*(72*q**3 + 116*q**2 + 60*q + 13)*chi1z/(1+q)**4) -div(1,16)*( (13*q**3 + 60*q**2 +116*q + 72)*chi2z/(1+q)**4)) ###Output _____no_output_____ ###Markdown Finally, we validate that all 3 expressions for $a_5$ agree. (At the bottom, we confirm that all v2 expressions for $a_i$ match.) ###Code from NRPyPN_shortcuts import m1,m2, chi1U,chi2U # Import needed input variables p_t__a_5_thru_a_6( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) p_t__a_5_thru_a_6v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) # Again, the particle labels are interchanged in Healy, Lousto, Nakano, and Zlochower (2017): p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi2U[0],chi2U[1],chi2U[2], chi1U[0],chi1U[1],chi1U[2]) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) if sp.simplify(a_5 - a_5v2) != 0: error("a_5v2") if sp.simplify(a_5 - a_5_HLNZ2017) != 0: error("a_5_HLNZ2017") ###Output _____no_output_____ ###Markdown Finally $a_7$:\begin{align}a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} ###Code # Construct term a_7, from Eq A2 of # Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 def p_t__a_7(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7 a_7 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3 /(8*(q+1)**4) +chi1x*(+15*(2*q+1)*q**2*chi2x*chi2z/(4*(q+1)**4) +15*(1*q+2)*q *chi2x*chi1z/(4*(q+1)**4)) +chi1y*(+15*q**2*chi2y*chi1z/(4*(q+1)**4) +15*q**2*chi2y*chi2z/(4*(q+1)**4)) +chi1z*(+15*q**2*(2*q+3)*chi2x**2/(4*(q+1)**4) -15*q**2*( q+2)*chi2y**2/(4*(q+1)**4) -15*q**2 *chi2z**2/(4*(q+1)**3) -(103*q**5 + 145*q**4 - 27*q**3 + 252*q**2 + 670*q + 348)/(32*(q+1)**6)) -(+348*q**5 + 670*q**4 + 252*q**3 - 27*q**2 + 145*q + 103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) +15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) -15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) -5*(q+4)*chi1z**3/(8*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_7v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7v2 a_7v2 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3/(8*(q+1)**4) +chi1x*(+(15*(2*q+1)*q**2*chi2x*chi2z)/(4*(q+1)**4) +(15*( q+2)*q *chi2x*chi1z)/(4*(q+1)**4)) +chi1y*(+(15*q**2*chi2y*chi1z)/(4*(q+1)**4) +(15*q**2*chi2y*chi2z)/(4*(q+1)**4)) +chi1z*(+(15*q**2*(2*q+3)*chi2x**2)/(4*(q+1)**4) -(15*q**2*( q+2)*chi2y**2)/(4*(q+1)**4) -(15*q**2* chi2z**2)/(4*(q+1)**3) -(103*q**5+145*q**4-27*q**3+252*q**2+670*q+348)/(32*(q+1)**6)) -(348*q**5+670*q**4+252*q**3-27*q**2+145*q+103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) + 15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) - 15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) - 5*(q+4)*chi1z**3/(8*(q+1)**4)) ###Output _____no_output_____ ###Markdown Putting it all together, recall that$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where $k/2$ is the post-Newtonian order. ###Code # Finally, sum the expressions for a_k to construct p_t as prescribed: # p_t = q/(sqrt(r)*(1+q)^2) (1 + \sum_{k=2}^7 (a_k/r^{k/2})) def f_p_t(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2 a[3] = a_3 a[4] = a_4 p_t__a_5_thru_a_6(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5 a[6] = a_6 p_t__a_7( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7 global p_t p_t = 1 # Term prior to the sum in parentheses for k in range(8): p_t += a[k]/r**div(k,2) p_t *= q / (1+q)**2 * 1/r**div(1,2) # Second version, for validation purposes only. def f_p_tv2(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2v2 a[3] = a_3v2 a[4] = a_4v2 p_t__a_5_thru_a_6v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5v2 a[6] = a_6v2 p_t__a_7v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7v2 global p_tv2 p_tv2 = 1 # Term prior to the sum in parentheses for k in range(8): p_tv2 += a[k]/r**div(k,2) p_tv2 *= q / (1+q)**2 * 1/r**div(1,2) ###Output _____no_output_____ ###Markdown Part 2: Validation against second transcription and corresponding Python module \[Back to [top](toc)\]$$\label{code_validation}$$ As a code validation check, we verify agreement between * the SymPy expressions transcribed from the cited published work on two separate occasions, and* the SymPy expressions generated in this notebook, and the corresponding Python module. ###Code from NRPyPN_shortcuts import q, num_eval # Import needed input variable & numerical evaluation routine f_p_t(m1,m2, chi1U,chi2U, q) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) # Validation against second transcription of the expressions: f_p_tv2(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - p_tv2) != 0: error("p_tv2") # Validation against corresponding Python module: import PN_p_t as pt pt.f_p_t(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - pt.p_t) != 0: error("pt.p_t") print("ALL TESTS PASS") ###Output ALL TESTS PASS ###Markdown Part 3: Validation against trusted numerical values (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)) \[Back to [top](toc)\]$$\label{code_validationv2}$$ ###Code # Useful function for comparing published & NRPyPN results def compare_pub_NPN(desc, pub,NPN,NPN_with_a5_chi1z_sign_error): print("##################################################") print(" "+desc) print("##################################################") print(str(pub) + " <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018)") print(str(NPN) + " <- Result from NRPyPN") relerror = abs(pub-NPN)/pub resultstring = "Relative error between NRPyPN & published: "+str(relerror*100)+"%" if relerror > 1e-3: resultstring += " <--- NOT GOOD! (see explanation below)" else: resultstring += " <--- EXCELLENT AGREEMENT!" print(resultstring+"\n") print(str(NPN_with_a5_chi1z_sign_error) + " <- Result from NRPyPN, with chi1z sign error in a_5 expression.") # 1. Let's consider the case: # * Mass ratio q=1, chi1=chi2=(0,0,0), radial separation r=12 pub_result = 0.850941e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0850940927209620 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 1.0, # must be >= 1 nr = 12.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = +0., nchi2y = +0., nchi2z = +0.) compare_pub_NPN("Case: q=1, nonspinning, initial separation 12", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 2. Let's consider the case: # * Mass ratio q=1.5, chi1= (0,0,-0.6); chi2=(0,0,0.6), radial separation r=10.8 pub_result = 0.868557e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0867002374951143 NPN_result = num_eval(p_t, qmassratio = 1.5, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.6, nchi2x = +0., nchi2y = +0., nchi2z = +0.6) compare_pub_NPN("Case: q=1.5, chi1z=-0.6, chi2z=0.6, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 3. Let's consider the case: # * Mass ratio q=4, chi1= (0,0,-0.8); chi2=(0,0,0.8), radial separation r=11 pub_result = 0.559207e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0557629777874552 NPN_result = num_eval(p_t, qmassratio = 4.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.8, nchi2x = +0., nchi2y = +0., nchi2z = +0.8) compare_pub_NPN("Case: q=4.0, chi1z=-0.8, chi2z=0.8, initial separation 11.0", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) print("0.0558369 <- Second iteration value in pub result. Note that NRPyPN value is *closer* to this value.") # 4. Let's consider the case: # * Mass ratio q=2, chi1= (0,0,0); chi2=(−0.3535, 0.3535, 0.5), radial separation r=10.8 pub_result = 0.7935e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0793500403866190 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 2.0, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = -0.3535, nchi2y = +0.3535, nchi2z = +0.5) compare_pub_NPN("Case: q=2.0, chi2x=-0.3535, chi2y=+0.3535, chi2z=+0.5, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 5. Let's consider the case: # * Mass ratio q=8, chi1= (0, 0, 0.5); chi2=(0, 0, 0.5), radial separation r=11 pub_result = 0.345755e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0345584951081129 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 8.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0.5, nchi2x = +0., nchi2y = +0., nchi2z = +0.5) compare_pub_NPN(""" Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. """,pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) ###Output ################################################## Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. ################################################## 0.0345755 <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) 0.0345503689803291 <- Result from NRPyPN Relative error between NRPyPN & published: 0.0726844721578464% <--- EXCELLENT AGREEMENT! 0.0345584951081129 <- Result from NRPyPN, with chi1z sign error in a_5 expression. ###Markdown Part 4: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[PN-p_t.pdf](PN-p_t.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) ###Code import os,sys # Standard Python modules for multiplatform OS-level functions import cmdline_helperNRPyPN as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("PN-p_t",location_of_template_file=os.path.join("..")) ###Output Created PN-p_t.tex, and compiled LaTeX file to PDF file PN-p_t.pdf ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); $p_t$, the tangential component of the momentum vector, up to and including 3.5 post-Newtonian order This notebook constructs the tangential component of the momentum vector**Notebook Status:** Validated **Validation Notes:** All expressions in this notebook were transcribed twice by hand on separate occasions, and expressions were corrected as needed to ensure consistency with published work. Published work was cross-validated and typo(s) in published work were corrected. In addition, this tutorial notebook has been confirmed to be self-consistent with its corresponding NRPy+ module, as documented [below](code_validation). **Additional validation tests may have been performed, but are as yet, undocumented.** Author: Zach Etienne This notebook exists as the following Python module:1. [PN_p_t.py](../../edit/NRPyPN/PN_p_t.py) This notebook & corresponding Python module depend on the following NRPy+/NRPyPN Python modules:1. [indexedexp.py](../../edit/indexedexp.py): [**documentation+tutorial**](../Tutorial-Indexed_Expressions.ipynb)1. [NRPyPN_shortcuts.py](../../edit/NRPyPN/NRPyPN_shortcuts.py): [**documentation**](NRPyPN_shortcuts.ipynb) Table of Contents$$\label{toc}$$1. Part 1: [$p_t$](p_t), up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)1. Part 2: [Validation against second transcription and corresponding Python module](code_validation)1. Part 3: [Validation against trusted numerical values](code_validationv2) (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036))1. Part 4: [LaTeX PDF output](latex_pdf_output): $\LaTeX$ PDF Output Part 1: $p_t$, up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036) \[Back to [top](toc)\]$$\label{p_t}$$ As described in the [nonspinning Hamiltonian notebook](PN-Hamiltonian-Nonspinning.ipynb), the basic physical system assumes two point particles of mass $m_1$ and $m_2$ with corresponding momentum vectors $\mathbf{P}_1$ and $\mathbf{P}_2$, and displacement vectors $\mathbf{X}_1$ and $\mathbf{X}_2$ with respect to the center of mass. Here we also consider the spin vectors of each point mass $\mathbf{S}_1$ and $\mathbf{S}_2$, respectively.To reduce possibility of copying error, the equation for $p_t$ is taken directly from the arXiv LaTeX source code of Eq A2 in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036), and only mildly formatted to (1) improve presentation in Jupyter notebooks, (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks, and (3) to correct any errors. In particular, the boxed negative sign at 2.5PN order ($a_5$ below) was missing in the original equation. We will later show that this negative sign is necessary for consistency with other expressions in the same paper, as well as with the expression up to 3PN order in [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872):$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\\a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} Let's divide and conquer, by tackling the coefficients one at a time:\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\end{align} ###Code # Step 0: Add NRPy's directory to the path # https://stackoverflow.com/questions/16780014/import-file-from-parent-directory import os,sys # Standard Python modules for multiplatform OS-level functions nrpy_dir_path = os.path.join("..") if nrpy_dir_path not in sys.path: sys.path.append(nrpy_dir_path) import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support from NRPyPN_shortcuts import div # NRPyPN: shortcuts for e.g., vector operations # Step 1: Construct terms a_2, a_3, and a_4, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 def p_t__a_2_thru_a_4(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2,a_3,a_4 a_2 = 2 a_3 = (-3*(4*q**2+3*q)*chi2z/(4*(q+1)**2) - 3*(3*q+4)*chi1z/(4*(q+1)**2)) a_4 = (-3*q**2*chi2x**2/(2*(q+1)**2) +3*q**2*chi2y**2/(4*(q+1)**2) +3*q**2*chi2z**2/(4*(q+1)**2) +(+42*q**2 + 41*q + 42)/(16*(q+1)**2) -3*chi1x**2/(2*(q+1)**2) -3*q*chi1x*chi2x/(q+1)**2 +3*chi1y**2/(4*(q+1)**2) +3*q*chi1y*chi2y/(2*(q+1)**2) +3*chi1z**2/(4*(q+1)**2) +3*q*chi1z*chi2z/(2*(q+1)**2)) # Second version, for validation purposes only. def p_t__a_2_thru_a_4v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2v2,a_3v2,a_4v2 # Validated against HLNZ2017 version a_2v2 = 2 # Validated against HLNZ2017 version a_3v2 = (-(3*(4*q**2+3*q)*chi2z)/(4*(q+1)**2)-(3*(3*q+4)*chi1z)/(4*(q+1)**2)) # Validated against HLNZ2017 version a_4v2 = -(3*q**2*chi2x**2)/(2*(q+1)**2)+(3*q**2*chi2y**2)/(4*(q+1)**2)+(3*q**2*chi2z**2)/(4*(q+1)**2)+(42*q**2+41*q+42)/(16*(q+1)**2)-(3*chi1x**2)/(2*(q+1)**2)-(3*q*chi1x*chi2x)/((q+1)**2)+(3*chi1y**2)/(4*(q+1)**2)+(3*q*chi1y*chi2y)/(2*(q+1)**2)+(3*chi1z**2)/(4*(q+1)**2)+(3*q*chi1z*chi2z)/(2*(q+1)**2) ###Output _____no_output_____ ###Markdown Next, $a_5$ and $a_6$:\begin{align}a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\\end{align} ###Code # Construct terms a_5 and a_6, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 # and a sign error was corrected in the a_5 # expression. def p_t__a_5_thru_a_6(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5,a_6 a_5 = (SignFix*(13*q**3 + 60*q**2 + 116*q + 72)*chi1z/(16*(q+1)**4) +(-72*q**4 - 116*q**3 - 60*q**2 - 13*q)*chi2z/(16*(q+1)**4)) a_6 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q +512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +( -64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*sp.pi**2*q**3 - 2636*q**3 + 326*sp.pi**2*q**2 - 6128*q**2 + 163*sp.pi**2*q-2636*q+480) /(128*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_5_thru_a_6v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. pi = sp.pi global a_5v2,a_6v2 # Validated (separately) against HLNZ2017, as well as row 3 of Table V in RHP2018 a_5v2 = SignFix*((13*q**3+60*q**2+116*q+72)*chi1z)/(16*(q+1)**4)+((-72*q**4-116*q**3-60*q**2-13*q)*chi2z)/(16*(q+1)**4) # Validated (separately) against HLNZ2017 version a_6v2 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q + 512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +(- 64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*pi**2*q**3 - 2636*q**3 + 326*pi**2*q**2 - 6128*q**2 + 163*pi**2*q - 2636*q + 480) /(128*(q+1)**4)) ###Output _____no_output_____ ###Markdown Next we compare the expression for $a_5$ with Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), as additional validation that there at least is a sign inconsistency:To reduce possibility of copying error, the following equation for $a_5$ is taken directly from the arXiv LaTeX source code of Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), and only mildly formatted to (1) improve presentation in Jupyter notebooks and (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks.**Important: Note that [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872) adopts notation such that particle labels are interchanged: $1\leftrightarrow 2$, with respect to [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)**\begin{align}a_5 &= + \left( -\frac{1}{16}\,{\frac {q \left( 72\,{q}^{3}+116\,{q}^{2}+60\,q+13 \right) {\chi_{1z}}}{ \left( 1+q \right) ^{4}}}-\frac{1}{16}\,{\frac { \left( 13\,{q}^{3}+60\,{q}^{2}+116\,q+72 \right) {\chi_{2z}}}{ \left( 1+q \right) ^{4}}} \right)\\\end{align} ###Code # Third version, for addtional validation. def p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5_HLNZ2017 a_5_HLNZ2017 = (-div(1,16)*(q*(72*q**3 + 116*q**2 + 60*q + 13)*chi1z/(1+q)**4) -div(1,16)*( (13*q**3 + 60*q**2 +116*q + 72)*chi2z/(1+q)**4)) ###Output _____no_output_____ ###Markdown Finally, we validate that all 3 expressions for $a_5$ agree. (At the bottom, we confirm that all v2 expressions for $a_i$ match.) ###Code from NRPyPN_shortcuts import m1,m2, chi1U,chi2U # Import needed input variables p_t__a_5_thru_a_6( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) p_t__a_5_thru_a_6v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) # Again, the particle labels are interchanged in Healy, Lousto, Nakano, and Zlochower (2017): p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi2U[0],chi2U[1],chi2U[2], chi1U[0],chi1U[1],chi1U[2]) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) if sp.simplify(a_5 - a_5v2) != 0: error("a_5v2") if sp.simplify(a_5 - a_5_HLNZ2017) != 0: error("a_5_HLNZ2017") ###Output _____no_output_____ ###Markdown Finally $a_7$:\begin{align}a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} ###Code # Construct term a_7, from Eq A2 of # Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 def p_t__a_7(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7 a_7 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3 /(8*(q+1)**4) +chi1x*(+15*(2*q+1)*q**2*chi2x*chi2z/(4*(q+1)**4) +15*(1*q+2)*q *chi2x*chi1z/(4*(q+1)**4)) +chi1y*(+15*q**2*chi2y*chi1z/(4*(q+1)**4) +15*q**2*chi2y*chi2z/(4*(q+1)**4)) +chi1z*(+15*q**2*(2*q+3)*chi2x**2/(4*(q+1)**4) -15*q**2*( q+2)*chi2y**2/(4*(q+1)**4) -15*q**2 *chi2z**2/(4*(q+1)**3) -(103*q**5 + 145*q**4 - 27*q**3 + 252*q**2 + 670*q + 348)/(32*(q+1)**6)) -(+348*q**5 + 670*q**4 + 252*q**3 - 27*q**2 + 145*q + 103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) +15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) -15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) -5*(q+4)*chi1z**3/(8*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_7v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7v2 a_7v2 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3/(8*(q+1)**4) +chi1x*(+(15*(2*q+1)*q**2*chi2x*chi2z)/(4*(q+1)**4) +(15*( q+2)*q *chi2x*chi1z)/(4*(q+1)**4)) +chi1y*(+(15*q**2*chi2y*chi1z)/(4*(q+1)**4) +(15*q**2*chi2y*chi2z)/(4*(q+1)**4)) +chi1z*(+(15*q**2*(2*q+3)*chi2x**2)/(4*(q+1)**4) -(15*q**2*( q+2)*chi2y**2)/(4*(q+1)**4) -(15*q**2* chi2z**2)/(4*(q+1)**3) -(103*q**5+145*q**4-27*q**3+252*q**2+670*q+348)/(32*(q+1)**6)) -(348*q**5+670*q**4+252*q**3-27*q**2+145*q+103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) + 15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) - 15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) - 5*(q+4)*chi1z**3/(8*(q+1)**4)) ###Output _____no_output_____ ###Markdown Putting it all together, recall that$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where $k/2$ is the post-Newtonian order. ###Code # Finally, sum the expressions for a_k to construct p_t as prescribed: # p_t = q/(sqrt(r)*(1+q)^2) (1 + \sum_{k=2}^7 (a_k/r^{k/2})) def f_p_t(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2 a[3] = a_3 a[4] = a_4 p_t__a_5_thru_a_6(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5 a[6] = a_6 p_t__a_7( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7 global p_t p_t = 1 # Term prior to the sum in parentheses for k in range(8): p_t += a[k]/r**div(k,2) p_t *= q / (1+q)**2 * 1/r**div(1,2) # Second version, for validation purposes only. def f_p_tv2(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2v2 a[3] = a_3v2 a[4] = a_4v2 p_t__a_5_thru_a_6v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5v2 a[6] = a_6v2 p_t__a_7v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7v2 global p_tv2 p_tv2 = 1 # Term prior to the sum in parentheses for k in range(8): p_tv2 += a[k]/r**div(k,2) p_tv2 *= q / (1+q)**2 * 1/r**div(1,2) ###Output _____no_output_____ ###Markdown Part 2: Validation against second transcription and corresponding Python module \[Back to [top](toc)\]$$\label{code_validation}$$ As a code validation check, we verify agreement between * the SymPy expressions transcribed from the cited published work on two separate occasions, and* the SymPy expressions generated in this notebook, and the corresponding Python module. ###Code from NRPyPN_shortcuts import q, num_eval # Import needed input variable & numerical evaluation routine f_p_t(m1,m2, chi1U,chi2U, q) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) # Validation against second transcription of the expressions: f_p_tv2(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - p_tv2) != 0: error("p_tv2") # Validation against corresponding Python module: import PN_p_t as pt pt.f_p_t(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - pt.p_t) != 0: error("pt.p_t") print("ALL TESTS PASS") ###Output ALL TESTS PASS ###Markdown Part 3: Validation against trusted numerical values (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)) \[Back to [top](toc)\]$$\label{code_validationv2}$$ ###Code # Useful function for comparing published & NRPyPN results def compare_pub_NPN(desc, pub,NPN,NPN_with_a5_chi1z_sign_error): print("##################################################") print(" "+desc) print("##################################################") print(str(pub) + " <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018)") print(str(NPN) + " <- Result from NRPyPN") relerror = abs(pub-NPN)/pub resultstring = "Relative error between NRPyPN & published: "+str(relerror*100)+"%" if relerror > 1e-3: resultstring += " <--- NOT GOOD! (see explanation below)" else: resultstring += " <--- EXCELLENT AGREEMENT!" print(resultstring+"\n") print(str(NPN_with_a5_chi1z_sign_error) + " <- Result from NRPyPN, with chi1z sign error in a_5 expression.") # 1. Let's consider the case: # * Mass ratio q=1, chi1=chi2=(0,0,0), radial separation r=12 pub_result = 0.850941e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0850940927209620 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 1.0, # must be >= 1 nr = 12.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = +0., nchi2y = +0., nchi2z = +0.) compare_pub_NPN("Case: q=1, nonspinning, initial separation 12", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 2. Let's consider the case: # * Mass ratio q=1.5, chi1= (0,0,-0.6); chi2=(0,0,0.6), radial separation r=10.8 pub_result = 0.868557e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0867002374951143 NPN_result = num_eval(p_t, qmassratio = 1.5, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.6, nchi2x = +0., nchi2y = +0., nchi2z = +0.6) compare_pub_NPN("Case: q=1.5, chi1z=-0.6, chi2z=0.6, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 3. Let's consider the case: # * Mass ratio q=4, chi1= (0,0,-0.8); chi2=(0,0,0.8), radial separation r=11 pub_result = 0.559207e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0557629777874552 NPN_result = num_eval(p_t, qmassratio = 4.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.8, nchi2x = +0., nchi2y = +0., nchi2z = +0.8) compare_pub_NPN("Case: q=4.0, chi1z=-0.8, chi2z=0.8, initial separation 11.0", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) print("0.0558369 <- Second iteration value in pub result. Note that NRPyPN value is *closer* to this value.") # 4. Let's consider the case: # * Mass ratio q=2, chi1= (0,0,0); chi2=(−0.3535, 0.3535, 0.5), radial separation r=10.8 pub_result = 0.7935e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0793500403866190 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 2.0, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = -0.3535, nchi2y = +0.3535, nchi2z = +0.5) compare_pub_NPN("Case: q=2.0, chi2x=-0.3535, chi2y=+0.3535, chi2z=+0.5, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 5. Let's consider the case: # * Mass ratio q=8, chi1= (0, 0, 0.5); chi2=(0, 0, 0.5), radial separation r=11 pub_result = 0.345755e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0345584951081129 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 8.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0.5, nchi2x = +0., nchi2y = +0., nchi2z = +0.5) compare_pub_NPN(""" Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. """,pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) ###Output ################################################## Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. ################################################## 0.0345755 <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) 0.0345503689803291 <- Result from NRPyPN Relative error between NRPyPN & published: 0.0726844721578464% <--- EXCELLENT AGREEMENT! 0.0345584951081129 <- Result from NRPyPN, with chi1z sign error in a_5 expression. ###Markdown Part 4: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[PN-p_t.pdf](PN-p_t.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) ###Code import os,sys # Standard Python modules for multiplatform OS-level functions nrpy_dir_path = os.path.join("..") if nrpy_dir_path not in sys.path: sys.path.append(nrpy_dir_path) import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("PN-p_t",location_of_template_file=os.path.join("..")) ###Output Created PN-p_t.tex, and compiled LaTeX file to PDF file PN-p_t.pdf ###Markdown window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-59152712-8'); $p_t$, the tangential component of the momentum vector, up to and including 3.5 post-Newtonian order This notebook constructs the tangential component of the momentum vector**Notebook Status:** Validated **Validation Notes:** All expressions in this notebook were transcribed twice by hand on separate occasions, and expressions were corrected as needed to ensure consistency with published work. Published work was cross-validated and typo(s) in published work were corrected. In addition, this tutorial notebook has been confirmed to be self-consistent with its corresponding NRPy+ module, as documented [below](code_validation). **Additional validation tests may have been performed, but are as yet, undocumented.** Author: Zach Etienne This notebook exists as the following Python module:1. [PN_p_t.py](../../edit/NRPyPN/PN_p_t.py) This notebook & corresponding Python module depend on the following NRPy+/NRPyPN Python modules:1. [indexedexp.py](../../edit/indexedexp.py): [**documentation+tutorial**](../Tutorial-Indexed_Expressions.ipynb)1. [NRPyPN_shortcuts.py](../../edit/NRPyPN/NRPyPN_shortcuts.py): [**documentation**](NRPyPN_shortcuts.ipynb) Table of Contents$$\label{toc}$$1. Part 1: [$p_t$](p_t), up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)1. Part 2: [Validation against second transcription and corresponding Python module](code_validation)1. Part 3: [Validation against trusted numerical values](code_validationv2) (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036))1. Part 4: [LaTeX PDF output](latex_pdf_output): $\LaTeX$ PDF Output Part 1: $p_t$, up to and including 3.5PN order, as derived in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036) \[Back to [top](toc)\]$$\label{p_t}$$ As described in the [nonspinning Hamiltonian notebook](PN-Hamiltonian-Nonspinning.ipynb), the basic physical system assumes two point particles of mass $m_1$ and $m_2$ with corresponding momentum vectors $\mathbf{P}_1$ and $\mathbf{P}_2$, and displacement vectors $\mathbf{X}_1$ and $\mathbf{X}_2$ with respect to the center of mass. Here we also consider the spin vectors of each point mass $\mathbf{S}_1$ and $\mathbf{S}_2$, respectively.To reduce possibility of copying error, the equation for $p_t$ is taken directly from the arXiv LaTeX source code of Eq A2 in [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036), and only mildly formatted to (1) improve presentation in Jupyter notebooks, (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks, and (3) to correct any errors. In particular, the boxed negative sign at 2.5PN order ($a_5$ below) was missing in the original equation. We will later show that this negative sign is necessary for consistency with other expressions in the same paper, as well as with the expression up to 3PN order in [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872):$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\\a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} Let's divide and conquer, by tackling the coefficients one at a time:\begin{align}a_2 &= 2\\a_3 &= \left[-\frac{3 \left(4 q^2+3 q\right) \chi _{2z}}{4 (q+1)^2}-\frac{3 (3 q+4) \chi _{1z}}{4 (q+1)^2}\right]\\a_4 &= \left[ -\frac{3 q^2 \chi _{2x}^2}{2 (q+1)^2} +\frac{3 q^2 \chi _{2y}^2}{4 (q+1)^2}+\frac{3 q^2 \chi _{2z}^2}{4 (q+1)^2} +\frac{42 q^2+41 q+42}{16 (q+1)^2}-\frac{3 \chi _{1x}^2}{2 (q+1)^2} \right.\\&\quad\quad \left. -\frac{3 q \chi _{1x} \chi _{2x}}{(q+1)^2}+\frac{3 \chi _{1y}^2}{4 (q+1)^2}+\frac{3 q \chi _{1y}\chi _{2y}}{2 (q+1)^2}+\frac{3 \chi _{1z}^2}{4 (q+1)^2}+\frac{3 q \chi _{1z} \chi _{2z}}{2 (q+1)^2}\right]\end{align} ###Code # Step 0: Add NRPy's directory to the path # https://stackoverflow.com/questions/16780014/import-file-from-parent-directory import os,sys # Standard Python modules for multiplatform OS-level functions nrpy_dir_path = os.path.join("..") if nrpy_dir_path not in sys.path: sys.path.append(nrpy_dir_path) import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support from NRPyPN_shortcuts import div # NRPyPN: shortcuts for e.g., vector operations # Step 1: Construct terms a_2, a_3, and a_4, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 def p_t__a_2_thru_a_4(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2,a_3,a_4 a_2 = 2 a_3 = (-3*(4*q**2+3*q)*chi2z/(4*(q+1)**2) - 3*(3*q+4)*chi1z/(4*(q+1)**2)) a_4 = (-3*q**2*chi2x**2/(2*(q+1)**2) +3*q**2*chi2y**2/(4*(q+1)**2) +3*q**2*chi2z**2/(4*(q+1)**2) +(+42*q**2 + 41*q + 42)/(16*(q+1)**2) -3*chi1x**2/(2*(q+1)**2) -3*q*chi1x*chi2x/(q+1)**2 +3*chi1y**2/(4*(q+1)**2) +3*q*chi1y*chi2y/(2*(q+1)**2) +3*chi1z**2/(4*(q+1)**2) +3*q*chi1z*chi2z/(2*(q+1)**2)) # Second version, for validation purposes only. def p_t__a_2_thru_a_4v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_2v2,a_3v2,a_4v2 # Validated against HLNZ2017 version a_2v2 = 2 # Validated against HLNZ2017 version a_3v2 = (-(3*(4*q**2+3*q)*chi2z)/(4*(q+1)**2)-(3*(3*q+4)*chi1z)/(4*(q+1)**2)) # Validated against HLNZ2017 version a_4v2 = -(3*q**2*chi2x**2)/(2*(q+1)**2)+(3*q**2*chi2y**2)/(4*(q+1)**2)+(3*q**2*chi2z**2)/(4*(q+1)**2)+(42*q**2+41*q+42)/(16*(q+1)**2)-(3*chi1x**2)/(2*(q+1)**2)-(3*q*chi1x*chi2x)/((q+1)**2)+(3*chi1y**2)/(4*(q+1)**2)+(3*q*chi1y*chi2y)/(2*(q+1)**2)+(3*chi1z**2)/(4*(q+1)**2)+(3*q*chi1z*chi2z)/(2*(q+1)**2) ###Output _____no_output_____ ###Markdown Next, $a_5$ and $a_6$:\begin{align}a_5 &= \left[ \boxed{-1} \frac{\left(13 q^3+60 q^2+116 q+72\right) \chi _{1z}}{16 (q+1)^4}+\frac{\left(-72 q^4-116 q^3-60 q^2-13 q\right) \chi _{2z}}{16 (q+1)^4} \right]\\a_6 &= \left[\frac{\left(472 q^2-640\right) \chi _{1x}^2}{128 (q+1)^4} + \frac{\left(-512 q^2-640 q-64\right) \chi _{1y}^2}{128 (q+1)^4}+\frac{\left(-108 q^2+224 q+512\right) \chi _{1z}^2}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(472 q^2-640 q^4\right) \chi _{2x}^2}{128 (q+1)^4}+\frac{\left(192 q^3+560 q^2+192 q\right) \chi _{1x} \chi _{2x}}{128 (q+1)^4} +\frac{\left(-864 q^3-1856 q^2-864 q\right) \chi _{1y} \chi _{2y}}{128 (q+1)^4}\right.\\&\quad\quad \left.+\frac{\left(480 q^3+1064 q^2+480 q\right) \chi _{1z} \chi _{2z}}{128 (q+1)^4}+\frac{\left(-64 q^4-640 q^3-512 q^2\right) \chi _{2y}^2}{128 (q+1)^4}+\frac{\left(512 q^4+224 q^3-108 q^2\right) \chi _{2z}^2}{128 (q+1)^4} \right. \nonumber\\&\quad\quad\left.+\frac{480 q^4+163 \pi ^2 q^3-2636 q^3+326 \pi ^2 q^2-6128 q^2+163 \pi ^2 q-2636 q+480}{128 (q+1)^4} \right]\\\end{align} ###Code # Construct terms a_5 and a_6, from # Eq A2 of Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 # These terms have been independently validated # against the same terms in Eq 7 of # Healy, Lousto, Nakano, and Zlochower (2017) # https://arxiv.org/abs/1702.00872 # and a sign error was corrected in the a_5 # expression. def p_t__a_5_thru_a_6(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5,a_6 a_5 = (SignFix*(13*q**3 + 60*q**2 + 116*q + 72)*chi1z/(16*(q+1)**4) +(-72*q**4 - 116*q**3 - 60*q**2 - 13*q)*chi2z/(16*(q+1)**4)) a_6 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q +512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +( -64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*sp.pi**2*q**3 - 2636*q**3 + 326*sp.pi**2*q**2 - 6128*q**2 + 163*sp.pi**2*q-2636*q+480) /(128*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_5_thru_a_6v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z, FixSignError=True): SignFix = sp.sympify(-1) if FixSignError == False: SignFix = sp.sympify(+1) q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. pi = sp.pi global a_5v2,a_6v2 # Validated (separately) against HLNZ2017, as well as row 3 of Table V in RHP2018 a_5v2 = SignFix*((13*q**3+60*q**2+116*q+72)*chi1z)/(16*(q+1)**4)+((-72*q**4-116*q**3-60*q**2-13*q)*chi2z)/(16*(q+1)**4) # Validated (separately) against HLNZ2017 version a_6v2 = (+(+472*q**2 - 640)*chi1x**2/(128*(q+1)**4) +(-512*q**2 - 640*q - 64)*chi1y**2/(128*(q+1)**4) +(-108*q**2 + 224*q + 512)*chi1z**2/(128*(q+1)**4) +(+472*q**2 - 640*q**4)*chi2x**2/(128*(q+1)**4) +(+192*q**3 + 560*q**2 + 192*q)*chi1x*chi2x/(128*(q+1)**4) +(-864*q**3 -1856*q**2 - 864*q)*chi1y*chi2y/(128*(q+1)**4) +(+480*q**3 +1064*q**2 + 480*q)*chi1z*chi2z/(128*(q+1)**4) +(- 64*q**4 - 640*q**3 - 512*q**2)*chi2y**2/(128*(q+1)**4) +(+512*q**4 + 224*q**3 - 108*q**2)*chi2z**2/(128*(q+1)**4) +(+480*q**4 + 163*pi**2*q**3 - 2636*q**3 + 326*pi**2*q**2 - 6128*q**2 + 163*pi**2*q - 2636*q + 480) /(128*(q+1)**4)) ###Output _____no_output_____ ###Markdown Next we compare the expression for $a_5$ with Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), as additional validation that there at least is a sign inconsistency:To reduce possibility of copying error, the following equation for $a_5$ is taken directly from the arXiv LaTeX source code of Eq. 7 of [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872), and only mildly formatted to (1) improve presentation in Jupyter notebooks and (2) to ensure some degree of consistency in notation across different terms in other NRPyPN notebooks.**Important: Note that [Healy, Lousto, Nakano, and Zlochower (2017)](https://arxiv.org/abs/1702.00872) adopts notation such that particle labels are interchanged: $1\leftrightarrow 2$, with respect to [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)**\begin{align}a_5 &= + \left( -\frac{1}{16}\,{\frac {q \left( 72\,{q}^{3}+116\,{q}^{2}+60\,q+13 \right) {\chi_{1z}}}{ \left( 1+q \right) ^{4}}}-\frac{1}{16}\,{\frac { \left( 13\,{q}^{3}+60\,{q}^{2}+116\,q+72 \right) {\chi_{2z}}}{ \left( 1+q \right) ^{4}}} \right)\\\end{align} ###Code # Third version, for addtional validation. def p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_5_HLNZ2017 a_5_HLNZ2017 = (-div(1,16)*(q*(72*q**3 + 116*q**2 + 60*q + 13)*chi1z/(1+q)**4) -div(1,16)*( (13*q**3 + 60*q**2 +116*q + 72)*chi2z/(1+q)**4)) ###Output _____no_output_____ ###Markdown Finally, we validate that all 3 expressions for $a_5$ agree. (At the bottom, we confirm that all v2 expressions for $a_i$ match.) ###Code from NRPyPN_shortcuts import m1,m2, chi1U,chi2U # Import needed input variables p_t__a_5_thru_a_6( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) p_t__a_5_thru_a_6v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) # Again, the particle labels are interchanged in Healy, Lousto, Nakano, and Zlochower (2017): p_t__a_5_thru_a_6_HLNZ2017(m1,m2, chi2U[0],chi2U[1],chi2U[2], chi1U[0],chi1U[1],chi1U[2]) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) if sp.simplify(a_5 - a_5v2) != 0: error("a_5v2") if sp.simplify(a_5 - a_5_HLNZ2017) != 0: error("a_5_HLNZ2017") ###Output _____no_output_____ ###Markdown Finally $a_7$:\begin{align}a_7 &= \left[ \frac{5 (4 q+1) q^3 \chi _{2 x}^2 \chi _{2 z}}{2 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 y}^2 \chi _{2 z}}{8 (q+1)^4}-\frac{5 (4 q+1) q^3 \chi _{2 z}^3}{8 (q+1)^4}+\chi _{1x} \left(\frac{15 (2 q+1) q^2 \chi _{2 x} \chi _{2 z}}{4 (q+1)^4}+\frac{15 (q+2) q \chi _{2 x} \chi _{1z}}{4 (q+1)^4}\right)\right. \nonumber\\&\quad\quad \left.+\chi _{1y} \left(\frac{15 q^2 \chi _{2 y} \chi _{1z}}{4 (q+1)^4}+\frac{15 q^2 \chi _{2 y} \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1z} \left(\frac{15 q^2 (2 q+3) \chi _{2 x}^2}{4 (q+1)^4}-\frac{15 q^2 (q+2) \chi _{2 y}^2}{4 (q+1)^4}-\frac{15 q^2 \chi _{2 z}^2}{4 (q+1)^3} \right.\right. \nonumber\\&\quad\quad \left.\left. -\frac{103 q^5+145 q^4-27 q^3+252 q^2+670 q+348}{32 (q+1)^6}\right)-\frac{\left(348 q^5+670 q^4+252 q^3-27 q^2+145 q+103\right) q \chi _{2 z}}{32 (q+1)^6}\right.\nonumber\\&\quad\quad \left.+\chi _{1x}^2 \left(\frac{5 (q+4) \chi _{1z}}{2 (q+1)^4}+\frac{15 q (3 q+2) \chi _{2 z}}{4 (q+1)^4}\right)+\chi _{1y}^2 \left(-\frac{5 (q+4) \chi _{1z}}{8 (q+1)^4}-\frac{15 q (2 q+1) \chi _{2 z}}{4 (q+1)^4}\right)-\frac{15 q \chi _{1z}^2 \chi _{2 z}}{4 (q+1)^3}-\frac{5 (q+4) \chi _{1z}^3}{8 (q+1)^4} \right]\end{align} ###Code # Construct term a_7, from Eq A2 of # Ramos-Buades, Husa, and Pratten (2018) # https://arxiv.org/abs/1810.00036 def p_t__a_7(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7 a_7 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3 /(8*(q+1)**4) +chi1x*(+15*(2*q+1)*q**2*chi2x*chi2z/(4*(q+1)**4) +15*(1*q+2)*q *chi2x*chi1z/(4*(q+1)**4)) +chi1y*(+15*q**2*chi2y*chi1z/(4*(q+1)**4) +15*q**2*chi2y*chi2z/(4*(q+1)**4)) +chi1z*(+15*q**2*(2*q+3)*chi2x**2/(4*(q+1)**4) -15*q**2*( q+2)*chi2y**2/(4*(q+1)**4) -15*q**2 *chi2z**2/(4*(q+1)**3) -(103*q**5 + 145*q**4 - 27*q**3 + 252*q**2 + 670*q + 348)/(32*(q+1)**6)) -(+348*q**5 + 670*q**4 + 252*q**3 - 27*q**2 + 145*q + 103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) +15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) -15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) -5*(q+4)*chi1z**3/(8*(q+1)**4)) # Second version, for validation purposes only. def p_t__a_7v2(m1,m2, chi1x,chi1y,chi1z, chi2x,chi2y,chi2z): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. global a_7v2 a_7v2 = (+5*(4*q+1)*q**3*chi2x**2*chi2z/(2*(q+1)**4) -5*(4*q+1)*q**3*chi2y**2*chi2z/(8*(q+1)**4) -5*(4*q+1)*q**3*chi2z**3/(8*(q+1)**4) +chi1x*(+(15*(2*q+1)*q**2*chi2x*chi2z)/(4*(q+1)**4) +(15*( q+2)*q *chi2x*chi1z)/(4*(q+1)**4)) +chi1y*(+(15*q**2*chi2y*chi1z)/(4*(q+1)**4) +(15*q**2*chi2y*chi2z)/(4*(q+1)**4)) +chi1z*(+(15*q**2*(2*q+3)*chi2x**2)/(4*(q+1)**4) -(15*q**2*( q+2)*chi2y**2)/(4*(q+1)**4) -(15*q**2* chi2z**2)/(4*(q+1)**3) -(103*q**5+145*q**4-27*q**3+252*q**2+670*q+348)/(32*(q+1)**6)) -(348*q**5+670*q**4+252*q**3-27*q**2+145*q+103)*q*chi2z/(32*(q+1)**6) +chi1x**2*(+5*(q+4)*chi1z/(2*(q+1)**4) + 15*q*(3*q+2)*chi2z/(4*(q+1)**4)) +chi1y**2*(-5*(q+4)*chi1z/(8*(q+1)**4) - 15*q*(2*q+1)*chi2z/(4*(q+1)**4)) -15*q*chi1z**2*chi2z/(4*(q+1)**3) - 5*(q+4)*chi1z**3/(8*(q+1)**4)) ###Output _____no_output_____ ###Markdown Putting it all together, recall that$$p_t = \frac{q}{(1+q)^2}\frac{1}{r^{1/2}}\left(1 + \sum_{k=2}^7 \frac{a_k}{r^{k/2}}\right),$$where $k/2$ is the post-Newtonian order. ###Code # Finally, sum the expressions for a_k to construct p_t as prescribed: # p_t = q/(sqrt(r)*(1+q)^2) (1 + \sum_{k=2}^7 (a_k/r^{k/2})) def f_p_t(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2 a[3] = a_3 a[4] = a_4 p_t__a_5_thru_a_6(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5 a[6] = a_6 p_t__a_7( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7 global p_t p_t = 1 # Term prior to the sum in parentheses for k in range(8): p_t += a[k]/r**div(k,2) p_t *= q / (1+q)**2 * 1/r**div(1,2) # Second version, for validation purposes only. def f_p_tv2(m1,m2, chi1U,chi2U, r): q = m2/m1 # It is assumed that q >= 1, so m2 >= m1. a = ixp.zerorank1(DIM=10) p_t__a_2_thru_a_4v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[2] = a_2v2 a[3] = a_3v2 a[4] = a_4v2 p_t__a_5_thru_a_6v2(m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[5] = a_5v2 a[6] = a_6v2 p_t__a_7v2( m1,m2, chi1U[0],chi1U[1],chi1U[2], chi2U[0],chi2U[1],chi2U[2]) a[7] = a_7v2 global p_tv2 p_tv2 = 1 # Term prior to the sum in parentheses for k in range(8): p_tv2 += a[k]/r**div(k,2) p_tv2 *= q / (1+q)**2 * 1/r**div(1,2) ###Output _____no_output_____ ###Markdown Part 2: Validation against second transcription and corresponding Python module \[Back to [top](toc)\]$$\label{code_validation}$$ As a code validation check, we verify agreement between * the SymPy expressions transcribed from the cited published work on two separate occasions, and* the SymPy expressions generated in this notebook, and the corresponding Python module. ###Code from NRPyPN_shortcuts import q, num_eval # Import needed input variable & numerical evaluation routine f_p_t(m1,m2, chi1U,chi2U, q) def error(varname): print("ERROR: When comparing Python module & notebook, "+varname+" was found not to match.") sys.exit(1) # Validation against second transcription of the expressions: f_p_tv2(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - p_tv2) != 0: error("p_tv2") # Validation against corresponding Python module: import PN_p_t as pt pt.f_p_t(m1,m2, chi1U,chi2U, q) if sp.simplify(p_t - pt.p_t) != 0: error("pt.p_t") print("ALL TESTS PASS") ###Output ALL TESTS PASS ###Markdown Part 3: Validation against trusted numerical values (i.e., in Table V of [Ramos-Buades, Husa, and Pratten (2018)](https://arxiv.org/abs/1810.00036)) \[Back to [top](toc)\]$$\label{code_validationv2}$$ ###Code # Useful function for comparing published & NRPyPN results def compare_pub_NPN(desc, pub,NPN,NPN_with_a5_chi1z_sign_error): print("##################################################") print(" "+desc) print("##################################################") print(str(pub) + " <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018)") print(str(NPN) + " <- Result from NRPyPN") relerror = abs(pub-NPN)/pub resultstring = "Relative error between NRPyPN & published: "+str(relerror*100)+"%" if relerror > 1e-3: resultstring += " <--- NOT GOOD! (see explanation below)" else: resultstring += " <--- EXCELLENT AGREEMENT!" print(resultstring+"\n") print(str(NPN_with_a5_chi1z_sign_error) + " <- Result from NRPyPN, with chi1z sign error in a_5 expression.") # 1. Let's consider the case: # * Mass ratio q=1, chi1=chi2=(0,0,0), radial separation r=12 pub_result = 0.850941e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0850940927209620 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 1.0, # must be >= 1 nr = 12.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = +0., nchi2y = +0., nchi2z = +0.) compare_pub_NPN("Case: q=1, nonspinning, initial separation 12", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 2. Let's consider the case: # * Mass ratio q=1.5, chi1= (0,0,-0.6); chi2=(0,0,0.6), radial separation r=10.8 pub_result = 0.868557e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0867002374951143 NPN_result = num_eval(p_t, qmassratio = 1.5, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.6, nchi2x = +0., nchi2y = +0., nchi2z = +0.6) compare_pub_NPN("Case: q=1.5, chi1z=-0.6, chi2z=0.6, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 3. Let's consider the case: # * Mass ratio q=4, chi1= (0,0,-0.8); chi2=(0,0,0.8), radial separation r=11 pub_result = 0.559207e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0557629777874552 NPN_result = num_eval(p_t, qmassratio = 4.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = -0.8, nchi2x = +0., nchi2y = +0., nchi2z = +0.8) compare_pub_NPN("Case: q=4.0, chi1z=-0.8, chi2z=0.8, initial separation 11.0", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) print("0.0558369 <- Second iteration value in pub result. Note that NRPyPN value is *closer* to this value.") # 4. Let's consider the case: # * Mass ratio q=2, chi1= (0,0,0); chi2=(−0.3535, 0.3535, 0.5), radial separation r=10.8 pub_result = 0.7935e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0793500403866190 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 2.0, # must be >= 1 nr = 10.8, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0., nchi2x = -0.3535, nchi2y = +0.3535, nchi2z = +0.5) compare_pub_NPN("Case: q=2.0, chi2x=-0.3535, chi2y=+0.3535, chi2z=+0.5, initial separation 10.8", pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) # 5. Let's consider the case: # * Mass ratio q=8, chi1= (0, 0, 0.5); chi2=(0, 0, 0.5), radial separation r=11 pub_result = 0.345755e-1 # Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) https://arxiv.org/abs/1810.00036 NPN_with_a5_chi1z_sign_error = 0.0345584951081129 # should be unaffected by sign error, as chi1z=0. NPN_result = num_eval(p_t, qmassratio = 8.0, # must be >= 1 nr = 11.0, # Orbital separation nchi1x = +0., nchi1y = +0., nchi1z = +0.5, nchi2x = +0., nchi2y = +0., nchi2z = +0.5) compare_pub_NPN(""" Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. """,pub_result,NPN_result,NPN_with_a5_chi1z_sign_error) ###Output ################################################## Case: q=8.0, chi1z=chi2z=+0.5, initial separation 11 Note: This one is weird. Clearly the value in the table has a typo, such that the p_r and p_t values should be interchanged; p_t is about 20% the next smallest value in the table, and the parameters aren't that different. We therefore assume that this is the case, and find agreement with the published result to about 0.07%, which isn't the best, but given that the table values seem to be clearly wrong, it's an encouraging sign. ################################################## 0.0345755 <- Expected result, from Table V of Ramos-Buades, Husa, and Pratten (2018) 0.0345503689803291 <- Result from NRPyPN Relative error between NRPyPN & published: 0.0726844721578464% <--- EXCELLENT AGREEMENT! 0.0345584951081129 <- Result from NRPyPN, with chi1z sign error in a_5 expression. ###Markdown Part 4: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[PN-p_t.pdf](PN-p_t.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) ###Code import os,sys # Standard Python modules for multiplatform OS-level functions nrpy_dir_path = os.path.join("..") if nrpy_dir_path not in sys.path: sys.path.append(nrpy_dir_path) import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("PN-p_t",location_of_template_file=os.path.join("..")) ###Output Created PN-p_t.tex, and compiled LaTeX file to PDF file PN-p_t.pdf
notebooks/2016-10-09(Time constant effects for learning in time).ipynb
###Markdown Time constant effects for learning in timeIn this notebook I intend to illustrate by the mean of visualization the effect of the time constant in the learning process when we are learning in time (k > 0). We start as usual by loading all the required libraries ###Code from __future__ import print_function import subprocess import sys sys.path.append('../') import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable from connectivity_functions import get_beta, get_w from connectivity_functions import calculate_probability, calculate_coactivations from data_transformer import build_ortogonal_patterns from network import BCPNN import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # np.set_printoptions(suppress=True) %matplotlib inline matplotlib.rcParams.update({'font.size': 22}) ###Output _____no_output_____ ###Markdown After this all the mechanisms for reading from the correct version control statement should be loaded ###Code run_old_version = False if run_old_version: hash_when_file_was_written = 'e8360ad5746b3094ee2c2cbe5591946e25f9eea3' hash_at_the_moment = subprocess.check_output(["git", 'rev-parse', 'HEAD']).strip() print('Actual hash', hash_at_the_moment) print('Hash of the commit used to run the simulation', hash_when_file_was_written) subprocess.call(['git', 'checkout', hash_when_file_was_written]) ###Output _____no_output_____ ###Markdown We first build the network and set the parameters, this should be controlled to see the effects on the plots bellow ###Code hypercolumns = 10 minicolumns = 10 N = 10 # Number of patterns patterns_dic = build_ortogonal_patterns(hypercolumns, minicolumns) patterns = list(patterns_dic.values()) patterns = patterns[:N] P_ideal = calculate_coactivations(patterns) p_ideal = calculate_probability(patterns) w_ideal = get_w(P_ideal, p_ideal) beta_ideal = get_beta(p_ideal) dt = 0.001 T_training = 1.0 training_time = np.arange(0, T_training + dt, dt) prng = np.random.RandomState(seed=0) nn = BCPNN(hypercolumns, minicolumns, g_a=97.0, g_beta=1.0, g_w=1.0, g_I=10.0, prng=prng) w_end = [] p_co_end = [] ###Output _____no_output_____ ###Markdown Then we load the trials ###Code nn.empty_history() nn.randomize_pattern() nn.k = 1.0 aux_counter = 0 for pattern in patterns: history = nn.run_network_simulation(training_time, I=pattern, save=True) w_end.append(history['w'][-1, ...]) p_co_end.append(history['p_co'][-1, ...]) aux_counter += 1 history = nn.history o = history['o'] s = history['s'] z_pre = history['z_pre'] p_pre = history['p_pre'] p_post = history['p_post'] p_co = history['p_co'] beta = history['beta'] w = history['w'] adaptation = history['a'] distance_p = np.abs(p_pre - p_ideal) distance_P = np.abs(p_co[-1, ...] - P_ideal) distance_w = np.abs(w[-1, ...] - w_ideal) print(distance_p.shape) print(distance_w.shape) ###Output (10010, 100) (100, 100) ###Markdown Plot the history ###Code cmap = 'magma' extent = [0, minicolumns * hypercolumns, aux_counter * T_training, 0] fig = plt.figure(figsize=(16, 12)) ax1 = fig.add_subplot(221) im1 = ax1.imshow(o, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax1.set_title('Unit activation') ax2 = fig.add_subplot(222) im2 = ax2.imshow(z_pre, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax2.set_title('Traces of activity') ax3 = fig.add_subplot(223) im3 = ax3.imshow(adaptation, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax3.set_title('Adaptation') ax4 = fig.add_subplot(224) im4 = ax4.imshow(p_pre, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax4.set_title('Probability') fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.12, 0.05, 0.79]) fig.colorbar(im1, cax=cbar_ax) print('Final probability', nn.p_pre) ###Output Final probability [ 0.07840648 0.08161071 0.08622409 0.09133426 0.09699043 0.10322921 0.11014483 0.11776511 0.12579847 0.10849641 0.07840211 0.08161292 0.08622086 0.09133707 0.0969872 0.10323045 0.11013933 0.11776938 0.12579981 0.10850089 0.07840739 0.08161863 0.08621856 0.09133643 0.09698087 0.10324362 0.11013667 0.11776455 0.12579734 0.10849594 0.07840557 0.08161507 0.08622119 0.09132978 0.0969896 0.10323714 0.11014388 0.11777253 0.12578691 0.10849835 0.07841053 0.081614 0.08621745 0.09133272 0.09698902 0.10324308 0.1101268 0.11777428 0.12579332 0.10849882 0.07838884 0.08161773 0.08622069 0.09133192 0.09698997 0.10324284 0.1101464 0.11776837 0.12579584 0.10849739 0.07840708 0.08161133 0.08622493 0.09133898 0.09698382 0.10323014 0.11015128 0.11776585 0.12579622 0.10849037 0.07841327 0.0816046 0.08622315 0.09133748 0.09698738 0.10322685 0.11014568 0.11777233 0.12578841 0.10850086 0.07838355 0.08162418 0.08621803 0.09133533 0.09699349 0.1032405 0.11013811 0.11777291 0.12578633 0.10850757 0.07840552 0.08161245 0.08622106 0.09133983 0.09698608 0.10324246 0.11013643 0.11776386 0.12579499 0.10849732] ###Markdown Plot the final weight matrixHere we plot how the weight matrix looks at the end of every learning step. That is, after the network has been running clamped to a particular pattern for T_training time. ###Code cmap1 = 'coolwarm' cmap2 = 'magma' gs = gridspec.GridSpec(aux_counter, 2) fig = plt.figure(figsize=(16, 12)) for index, (w, p_co) in enumerate(zip(w_end, p_co_end)): ax = fig.add_subplot(gs[index, 0]) im = ax.imshow(w, cmap=cmap1, interpolation='None') divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, ax=ax, cax=cax) ax = fig.add_subplot(gs[index, 1]) im = ax.imshow(p_co, cmap=cmap2, interpolation='None', vmin=0, vmax=1) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, ax=ax, cax=cax) fig = plt.figure(figsize=(16, 12)) plt.imshow(w, cmap=cmap1, interpolation='None') plt.colorbar() ###Output _____no_output_____ ###Markdown Ideal w and PWe plot the ideal versions of w and P (not trained in time) for reference ###Code cmap1 = 'coolwarm' cmap2 = 'magma' gs = gridspec.GridSpec(1, 2) fig = plt.figure(figsize=(16, 12)) ax = fig.add_subplot(gs[0, 0]) im = ax.imshow(w_ideal, cmap=cmap1, interpolation='None') divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, ax=ax, cax=cax) ax = fig.add_subplot(gs[0, 1]) im = ax.imshow(P_ideal, cmap=cmap2, interpolation='None', vmin=0, vmax=1) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, ax=ax, cax=cax) ###Output _____no_output_____ ###Markdown Convergence of w and p_coHere we plot the difference between w and p_co and their ideal versions (not trained in time). ###Code cmap1 = 'coolwarm' cmap2 = 'magma' gs = gridspec.GridSpec(1, 2) fig = plt.figure(figsize=(16, 12)) ax = fig.add_subplot(gs[0, 0]) im = ax.imshow(distance_w, cmap=cmap1, interpolation='None') divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, ax=ax, cax=cax) ax = fig.add_subplot(gs[0, 1]) im = ax.imshow(distance_P, cmap=cmap2, interpolation='None', vmin=0, vmax=1) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, ax=ax, cax=cax) ###Output _____no_output_____ ###Markdown RetrievalNow that we have trained our weights we can see what happen when we retrieve patterns from it for a long time. ###Code T_retrieval = 30.0 retrieval_time = np.arange(0, T_retrieval + dt, dt) # First empty the history nn.empty_history() nn.reset_values(keep_connectivity=True) # Run in retrival mode nn.randomize_pattern() nn.k = 0 nn.g_a = 97.0 nn.run_network_simulation(retrieval_time, I=None, save=True) o = nn.history['o'] s = nn.history['s'] z_pre = nn.history['z_pre'] p_pre = nn.history['p_pre'] cmap = 'magma' extent = [0, minicolumns * hypercolumns, T_retrieval, 0] fig = plt.figure(figsize=(16, 12)) ax1 = fig.add_subplot(221) im1 = ax1.imshow(o, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax1.set_title('Unit activation') ax2 = fig.add_subplot(222) im2 = ax2.imshow(z_pre, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax2.set_title('Traces of activity') ax3 = fig.add_subplot(223) im3 = ax3.imshow(adaptation, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax3.set_title('Adaptation') ax4 = fig.add_subplot(224) im4 = ax4.imshow(p_pre, aspect='auto', interpolation='None', cmap=cmap, vmax=1, vmin=0, extent=extent) ax4.set_title('Probability') fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.12, 0.05, 0.79]) fig.colorbar(im1, cax=cbar_ax) print(nn.history['o'].shape) print(nn.g_a) print(nn.o) n_trials = 10 final_patterns = [] for i in range(n_trials): nn.randomize_pattern() nn.k = 0 nn.run_network_simulation(retrieval_time) final_patterns.append(nn.o) final_patterns ###Output _____no_output_____ ###Markdown Git recoverHere we checkout the latest working branch again ###Code if run_old_version: subprocess.call(['git', 'checkout', 'master']) ###Output _____no_output_____
Notebooks/Part_4/.ipynb_checkpoints/LSTMs-checkpoint.ipynb
###Markdown A short & practical introduction to Tensor Flow!Part 4The goal of this notebook is to train a LSTM character prediction model over [Text8](http://mattmahoney.net/dc/textdata) data.This is a personal wrap-up of all the material provided by [Google's Deep Learning course on Udacity](https://www.udacity.com/course/deep-learning--ud730), so all credit goes to them. Author: Pablo M. Olmos ([email protected])Date: March 2017 ###Code # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import os import numpy as np import random import string import tensorflow as tf import zipfile from six.moves import range from six.moves.urllib.request import urlretrieve # Lets check what version of tensorflow we have installed. The provided scripts should run with tf 1.0 and above print(tf.__version__) url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified %s' % filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('XXX/textWordEmbeddings/text8.zip', 31344016) ## Change according to the folder where you saved the dataset provided def read_data(filename): with zipfile.ZipFile(filename) as f: name = f.namelist()[0] data = tf.compat.as_str(f.read(name)) return data text = read_data(filename) print('Data size %d' % len(text)) text[0:20] ###Output _____no_output_____ ###Markdown Create a small validation set ###Code valid_size = 1000 valid_text = text[:valid_size] train_text = text[valid_size:] train_size = len(train_text) print(train_size, train_text[:64]) print(valid_size, valid_text[:64]) ###Output _____no_output_____ ###Markdown Utility functions to map characters to vocabulary IDs and back ###Code vocabulary_size = len(string.ascii_lowercase) + 1 # [a-z] + ' ' first_letter = ord(string.ascii_lowercase[0]) def char2id(char): if char in string.ascii_lowercase: return ord(char) - first_letter + 1 elif char == ' ': return 0 else: print('Unexpected character: %s' % char) return 0 def id2char(dictid): if dictid > 0: return chr(dictid + first_letter - 1) else: return ' ' print(char2id('a'), char2id('z'), char2id(' '), char2id('ï')) print(id2char(1), id2char(26), id2char(0)) ###Output _____no_output_____ ###Markdown Function to generate a training batch for the LSTM model. ###Code batch_size=64 ## Number of batches, but also number of segments in which we divide the text. We read batch_size ## batches in parallel, each read from a different segment. The implementation is not obvious, the ## key seems to be the zip function inside the for loop below num_unrollings=10 ## Each sequence is num_unrolling character long ### NOW I GET IT!! Every batch is a batch_size times 27 (num letters) matrix. Every row correspond to a letter. Each letter ### comes from a different sequence of (num_unrollings) so that the 64 letters cannot be read together. ## In the next batch, we have the following letter for each of the 64 training sequences!! class BatchGenerator(object): def __init__(self, text, batch_size, num_unrollings): self._text = text self._text_size = len(text) self._batch_size = batch_size self._num_unrollings = num_unrollings segment = self._text_size // batch_size #We split the text into batch_size pieces self._cursor = [ offset * segment for offset in range(batch_size)] #Cursor pointing every piece self._last_batch = self._next_batch() # def _next_batch(self): """Generate a single batch from the current cursor position in the data.""" batch = np.zeros(shape=(self._batch_size, vocabulary_size), dtype=np.float) for b in range(self._batch_size): batch[b, char2id(self._text[self._cursor[b]])] = 1.0 #One hot encoding #print(self._text[self._cursor[b]]) self._cursor[b] = (self._cursor[b] + 1) % self._text_size return batch def next(self): """Generate the next array of batches from the data. The array consists of the last batch of the previous array, followed by num_unrollings new ones. """ batches = [self._last_batch] for step in range(self._num_unrollings): batches.append(self._next_batch()) self._last_batch = batches[-1] return batches def characters(probabilities): """Turn a 1-hot encoding or a probability distribution over the possible characters back into its (mostl likely) character representation.""" return [id2char(c) for c in np.argmax(probabilities, 1)] def batches2string(batches): """Convert a sequence of batches back into their (most likely) string representation.""" s = [''] * batches[0].shape[0] for b in batches: s = [''.join(x) for x in zip(s, characters(b))] #Clever! The ZIP is the key function here! return s train_batches = BatchGenerator(train_text, batch_size, 10) valid_batches = BatchGenerator(valid_text, 1, 1) print(batches2string(train_batches.next())) print(batches2string(train_batches.next())) #OK with this one def logprob(predictions, labels): """Log-probability of the true labels in a predicted batch.""" predictions[predictions < 1e-10] = 1e-10 return np.sum(np.multiply(labels, -np.log(predictions))) / labels.shape[0] #OK with this one def sample_distribution(distribution): """Sample one element from a distribution assumed to be an array of normalized probabilities. """ r = random.uniform(0,1) s = 0 for i in range(len(distribution)): s += distribution[i] if s >= r: return i return len(distribution) - 1 #OK with this one def sample(prediction): """Turn a (column) prediction into 1-hot encoded samples.""" p = np.zeros(shape=[1, vocabulary_size], dtype=np.float) p[0, sample_distribution(prediction[0])] = 1.0 return p def random_distribution(): """Generate a random column of probabilities.""" b = np.random.uniform(0.0, 1.0, size=[1, vocabulary_size]) return b / np.sum(b, 1)[:, None] train_batches.next()[0].shape ###Output _____no_output_____ ###Markdown Simple LSTM ModelRecall the fundamental modelAlso, the un-regularized cost function is\begin{align}J(\boldsymbol{\theta})=\frac{1}{N}\sum_{n=1}^N\sum_{t=1}^{T_n}d(\boldsymbol{y}_t^{(n)},\sigma(\boldsymbol{h}_t^{(n)}))\end{align}where $d(\cdot,\cdot)$ is the cross-entropy loss function. About the TF implementation below, see the following excellent [post](http://www.thushv.com/sequential_modelling/long-short-term-memory-lstm-networks-implementing-with-tensorflow-part-2/)> Now calculating logits for softmax is a little bit tricky. This a temporal (time-based) network. So after each processing each num_unrolling batches through the LSTM cell, we update h_{t-1}=h_t and c_{t-1}=c_t before calculating logits and the loss. This is done by using tf.control_dependencies. What this does is that, logits will not be calculated until saved_output and saved_states are updated. Finally, as you can see, num_unrolling acts as the amount of history we are remembering.In other words, in the computation graph everytime something is updated, all the dependent op nodes are updated and this is propagated through the graph. If we want to wait until the very end to compute the loss, we wait using the command tf.control_dependencies.About the zip() and zip(*) operators, see this [post](https://docs.python.org/2/library/functions.htmlzip) ###Code num_nodes = 64 graph = tf.Graph() with graph.as_default(): # Parameters: #i(t) parameters # Input gate: input, previous output, and bias. ix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) ##W^ix im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) ## W^ih ib = tf.Variable(tf.zeros([1, num_nodes])) ##b_i #f(t) parameters # Forget gate: input, previous output, and bias. fx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) ##W^fx fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) ##W^fh fb = tf.Variable(tf.zeros([1, num_nodes])) ##b_f #g(t) parameters # Memory cell: input, state and bias. cx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) ##W^gx cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) ##W^gh cb = tf.Variable(tf.zeros([1, num_nodes])) ##b_g #o(t) parameters # Output gate: input, previous output, and bias. ox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1)) ##W^ox om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1)) ##W^oh ob = tf.Variable(tf.zeros([1, num_nodes])) ##b_o # Variables saving state across unrollings. saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False) #h(t) saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False) #s(t) # Classifier weights and biases (over h(t) to labels) w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], -0.1, 0.1)) b = tf.Variable(tf.zeros([vocabulary_size])) # Definition of the cell computation. def lstm_cell(i, o, state): """Create a LSTM cell. See e.g.: http://arxiv.org/pdf/1402.1128v1.pdf Note that in this formulation, we omit the various connections between the previous state and the gates.""" input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib) forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb) update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb state = forget_gate * state + input_gate * tf.tanh(update) #tf.tanh(update) is g(t) output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob) return output_gate * tf.tanh(state), state #h(t) is output_gate * tf.tanh(state) # Input data. Now it makes sense!!! train_data = list() for _ in range(num_unrollings + 1): train_data.append(tf.placeholder(tf.float32, shape=[batch_size,vocabulary_size])) train_inputs = train_data[:num_unrollings] train_labels = train_data[1:] # labels are inputs shifted by one time step. # Unrolled LSTM loop. outputs = list() output = saved_output aux = output state = saved_state for i in train_inputs: output, state = lstm_cell(i, output, state) outputs.append(output) # State saving across unrollings. with tf.control_dependencies([saved_output.assign(output),saved_state.assign(state)]): #Classifier. logits = tf.nn.xw_plus_b(tf.concat(axis=0,values=outputs), w, b) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tf.concat(axis=0, values=train_labels),logits=logits)) # Optimizer. """Next, we are implementing the optimizer. Remember! we should use “gradient clipping” (tf.clip_by_global_norm) to avoid “Exploding gradient” phenomenon. Also, we decay the learning_rate over time.""" global_step = tf.Variable(0) learning_rate = tf.train.exponential_decay(10.0, global_step, 5000, 0.1, staircase=True) optimizer = tf.train.GradientDescentOptimizer(learning_rate) """ optimizer.compute_gradients(loss) yields (gradient, value) tuples. gradients, v = zip(*optimizer.compute_gradients(loss)) performs a transposition, creating a list of gradients and a list of values. gradients, _ = tf.clip_by_global_norm(gradients, 1.25) then clips the gradients, and optimizer = optimizer.apply_gradients(zip(gradients, v), global_step=global_step) re-zips the gradient and value lists back into an iterable of (gradient, value) tuples which is then passed to the optimizer.apply_gradients method.""" gradients, v = zip(*optimizer.compute_gradients(loss)) gradients, _ = tf.clip_by_global_norm(gradients, 1.25) optimizer = optimizer.apply_gradients(zip(gradients, v), global_step=global_step) # Predictions. train_prediction = tf.nn.softmax(logits) # Sampling and validation eval: batch 1, no unrolling. sample_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size]) saved_sample_output = tf.Variable(tf.zeros([1, num_nodes])) saved_sample_state = tf.Variable(tf.zeros([1, num_nodes])) # Create an op that groups multiple operations. reset_sample_state = tf.group(saved_sample_output.assign(tf.zeros([1, num_nodes])), saved_sample_state.assign(tf.zeros([1, num_nodes]))) sample_output, sample_state = lstm_cell(sample_input, saved_sample_output, saved_sample_state) with tf.control_dependencies([saved_sample_output.assign(sample_output),saved_sample_state.assign(sample_state)]): sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b)) num_steps = 1001 summary_frequency = 100 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print('Initialized') mean_loss = 0 for step in range(num_steps): batches = train_batches.next() feed_dict = dict() for i in range(num_unrollings + 1): feed_dict[train_data[i]] = batches[i] _, l, predictions, lr = session.run( [optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict) mean_loss += l if step % summary_frequency == 0: if step > 0: mean_loss /= summary_frequency # The mean loss is an estimate of the loss over the last few batches. print( 'Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr)) mean_loss = 0 labels = np.concatenate(list(batches)[1:]) print('Minibatch perplexity: %.2f' % float( np.exp(logprob(predictions, labels)))) if step % (summary_frequency * 10) == 0: # Generate some samples. print('=' * 80) for _ in range(5): feed = sample(random_distribution()) sentence = characters(feed)[0] reset_sample_state.run() for _ in range(79): prediction = sample_prediction.eval({sample_input: feed}) feed = sample(prediction) sentence += characters(feed)[0] print(sentence) print('=' * 80) # Measure validation set perplexity. reset_sample_state.run() valid_logprob = 0 for _ in range(valid_size): b = valid_batches.next() predictions = sample_prediction.eval({sample_input: b[0]}) valid_logprob = valid_logprob + logprob(predictions, b[1]) print('Validation set perplexity: %.2f' % float(np.exp( valid_logprob / valid_size))) batches = train_batches.next() batches[0] ###Output _____no_output_____
Regression/Linear Models/HuberRegressor_Normalize_QuantileTransformer.ipynb
###Markdown HuberRegressor with Normalize & QuantileTransformer This Code template is for the regression analysis using a HuberRegressor with feature transformation technique QuantileTransformer and feature rescaling technique Normalize Required Packages ###Code import warnings import numpy as np import pandas as pd import seaborn as se import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error from sklearn.linear_model import HuberRegressor from sklearn.preprocessing import Normalizer,QuantileTransformer warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= "" ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code #x_values features = [] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code #y_value target='' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X=df[features] Y=df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ###Output _____no_output_____ ###Markdown Calling preprocessing functions on the feature and target set. ###Code x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) Y=NullClearner(Y) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Data SplittingThe train-test split is a procedure for evaluating the performance of an algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is utilized to fit/train the model. The second subset is used for prediction. The main motive is to estimate the performance of the model on new data. ###Code x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=123) ###Output _____no_output_____ ###Markdown Data RescalingFor rescaling the data **normalize** function of Sklearn is used.Normalization is the process of scaling individual samples to have unit norm. This process can be useful if you plan to use a quadratic form such as the dot-product or any other kernel to quantify the similarity of any pair of samples.The function normalize provides a quick and easy way to scale input vectors individually to unit norm (vector length). For more information on normalize [ click here](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html) ###Code normalize = Normalizer() x_train = normalize.fit_transform(x_train) x_test = normalize.transform(x_test) ###Output _____no_output_____ ###Markdown ModelModelLinear regression model that is robust to outliers.The Huber Regressor optimizes the squared loss for the samples where |(y - X'w) / sigma| epsilon, where w and sigma are parameters to be optimized. The parameter sigma makes sure that if y is scaled up or down by a certain factor, one does not need to rescale epsilon to achieve the same robustness. Note that this does not take into account the fact that the different features of X may be of different scales.This makes sure that the loss function is not heavily influenced by the outliers while not completely ignoring their effect. Feature Transformation QuantileTransformer Transform features using quantiles information.This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature, this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers: this is therefore a robust preprocessing scheme.[For more information](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html) ###Code model=make_pipeline(QuantileTransformer(),HuberRegressor()) model.fit(x_train,y_train) ###Output _____no_output_____ ###Markdown Model AccuracyWe will use the trained model to make a prediction on the test set.Then use the predicted value for measuring the accuracy of our model.score: The score function returns the coefficient of determination R2 of the prediction. ###Code print("Accuracy score {:.2f} %\n".format(model.score(x_test,y_test)*100)) ###Output Accuracy score 93.01 % ###Markdown > **r2_score**: The **r2_score** function computes the percentage variablility explained by our model, either the fraction or the count of correct predictions. > **mae**: The **mean abosolute error** function calculates the amount of total error(absolute average distance between the real data and the predicted data) by our model. > **mse**: The **mean squared error** function squares the error(penalizes the model for large errors) by our model. ###Code y_pred=model.predict(x_test) print("R2 Score: {:.2f} %".format(r2_score(y_test,y_pred)*100)) print("Mean Absolute Error {:.2f}".format(mean_absolute_error(y_test,y_pred))) print("Mean Squared Error {:.2f}".format(mean_squared_error(y_test,y_pred))) ###Output R2 Score: 93.01 % Mean Absolute Error 9.80 Mean Squared Error 162.44 ###Markdown Prediction PlotFirst, we make use of a plot to plot the actual observations, with x_train on the x-axis and y_train on the y-axis.For the regression line, we will use x_train on the x-axis and then the predictions of the x_train observations on the y-axis. ###Code plt.figure(figsize=(14,10)) plt.plot(range(20),y_test[0:20], color = "green") plt.plot(range(20),y_pred[0:20], color = "red") plt.legend(["Actual","prediction"]) plt.title("Predicted vs True Value") plt.xlabel("Record number") plt.ylabel(target) plt.show() ###Output _____no_output_____
04_ANOVA_enrichment.ipynb
###Markdown Enrichment testWhat is the probability to randomly select at least k "changed" reactions out of n "changed" reactions when selecting N out of M reactions. * k: number of diferentially expressed reactions in a subsystem,* n: number of diferentially expressed reactions in the model,* N: number of reactions in a subsystem,* M: number of reactions in the model.$P(x \geq k) = 1 - hypergeom.cdf(k-1, M, n, N)$ ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.decomposition import PCA from itertools import permutations, product, combinations from scipy.stats import pearsonr, spearmanr, mannwhitneyu, hypergeom from itertools import permutations from itertools import combinations #https://www.scribbr.com/statistics/two-way-anova/ import statsmodels.api as sm from statsmodels.formula.api import ols import statsmodels.stats.multitest as multi import warnings from statsmodels.tools.sm_exceptions import ConvergenceWarning, HessianInversionWarning, ValueWarning # ignore these warning warnings.filterwarnings("ignore", category=ConvergenceWarning) warnings.filterwarnings("ignore", category=HessianInversionWarning) warnings.filterwarnings("ignore", category=ValueWarning) warnings.filterwarnings("ignore", category=RuntimeWarning) ###Output _____no_output_____ ###Markdown Settings ###Code #analysis = "Fastcore" analysis = "iMAT" #analysis = "gimme" #analysis = "init" #analysis = "tinit" analysis_type = "FVA" #analysis_type = "pFBA" fdr = True randomization = False ###Output _____no_output_____ ###Markdown Read the data ###Code reactions = pd.read_csv("data\\"+analysis_type+"_"+analysis+".csv", sep=";").iloc[:,0] if randomization: if fdr: df = pd.read_csv("results_ANOVA\\"+analysis_type+"_"+analysis+"_randomization_q.csv") else: df = pd.read_csv("results_ANOVA\\"+analysis_type+"_"+analysis+"_randomization_p.csv") else: if fdr: df = pd.read_csv("results_ANOVA\\"+analysis_type+"_"+analysis+"_basic_q.csv") else: df = pd.read_csv("results_ANOVA\\"+analysis_type+"_"+analysis+"_basic_q.csv") tests = list(df.columns[1:]) ###Output _____no_output_____ ###Markdown Fill the analysis data with all the reactionsAs a basis I take the union of the reactions included in the selected group of models. ###Code df_reactions = pd.DataFrame(columns=["rxn"]) df_reactions["rxn"] = reactions df = pd.merge(df, df_reactions, how="outer").fillna(1) ###Output _____no_output_____ ###Markdown Get the subsystems data ###Code df_subsystems = pd.read_csv("models\\iMM865_subsystems.txt", sep=";") df_subsystems_f = df_subsystems.copy() df_subsystems_f['rxn'] = df_subsystems_f['rxn']+'_f' df_subsystems_b = df_subsystems.copy() df_subsystems_b['rxn'] = df_subsystems_b['rxn']+'_b' df_subsystems = pd.concat((df_subsystems, df_subsystems_b, df_subsystems_f), ignore_index=True).reindex() df_subsystems.head() ###Output _____no_output_____ ###Markdown Keep only the reactions that are present in the observed models ###Code df_subsystems = df_subsystems[df_subsystems.rxn.isin(reactions)] subsystems = df_subsystems.subsystem.dropna().unique() #df_subsystems[df_subsystems['rxn'].str.endswith("_f")] ###Output _____no_output_____ ###Markdown Merge ###Code df = pd.merge(df, df_subsystems, how="left") df = df[['rxn', 'subsystem'] + tests] df.head() ###Output _____no_output_____ ###Markdown Analysis ###Code df_enrich = pd.DataFrame(columns = ['subsystem'] + tests) df_enrich['subsystem'] = subsystems n_all = len(reactions) for test in tests: df_test = df[[test,'subsystem']] n_signif_all = (df_test[test] < 0.05).sum() for subsystem in subsystems: df_sub = df_test[df_test.subsystem == subsystem] n_sub = len(df_sub) n_signif_sub = (df_sub[test] < 0.05).sum() M = n_all # all reactions in a model n = n_signif_all # all significant N = n_sub # reactions in a subsystem k = n_signif_sub # significant in a subsystem if n: p = 1 - hypergeom.cdf(k-1, M, n, N) else: p = 1.0 df_enrich.loc[(df_enrich['subsystem'] == subsystem), test] = p #print(k, M, n, N) 1-hypergeom.cdf(10, 4000, 30, 100) ###Output _____no_output_____ ###Markdown Save the results ###Code df_enrich_q = df_enrich.copy() for c in df_enrich_q.columns[1:]: df_enrich_q[c] = multi.multipletests(df_enrich_q[c], method = 'fdr_bh')[1] df_enrich.columns = list(map(lambda x: x.replace("q(", "p("), df_enrich.columns)) df_enrich.to_csv("results_enrich\\" + analysis_type + "_" + analysis + "_ANOVA_enrich.csv", index=False) df_enrich_q.to_csv("results_enrich\\" + analysis_type + "_" + analysis + "_ANOVA_enrich_q.csv", index=False) df_enrich[(df_enrich[df_enrich.columns[1:]]<0.05).any(axis=1)] df_enrich_q[(df_enrich_q[df_enrich_q.columns[1:]]<0.05).any(axis=1)] ###Output _____no_output_____
tutorials/spark-da-cse255/004_Word_Count.ipynb
###Markdown Setup Notebook for Exercises IMPORTANT: Only modify cells which have the following comment:```python Modify this cell``` Do not add any new cells when you submit the homework ###Code import findspark findspark.init() from pyspark import SparkContext sc=SparkContext(master="local[4]") import Tester.WordCount as WordCount pickleFile="Tester/WordCount.pkl" ###Output _____no_output_____ ###Markdown Importing all packages necessary to complete the homework ###Code import numpy as np WordCount.get_data() ###Output _____no_output_____ ###Markdown ExerciseA `k`-mer is a sequence of `k` consecutive words. For example, the `3`-mers in the line `you are my sunshine my only sunsine` are* `you are my`* `are my sunshine`* `my sunshine my`* `sunshine my only`* `my only sunsine`For the sake of simplicity we consider only the `k`-mers that appear in a single line. In other words, we ignore `k`-mers that span more than one line.Write a function, using spark all the way to the end, to find to top 10 `k`-mers in a given text for a given `k`.Specifically write functions with the following signatures:```pythondef map_kmers(text,k): \\ text: an RDD of text lines. Lines contain only lower-case letters and spaces. Spaces should be ignored. \\ k: length of `k`-mers return singles \\ singles: an RDD of pairs of the form (tuple of k words,1)def count_kmers(singles): \\ singles: as above return counts \\ count: RDD of the form: (tuple of k words, number of occurances)def sort_counts(count): \\ count: as above return sorted_counts \\ sorted_counts: RDD of the form (number of occurances, tuple of k words) sorted in decreasing number of occurances.``` Code:```python text_file = sc.textFile(u'../../Data/Moby-Dick.txt')print getkmers(text_file,5,2, map_kmers, count_kmers, sort_counts)``` Output:most common 2-mers1796: (u'of', u'the')1145: (u'in', u'the')708: (u'to', u'the')408: (u'from', u'the')376: (u'the', u'whale') ###Code def map_kmers(text,k): # text: an RDD of text lines. Lines contain only lower-case letters and spaces. Spaces should be ignored. # k: length of `k`-mers def generateKmers(line): result = []; words = [w for w in line.split() if w != "" and w != " "]; for i in range(len(words) - k + 1): result.append((tuple(words[i: i + k]), 1)); return result; singles = text.flatMap(generateKmers); return singles # singles: an RDD of pairs of the form (tuple of k words,1) def count_kmers(singles): # singles: as above count = singles.reduceByKey(lambda a, b: a + b); return count # count: RDD of the form: (tuple of k words, number of occurances) def sort_counts(count): # count: as above sorted_count = count.map(lambda (v, c): (c, v)).sortByKey(False); return sorted_count # sorted_counts: RDD of the form (number of occurances, tuple of k words) sorted in decreasing number of # Do Not modify this cell def getkmers(text_file, l,k, map_kmers, count_kmers, sort_counts): # text_file: the text_file RDD read above # k: k-mers # l: l most common k-mers import re def removePunctuation(text): return re.sub("[^0-9a-zA-Z ]", " ", text) text = text_file.map(removePunctuation)\ .map(lambda x: x.lower()) singles=map_kmers(text,k) count=count_kmers(singles) sorted_counts=sort_counts(count) C=sorted_counts.take(l) print 'most common %d-mers\n'%k,'\n'.join(['%d:\t%s'%c for c in C]) # First, check that the text file is where we expect it to be %ls -l ../../Data/Moby-Dick.txt text_file = sc.textFile(u'../../Data/Moby-Dick.txt') # Print the output of the aggregate function for top 5 2-mers getkmers(text_file,5,2, map_kmers, count_kmers, sort_counts) import Tester.WordCount as WordCount WordCount.exercise(pickleFile, map_kmers, count_kmers, sort_counts, sc) ###Output _____no_output_____
archive/2015/week17/Divide and conquer.ipynb
###Markdown Решаваме на сллжни проблеми чрез разбиването им на по-малки ###Code def max2(x1, x2): if x1 < x2: return x2 else: return x1 def max4(x1, x2, x3, x4): pass ###Output _____no_output_____ ###Markdown 1. Разделяме на две двойки по две числа (x1, x2) и (x3, x4).2. Намираме максимума на двойките. Остават ни две числа (максимумите на двойките `pair1_max` и `pair2_max`).3. Вече занаме как да намерима максимума на две числа; използвайки това намираме резултата. ###Code def max4(x1, x2, x3, x4): pair1_max = max2(x1, x2) pair2_max = max2(x3, x4) result = max2(pair1_max, pair2_max) return result max4(1, 2, 3, 4) ###Output _____no_output_____ ###Markdown С `return` можем да върнем какъвто и да е израз; не е нужно да се дефинира променлива за резултата ###Code def max4(x1, x2, x3, x4): pair1_max = max2(x1, x2) pair2_max = max2(x3, x4) return max2(pair1_max, pair2_max) max4(1, 2, 3, 4) ###Output _____no_output_____ ###Markdown Извикването на функция (напр. `max2(x1, x2)`) е израз, който може да се използва като аргумент на друга функция.T.e не е нужно да дефинираме допълнителни променливи `pair1_max` и `pair2_max`.Тук първо ще се изчислят вътрешните изрази `max2(x1, x2)` и `max2(x3, x4)`, и с резултата от тях ще се изпълнивъншната функция. ###Code def max4(x1, x2, x3, x4): return max2(max2(x1, x2), max2(x3, x4)) max4(1, 2, 3, 4) ###Output _____no_output_____ ###Markdown Използвайки `max4` лесно можем да дефинираме `avg_min3`, която намира средно-аритмитечното на трите по-малки чилсаот четири. ###Code def avg_min3(x1, x2, x3, x4): sum4 = x1 + x2 + x3 + x4 sum_min3 = sum4 - max4(x1, x2, x3, x4) return sum_min3 / 3 avg_min3(1, 2, 3, 4) ###Output _____no_output_____
flair/flair_ner.ipynb
###Markdown Flair NER Tagging Pipeline Navigation:* [General Info](info)* [Preparing Dataset](prepare)* [Adding BIOES Annotation](bioes)* [Training with Flair](train)* [Using Trained Model for Prediction](predict)* [Prediction and Saving to CONLL-U](save) General Info `Libraries needed:` `corpuscula.conllu` (conllu parsing); `flair` (training); `tqdm` (displaying progress)`Pre-Trained Embeddings used in this example:` [DeepPavlov Wiki+Lenta](http://files.deeppavlov.ai/embeddings/ft_native_300_ru_wiki_lenta_nltk_wordpunct_tokenize/ft_native_300_ru_wiki_lenta_nltk_wordpunct_tokenize.bin). Preprocessing included: `nltk wordpunсt_tokenize``Pipeline Input:` CONLL-U parsed text file.`Processing:` Extracting tokens and named entities as separate lists of lists of strings, and adding BIOES tags to entities.`Train Input:` `{train,dev,test}.txt` files in BIOES format as shown [here](https://en.wikipedia.org/wiki/Inside–outside–beginning_(tagging))`Sample train input:````здравствуйте Oрасскажите Oсправочной S-Departmentаэропорта S-Organizationгород B-Geoтомск E-Geo````Sample inference (predict) result:````4 больница детская городская больница номер 4 города сочи приемный покой ````Pipeline Output:` JSON with NER Parsing (list of lists of dict)`Sample pipeline output:````[[{'word': 'здравствуйте', 'entity': None}, {'word': 'будьте', 'entity': None}, {'word': 'добры', 'entity': None}, {'word': 'подскажите', 'entity': None}, {'word': 'мне', 'entity': None}, {'word': 'регистратуру', 'entity': 'Department'}, {'word': 'кожно', 'entity': 'Organization'}, {'word': 'венерического', 'entity': 'Organization'}, {'word': 'диспансера', 'entity': 'Organization'}], ]``` Preparing Dataset ###Code from corpuscula.conllu import Conllu def read_corpus(corpus=None, silent=False): if isinstance(corpus, str): corpus = Conllu.load(corpus, **({'log_file': None} if silent else{})) elif callable(corpus): corpus = corpus() parsed_corpus = [] parsed_ne = [] for sent in corpus: curr_sent = [x['FORM'] for x in sent[0] if x['FORM'] and '-' not in x['ID']] curr_ne = [x['MISC']['NE'] if 'NE' in x['MISC'].keys() else 'O' for x in sent[0]] parsed_corpus.append(curr_sent) parsed_ne.append(curr_ne) return parsed_corpus, parsed_ne # replace file names, if necessary parsed_corpus_train, named_entities_train = read_corpus('result_ner_train.conllu') parsed_corpus_dev, named_entities_dev = read_corpus('result_ner_dev.conllu') parsed_corpus_test, named_entities_test = read_corpus('result_ner_test.conllu') parsed_corpus_train[:1], named_entities_train[:1] ###Output _____no_output_____ ###Markdown Adding BIOES Annotation ###Code def bioes_annotation(ne_list): # Adding BIOES-annotation for future training with Flair prev_ne = 'O' bioes_ne = [] for i, ne in enumerate(ne_list): if ne == 'O': prev_ne = 'O' elif prev_ne == 'O' or ne != prev_ne.split('-')[1]: if i < len(ne_list)-1 and ne == ne_list[i+1]: ne = 'B-' + ne else: ne = 'S-' + ne elif ne == prev_ne.split('-')[1] and prev_ne.split('-')[0] in ['B', 'I']: if i < len(ne_list)-1 and ne == ne_list[i+1]: ne = 'I-' + ne else: ne = 'E-' + ne prev_ne = ne bioes_ne.append(ne) return bioes_ne bio_ne_train = [bioes_annotation(ne_seq) for ne_seq in named_entities_train] bio_ne_dev = [bioes_annotation(ne_seq) for ne_seq in named_entities_dev] bio_ne_test = [bioes_annotation(ne_seq) for ne_seq in named_entities_test] bio_ne_train[:1] # Modify paths and file names, if necessary import os dn = './ner_bioes/' if not os.path.isdir(dn): os.mkdir(dn) with open(os.path.join(dn, 'train.txt'), 'wt', encoding='utf-8') as f: for i in range(len(parsed_corpus_train)): [print('\n'.join([' '.join(pair) for pair in list(zip(parsed_corpus_train[i], bio_ne_train[i]))]), file=f)] print(file=f) with open(os.path.join(dn, 'dev.txt'), 'wt', encoding='utf-8') as f: for i in range(len(parsed_corpus_dev)): [print('\n'.join([' '.join(pair) for pair in list(zip(parsed_corpus_dev[i], bio_ne_dev[i]))]), file=f)] print(file=f) with open(os.path.join(dn, 'test.txt'), 'wt', encoding='utf-8') as f: for i in range(len(parsed_corpus_test)): [print('\n'.join([' '.join(pair) for pair in list(zip(parsed_corpus_test[i], bio_ne_test[i]))]), file=f)] print(file=f) ###Output _____no_output_____ ###Markdown Training with Flair ###Code # Uncomment lines below to install Flair and download pre-trained # embeddings if not done yet #!pip install flair #!wget -P ./resources http://files.deeppavlov.ai/embeddings/ft_native_300_ru_wiki_lenta_nltk_wordpunct_tokenize/ft_native_300_ru_wiki_lenta_nltk_wordpunct_tokenize.bin import flair, torch device = 'cuda:2' flair.device = torch.device(device) from flair.data import Corpus from flair.datasets import ColumnCorpus # need to figure out if these can be used with custom embeddings. Use FastTest for now. # from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings from flair.embeddings import FastTextEmbeddings from flair.models import SequenceTagger from flair.trainers import ModelTrainer import torch import sys from typing import List # 1. Loading our corpus # define columns (it is possible to add more columns, example: pos) columns = {0: 'text', 1: 'ner'} # this is the folder in which train, test and dev files reside data_folder = './ner_bioes/' # init a corpus using column format, data folder and the names # of the train, dev and test files print('Loading a corpus...') corpus: Corpus = ColumnCorpus(data_folder, columns, train_file='train.txt', test_file='test.txt', dev_file='dev.txt') print(corpus) print() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make a tag dictionary from the corpus print('Make a tag dictionary...') tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) print(tag_dictionary) print() # 4. initialize embeddings print('Loading embeddings...', end='') embeddings = FastTextEmbeddings( './resources/ft_native_300_ru_wiki_lenta_nltk_wordpunct_tokenize.bin' ) print(' done.') # 5. initialize sequence tagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type, use_crf=True) # 6. initialize trainer """ Initialize a model trainer :param model: The model that you want to train. The model should inherit from flair.nn.Model :param corpus: The dataset used to train the model, should be of type Corpus :param optimizer: The optimizer to use (typically SGD or Adam) [SGD by default] :param epoch: The starting epoch (normally 0 but could be higher if you continue training model) :param use_tensorboard: If True, writes out tensorboard information """ trainer: ModelTrainer = ModelTrainer(model=tagger, corpus=corpus) #checkpoint = 'resources/taggers/example-ner/checkpoint.pt' #trainer = ModelTrainer.load_checkpoint(checkpoint, corpus) # 7. start training ''' All possible parameters (with default values): learning_rate: float = 0.1, mini_batch_size: int = 32, mini_batch_chunk_size: int = None, max_epochs: int = 100, anneal_factor: float = 0.5, patience: int = 3, min_learning_rate: float = 0.0001, train_with_dev: bool = False, monitor_train: bool = False, monitor_test: bool = False, embeddings_storage_mode: str = 'cpu' (other modes: 'none', 'gpu') checkpoint: bool = False, # if True, model training can be resumed later save_final_model: bool = True, anneal_with_restarts: bool = False, batch_growth_annealing: bool = False, shuffle: bool = True, param_selection_mode: bool = False, num_workers: int = 6, sampler=None, use_amp: bool = False, amp_opt_level: str = "O1", eval_on_train_fraction=0.0, eval_on_train_shuffle=False, ''' trainer.train('resources/taggers/example-ner', learning_rate=0.1, mini_batch_size=32, embeddings_storage_mode='gpu', max_epochs=150) # 8. plot weight traces (optional) from flair.visual.training_curves import Plotter plotter = Plotter() plotter.plot_weights('resources/taggers/example-ner/weights.txt') ###Output Weights plots are saved in resources/taggers/example-ner/weights.png ###Markdown Using Trained Model for Prediction ###Code import flair, torch device = 'cuda:2' flair.device = torch.device(device) from flair.data import Sentence from flair.models import SequenceTagger # load the model you trained print('Loading model...') model = SequenceTagger.load('resources/taggers/example-ner/best-model.pt') print('done.') # create example sentence sentence = Sentence('Москва - город в России') # predict tags and print model.predict(sentence) print(sentence.to_tagged_string()) # Expected output: `Москва <S-Geo> - город в России <S-Geo>` from collections import OrderedDict from tqdm import tqdm def flair_parse(sents): sents = [' '.join(sent) for sent in sents] for idx, sent in enumerate(tqdm(sents)): sent = Sentence(sent) model.predict(sent) sent = sent.to_tagged_string().split() last_idx = len(sent) - 1 res = [] for idx, token in enumerate(sent, start=1): if not token.startswith('<'): next_token = sent[idx] if idx <= last_idx else '' res.append({ 'ID': str(idx), 'FORM': token, 'LEMMA': None, 'UPOS': None, 'XPOS': None, 'FEATS': OrderedDict(), 'HEAD': None, 'DEPREL': None, 'DEPS': None, 'MISC': OrderedDict( [('NE', next_token[3:-1])] if next_token.startswith('<') else [] ) }) yield res ###Output _____no_output_____ ###Markdown Prediction and Saving Results to CONLL-U ###Code from corpuscula import Conllu Conllu.save(flair_parse(parsed_corpus_test), 'flair_syntagrus.conllu', fix=True, log_file=None) ###Output 100%|██████████| 3798/3798 [00:07<00:00, 503.58it/s]
coding-activities/Sieve_of_Eratosthenes.ipynb
###Markdown The code below is a literal replication of the Sieve of Eratosthenes. The program makes a list up to n. It starts with 2 and then ~~crosses off~~ removes all the remaining multiples of 2. Moves to the next number, and removes the remaining multuples of that number until it reaches n. ###Code #ask for number n = input("Enter a number: ") #create a list up to n num_list = [] elem = 1 for i in range(int(n)-1): elem = elem + 1 num_list.append(elem) #remove composites for mod in num_list: for num in num_list: if num > mod and num % mod == 0: num_list.remove(num) print("The prime numbers up to " + n + " are: " + str(num_list)) ###Output Enter a number: 20 The prime numbers up to 20 are: [2, 3, 5, 7, 11, 13, 17, 19] ###Markdown u/17291 on reddit was kind enough to point out that the code above is inefficient for n > $10^5$ for the following reasons.>1. You're doing a whole bunch of unnecessary checks to see if a number is divisible by `mod`. For example, if num is divisible by 23, there is no point in checking if (num + 1) is divisible by 23—you can just skip ahead to (num + 23).>>2. `remove` is going to slow you down considerably because you it has to check every element in the list to see if it matches `num`>>A better solution is to create a list of booleans, where True means that it's a prime and False means it isn't. Start with 2 and then skip-count by 2s setting every multiple of 2 to False (other than 2 * 1, of course).>>Once you've reached the end of the list, increment `prime` until you've found the next prime (i.e., the next number that's still True). Now, skip-count by that number. Rinse and repeat.u/17291 was also kind enought to give some sample code found below. ###Code def sieve(n): # All numbers are prime to begin with num_list = [True] * (n + 1) prime = 2 while prime < n + 1: # Skip count, setting all multiples of `prime` to be composite for i in range(prime * 2, n + 1, prime): num_list[i] = False # Advance `prime` until we've found the next prime prime += 1 while prime < n + 1 and not num_list[prime]: prime += 1 # Return a list of all primes (i.e., every value from num_list that's True) return [n for n in range(2, n + 1) if num_list[n]] ###Output _____no_output_____
BoeingCamp-Day1 (Answer).ipynb
###Markdown Boeing Programming Camp Day 1In this lecture we do a quick review on Python.Keep in mind that no single lecture (or course!) can teach you how to code. We weould highly suggest reading [How to Think Like a Computer Scientist: Learning with Python 3 Documentation](https://media.readthedocs.org/pdf/howtothink/latest/howtothink.pdf) textbook for more information! ###Code from numpy.random import randint ###Output _____no_output_____ ###Markdown AlgorithmA list of steps to finish a task. PrintLet's write our first program. ###Code print('Hello World!') ###Output Hello World! ###Markdown Exercise-1print your name ###Code print('Chris') ###Output Chris ###Markdown VariablesA placeholder for a piece of information that can change. Example ###Code leg_height = 10 torso_height = 8 head_height = 2 robot_height = leg_height + torso_height + head_height print(robot_height) ###Output 20 ###Markdown Exercise-2 Let's change the variables ###Code leg_height = 7 torso_height = 5 head_height = 2 robot_height = leg_height + torso_height + head_height print(robot_height) ###Output 14 ###Markdown Exercise-3 Without using a loop, print numbers between 1 and 10 ###Code print(1) print(2) print(3) print(4) print(5) print(6) print(7) print(8) print(9) print(10) ###Output 10 ###Markdown Ohhhhh, it was too painful and repetitive!!! We want to do more than this one task over the next five days. LoopsSometimes we want to repeat things a certain number of times, but we want to keep track of values as we do. This is where a loop comes in handy. When you use a loop, you know right from the start what your beginning value is, what your ending value is, and how much the value changes each time through the loop. Example ###Code count = 1 while count <= 10: print(count) count = count + 1 ###Output 1 2 3 4 5 6 7 8 9 10 ###Markdown Modify above example ###Code count = 0 while count <= 8: print(count) count = count + 2 ###Output 0 2 4 6 8 ###Markdown Making a fun game with loop ###Code starting_value = randint(1, 6) print(starting_value) stopping_value = randint(1, 6) + randint(1, 6) + randint(1, 6) print(stopping_value) interval = randint(1, 6) print(interval) counter = starting_value print(counter) total = 0 while counter < stopping_value: total = total + counter print('Total = ', total) counter = counter + interval print('Counter = ', counter) ###Output Total = 3 Counter = 6 Total = 9 Counter = 9 ###Markdown Snack Time !!! IF statementIt checks if something is true or false. Example ###Code time = 7 if time < 7: print('Take bus') if time >= 7: print('Take subway') ###Output Take subway ###Markdown Programmers are lazy, so instead of typing multiple if statements, we can use if/else. ###Code if time < 7: print('Take bus') else: print('Take subway') ###Output Take subway ###Markdown Different ways to compare two thingsequal ==not equal !=grather/less than <grather and equal/less than and equal <= ###Code time = 11 if time < 7: print('Take bus') elif time >= 6.5 and time <= 9: print('Take subway') else: print('Take time machine') ###Output Take time machine ###Markdown Exercise-4 Make a new variable call it "cals", and try to implement this table. | cals | print ||---------|------------------|| less than 100 | you are Mr. Burns||||| between 100 and 1000 | you are Maggie||||| between 1000 and 1500 | you are Lisa||||| between 1500 and 2000 | you are Bart||||| between 2000 and 25000 | you are Marge||||| greater than 25000 | you are Homer| ###Code cal = 3453 if cal < 100: print('you are Mr. Burns') elif 100 <= cal and cal < 1000: print('you are Maggie') elif 1000 <= cal and cal < 1500: print('you are Lisa') elif 1500 <= cal and cal < 2000: print('you are BArt') elif 2000 <= cal and cal < 25000: print('you are Marge') else: print('you are Homer') ###Output you are Marge ###Markdown How to get input from the user ###Code name = input('please enter your name: ') print(name) ###Output Ali ###Markdown Problems Problem-1:Ask the user for their name. If it is your name or name of your best friend print 'Hello [entered name]'. Otherwise, print 'access denied!'. ###Code name = input('please enter your name: ') if name == 'Jake': print('Hello Jake!') else: print('Access denied!') ###Output Hello Jake! ###Markdown Converting String to Integer int()is the Python standard built-in function to convert a string into an integer value. Example ###Code num = input('please enter a number: ') num = int(num) num ###Output _____no_output_____ ###Markdown Problem 2: Get a number from the user. Output the sum of all numbers from 1 to the entered number.Examples: Input: 5, program calculates 1+2+3+4+5, Output: 15Input: 10, program calculates 1+2+3+4+5+6+7+8+9+10, Output: 55 ###Code num = int(input("Enter a number: ")) count = 1 total = 0 while(count <= num): total = total + count count = count + 1 print(total) ###Output Enter a number: 5 15 ###Markdown Problem-3:Make a simple calculator. First, get two numbers from the user, and a function ('add', 'sub', 'mul', 'div'). Then print the result. ###Code n1 = input('please enter the first number: ') n1 = int(n1) n2 = input('please enter the second number: ') n2 = int(n2) function = input('please enter a function, you can choose one of these functions (add, sub, mul, div): ') if function == 'add': print(n1+n2) elif function == 'sub': print(n1-n2) elif function == 'mul': print(n1*n2) elif function == 'div': print(n1/n2) else: print('Wrong function') ###Output 0.8333333333333334
notebooks/preprocessing-v2.ipynb
###Markdown Preprocessing: ###Code import numpy as np import pandas as pd import logging import os from dotenv import find_dotenv, load_dotenv import datetime import glob from os.path import abspath from pathlib import Path from inspect import getsourcefile from datetime import datetime import math import argparse import sys import tensorflow as tf from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import OneHotEncoder nb_dir = os.path.join(Path(os.getcwd()).parents[0], 'src', 'data') if nb_dir not in sys.path: sys.path.insert(0, nb_dir) import get_raw_data as grd import data_classes import Normalizer DT_FLOAT = np.float32 DT_BOOL = np.uint8 RANDOM_SEED = 123 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # logger.propagate = False # it will not log to console. RAW_DIR = os.path.join(Path(os.getcwd()).parents[0], 'data', 'raw') PRO_DIR = os.path.join(Path(os.getcwd()).parents[0], 'data', 'processed') print(RAW_DIR, PRO_DIR) def update_parser(parser): """Parse the arguments from the CLI and update the parser.""" parser.add_argument( '--prepro_step', type=str, default='preprocessing', #'slicing', 'preprocessing' help='To execute a preprocessing method') #this is for allfeatures_preprocessing: parser.add_argument( '--train_period', type=int, nargs='*', default=[121,323], #[121,279], #[156, 180], [121,143], # 279], help='Training Period') parser.add_argument( '--valid_period', type=int, nargs='*', default=[324,329], #[280,285], #[181,185], [144,147], help='Validation Period') parser.add_argument( '--test_period', type=int, nargs='*', default=[330, 342], #[286, 304], # [186,191], [148, 155], help='Testing Period') parser.add_argument( '--prepro_dir', type=str, default='chuncks_random_c1mill', help='Directory with raw data inside data/raw/ and it will be the output directory inside data/processed/') parser.add_argument( '--prepro_chunksize', type=int, default=500000, help='Chunk size to put into the h5 file...') parser.add_argument( '--prepro_with_index', type=bool, default=True, help='To keep indexes for each record') parser.add_argument( '--ref_norm', type=bool, default=True, help='To execute the normalization over the raw inputs') return parser.parse_known_args() FLAGS, UNPARSED = update_parser(argparse.ArgumentParser()) #these are the more important parameters for preprocessing: FLAGS.prepro_dir='chuncks_random_c1mill' #this directory must be the same inside 'raw' and processed directories. FLAGS.prepro_chunksize=500000 FLAGS.train_period=[121,323] #[121,279] #[121, 143] FLAGS.valid_period=[324,329] #[280,285] #[144, 147] FLAGS.test_period=[330,342] #[286,304] #[148, 155] FLAGS.prepro_with_index = True print(FLAGS) glob.glob(os.path.join(RAW_DIR, FLAGS.prepro_dir,"*.txt")) # from IPython.core.debugger import Tracer; Tracer()() def allfeatures_extract_labels(data, columns='MBA_DELINQUENCY_STATUS_next'): '''Extract the labels from Dataset, order-and-transform them into one-hot matrix of labels. Args: data (DataFrame): Input Dataset which is modified in place. columns (string): Name of the class column. Returns: one-hot matrix of labels of shape: [data.shape[0], 7]. Raises: ''' logger.name = 'allfeatures_extract_labels' if (type(columns)==str): indices = [i for i, elem in enumerate(data.columns) if columns in elem] # (alphabetically ordered) else: indices = columns if indices: labels = data[data.columns[indices]] data.drop(data.columns[indices], axis=1, inplace=True) logger.info('...Labels extracted from Dataset...') return labels else: return None def tag_chunk(tag, label, chunk, chunk_periods, tag_period, log_file, with_index, tag_index, hdf=None, tfrec=None): '''Extract records filtering by chunk_periods parameter, define indexes in case of with_index=True, extract labels and save the results into the target file. Args: chunk (DataFrame): Input Dataset which is modified in place. tag (string): 'train', 'valid' or 'test' chunk_periods (integer array): an array containing all periods into the chunk. tag_period (integer array): an array of form [init_period, end_period] for the correspond tag. log_file (Logger): An object of the log file. with_index (boolean): If true it will be saved the indexes. tag_index (int): an index that accumulates the size of the processed chunk. hdf or tfrec (HDFStore or TFRecords): an object of the target file. Only one must be distint of None. Returns: tag_index (int): tag_index updated. Raises: ''' inter_periods = list(chunk_periods.intersection(set(range(tag_period[0], tag_period[1]+1)))) log_file.write('Periods corresponding to ' + tag +' period: %s\r\n' % str(inter_periods)) p_chunk = chunk.loc[(slice(None), inter_periods), :] log_file.write('Records for ' + tag + ' Set - Number of rows: %d\r\n' % (p_chunk.shape[0])) print('Records for ' + tag + ' Set - Number of rows:', p_chunk.shape[0]) if (p_chunk.shape[0] > 0): if (with_index==True): # p_chunk.index = pd.MultiIndex.from_tuples([(i, x[1], x[2],x[3]) for x,i in zip(p_chunk.index, range(tag_index, tag_index + p_chunk.shape[0]))]) p_chunk.reset_index(inplace=True) allfeatures_drop_cols(p_chunk, ['PERIOD']) p_chunk.set_index('DELINQUENCY_STATUS_NEXT', inplace=True) #1 index else: p_chunk.reset_index(drop=True, inplace=True) labels = allfeatures_extract_labels(p_chunk, columns=label) p_chunk = p_chunk.astype(DT_FLOAT) labels = labels.astype(np.int8) if (p_chunk.shape[0] != labels.shape[0]) : print('Error in shapes:', p_chunk.shape, labels.shape) else : if (hdf!=None): hdf.put(tag + '/features', p_chunk, append=True, index=True) #data_columns=p_chunk.columns.values), index=False hdf.put(tag + '/labels', labels, append=True, index=True) #data_columns=labels.columns.values) hdf.flush() elif (tfrec!=None): for row, lab in zip(p_chunk.values, labels.values): feature = {tag + '/labels': _int64_feature(lab), tag + '/features': _float_feature(row)} # Create an example protocol buffer example = tf.train.Example(features=tf.train.Features(feature=feature)) tfrec.write(example.SerializeToString()) tfrec.flush() tag_index += p_chunk.shape[0] return tag_index def allfeatures_drop_cols(data, columns): '''Exclude from the dataset 'data' the descriptive columns as parameters. Args: data (DataFrame): Input Dataset which is modified in place. Returns: None Raises: ''' logger.name = 'allfeatures_drop_cols' data.drop(columns, axis=1, inplace=True) logger.info('...Columns Excluded from dataset...') return None def oneHotDummies_column(column, categories): '''Convert categorical variable into dummy/indicator variables. Args: column (Series): Input String Categorical Column. Returns: DataFrame. Integer Sparse binary matrix of categorical features. Raises: ''' logger.name = 'oneHotDummies_column: ' + column.name cat_column = pd.Categorical(column.astype('str'), categories=categories) cat_column = pd.get_dummies(cat_column) # in the same order as categories! (alphabetically ordered) cat_column = cat_column.add_prefix(column.name + '_') if (cat_column.isnull().any().any()): null_cols = cat_column.columns[cat_column.isnull().any()] print(cat_column[null_cols].isnull().sum()) print(cat_column[cat_column.isnull().any(axis=1)][null_cols].head(50)) return cat_column def imputing_nan_values(nan_dict, distribution): '''Replace nan values with a value according the nan_dict dictionary and distribution of this feature. Args: nan_dict (Dictionary): the key values are the name of features, the values could be a literal or values belonging to the distribution. distribution (DataFrame): Contains the median value for numerical features. Returns: new_dict (Dictionary): contains the values updated. Raises: ''' new_dict = {} for k,v in nan_dict.items(): if v=='median': new_dict[k] = float(distribution[k+'_MEDIAN']) elif v=='mean': new_dict[k] = float(distribution[k+'_MEAN']) else: new_dict[k] = v return new_dict def drop_invalid_delinquency_status(data, gflag, log_file): '''Delete all subsecuent records of a loan when the feature delinquency_status_next contains any of the following invalid status: S,T,X or Z. Args: data (DataFrame): Input Dataset which is modified in place. gflag (int): Loan_id of the last loan in previous data, in case this contains some invalid status, to delete all records inside the current data. log_file (Logger): An object of the log file. Returns: gflag (int): Loan_id of the last loan in current data, in case this contains some invalid status. Raises: ''' logger.name = 'drop_invalid_delinquency_status' delinq_ids = data[data['MBA_DELINQUENCY_STATUS'].isin(['0', 'R', 'S', 'T', 'X', 'Z'])]['LOAN_ID'] groups = data[data['LOAN_ID'].isin(delinq_ids)][['LOAN_ID', 'PERIOD', 'MBA_DELINQUENCY_STATUS', 'DELINQUENCY_STATUS_NEXT']].groupby('LOAN_ID') groups_list = list(groups) iuw= pd.Index([]) if gflag != '': try: iuw= iuw.union(groups.get_group(gflag).index[0:]) except Exception as e: print(str(e)) if data.iloc[-1]['LOAN_ID'] in groups.groups.keys(): gflag = data.iloc[-1]['LOAN_ID'] else: gflag = '' for k, group in groups_list: li= group.index[(group['MBA_DELINQUENCY_STATUS'] =='S') | (group['MBA_DELINQUENCY_STATUS'] =='T') | (group['MBA_DELINQUENCY_STATUS'] =='X') | (group['MBA_DELINQUENCY_STATUS'] =='Z')].tolist() if li: iuw= iuw.union(group.index[group.index.get_loc(li[0]):]) # In case of REO or Paid-Off, we need to exclude since the next record: df_delinq_01 = group[(group['MBA_DELINQUENCY_STATUS'] =='0') | (group['MBA_DELINQUENCY_STATUS'] =='R')] if df_delinq_01.shape[0]>0: track_i = df_delinq_01.index[0] iuw= iuw.union(group.index[group.index.get_loc(track_i)+1:]) if iuw!=[]: log_file.write('drop_invalid_delinquency_status - Total rows: %d\r\n' % len(iuw)) # (log_df.shape[0]) data.drop(iuw, inplace=True) logger.info('invalid_delinquency_status dropped') return gflag def zscore(x,mean,stdd): return (x - mean) / stdd def zscore_apply(dist_file, data): stddv_0 = [] nnorm_cols = [] for col_name in data.columns.values: mean = pd.Series(dist_file.iloc[0, np.where(pd.DataFrame(dist_file.columns.values)[0].str.contains(col_name+'_MEAN'))[0]], dtype='float32') stddev = dist_file.iloc[0, np.where(pd.DataFrame(dist_file.columns.values)[0].str.contains(col_name+'_STDD'))[0]] if not mean.empty and not stddev.empty: mean = np.float32(mean.values[0]) stddev = np.float32(stddev.values[0]) if stddev == 0: stddv_0.append(col_name) else: data[col_name] = data[col_name].apply(lambda x: zscore(x, mean, stddev)) else: nnorm_cols.append(col_name) print('STANDARD DEV zero: ', stddv_0) return data, nnorm_cols def prepro_chunk(file_name, file_path, chunksize, label, log_file, nan_cols, categorical_cols, descriptive_cols, time_cols, dist_file, with_index, refNorm, train_period, valid_period, test_period, robust_cols, minmax_cols=None, hdf=None, tfrec=None, filtering_cols=None): gflag = '' i = 1 train_index = 0 valid_index = 0 test_index = 0 for chunk in pd.read_csv(file_path, chunksize = chunksize, sep=',', low_memory=False): print('chunk: ', i, ' chunk size: ', chunk.shape[0]) log_file.write('chunk: %d, chunk size: %d \n' % (i, chunk.shape[0])) chunk.columns = chunk.columns.str.upper() log_df = chunk[chunk[label].isnull()] log_file.write('Dropping Rows with Null Labels - Number of rows: %d\r\n' % (log_df.shape[0])) chunk.drop(chunk.index[chunk[label].isnull()], axis=0, inplace=True) log_df = chunk[chunk['INVALID_TRANSITIONS']==1] log_file.write('Dropping Rows with Invalid Transitions - Number of rows: %d\r\n' % (log_df.shape[0])) chunk.drop(chunk.index[chunk['INVALID_TRANSITIONS']==1], axis=0, inplace=True) #print('chunk with missing MBA_DELINQUENCY_STATUS', chunk[(chunk['MBA_DELINQUENCY_STATUS']=='') | (chunk['MBA_DELINQUENCY_STATUS'].isna())]) chunk.drop(chunk.index[(chunk['MBA_DELINQUENCY_STATUS'].astype('str')=='')], axis=0, inplace=True) #| (chunk['MBA_DELINQUENCY_STATUS'].isna()) gflag = drop_invalid_delinquency_status(chunk, gflag, log_file) null_columns=chunk.columns[chunk.isnull().any()] log_df = chunk[chunk.isnull().any(axis=1)][null_columns] log_file.write('Filling NULL values - (rows, cols) : %d, %d\r\n' % (log_df.shape[0], log_df.shape[1])) log_df = chunk[null_columns].isnull().sum().to_frame().reset_index() log_df.to_csv(log_file, index=False, mode='a') nan_cols = imputing_nan_values(nan_cols, dist_file) chunk.fillna(value=nan_cols, inplace=True) chunk.drop_duplicates(inplace=True) # Follow this instruction!! logger.info('dropping invalid transitions and delinquency status, fill nan values, drop duplicates') log_file.write('Drop duplicates - new size : %d\r\n' % (chunk.shape[0])) chunk.reset_index(drop=True, inplace=True) #don't remove this line! otherwise NaN values appears. #chunk['ORIGINATION_YEAR'][chunk['ORIGINATION_YEAR']<1995] = "B1995" #chunk['ORIGINATION_YEAR'][(chunk['ORIGINATION_YEAR']<>"B1995") & (chunk['ORIGINATION_YEAR']>2018)] = "nan" chunk['ORIGINATION_YEAR'] = chunk['ORIGINATION_YEAR'].apply(lambda x: "B1995" if x<1995 else '' if (x>2018 or x is None) else x) #.isna() for k,v in categorical_cols.items(): # if (chunk[k].dtype=='O'): chunk[k] = chunk[k].astype('str') chunk[k] = chunk[k].str.strip() chunk[k].replace(['\.0$'], [''], regex=True, inplace=True) new_cols = oneHotDummies_column(chunk[k], v) if (chunk[k].value_counts().sum()!=new_cols.sum().sum()): print('Error at categorization, different sizes', k) print(chunk[k].value_counts(), new_cols.sum()) log_file.write('Error at categorization, different sizes %s\r\n' % str(k)) chunk[new_cols.columns] = new_cols else: chunk[new_cols.columns] = new_cols log_file.write('New columns added: %s\r\n' % str(new_cols.columns.values)) allfeatures_drop_cols(chunk, descriptive_cols) #np.savetxt(log_file, descriptive_cols, header='descriptive_cols dropped:', newline=" ") log_file.write('descriptive_cols dropped: %s\r\n' % str(descriptive_cols)) allfeatures_drop_cols(chunk, time_cols) #np.savetxt(log_file, time_cols, header='time_cols dropped:', newline=" ") log_file.write('time_cols dropped: %s\r\n' % str(time_cols)) cat_list = list(categorical_cols.keys()) cat_list.remove('DELINQUENCY_STATUS_NEXT') #np.savetxt(log_file, cat_list, header='categorical_cols dropped:', newline=" ") log_file.write('categorical_cols dropped: %s\r\n' % str(cat_list)) allfeatures_drop_cols(chunk, cat_list) chunk.reset_index(drop=True, inplace=True) chunk.set_index(['DELINQUENCY_STATUS_NEXT', 'PERIOD'], append=False, inplace=True) #2 indexes # np.savetxt(log_file, str(chunk.index.names), header='Indexes created:', newline=" ") log_file.write('Indexes created: %s\r\n' % str(chunk.index.names)) if (filtering_cols!=None): chunk = chunk[filtering_cols] robust_cols = list(set(robust_cols).intersection(filtering_cols)) log_file.write('Columns Filtered: %s\r\n' % str(chunk.columns.values)) if chunk.isnull().any().any(): # from IPython.core.debugger import Tracer; Tracer()() raise ValueError('There are null values...File: ' + file_name) if (refNorm==True): chunk[robust_cols], nnorm_cols = zscore_apply(dist_file, chunk[robust_cols]) #robust_normalizer.transform(chunk[robust_cols]) log_file.write('Columns not normalized: %s\r\n' % str(nnorm_cols)) log_file.write('Columns normalized: %s\r\n' % str(set(robust_cols)-set(nnorm_cols))) if chunk.isnull().any().any(): raise ValueError('There are null values...File: ' + file_name) chunk_periods = set(list(chunk.index.get_level_values('PERIOD'))) #print(tfrec) if (tfrec!=None): train_index = tag_chunk('train', label, chunk, chunk_periods, train_period, log_file, with_index, train_index, tfrec=tfrec[0]) valid_index = tag_chunk('valid', label, chunk, chunk_periods, valid_period, log_file, with_index, valid_index, tfrec=tfrec[1]) test_index = tag_chunk('test', label, chunk, chunk_periods, test_period, log_file, with_index, test_index, tfrec=tfrec[2]) sys.stdout.flush() elif (hdf!=None): train_index = tag_chunk('train', label, chunk, chunk_periods, train_period, log_file, with_index, train_index, hdf=hdf[0]) valid_index = tag_chunk('valid', label, chunk, chunk_periods, valid_period, log_file, with_index, valid_index, hdf=hdf[1]) test_index = tag_chunk('test', label, chunk, chunk_periods, test_period, log_file, with_index, test_index, hdf=hdf[2]) inter_periods = list(chunk_periods.intersection(set(range(test_period[1]+1,355)))) log_file.write('Periods greater than test_period: %s\r\n' % str(inter_periods)) p_chunk = chunk.loc[(slice(None), inter_periods), :] log_file.write('Records greater than test_period - Number of rows: %d\r\n' % (p_chunk.shape[0])) del chunk i += 1 return train_index, valid_index, test_index def custom_robust_normalizer(ncols, dist_file, normalizer_type='robust_scaler_sk', center_value='median'): norm_cols = [] scales = [] centers = [] scales_0 =[] for i, x in enumerate (ncols): x_frame = dist_file.iloc[:, np.where(pd.DataFrame(dist_file.columns.values)[0].str.contains(x+'_Q'))[0]] if not x_frame.empty and (x_frame.shape[1]>1): iqr = float(pd.to_numeric(x_frame[x+'_Q3'], errors='coerce').subtract(pd.to_numeric(x_frame[x+'_Q1'], errors='coerce'))) if iqr == 0: scales_0.append(x) if iqr!=0: norm_cols.append(x) scales.append(iqr) if center_value == 'median': centers.append( float(x_frame[x+'_MEDIAN']) ) else: centers.append( float(x_frame[x+'_Q1']) ) if (normalizer_type == 'robust_scaler_sk'): normalizer = RobustScaler() normalizer.scale_ = scales normalizer.center_ = centers elif (normalizer_type == 'percentile_scaler'): normalizer = Normalizer.Normalizer(scales, centers) else: normalizer=None print(scales_0) return norm_cols, normalizer def custom_minmax_normalizer(ncols, scales, dist_file): norm_cols = [] minmax_scales = [] centers = [] for i, x in enumerate (ncols): x_min = dist_file.iloc[0, np.where(pd.DataFrame(dist_file.columns.values)[0].str.contains(x+'_MIN'))[0]] x_max = dist_file.iloc[0, np.where(pd.DataFrame(dist_file.columns.values)[0].str.contains(x+'_MAX'))[0]] if not(x_min.empty) and not(x_max.empty): x_min = np.float32(x_min.values[0]) x_max = np.float32(x_max.values[0]) minmax_scales.append(x_max - x_min) centers.append(x_min) norm_cols.append(x) # to_delete.append(i) normalizer = Normalizer.Normalizer(minmax_scales, centers) return norm_cols, normalizer #, to_delete def allfeatures_preprocessing(RAW_DIR, PRO_DIR, raw_dir, train_period, valid_period, test_period, dividing='percentage', chunksize=500000, refNorm=True, with_index=True, output_hdf=True, label='DELINQUENCY_STATUS_NEXT', filtering_cols=None): descriptive_cols = [ 'LOAN_ID', 'ASOFMONTH', 'PERIOD_NEXT', 'MOD_PER_FROM', 'MOD_PER_TO', 'PROPERTY_ZIP', 'INVALID_TRANSITIONS', 'CONSECUTIVE' ] numeric_cols = ['MBA_DAYS_DELINQUENT', 'MBA_DAYS_DELINQUENT_NAN', 'CURRENT_INTEREST_RATE', 'CURRENT_INTEREST_RATE_NAN', 'LOANAGE', 'LOANAGE_NAN', 'CURRENT_BALANCE', 'CURRENT_BALANCE_NAN', 'SCHEDULED_PRINCIPAL', 'SCHEDULED_PRINCIPAL_NAN', 'SCHEDULED_MONTHLY_PANDI', 'SCHEDULED_MONTHLY_PANDI_NAN', 'LLMA2_CURRENT_INTEREST_SPREAD', 'LLMA2_CURRENT_INTEREST_SPREAD_NAN', 'LLMA2_C_IN_LAST_12_MONTHS', 'LLMA2_30_IN_LAST_12_MONTHS', 'LLMA2_60_IN_LAST_12_MONTHS', 'LLMA2_90_IN_LAST_12_MONTHS', 'LLMA2_FC_IN_LAST_12_MONTHS', 'LLMA2_REO_IN_LAST_12_MONTHS', 'LLMA2_0_IN_LAST_12_MONTHS', 'NUM_MODIF', 'NUM_MODIF_NAN', 'P_RATE_TO_MOD', 'P_RATE_TO_MOD_NAN', 'MOD_RATE', 'MOD_RATE_NAN', 'DIF_RATE', 'DIF_RATE_NAN', 'P_MONTHLY_PAY', 'P_MONTHLY_PAY_NAN', 'MOD_MONTHLY_PAY', 'MOD_MONTHLY_PAY_NAN', 'DIF_MONTHLY_PAY', 'DIF_MONTHLY_PAY_NAN', 'CAPITALIZATION_AMT', 'CAPITALIZATION_AMT_NAN', 'MORTGAGE_RATE', 'MORTGAGE_RATE_NAN', 'FICO_SCORE_ORIGINATION', 'INITIAL_INTEREST_RATE', 'ORIGINAL_LTV', 'ORIGINAL_BALANCE', 'BACKEND_RATIO', 'BACKEND_RATIO_NAN', 'ORIGINAL_TERM', 'ORIGINAL_TERM_NAN', 'SALE_PRICE', 'SALE_PRICE_NAN', 'PREPAY_PENALTY_TERM', 'PREPAY_PENALTY_TERM_NAN', 'NUMBER_OF_UNITS', 'NUMBER_OF_UNITS_NAN', 'MARGIN', 'MARGIN_NAN', 'PERIODIC_RATE_CAP', 'PERIODIC_RATE_CAP_NAN', 'PERIODIC_RATE_FLOOR', 'PERIODIC_RATE_FLOOR_NAN', 'LIFETIME_RATE_CAP', 'LIFETIME_RATE_CAP_NAN', 'LIFETIME_RATE_FLOOR', 'LIFETIME_RATE_FLOOR_NAN', 'RATE_RESET_FREQUENCY', 'RATE_RESET_FREQUENCY_NAN', 'PAY_RESET_FREQUENCY', 'PAY_RESET_FREQUENCY_NAN', 'FIRST_RATE_RESET_PERIOD', 'FIRST_RATE_RESET_PERIOD_NAN', 'LLMA2_ORIG_RATE_SPREAD', 'LLMA2_ORIG_RATE_SPREAD_NAN', 'AGI', 'AGI_NAN', 'UR', 'UR_NAN', 'COUNT_INT_RATE_LESS', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD_NAN', 'NUM_PRIME_ZIP', 'NUM_PRIME_ZIP_NAN' ] binary_cols = ['LLMA2_HIST_LAST_12_MONTHS_MIS', 'LLMA2_PRIME', 'LLMA2_SUBPRIME', 'LLMA2_APPVAL_LT_SALEPRICE'] ''' nan_cols = {'MBA_DAYS_DELINQUENT': 'median', 'CURRENT_INTEREST_RATE': 'median', 'LOANAGE': 'median', 'CURRENT_BALANCE' : 'median', 'SCHEDULED_PRINCIPAL': 'median', 'SCHEDULED_MONTHLY_PANDI': 'median', 'LLMA2_CURRENT_INTEREST_SPREAD': 'median', 'NUM_MODIF': 0, 'P_RATE_TO_MOD': 0, 'MOD_RATE': 0, 'DIF_RATE': 0, 'P_MONTHLY_PAY': 0, 'MOD_MONTHLY_PAY': 0, 'DIF_MONTHLY_PAY': 0, 'CAPITALIZATION_AMT': 0, 'MORTGAGE_RATE': 'median', 'FICO_SCORE_ORIGINATION': 'median', 'INITIAL_INTEREST_RATE': 'median', 'ORIGINAL_LTV': 'median', 'ORIGINAL_BALANCE': 'median', 'BACKEND_RATIO': 'median', 'ORIGINAL_TERM': 'median', 'SALE_PRICE': 'median', 'PREPAY_PENALTY_TERM': 'median', 'NUMBER_OF_UNITS': 'median', 'MARGIN': 'median', 'PERIODIC_RATE_CAP': 'median', 'PERIODIC_RATE_FLOOR': 'median', 'LIFETIME_RATE_CAP': 'median', 'LIFETIME_RATE_FLOOR': 'median', 'RATE_RESET_FREQUENCY': 'median', 'PAY_RESET_FREQUENCY': 'median', 'FIRST_RATE_RESET_PERIOD': 'median', 'LLMA2_ORIG_RATE_SPREAD': 'median', 'AGI': 'median', 'UR': 'median', 'LLMA2_C_IN_LAST_12_MONTHS': 'median', 'LLMA2_30_IN_LAST_12_MONTHS': 'median', 'LLMA2_60_IN_LAST_12_MONTHS': 'median', 'LLMA2_90_IN_LAST_12_MONTHS': 'median', 'LLMA2_FC_IN_LAST_12_MONTHS': 'median', 'LLMA2_REO_IN_LAST_12_MONTHS': 'median', 'LLMA2_0_IN_LAST_12_MONTHS': 'median', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD':0, 'NUM_PRIME_ZIP':'median' } ''' ''' set(nan_cols) - set(nan_cols_nonan) Out[56]: {'COUNT_INT_RATE_LESS', # never missed 'FICO_SCORE_ORIGINATION', # never missed 'INITIAL_INTEREST_RATE', # never missed 'LLMA2_0_IN_LAST_12_MONTHS', #In average, 14% of missing data! 'LLMA2_30_IN_LAST_12_MONTHS', 'LLMA2_60_IN_LAST_12_MONTHS', 'LLMA2_90_IN_LAST_12_MONTHS', 'LLMA2_C_IN_LAST_12_MONTHS', 'LLMA2_FC_IN_LAST_12_MONTHS', 'LLMA2_REO_IN_LAST_12_MONTHS', 'ORIGINAL_BALANCE', # never missed 'ORIGINAL_LTV'} # never missed ''' nan_cols = {'MBA_DAYS_DELINQUENT': 'mean', 'CURRENT_INTEREST_RATE': 'mean', 'LOANAGE': 'mean', 'CURRENT_BALANCE' : 'mean', 'SCHEDULED_PRINCIPAL': 'mean', 'SCHEDULED_MONTHLY_PANDI': 'mean', 'LLMA2_CURRENT_INTEREST_SPREAD': 'mean', 'NUM_MODIF': 0, 'P_RATE_TO_MOD': 0, 'MOD_RATE': 0, 'DIF_RATE': 0, 'P_MONTHLY_PAY': 0, 'MOD_MONTHLY_PAY': 0, 'DIF_MONTHLY_PAY': 0, 'CAPITALIZATION_AMT': 0, 'MORTGAGE_RATE': 'mean', 'FICO_SCORE_ORIGINATION': 'mean', 'INITIAL_INTEREST_RATE': 'mean', 'ORIGINAL_LTV': 'mean', 'ORIGINAL_BALANCE': 'mean', 'BACKEND_RATIO': 'mean', 'ORIGINAL_TERM': 'mean', 'SALE_PRICE': 'mean', 'PREPAY_PENALTY_TERM': 'mean', 'NUMBER_OF_UNITS': 'mean', 'MARGIN': 'mean', 'PERIODIC_RATE_CAP': 'mean', 'PERIODIC_RATE_FLOOR': 'mean', 'LIFETIME_RATE_CAP': 'mean', 'LIFETIME_RATE_FLOOR': 'mean', 'RATE_RESET_FREQUENCY': 'mean', 'PAY_RESET_FREQUENCY': 'mean', 'FIRST_RATE_RESET_PERIOD': 'mean', 'LLMA2_ORIG_RATE_SPREAD': 'mean', 'AGI': 'mean', 'UR': 'mean', 'LLMA2_C_IN_LAST_12_MONTHS': 'mean', 'LLMA2_30_IN_LAST_12_MONTHS': 'mean', 'LLMA2_60_IN_LAST_12_MONTHS': 'mean', 'LLMA2_90_IN_LAST_12_MONTHS': 'mean', 'LLMA2_FC_IN_LAST_12_MONTHS': 'mean', 'LLMA2_REO_IN_LAST_12_MONTHS': 'mean', 'LLMA2_0_IN_LAST_12_MONTHS': 'mean', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD':0, 'COUNT_INT_RATE_LESS' :'median', 'NUM_PRIME_ZIP':'mean' } categorical_cols = {'MBA_DELINQUENCY_STATUS': ['0','3','6','9','C','F','R'], 'DELINQUENCY_STATUS_NEXT': ['0','3','6','9','C','F','R'], #,'S','T','X' 'BUYDOWN_FLAG': ['N','U','Y'], 'NEGATIVE_AMORTIZATION_FLAG': ['N','U','Y'], 'PREPAY_PENALTY_FLAG': ['N','U','Y'], 'OCCUPANCY_TYPE': ['1','2','3','U'], 'PRODUCT_TYPE': ['10','20','30','40','50','51','52','53','54','5A','5Z', '60','61','62','63','6Z','70','80','81','82','83','84','8Z','U'], 'PROPERTY_TYPE': ['1','2','3','4','5','6','7','8','9','L','M','U','Z'], 'LOAN_PURPOSE_CATEGORY': ['P','R','U'], 'DOCUMENTATION_TYPE': ['1','2','3','U'], 'CHANNEL': ['1','2','3','4','5','6','7','8','9','A','B','C','D','U'], 'LOAN_TYPE': ['1','2','3','4','5','6','7','U'], 'IO_FLAG': ['N','U','Y'], 'CONVERTIBLE_FLAG': ['N','U','Y'], 'POOL_INSURANCE_FLAG': ['N','U','Y'], 'STATE': ['AK', 'AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'HI', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY'], 'CURRENT_INVESTOR_CODE': ['240', '250', '253', 'U'], 'ORIGINATION_YEAR': ['B1995','1995','1996','1997','1998','1999','2000','2001','2002','2003', '2004','2005','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015','2016','2017','2018','nan']} time_cols = ['YEAR', 'MONTH'] #, 'PERIOD'] #no nan values total_cols = numeric_cols.copy() total_cols.extend(descriptive_cols) total_cols.extend(categorical_cols.keys()) total_cols.extend(time_cols) print('total_cols size: ', len(total_cols)) #110 !=112?? set(chunk_cols) - set(total_cols): {'LOAN_ID', 'PERIOD'} pd.set_option('io.hdf.default_format','table') dist_file = pd.read_csv(os.path.join(RAW_DIR, "percentile features3-mean.csv"), sep=';', low_memory=False) dist_file.columns = dist_file.columns.str.upper() ncols = [x for x in numeric_cols if x.find('NAN')<0] print(ncols) #sum = 0 #for elem in categorical_cols.values(): # sum += len(elem) #print('total categorical values: ', sum) #181 for file_path in glob.glob(os.path.join(RAW_DIR, raw_dir,"*.txt")): file_name = os.path.basename(file_path) if with_index==True: target_path = os.path.join(PRO_DIR, raw_dir,file_name[:-4]) else: target_path = os.path.join(PRO_DIR, raw_dir,file_name[:-4]+'_non_index') log_file=open(target_path+'-log.txt', 'w+', 1) print('Preprocessing File: ' + file_path) log_file.write('Preprocessing File: %s\r\n' % file_path) startTime = datetime.now() if (output_hdf == True): #with pd.HDFStore(target_path +'-pp.h5', complib='lzo', complevel=9) as hdf: #complib='lzo', complevel=9 train_writer = pd.HDFStore(target_path +'-train_.h5', complib='lzo', complevel=9) valid_writer = pd.HDFStore(target_path +'-valid_.h5', complib='lzo', complevel=9) test_writer = pd.HDFStore(target_path +'-test_.h5', complib='lzo', complevel=9) print('generating: ', target_path +'-pp.h5') train_index, valid_index, test_index = prepro_chunk(file_name, file_path, chunksize, label, log_file, nan_cols, categorical_cols, descriptive_cols, time_cols, dist_file, with_index, refNorm, train_period, valid_period, test_period, ncols, hdf=[train_writer, valid_writer, test_writer], tfrec=None, filtering_cols=filtering_cols) if train_writer.get_storer('train/features').nrows != train_writer.get_storer('train/labels').nrows: raise ValueError('Train-DataSet: Sizes should match!') if valid_writer.get_storer('valid/features').nrows != valid_writer.get_storer('valid/labels').nrows: raise ValueError('Valid-DataSet: Sizes should match!') if test_writer.get_storer('test/features').nrows != test_writer.get_storer('test/labels').nrows: raise ValueError('Test-DataSet: Sizes should match!') print('train/features size: ', train_writer.get_storer('train/features').nrows) print('valid/features size: ', valid_writer.get_storer('valid/features').nrows) print('test/features size: ', test_writer.get_storer('test/features').nrows) log_file.write('***SUMMARY***\n') log_file.write('train/features size: %d\r\n' %(train_writer.get_storer('train/features').nrows)) log_file.write('valid/features size: %d\r\n' %(valid_writer.get_storer('valid/features').nrows)) log_file.write('test/features size: %d\r\n' %(test_writer.get_storer('test/features').nrows)) logger.info('training, validation and testing set into .h5 file') else: train_writer = tf.python_io.TFRecordWriter(target_path +'-train_.tfrecords') valid_writer = tf.python_io.TFRecordWriter(target_path +'-valid_.tfrecords') test_writer = tf.python_io.TFRecordWriter(target_path +'-test_.tfrecords') train_index, valid_index, test_index = prepro_chunk(file_name, file_path, chunksize, label, log_file, nan_cols, categorical_cols, descriptive_cols, time_cols, dist_file, with_index, refNorm, train_period, valid_period, test_period, ncols, hdf=None, tfrec=[train_writer, valid_writer, test_writer], filtering_cols=filtering_cols) print(train_index, valid_index, test_index) train_writer.close() valid_writer.close() test_writer.close() #def allfeatures_prepro_file(RAW_DIR, file_path, raw_dir, file_name, target_path, train_period, valid_period, test_period, log_file, dividing='percentage', chunksize=500000, # refNorm=True, , with_index=True, output_hdf=True): #allfeatures_prepro_file(RAW_DIR, file_path, raw_dir, file_name, target_path, train_num, valid_num, test_num, log_file, dividing=dividing, chunksize=chunksize, # refNorm=refNorm, with_index=with_index, output_hdf=output_hdf) startTime = datetime.now() - startTime print('Preprocessing Time per file: ', startTime) log_file.write('Preprocessing Time per file: %s\r\n' % str(startTime)) log_file.close() def allclasses_Ncomp_71feat(): cols = ['PRODUCT_TYPE_20', 'IO_FLAG_U', 'NEGATIVE_AMORTIZATION_FLAG_N', 'LOAN_TYPE_1', 'NEGATIVE_AMORTIZATION_FLAG_U', 'IO_FLAG_N', 'CURRENT_INVESTOR_CODE_250', 'NEGATIVE_AMORTIZATION_FLAG_Y', 'LOAN_PURPOSE_CATEGORY_U', 'PREPAY_PENALTY_FLAG_U', 'LOAN_PURPOSE_CATEGORY_P', 'CHANNEL_D', 'CONVERTIBLE_FLAG_N', 'IO_FLAG_Y', 'CONVERTIBLE_FLAG_U', 'LOAN_PURPOSE_CATEGORY_R', 'ORIGINATION_YEAR_B1995', 'CHANNEL_U', 'POOL_INSURANCE_FLAG_U', 'CHANNEL_2', 'PREPAY_PENALTY_FLAG_Y', 'PROPERTY_TYPE_6', 'DOCUMENTATION_TYPE_U', 'PRODUCT_TYPE_10', 'CURRENT_INVESTOR_CODE_U', 'PERIODIC_RATE_FLOOR_NAN', 'PERIODIC_RATE_CAP_NAN', 'LIFETIME_RATE_FLOOR_NAN', 'PAY_RESET_FREQUENCY_NAN', 'CONVERTIBLE_FLAG_Y', 'DOCUMENTATION_TYPE_2', 'POOL_INSURANCE_FLAG_N', 'RATE_RESET_FREQUENCY_NAN', 'FIRST_RATE_RESET_PERIOD_NAN', 'PROPERTY_TYPE_2', 'CURRENT_INVESTOR_CODE_253', 'LOAN_TYPE_3', 'LIFETIME_RATE_CAP_NAN', 'PREPAY_PENALTY_FLAG_N', 'OCCUPANCY_TYPE_U', 'SCHEDULED_MONTHLY_PANDI_NAN', 'ORIGINATION_YEAR_2012', 'BUYDOWN_FLAG_N', 'ORIGINATION_YEAR_2008', 'BUYDOWN_FLAG_U', 'MARGIN', 'LOAN_TYPE_2', 'ORIGINATION_YEAR_2007', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD', 'AGI_NAN', 'ORIGINATION_YEAR_2006', 'DOCUMENTATION_TYPE_1', 'CHANNEL_1', 'ORIGINATION_YEAR_1999', 'CURRENT_INVESTOR_CODE_240', 'PROPERTY_TYPE_U', 'MARGIN_NAN', 'ORIGINATION_YEAR_2013', 'ORIGINATION_YEAR_2004', 'ORIGINATION_YEAR_1998', 'OCCUPANCY_TYPE_2', 'CHANNEL_3', 'LIFETIME_RATE_FLOOR', 'PROPERTY_TYPE_1', 'PERIODIC_RATE_CAP', 'ORIGINATION_YEAR_2005', 'PRODUCT_TYPE_82', 'LLMA2_HIST_LAST_12_MONTHS_MIS', 'LOANAGE', 'PROPERTY_TYPE_5', 'SCHEDULED_PRINCIPAL_NAN'] return cols def perclass_Ncomp_71feat(): # 71 selected features from allcols(size=257) using a per-class dataset with n_components=None: cols = [ 'PRODUCT_TYPE_20', 'NEGATIVE_AMORTIZATION_FLAG_N', 'NEGATIVE_AMORTIZATION_FLAG_U', 'CONVERTIBLE_FLAG_N', 'CONVERTIBLE_FLAG_U', 'IO_FLAG_U', 'NEGATIVE_AMORTIZATION_FLAG_Y', 'LOAN_TYPE_1', 'CHANNEL_U', 'LOAN_PURPOSE_CATEGORY_U', 'PRODUCT_TYPE_10', 'BUYDOWN_FLAG_N', 'BUYDOWN_FLAG_U', 'DOCUMENTATION_TYPE_U', 'CHANNEL_2', 'LOAN_PURPOSE_CATEGORY_R', 'PREPAY_PENALTY_FLAG_Y', 'IO_FLAG_N', 'LOAN_PURPOSE_CATEGORY_P', 'CHANNEL_D', 'POOL_INSURANCE_FLAG_U', 'LOAN_TYPE_3', 'PREPAY_PENALTY_FLAG_U', 'PROPERTY_TYPE_6', 'LIFETIME_RATE_CAP_NAN', 'CURRENT_INVESTOR_CODE_253', 'POOL_INSURANCE_FLAG_N', 'CURRENT_INVESTOR_CODE_U', 'PERIODIC_RATE_FLOOR_NAN', 'OCCUPANCY_TYPE_U', 'IO_FLAG_Y', 'DOCUMENTATION_TYPE_2', 'LIFETIME_RATE_FLOOR_NAN', 'RATE_RESET_FREQUENCY_NAN', 'PERIODIC_RATE_CAP_NAN', 'PROPERTY_TYPE_2', 'OCCUPANCY_TYPE_3', 'PAY_RESET_FREQUENCY_NAN', 'PREPAY_PENALTY_FLAG_N', 'FIRST_RATE_RESET_PERIOD_NAN', 'CHANNEL_1', 'PROPERTY_TYPE_U', 'ORIGINATION_YEAR_2007', 'CURRENT_INVESTOR_CODE_240', 'CHANNEL_3', 'DOCUMENTATION_TYPE_1', 'ORIGINATION_YEAR_B1995', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD', 'ORIGINATION_YEAR_2008', 'PRODUCT_TYPE_80', 'CURRENT_INVESTOR_CODE_250', 'MARGIN_NAN', 'ORIGINATION_YEAR_2006', 'PERIODIC_RATE_CAP', 'ORIGINATION_YEAR_2005', 'SCHEDULED_MONTHLY_PANDI_NAN', 'ORIGINATION_YEAR_2003', 'ORIGINATION_YEAR_2000', 'ORIGINATION_YEAR_2004', 'PROPERTY_TYPE_1', 'LOAN_TYPE_2', 'SCHEDULED_PRINCIPAL_NAN', 'BUYDOWN_FLAG_Y', 'CONVERTIBLE_FLAG_Y', 'STATE_CA', 'PERIODIC_RATE_FLOOR', 'AGI_NAN', 'OCCUPANCY_TYPE_1', 'PRODUCT_TYPE_82', 'LIFETIME_RATE_FLOOR', 'MARGIN'] return cols def filtering_allfeatures(cols): allcols = cols + ['DELINQUENCY_STATUS_NEXT_0', 'DELINQUENCY_STATUS_NEXT_3', 'DELINQUENCY_STATUS_NEXT_6', 'DELINQUENCY_STATUS_NEXT_9', 'DELINQUENCY_STATUS_NEXT_C', 'DELINQUENCY_STATUS_NEXT_F', 'DELINQUENCY_STATUS_NEXT_R'] return allcols def allclass_Ncomp_26numfeat(): # 26 selected features from numerical_cols(size=50) using the whole dataset with n_components=None: cols = ['LOANAGE', 'COUNT_INT_RATE_LESS', 'MORTGAGE_RATE', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD', 'LLMA2_HIST_LAST_12_MONTHS_MIS', 'ORIGINAL_LTV', 'ORIGINAL_BALANCE', 'UR', 'INITIAL_INTEREST_RATE', 'CURRENT_BALANCE', 'ORIGINAL_TERM', 'LLMA2_PRIME', 'MARGIN', 'LLMA2_90_IN_LAST_12_MONTHS', 'LLMA2_ORIG_RATE_SPREAD', 'LLMA2_30_IN_LAST_12_MONTHS', 'LLMA2_SUBPRIME', 'NUM_PRIME_ZIP', 'LLMA2_FC_IN_LAST_12_MONTHS', 'LLMA2_CURRENT_INTEREST_SPREAD', 'AGI', 'MBA_DAYS_DELINQUENT', 'LLMA2_C_IN_LAST_12_MONTHS', 'CURRENT_INTEREST_RATE', 'LIFETIME_RATE_FLOOR', 'LLMA2_60_IN_LAST_12_MONTHS'] return cols def perclass_Ncomp_26numfeat(): # 26 selected features from numerical_cols(size=50) using a per-class dataset with n_components=None: cols = ['LOANAGE', 'MARGIN', 'MORTGAGE_RATE', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD', 'LLMA2_HIST_LAST_12_MONTHS_MIS', 'COUNT_INT_RATE_LESS', 'LIFETIME_RATE_FLOOR', 'INITIAL_INTEREST_RATE', 'LIFETIME_RATE_CAP', 'LLMA2_PRIME', 'LLMA2_ORIG_RATE_SPREAD', 'ORIGINAL_BALANCE', 'CURRENT_BALANCE', 'UR', 'LLMA2_SUBPRIME', 'MOD_RATE', 'LLMA2_CURRENT_INTEREST_SPREAD', 'RATE_RESET_FREQUENCY', 'CURRENT_INTEREST_RATE', 'PAY_RESET_FREQUENCY', 'DIF_RATE', 'NUM_MODIF', 'AGI', 'PERIODIC_RATE_FLOOR', 'LLMA2_30_IN_LAST_12_MONTHS', 'LLMA2_C_IN_LAST_12_MONTHS'] return cols def filtering_num_features(ncols): all_nan_cols = ['MBA_DAYS_DELINQUENT_NAN', 'CURRENT_INTEREST_RATE_NAN', 'LOANAGE_NAN', 'CURRENT_BALANCE_NAN', 'SCHEDULED_PRINCIPAL_NAN', 'SCHEDULED_MONTHLY_PANDI_NAN', 'LLMA2_CURRENT_INTEREST_SPREAD_NAN', 'NUM_MODIF_NAN', 'P_RATE_TO_MOD_NAN', 'MOD_RATE_NAN', 'DIF_RATE_NAN', 'P_MONTHLY_PAY_NAN', 'MOD_MONTHLY_PAY_NAN', 'DIF_MONTHLY_PAY_NAN', 'CAPITALIZATION_AMT_NAN', 'MORTGAGE_RATE_NAN', 'BACKEND_RATIO_NAN', 'ORIGINAL_TERM_NAN', 'SALE_PRICE_NAN', 'PREPAY_PENALTY_TERM_NAN', 'NUMBER_OF_UNITS_NAN', 'MARGIN_NAN', 'PERIODIC_RATE_CAP_NAN', 'PERIODIC_RATE_FLOOR_NAN', 'LIFETIME_RATE_CAP_NAN', 'LIFETIME_RATE_FLOOR_NAN', 'RATE_RESET_FREQUENCY_NAN', 'PAY_RESET_FREQUENCY_NAN', 'FIRST_RATE_RESET_PERIOD_NAN', 'LLMA2_ORIG_RATE_SPREAD_NAN', 'AGI_NAN', 'UR_NAN', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD_NAN', 'NUM_PRIME_ZIP_NAN'] sel_nan_cols = [x for x in all_nan_cols for y in ncols if x.find(y)==0] cat_cols = ['MBA_DELINQUENCY_STATUS_0', 'MBA_DELINQUENCY_STATUS_3', 'MBA_DELINQUENCY_STATUS_6', 'MBA_DELINQUENCY_STATUS_9', 'MBA_DELINQUENCY_STATUS_C', 'MBA_DELINQUENCY_STATUS_F', 'MBA_DELINQUENCY_STATUS_R'] + \ ['BUYDOWN_FLAG_N', 'BUYDOWN_FLAG_U', 'BUYDOWN_FLAG_Y'] + \ ['NEGATIVE_AMORTIZATION_FLAG_N', 'NEGATIVE_AMORTIZATION_FLAG_U', 'NEGATIVE_AMORTIZATION_FLAG_Y'] +\ ['PREPAY_PENALTY_FLAG_N', 'PREPAY_PENALTY_FLAG_U', 'PREPAY_PENALTY_FLAG_Y'] +\ ['OCCUPANCY_TYPE_1', 'OCCUPANCY_TYPE_2', 'OCCUPANCY_TYPE_3', 'OCCUPANCY_TYPE_U'] +\ ['PRODUCT_TYPE_10', 'PRODUCT_TYPE_20', 'PRODUCT_TYPE_30', 'PRODUCT_TYPE_40', 'PRODUCT_TYPE_50', 'PRODUCT_TYPE_51', 'PRODUCT_TYPE_52', 'PRODUCT_TYPE_53', 'PRODUCT_TYPE_54', 'PRODUCT_TYPE_5A', 'PRODUCT_TYPE_5Z', 'PRODUCT_TYPE_60', 'PRODUCT_TYPE_61', 'PRODUCT_TYPE_62', 'PRODUCT_TYPE_63', 'PRODUCT_TYPE_6Z', 'PRODUCT_TYPE_70', 'PRODUCT_TYPE_80', 'PRODUCT_TYPE_81', 'PRODUCT_TYPE_82', 'PRODUCT_TYPE_83', 'PRODUCT_TYPE_84', 'PRODUCT_TYPE_8Z', 'PRODUCT_TYPE_U'] +\ ['PROPERTY_TYPE_1', 'PROPERTY_TYPE_2', 'PROPERTY_TYPE_3', 'PROPERTY_TYPE_4', 'PROPERTY_TYPE_5', 'PROPERTY_TYPE_6', 'PROPERTY_TYPE_7', 'PROPERTY_TYPE_8', 'PROPERTY_TYPE_9', 'PROPERTY_TYPE_M', 'PROPERTY_TYPE_U', 'PROPERTY_TYPE_Z'] +\ ['LOAN_PURPOSE_CATEGORY_P', 'LOAN_PURPOSE_CATEGORY_R', 'LOAN_PURPOSE_CATEGORY_U'] +\ ['DOCUMENTATION_TYPE_1', 'DOCUMENTATION_TYPE_2', 'DOCUMENTATION_TYPE_3', 'DOCUMENTATION_TYPE_U'] +\ ['CHANNEL_1', 'CHANNEL_2', 'CHANNEL_3', 'CHANNEL_4', 'CHANNEL_5', 'CHANNEL_6', 'CHANNEL_7', 'CHANNEL_8', 'CHANNEL_9', 'CHANNEL_A', 'CHANNEL_B', 'CHANNEL_C', 'CHANNEL_D', 'CHANNEL_U'] +\ ['LOAN_TYPE_1', 'LOAN_TYPE_2', 'LOAN_TYPE_3', 'LOAN_TYPE_4', 'LOAN_TYPE_5', 'LOAN_TYPE_6', 'LOAN_TYPE_U'] +\ ['IO_FLAG_N', 'IO_FLAG_U', 'IO_FLAG_Y'] +\ ['CONVERTIBLE_FLAG_N', 'CONVERTIBLE_FLAG_U', 'CONVERTIBLE_FLAG_Y'] +\ ['POOL_INSURANCE_FLAG_N', 'POOL_INSURANCE_FLAG_U', 'POOL_INSURANCE_FLAG_Y'] +\ ['STATE_AK', 'STATE_AL', 'STATE_AR', 'STATE_AZ', 'STATE_CA', 'STATE_CO', 'STATE_CT', 'STATE_DC', 'STATE_DE', 'STATE_FL', 'STATE_GA', 'STATE_HI', 'STATE_IA', 'STATE_ID', 'STATE_IL', 'STATE_IN', 'STATE_KS', 'STATE_KY', 'STATE_LA', 'STATE_MA', 'STATE_MD', 'STATE_ME', 'STATE_MI', 'STATE_MN', 'STATE_MO', 'STATE_MS', 'STATE_MT', 'STATE_NC', 'STATE_ND', 'STATE_NE', 'STATE_NH', 'STATE_NJ', 'STATE_NM', 'STATE_NV', 'STATE_NY', 'STATE_OH', 'STATE_OK', 'STATE_OR', 'STATE_PA', 'STATE_PR', 'STATE_RI', 'STATE_SC', 'STATE_SD', 'STATE_TN', 'STATE_TX', 'STATE_UT', 'STATE_VA', 'STATE_VT', 'STATE_WA', 'STATE_WI', 'STATE_WV', 'STATE_WY'] +\ ['CURRENT_INVESTOR_CODE_240', 'CURRENT_INVESTOR_CODE_250', 'CURRENT_INVESTOR_CODE_253', 'CURRENT_INVESTOR_CODE_U'] +\ ['ORIGINATION_YEAR_B1995', 'ORIGINATION_YEAR_1995', 'ORIGINATION_YEAR_1996', 'ORIGINATION_YEAR_1997', 'ORIGINATION_YEAR_1998', 'ORIGINATION_YEAR_1999', 'ORIGINATION_YEAR_2000', 'ORIGINATION_YEAR_2001', 'ORIGINATION_YEAR_2002', 'ORIGINATION_YEAR_2003', 'ORIGINATION_YEAR_2004', 'ORIGINATION_YEAR_2005', 'ORIGINATION_YEAR_2006', 'ORIGINATION_YEAR_2007', 'ORIGINATION_YEAR_2008', 'ORIGINATION_YEAR_2009', 'ORIGINATION_YEAR_2010', 'ORIGINATION_YEAR_2011', 'ORIGINATION_YEAR_2012', 'ORIGINATION_YEAR_2013', 'ORIGINATION_YEAR_2014', 'ORIGINATION_YEAR_2015', 'ORIGINATION_YEAR_2016', 'ORIGINATION_YEAR_2017', 'ORIGINATION_YEAR_2018'] lab_cols = ['DELINQUENCY_STATUS_NEXT_0', 'DELINQUENCY_STATUS_NEXT_3', 'DELINQUENCY_STATUS_NEXT_6', 'DELINQUENCY_STATUS_NEXT_9', 'DELINQUENCY_STATUS_NEXT_C', 'DELINQUENCY_STATUS_NEXT_F', 'DELINQUENCY_STATUS_NEXT_R'] allcols = ncols + sel_nan_cols + cat_cols + lab_cols return allcols startTime = datetime.now() if not os.path.exists(os.path.join(PRO_DIR, FLAGS.prepro_dir)): #os.path.exists os.makedirs(os.path.join(PRO_DIR, FLAGS.prepro_dir)) #filtering_num_features(allclass_Ncomp_26numfeat()) allcols = None #filtering_num_features(allclass_Ncomp_26numfeat()) # filtering_allfeatures(allclasses_Ncomp_71feat()) # filtering_allfeatures(perclass_Ncomp_71feat()), filtering_num_features(perclass_Ncomp_26numfeat()) allfeatures_preprocessing(RAW_DIR, PRO_DIR, FLAGS.prepro_dir, FLAGS.train_period, FLAGS.valid_period, FLAGS.test_period, dividing='percentage', chunksize=FLAGS.prepro_chunksize, refNorm=FLAGS.ref_norm, with_index=FLAGS.prepro_with_index, output_hdf=True, filtering_cols=allcols) print('Preprocessing - Time: ', datetime.now() - startTime) ###Output total_cols size: 107 ['MBA_DAYS_DELINQUENT', 'CURRENT_INTEREST_RATE', 'LOANAGE', 'CURRENT_BALANCE', 'SCHEDULED_PRINCIPAL', 'SCHEDULED_MONTHLY_PANDI', 'LLMA2_CURRENT_INTEREST_SPREAD', 'LLMA2_C_IN_LAST_12_MONTHS', 'LLMA2_30_IN_LAST_12_MONTHS', 'LLMA2_60_IN_LAST_12_MONTHS', 'LLMA2_90_IN_LAST_12_MONTHS', 'LLMA2_FC_IN_LAST_12_MONTHS', 'LLMA2_REO_IN_LAST_12_MONTHS', 'LLMA2_0_IN_LAST_12_MONTHS', 'NUM_MODIF', 'P_RATE_TO_MOD', 'MOD_RATE', 'DIF_RATE', 'P_MONTHLY_PAY', 'MOD_MONTHLY_PAY', 'DIF_MONTHLY_PAY', 'CAPITALIZATION_AMT', 'MORTGAGE_RATE', 'FICO_SCORE_ORIGINATION', 'INITIAL_INTEREST_RATE', 'ORIGINAL_LTV', 'ORIGINAL_BALANCE', 'BACKEND_RATIO', 'ORIGINAL_TERM', 'SALE_PRICE', 'PREPAY_PENALTY_TERM', 'NUMBER_OF_UNITS', 'MARGIN', 'PERIODIC_RATE_CAP', 'PERIODIC_RATE_FLOOR', 'LIFETIME_RATE_CAP', 'LIFETIME_RATE_FLOOR', 'RATE_RESET_FREQUENCY', 'PAY_RESET_FREQUENCY', 'FIRST_RATE_RESET_PERIOD', 'LLMA2_ORIG_RATE_SPREAD', 'AGI', 'UR', 'LLMA2_ORIG_RATE_ORIG_MR_SPREAD', 'NUM_PRIME_ZIP'] Preprocessing File: /home/ubuntu/MLMortgage/data/raw/chuncks_random_c1mill/temporalloandynmodifmrstaticitur_CTrans_CLab_100th.txt generating: /home/ubuntu/MLMortgage/data/processed/chuncks_random_c1mill/temporalloandynmodifmrstaticitur_CTrans_CLab_100th-pp.h5 chunk: 1 chunk size: 100000
predictor.ipynb
###Markdown Predictor ###Code # user input user_input = "text, Relaxed, Violet, Aroused, Creative, Happy, Energetic, Flowery, Diesel" #predict function w/ user input def predict_effects(user_input): import basilica import numpy as np import pandas as pd from scipy import spatial # get data !wget # turn data into dataframe df = pd.read_csv('med1.csv') # get pickled trained embeddings for med cultivars !wget https://github.com/MedCab-1/Data-Science/blob/master/medembedv2.pkl #unpickling file of embedded cultivar descriptions unpickled_df_test = pd.read_pickle("./medembedv2.pkl") # Part 1 # a function to calculate_user_text_embedding # to save the embedding value in session memory user_input_embedding = 0 def calculate_user_text_embedding(input, user_input_embedding): # setting a string of two sentences for the algo to compare sentences = [input] # calculating embedding for both user_entered_text and for features with basilica.Connection('36a370e3-becb-99f5-93a0-a92344e78eab') as c: user_input_embedding = list(c.embed_sentences(sentences)) return user_input_embedding # run the function to save the embedding value in session memory user_input_embedding = calculate_user_text_embedding(user_input, user_input_embedding) # part 2 score = 0 def score_user_input_from_stored_embedding_from_stored_values(input, score, row1, user_input_embedding): # obtains pre-calculated values from a pickled dataframe of arrays embedding_stored = unpickled_df_test.loc[row1, 0] # calculates the similarity of user_text vs. product description score = 1 - spatial.distance.cosine(embedding_stored, user_input_embedding) # returns a variable that can be used outside of the function return score # Part 3 for i in range(2351): # calls the function to set the value of 'score' # which is the score of the user input score = score_user_input_from_stored_embedding_from_stored_values(user_input, score, i, user_input_embedding) #stores the score in the dataframe df.loc[i,'score'] = score # Part 4 - df_big_json = df['score'].sort_values(ascending=False) df_big_json = df.copy() df_big_json = df_big_json[:5] df_big_json = df_big_json.to_json(orient='columns') # Part 5: outputs as JSON object return df_big_json predict_effects(user_input_effects) ''' For Flask App: def input2output(q, model): probs = model.predict_proba([q])[0] matches = [] for i in range(len(probs)): if probs[i] > 0.0: matches.append((i, probs[i])) matches.sort(key=lambda x:x[1], reverse=True) idxs = [x[0] for x in matches] return idxs ''' ###Output _____no_output_____ ###Markdown Create the dataLoader class The data is pickled which means that the objects are converted into a byte stream. We will unpickle the object to get back the original data. (https://www.cs.toronto.edu/~kriz/cifar.html). Below is the Dataset class which can be used in torch.utils.data.dataLoader ###Code class cifarDataset(Dataset): def __init__(self, filePath, transform=None): self.images, self.labels = self.__loadImages__(filePath) self.transform = transform def __loadImages__(self, filePath): object = self.__unpickle__(filePath) #Extract our dataset X = object[b'data'] X = X.reshape(len(object[b'data']),3,32,32) #Reshape to Color and the corresponding XY coordinates l = object[b'labels'] return(X,l) def __len__(self): return len(self.images) def __getitem__(self, idx): image = self.images[idx] #print("Before permute", image.shape) image = np.transpose(image, (1,2,0)) #Permute because transforms.ToTensor converts HWC to CHW #print("After permute", image.shape ) image = transforms.ToTensor()(image) #print("ToTensor", image.shape) #print("Before", image) image = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(image) #Normalize our image #print("After", image) sample = {'image':image, 'label':self.labels[idx]} return(sample) def __unpickle__(self, file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def showImage(img, label='Not labeled'): img = img / 2 + 0.5 # unnormalize img = img.permute(1,2,0) plt.imshow(img) plt.xlabel(label) plt.show() def getLabel(number): names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] return(names[number]) ###Output _____no_output_____ ###Markdown Load the dataset ###Code batch1 = cifarDataset(filePath='data/cifar-10-batches-py/data_batch_1') batch2 = cifarDataset(filePath='data/cifar-10-batches-py/data_batch_2') batch3 = cifarDataset(filePath='data/cifar-10-batches-py/data_batch_3') batch4 = cifarDataset(filePath='data/cifar-10-batches-py/data_batch_4') batch5 = cifarDataset(filePath='data/cifar-10-batches-py/data_batch_5') #Concatenate our training dataset batches = torch.utils.data.ConcatDataset([batch1,batch2, batch3, batch4, batch5]) #Use the dataLoader to extract images from our dataset trainloader = DataLoader(batches, batch_size=5, shuffle=True, num_workers=4) testBatch = cifarDataset(filePath='data/cifar-10-batches-py/test_batch') #Create the dataLoader for our test set testloader = DataLoader(testBatch, batch_size=1, shuffle=True, num_workers=4) #Try using the dataloader to print one image for i_batch, sample_batched in enumerate(trainloader): print("Batch information: ", i_batch, sample_batched['image'].size(), sample_batched['label']) showImage(sample_batched['image'][0],getLabel(sample_batched['label'][0])) break ###Output Batch information: 0 torch.Size([5, 3, 32, 32]) tensor([ 1, 3, 4, 6, 3]) ###Markdown Create a CNN model ###Code #Define the neural net. class CNN(nn.Module): def __init__(self): #Define the network super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 8, 5) #We have 3 channels. Output 6 feature map with 5x5 kernel self.pool = nn.MaxPool2d(2,2) self.conv2 = nn.Conv2d(8, 20, 5) self.fc1 = nn.Linear(20 * 5 * 5, 150) self.fc2 = nn.Linear(150, 50) self.fc3 = nn.Linear(50, 10) # Adding a layer for LogSoftmax to obtain log probabilities # As recommended in documentation for Negative log likelihood loss https://pytorch.org/docs/stable/nn.html#nllloss self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 20 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.logsoftmax(self.fc3(x)) return(x) ###Output _____no_output_____ ###Markdown Train the network ###Code #Initialize the neural net classifier = CNN() classifier.to(device) print(classifier) #Create the optim optimizer = optim.SGD(classifier.parameters(), lr=0.005, momentum=0.8) LossCount = [] for epoch in range(10): #Load batches from our trainLoader LossAggregate = 0 for i_batch, sample_batched in enumerate(trainloader): #Get our data image = sample_batched['image'] label = sample_batched['label'] image, label = image.to(device), label.to(device) # zero the gradient of optimizer optimizer.zero_grad() # forward pass output = classifier(image) # Use Negative Likelihood Loss loss = nn.NLLLoss()(output, label) #Record stats for every 100. Print average loss. LossAggregate += loss.item() if i_batch % 5000 == 4999: # print every 5000 batches (25000 images) print('Epoch: %d. Minibatch %d loss %.3f' % (epoch + 1, i_batch+1, LossAggregate / 5000)) LossCount.append(LossAggregate/5000) LossAggregate = 0.0 #Propagate our losses loss.backward() optimizer.step() #Plot the loss curve plt.plot(LossCount) plt.title('Loss over full set') plt.ylabel('Loss') plt.xlabel('Epoch') plt.show() ###Output _____no_output_____ ###Markdown Evaluate the accuracy ###Code correct = 0 total = 0 with torch.no_grad(): for i_batch, sample_batched in enumerate(testloader): #Get our data image = sample_batched['image'] label = sample_batched['label'] image, label = image.to(device), label.to(device) #Foward pass output = classifier(image) value = torch.max(output.data,1)[1] total += 1 if value == label: correct += 1 print('Accuracy on our 10000 test set is %d percent' % (100 * correct/total)) ###Output Accuracy on our 10000 test set is 62 percent ###Markdown Importing Modules ###Code import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn import metrics %matplotlib inline ###Output _____no_output_____ ###Markdown Reading the data file ###Code data = pd.read_csv("diabetes.csv") ###Output _____no_output_____ ###Markdown Making a Heatmap for better analysis of the conditions in diabtetic patients ###Code import seaborn as sns import matplotlib.pyplot as plt corrmat = data.corr() top_corr_features = corrmat.index plt.figure(figsize=(20,20)) #plot heat map g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn") ###Output _____no_output_____ ###Markdown Making Columns for Features and Prediction Variables ###Code from sklearn.model_selection import train_test_split feature = ['Pregnancies', 'Glucose', 'BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age'] predicted = ['Outcome'] ###Output _____no_output_____ ###Markdown Splitting Data for Features and Predicted ###Code X = data[feature].values y = data[predicted].values ###Output _____no_output_____ ###Markdown Using RandomForests Classifier Testing. ###Code X_pred = [[1,103,30,38,83,43.3,0.183,33]] X_pred = pd.DataFrame(X_pred, columns=['Pregnancies', 'Glucose', 'BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']) ###Output _____no_output_____ ###Markdown Importing RandomForest ###Code import sklearn model=RandomForestClassifier(n_estimators=100, n_jobs=-1) model.fit(X,y) prediction = model.predict(X_pred) acc = metrics.accuracy_score(prediction,y[0]) ###Output C:\Users\user\AppData\Local\Temp/ipykernel_21212/2030810289.py:3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). model.fit(X,y) C:\Users\user\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\sklearn\base.py:443: UserWarning: X has feature names, but RandomForestClassifier was fitted without feature names warnings.warn( ###Markdown Saving the model using pickle ###Code import pickle #setting savename savename = "model.sav" #dumping model into the file pickle.dump(model, open(savename, "wb")) ###Output _____no_output_____ ###Markdown Testing if the model is loading properly ###Code load_model = pickle.load(open(savename, "rb")) single = load_model.predict(X_pred)[0] probability = load_model.predict_proba(X_pred)[:,1][0]*100 if single==1: output = "The patient is diagnosed with Diabetes" output1 = "Confidence: {}".format(probability) else: output = "The patient is not diagnosed with Diabetes" output1 = "" print(output) print(output1) ###Output The patient is not diagnosed with Diabetes ###Markdown Oscillator Drift Prediction over Time ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd import ipywidgets as widgets from IPython.display import display ###Output _____no_output_____ ###Markdown Path to current folder ###Code path = "C:\\Users\\Ryan\\code\\freq-vs-age-prediction\\images" ###Output _____no_output_____ ###Markdown Variable Declarations ###Code f = 0 # Crystal oscillator frequency t = 0 # Time t1 = 0 # Cooking/pre-aging period t2 = 0 # Operating period f1 = 0 # Corresponding frequency K = 0 # Aging slope ###Output _____no_output_____ ###Markdown Import and Preview Drift Data ###Code df = pd.read_csv('XTALTQ_BT0f03_Aging_Data.csv') df = df.set_index('Day') plt.figure(figsize=(9, 5)) plt.plot(df) plt.title("Tolerance vs Time") plt.ylabel("Tolerance (ppm)") plt.xlabel("Time (days)") plt.grid(True) plt.legend(df.columns) # plt.savefig(f"{path}\\Tolerance-vs-Vc.png") plt.show() df.describe() ###Output _____no_output_____ ###Markdown Aging Prediction Calculations References- [Correlation of predicted and real aging behaviour ofcrystal oscillators using different fitting algorithms](https://www.qsl.net/dk1ag/aging_e.pdf)- [Oscillator Aging by Isotemp](https://www.isotemp.com/wp-content/uploads/2011/04/Crystal-Oscillator-Aging.pdf)$K = \frac { f(t_2) - f(t_1) }{ ln(t_2 / t_1) }$ $f(t) = K*ln(\frac {t}{t1}) + f_1$ ###Code t1 = 15 t2 = 400 t = np.arange(1,500) f_prediction = pd.DataFrame({}) choice_parts = [2,3,4] K = ( df.loc[t2] - df.loc[t1] ) / np.log( t2 / t1 ) # print(K) # print(K[choice_parts[0]]) # print(K[choice_parts[1]]) # print(K[choice_parts[2]]) f_prediction['Unit#1 Prediction'] = K[choice_parts[0]] * np.log( (t / t1) + 1 ) f_prediction['Unit#2 Prediction'] = K[choice_parts[1]] * np.log( (t / t1) + 1 ) f_prediction['Unit#3 Prediction'] = K[choice_parts[2]] * np.log( (t / t1) + 1 ) df_normal = df - df.loc[1] df_normal.iloc[:, choice_parts].plot(figsize=(9, 5)) plt.gca().set_prop_cycle(None) plt.plot(f_prediction, '--') plt.title("Tolerance vs Time") plt.ylabel("Tolerance (ppm)") plt.xlabel("Time (days)") plt.grid(True) plt.xscale('log') # plt.legend(['Unit#1', 'Unit#2', 'Unit#3', 'Unit#1 Prediction', 'Unit#2 Prediction', 'Unit#3 Prediction']) # plt.savefig(f"{path}\\{t.min()}_{t.max()}.png") plt.show() ###Output _____no_output_____ ###Markdown Aging Prediction Over time intervals ###Code import os.path for i in range(1,10): interval_start = 1+50*i interval_end = 50+50*i plt.figure(figsize=(9, 5)) plt.plot(df_normal[['Unit#1', 'Unit#2', 'Unit#3']].iloc[interval_start:interval_end]) plt.gca().set_prop_cycle(None) plt.plot(f_prediction.iloc[interval_start:interval_end], '--') plt.title("Tolerance vs Time") plt.ylabel("Tolerance (ppm)") plt.xlabel("Time (days)") plt.ylim((df_normal['Unit#1'][interval_start:interval_end].min()-.05, df_normal['Unit#1'][interval_start:interval_end].max()+0.05)) plt.grid(True) # plt.xscale('log') plt.legend(['Unit#1', 'Unit#2', 'Unit#3', 'Unit#1 Prediction', 'Unit#2 Prediction', 'Unit#3 Prediction']) # plt.savefig(f"{path}\\{interval_start}_{interval_end}.png") plt.show() df.describe() ###Output _____no_output_____ ###Markdown Stock Price Prediction using Linear RegressionThe dataset can be downloaded from https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfsI am going to analyse the effect on quality of predictions with various Feature conbinations for different Labels. ###Code from __future__ import print_function import math from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt from matplotlib import dates import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format #To supress the FutureWarning import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import h5py warnings.resetwarnings() ###Output _____no_output_____ ###Markdown The Stock I am picking for this experiment is Apple Inc. NASDAQ: AAPLApple Inc. is an American multinational technology company headquartered in Cupertino, California, that designs, develops, and sells consumer electronics, computer software, and online services. ###Code stock = pd.read_csv('Stocks/aapl.us.txt', sep=",") stock ###Output _____no_output_____ ###Markdown The dataset contains 8364 rows and 7 columns ###Code # Stock Price Graph def stocks_data(symbols, dates): df = pd.DataFrame(index=dates) for symbol in symbols: df_temp = pd.read_csv("Stocks/{}.us.txt".format(symbol), index_col='Date', parse_dates=True, usecols=['Date', 'Close'], na_values=['nan']) df_temp = df_temp.rename(columns={'Close': symbol}) df = df.join(df_temp) return df dates = pd.date_range('2016-01-02','2016-12-31',freq='B') symbols = ['aapl'] df = stocks_data(symbols, dates) df.fillna(method='pad') df.interpolate().plot() plt.show() ###Output _____no_output_____ ###Markdown Experiment 1Feature: Open Label: High ###Code stock = stock.reindex(np.random.permutation(stock.index)) stock stock.describe() def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None): """Trains a linear regression model of one feature. Args: features: pandas DataFrame of features targets: pandas DataFrame of targets batch_size: Size of batches to be passed to the model shuffle: True or False. Whether to shuffle the data. num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely Returns: Tuple of (features, labels) for next data batch """ # Convert pandas data into a dict of np arrays. features = {key:np.array(value) for key,value in dict(features).items()} # Construct a dataset, and configure batching/repeating. ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) # Shuffle the data, if specified. if shuffle: ds = ds.shuffle(buffer_size=10000) # Return the next batch of data. features, labels = ds.make_one_shot_iterator().get_next() return features, labels def train_model(learning_rate, steps, batch_size, input_feature="Open"): """Trains a linear regression model of one feature. Args: learning_rate: A `float`, the learning rate. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. input_feature: A `string` specifying a column from `california_housing_dataframe` to use as input feature. """ periods = 10 steps_per_period = steps / periods my_feature = input_feature my_feature_data = stock[[my_feature]] my_label = "High" targets = stock[my_label] # Create feature columns. feature_columns = [tf.feature_column.numeric_column(my_feature)] # Create input functions. training_input_fn = lambda:my_input_fn(my_feature_data, targets, batch_size=batch_size) prediction_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False) # Create a linear regressor object. my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) linear_regressor = tf.estimator.LinearRegressor( feature_columns=feature_columns, optimizer=my_optimizer ) # Set up to plot the state of our model's line each period. plt.figure(figsize=(15, 6)) plt.subplot(1, 2, 1) plt.title("Learned Line by Period") plt.ylabel(my_label) plt.xlabel(my_feature) sample = stock.sample(n=300) plt.scatter(sample[my_feature], sample[my_label]) colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)] # Train the model, but inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("RMSE (on training data):") root_mean_squared_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. linear_regressor.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute predictions. predictions = linear_regressor.predict(input_fn=prediction_input_fn) predictions = np.array([item['predictions'][0] for item in predictions]) # Compute loss. root_mean_squared_error = math.sqrt(metrics.mean_squared_error(predictions, targets)) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, root_mean_squared_error)) # Add the loss metrics from this period to our list. root_mean_squared_errors.append(root_mean_squared_error) # Finally, track the weights and biases over time. # Apply some math to ensure that the data and line are plotted neatly. y_extents = np.array([0, sample[my_label].max()]) weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0] bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights') x_extents = (y_extents - bias) / weight x_extents = np.maximum(np.minimum(x_extents, sample[my_feature].max()), sample[my_feature].min()) y_extents = weight * x_extents + bias plt.plot(x_extents, y_extents, color=colors[period]) print("Model training finished.") # Output a graph of loss metrics over periods. plt.subplot(1, 2, 2) plt.ylabel('RMSE') plt.xlabel('Periods') plt.title("Root Mean Squared Error vs. Periods") plt.tight_layout() plt.plot(root_mean_squared_errors) # Output a table with calibration data. calibration_data = pd.DataFrame() calibration_data["predictions"] = pd.Series(predictions) calibration_data["targets"] = pd.Series(targets) display.display(calibration_data.describe()) print("Final RMSE (on training data): %0.2f" % root_mean_squared_error) return calibration_data caliberation_data = train_model( learning_rate=0.01, steps=100, batch_size=5 ) plt.figure(figsize=(15, 6)) plt.subplot(1, 2, 1) plt.scatter(calibration_data["predictions"], calibration_data["targets"]) plt.subplot(1, 2, 2) _ = stock["Open"].hist() ###Output _____no_output_____ ###Markdown Experiment 2Label = HighFeature = Volume ###Code caliberation_data = train_model( learning_rate=0.01, steps=100, batch_size=5, input_feature="Volume" ) plt.figure(figsize=(15, 6)) plt.subplot(1, 2, 1) plt.scatter(calibration_data["predictions"], calibration_data["targets"]) plt.subplot(1, 2, 2) _ = stock["Volume"].hist() ###Output _____no_output_____
week4/week4-seq2seq.ipynb
###Markdown Learn to calculate with seq2seq modelIn this assignment, you will learn how to use neural networks to solve sequence-to-sequence prediction tasks. Seq2Seq models are very popular these days because they achieve great results in Machine Translation, Text Summarization, Conversational Modeling and more.Using sequence-to-sequence modeling you are going to build a calculator for evaluating arithmetic expressions, by taking an equation as an input to the neural network and producing an answer as it's output.The resulting solution for this problem will be based on state-of-the-art approaches for sequence-to-sequence learning and you should be able to easily adapt it to solve other tasks. However, if you want to train your own machine translation system or intellectual chat bot, it would be useful to have access to compute resources like GPU, and be patient, because training of such systems is usually time consuming. LibrariesFor this task you will need the following libraries: - [TensorFlow](https://www.tensorflow.org) — an open-source software library for Machine Intelligence. In this assignment, we use Tensorflow 1.15.0. You can install it with pip: !pip install tensorflow==1.15.0 - [scikit-learn](http://scikit-learn.org/stable/index.html) — a tool for data mining and data analysis. If you have never worked with TensorFlow, you will probably want to read some tutorials during your work on this assignment, e.g. [Neural Machine Translation](https://www.tensorflow.org/tutorials/seq2seq) tutorial deals with very similar task and can explain some concepts to you. ###Code try: import google.colab IN_COLAB = True except: IN_COLAB = False if IN_COLAB: ! wget https://raw.githubusercontent.com/hse-aml/natural-language-processing/master/setup_google_colab.py -O setup_google_colab.py import setup_google_colab setup_google_colab.setup_week4() ###Output _____no_output_____ ###Markdown DataOne benefit of this task is that you don't need to download any data — you will generate it on your own! We will use two operators (addition and subtraction) and work with positive integer numbers in some range. Here are examples of correct inputs and outputs: Input: '1+2' Output: '3' Input: '0-99' Output: '-99'*Note, that there are no spaces between operators and operands.*Now you need to implement the function *generate_equations*, which will be used to generate the data. ###Code import random def generate_equations(allowed_operators, dataset_size, min_value, max_value): """Generates pairs of equations and solutions to them. Each equation has a form of two integers with an operator in between. Each solution is an integer with the result of the operaion. allowed_operators: list of strings, allowed operators. dataset_size: an integer, number of equations to be generated. min_value: an integer, min value of each operand. max_value: an integer, max value of each operand. result: a list of tuples of strings (equation, solution). """ sample = [] for _ in range(dataset_size): ###################################### ######### YOUR CODE HERE ############# ###################################### return sample ###Output _____no_output_____ ###Markdown To check the correctness of your implementation, use *test_generate_equations* function: ###Code def test_generate_equations(): allowed_operators = ['+', '-'] dataset_size = 10 for (input_, output_) in generate_equations(allowed_operators, dataset_size, 0, 100): if not (type(input_) is str and type(output_) is str): return "Both parts should be strings." if eval(input_) != int(output_): return "The (equation: {!r}, solution: {!r}) pair is incorrect.".format(input_, output_) return "Tests passed." print(test_generate_equations()) ###Output _____no_output_____ ###Markdown Finally, we are ready to generate the train and test data for the neural network: ###Code from sklearn.model_selection import train_test_split allowed_operators = ['+', '-'] dataset_size = 100000 data = generate_equations(allowed_operators, dataset_size, min_value=0, max_value=9999) train_set, test_set = train_test_split(data, test_size=0.2, random_state=42) ###Output _____no_output_____ ###Markdown Prepare data for the neural networkThe next stage of data preparation is creating mappings of the characters to their indices in some vocabulary. Since in our task we already know which symbols will appear in the inputs and outputs, generating the vocabulary is a simple step. How to create dictionaries for other taskFirst of all, you need to understand what is the basic unit of the sequence in your task. In our case, we operate on symbols and the basic unit is a symbol. The number of symbols is small, so we don't need to think about filtering/normalization steps. However, in other tasks, the basic unit is often a word, and in this case the mapping would be *word $\to$ integer*. The number of words might be huge, so it would be reasonable to filter them, for example, by frequency and leave only the frequent ones. Other strategies that your should consider are: data normalization (lowercasing, tokenization, how to consider punctuation marks), separate vocabulary for input and for output (e.g. for machine translation), some specifics of the task. ###Code word2id = {symbol:i for i, symbol in enumerate('#^$+-1234567890')} id2word = {i:symbol for symbol, i in word2id.items()} ###Output _____no_output_____ ###Markdown Special symbols ###Code start_symbol = '^' end_symbol = '$' padding_symbol = '#' ###Output _____no_output_____ ###Markdown You could notice that we have added 3 special symbols: '^', '\$' and '':- '^' symbol will be passed to the network to indicate the beginning of the decoding procedure. We will discuss this one later in more details.- '\$' symbol will be used to indicate the *end of a string*, both for input and output sequences. - '' symbol will be used as a *padding* character to make lengths of all strings equal within one training batch.People have a bit different habits when it comes to special symbols in encoder-decoder networks, so don't get too much confused if you come across other variants in tutorials you read. Padding When vocabularies are ready, we need to be able to convert a sentence to a list of vocabulary word indices and back. At the same time, let's care about padding. We are going to preprocess each sequence from the input (and output ground truth) in such a way that:- it has a predefined length *padded_len*- it is probably cut off or padded with the *padding symbol* ''- it *always* ends with the *end symbol* '$'We will treat the original characters of the sequence **and the end symbol** as the valid part of the input. We will store *the actual length* of the sequence, which includes the end symbol, but does not include the padding symbols. Now you need to implement the function *sentence_to_ids* that does the described job. ###Code def sentence_to_ids(sentence, word2id, padded_len): """ Converts a sequence of symbols to a padded sequence of their ids. sentence: a string, input/output sequence of symbols. word2id: a dict, a mapping from original symbols to ids. padded_len: an integer, a desirable length of the sequence. result: a tuple of (a list of ids, an actual length of sentence). """ sent_ids = ######### YOUR CODE HERE ############# sent_len = ######### YOUR CODE HERE ############# return sent_ids, sent_len ###Output _____no_output_____ ###Markdown Check that your implementation is correct: ###Code def test_sentence_to_ids(): sentences = [("123+123", 7), ("123+123", 8), ("123+123", 10)] expected_output = [([5, 6, 7, 3, 5, 6, 2], 7), ([5, 6, 7, 3, 5, 6, 7, 2], 8), ([5, 6, 7, 3, 5, 6, 7, 2, 0, 0], 8)] for (sentence, padded_len), (sentence_ids, expected_length) in zip(sentences, expected_output): output, length = sentence_to_ids(sentence, word2id, padded_len) if output != sentence_ids: return("Convertion of '{}' for padded_len={} to {} is incorrect.".format( sentence, padded_len, output)) if length != expected_length: return("Convertion of '{}' for padded_len={} has incorrect actual length {}.".format( sentence, padded_len, length)) return("Tests passed.") print(test_sentence_to_ids()) ###Output _____no_output_____ ###Markdown We also need to be able to get back from indices to symbols: ###Code def ids_to_sentence(ids, id2word): """ Converts a sequence of ids to a sequence of symbols. ids: a list, indices for the padded sequence. id2word: a dict, a mapping from ids to original symbols. result: a list of symbols. """ return [id2word[i] for i in ids] ###Output _____no_output_____ ###Markdown Generating batches The final step of data preparation is a function that transforms a batch of sentences to a list of lists of indices. ###Code def batch_to_ids(sentences, word2id, max_len): """Prepares batches of indices. Sequences are padded to match the longest sequence in the batch, if it's longer than max_len, then max_len is used instead. sentences: a list of strings, original sequences. word2id: a dict, a mapping from original symbols to ids. max_len: an integer, max len of sequences allowed. result: a list of lists of ids, a list of actual lengths. """ max_len_in_batch = min(max(len(s) for s in sentences) + 1, max_len) batch_ids, batch_ids_len = [], [] for sentence in sentences: ids, ids_len = sentence_to_ids(sentence, word2id, max_len_in_batch) batch_ids.append(ids) batch_ids_len.append(ids_len) return batch_ids, batch_ids_len ###Output _____no_output_____ ###Markdown The function *generate_batches* will help to generate batches with defined size from given samples. ###Code def generate_batches(samples, batch_size=64): X, Y = [], [] for i, (x, y) in enumerate(samples, 1): X.append(x) Y.append(y) if i % batch_size == 0: yield X, Y X, Y = [], [] if X and Y: yield X, Y ###Output _____no_output_____ ###Markdown To illustrate the result of the implemented functions, run the following cell: ###Code sentences = train_set[0] ids, sent_lens = batch_to_ids(sentences, word2id, max_len=10) print('Input:', sentences) print('Ids: {}\nSentences lengths: {}'.format(ids, sent_lens)) ###Output _____no_output_____ ###Markdown Encoder-Decoder architectureEncoder-Decoder is a successful architecture for Seq2Seq tasks with different lengths of input and output sequences. The main idea is to use two recurrent neural networks, where the first neural network *encodes* the input sequence into a real-valued vector and then the second neural network *decodes* this vector into the output sequence. While building the neural network, we will specify some particular characteristics of this architecture. ###Code import tensorflow as tf ###Output _____no_output_____ ###Markdown Let us use TensorFlow building blocks to specify the network architecture. ###Code class Seq2SeqModel(object): pass ###Output _____no_output_____ ###Markdown First, we need to create [placeholders](https://www.tensorflow.org/api_guides/python/io_opsPlaceholders) to specify what data we are going to feed into the network during the execution time. For this task we will need: - *input_batch* — sequences of sentences (the shape will equal to [batch_size, max_sequence_len_in_batch]); - *input_batch_lengths* — lengths of not padded sequences (the shape equals to [batch_size]); - *ground_truth* — sequences of groundtruth (the shape will equal to [batch_size, max_sequence_len_in_batch]); - *ground_truth_lengths* — lengths of not padded groundtruth sequences (the shape equals to [batch_size]); - *dropout_ph* — dropout keep probability; this placeholder has a predifined value 1; - *learning_rate_ph* — learning rate. ###Code def declare_placeholders(self): """Specifies placeholders for the model.""" # Placeholders for input and its actual lengths. self.input_batch = tf.placeholder(shape=(None, None), dtype=tf.int32, name='input_batch') self.input_batch_lengths = tf.placeholder(shape=(None, ), dtype=tf.int32, name='input_batch_lengths') # Placeholders for groundtruth and its actual lengths. self.ground_truth = ######### YOUR CODE HERE ############# self.ground_truth_lengths = ######### YOUR CODE HERE ############# self.dropout_ph = tf.placeholder_with_default(tf.cast(1.0, tf.float32), shape=[]) self.learning_rate_ph = ######### YOUR CODE HERE ############# Seq2SeqModel.__declare_placeholders = classmethod(declare_placeholders) ###Output _____no_output_____ ###Markdown Now, let us specify the layers of the neural network. First, we need to prepare an embedding matrix. Since we use the same vocabulary for input and output, we need only one such matrix. For tasks with different vocabularies there would be multiple embedding layers.- Create embeddings matrix with [tf.Variable](https://www.tensorflow.org/api_docs/python/tf/Variable). Specify its name, type (tf.float32), and initialize with random values.- Perform [embeddings lookup](https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup) for a given input batch. ###Code def create_embeddings(self, vocab_size, embeddings_size): """Specifies embeddings layer and embeds an input batch.""" random_initializer = tf.random_uniform((vocab_size, embeddings_size), -1.0, 1.0) self.embeddings = ######### YOUR CODE HERE ############# # Perform embeddings lookup for self.input_batch. self.input_batch_embedded = ######### YOUR CODE HERE ############# Seq2SeqModel.__create_embeddings = classmethod(create_embeddings) ###Output _____no_output_____ ###Markdown EncoderThe first RNN of the current architecture is called an *encoder* and serves for encoding an input sequence to a real-valued vector. Input of this RNN is an embedded input batch. Since sentences in the same batch could have different actual lengths, we also provide input lengths to avoid unnecessary computations. The final encoder state will be passed to the second RNN (decoder), which we will create soon. - TensorFlow provides a number of [RNN cells](https://www.tensorflow.org/api_guides/python/contrib.rnnCore_RNN_Cells_for_use_with_TensorFlow_s_core_RNN_methods) ready for use. We suggest that you use [GRU cell](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUCell), but you can also experiment with other types. - Wrap your cells with [DropoutWrapper](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/DropoutWrapper). Dropout is an important regularization technique for neural networks. Specify input keep probability using the dropout placeholder that we created before.- Combine the defined encoder cells with [Dynamic RNN](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn). Use the embedded input batches and their lengths here.- Use *dtype=tf.float32* everywhere. ###Code def build_encoder(self, hidden_size): """Specifies encoder architecture and computes its output.""" # Create GRUCell with dropout. encoder_cell = ######### YOUR CODE HERE ############# # Create RNN with the predefined cell. _, self.final_encoder_state = ######### YOUR CODE HERE ############# Seq2SeqModel.__build_encoder = classmethod(build_encoder) ###Output _____no_output_____ ###Markdown DecoderThe second RNN is called a *decoder* and serves for generating the output sequence. In the simple seq2seq arcitecture, the input sequence is provided to the decoder only as the final state of the encoder. Obviously, it is a bottleneck and [Attention techniques](https://www.tensorflow.org/tutorials/seq2seqbackground_on_the_attention_mechanism) can help to overcome it. So far, we do not need them to make our calculator work, but this would be a necessary ingredient for more advanced tasks. During training, decoder also uses information about the true output. It is feeded in as input symbol by symbol. However, during the prediction stage (which is called *inference* in this architecture), the decoder can only use its own generated output from the previous step to feed it in at the next step. Because of this difference (*training* vs *inference*), we will create two distinct instances, which will serve for the described scenarios.The picture below illustrates the point. It also shows our work with the special characters, e.g. look how the start symbol `^` is used. The transparent parts are ignored. In decoder, it is masked out in the loss computation. In encoder, the green state is considered as final and passed to the decoder. Now, it's time to implement the decoder: - First, we should create two [helpers](https://www.tensorflow.org/api_guides/python/contrib.seq2seqDynamic_Decoding). These classes help to determine the behaviour of the decoder. During the training time, we will use [TrainingHelper](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/TrainingHelper). For the inference we recommend to use [GreedyEmbeddingHelper](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/GreedyEmbeddingHelper). - To share all parameters during training and inference, we use one scope and set the flag 'reuse' to True at inference time. You might be interested to know more about how [variable scopes](https://www.tensorflow.org/programmers_guide/variables) work in TF. - To create the decoder itself, we will use [BasicDecoder](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BasicDecoder) class. As previously, you should choose some RNN cell, e.g. GRU cell. To turn hidden states into logits, we will need a projection layer. One of the simple solutions is using [OutputProjectionWrapper](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/OutputProjectionWrapper). - For getting the predictions, it will be convinient to use [dynamic_decode](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/dynamic_decode). This function uses the provided decoder to perform decoding. ###Code def build_decoder(self, hidden_size, vocab_size, max_iter, start_symbol_id, end_symbol_id): """Specifies decoder architecture and computes the output. Uses different helpers: - for train: feeding ground truth - for inference: feeding generated output As a result, self.train_outputs and self.infer_outputs are created. Each of them contains two fields: rnn_output (predicted logits) sample_id (predictions). """ # Use start symbols as the decoder inputs at the first time step. batch_size = tf.shape(self.input_batch)[0] start_tokens = tf.fill([batch_size], start_symbol_id) ground_truth_as_input = tf.concat([tf.expand_dims(start_tokens, 1), self.ground_truth], 1) # Use the embedding layer defined before to lookup embedings for ground_truth_as_input. self.ground_truth_embedded = ######### YOUR CODE HERE ############# # Create TrainingHelper for the train stage. train_helper = tf.contrib.seq2seq.TrainingHelper(self.ground_truth_embedded, self.ground_truth_lengths) # Create GreedyEmbeddingHelper for the inference stage. # You should provide the embedding layer, start_tokens and index of the end symbol. infer_helper = ######### YOUR CODE HERE ############# def decode(helper, scope, reuse=None): """Creates decoder and return the results of the decoding with a given helper.""" with tf.variable_scope(scope, reuse=reuse): # Create GRUCell with dropout. Do not forget to set the reuse flag properly. decoder_cell = ######### YOUR CODE HERE ############# # Create a projection wrapper. decoder_cell = tf.contrib.rnn.OutputProjectionWrapper(decoder_cell, vocab_size, reuse=reuse) # Create BasicDecoder, pass the defined cell, a helper, and initial state. # The initial state should be equal to the final state of the encoder! decoder = ######### YOUR CODE HERE ############# # The first returning argument of dynamic_decode contains two fields: # rnn_output (predicted logits) # sample_id (predictions) outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder=decoder, maximum_iterations=max_iter, output_time_major=False, impute_finished=True) return outputs self.train_outputs = decode(train_helper, 'decode') self.infer_outputs = decode(infer_helper, 'decode', reuse=True) Seq2SeqModel.__build_decoder = classmethod(build_decoder) ###Output _____no_output_____ ###Markdown In this task we will use [sequence_loss](https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/sequence_loss), which is a weighted cross-entropy loss for a sequence of logits. Take a moment to understand, what is your train logits and targets. Also note, that we do not want to take into account loss terms coming from padding symbols, so we will mask them out using weights. ###Code def compute_loss(self): """Computes sequence loss (masked cross-entopy loss with logits).""" weights = tf.cast(tf.sequence_mask(self.ground_truth_lengths), dtype=tf.float32) self.loss = ######### YOUR CODE HERE ############# Seq2SeqModel.__compute_loss = classmethod(compute_loss) ###Output _____no_output_____ ###Markdown The last thing to specify is the optimization of the defined loss. We suggest that you use [optimize_loss](https://www.tensorflow.org/api_docs/python/tf/contrib/layers/optimize_loss) with Adam optimizer and a learning rate from the corresponding placeholder. You might also need to pass global step (e.g. as tf.train.get_global_step()) and clip gradients by 1.0. ###Code def perform_optimization(self): """Specifies train_op that optimizes self.loss.""" self.train_op = ######### YOUR CODE HERE ############# Seq2SeqModel.__perform_optimization = classmethod(perform_optimization) ###Output _____no_output_____ ###Markdown Congratulations! You have specified all the parts of your network. You may have noticed, that we didn't deal with any real data yet, so what you have written is just recipies on how the network should function.Now we will put them to the constructor of our Seq2SeqModel class to use it in the next section. ###Code def init_model(self, vocab_size, embeddings_size, hidden_size, max_iter, start_symbol_id, end_symbol_id, padding_symbol_id): self.__declare_placeholders() self.__create_embeddings(vocab_size, embeddings_size) self.__build_encoder(hidden_size) self.__build_decoder(hidden_size, vocab_size, max_iter, start_symbol_id, end_symbol_id) # Compute loss and back-propagate. self.__compute_loss() self.__perform_optimization() # Get predictions for evaluation. self.train_predictions = self.train_outputs.sample_id self.infer_predictions = self.infer_outputs.sample_id Seq2SeqModel.__init__ = classmethod(init_model) ###Output _____no_output_____ ###Markdown Train the network and predict output[Session.run](https://www.tensorflow.org/api_docs/python/tf/Sessionrun) is a point which initiates computations in the graph that we have defined. To train the network, we need to compute *self.train_op*. To predict output, we just need to compute *self.infer_predictions*. In any case, we need to feed actual data through the placeholders that we defined above. ###Code def train_on_batch(self, session, X, X_seq_len, Y, Y_seq_len, learning_rate, dropout_keep_probability): feed_dict = { self.input_batch: X, self.input_batch_lengths: X_seq_len, self.ground_truth: Y, self.ground_truth_lengths: Y_seq_len, self.learning_rate_ph: learning_rate, self.dropout_ph: dropout_keep_probability } pred, loss, _ = session.run([ self.train_predictions, self.loss, self.train_op], feed_dict=feed_dict) return pred, loss Seq2SeqModel.train_on_batch = classmethod(train_on_batch) ###Output _____no_output_____ ###Markdown We implemented two prediction functions: *predict_for_batch* and *predict_for_batch_with_loss*. The first one allows only to predict output for some input sequence, while the second one could compute loss because we provide also ground truth values. Both these functions might be useful since the first one could be used for predicting only, and the second one is helpful for validating results on not-training data during the training. ###Code def predict_for_batch(self, session, X, X_seq_len): feed_dict = ######### YOUR CODE HERE ############# pred = session.run([ self.infer_predictions ], feed_dict=feed_dict)[0] return pred def predict_for_batch_with_loss(self, session, X, X_seq_len, Y, Y_seq_len): feed_dict = ######### YOUR CODE HERE ############# pred, loss = session.run([ self.infer_predictions, self.loss, ], feed_dict=feed_dict) return pred, loss Seq2SeqModel.predict_for_batch = classmethod(predict_for_batch) Seq2SeqModel.predict_for_batch_with_loss = classmethod(predict_for_batch_with_loss) ###Output _____no_output_____ ###Markdown Run your experimentCreate *Seq2SeqModel* model with the following parameters: - *vocab_size* — number of tokens; - *embeddings_size* — dimension of embeddings, recommended value: 20; - *max_iter* — maximum number of steps in decoder, recommended value: 7; - *hidden_size* — size of hidden layers for RNN, recommended value: 512; - *start_symbol_id* — an index of the start token (`^`). - *end_symbol_id* — an index of the end token (`$`). - *padding_symbol_id* — an index of the padding token (``).Set hyperparameters. You might want to start with the following values and see how it works:- *batch_size*: 128;- at least 10 epochs;- value of *learning_rate*: 0.001- *dropout_keep_probability* equals to 0.5 for training (typical values for dropout probability are ranging from 0.1 to 1.0); larger values correspond smaler number of dropout units;- *max_len*: 20. ###Code tf.reset_default_graph() model = ######### YOUR CODE HERE ############# batch_size = ######### YOUR CODE HERE ############# n_epochs = ######### YOUR CODE HERE ############# learning_rate = ######### YOUR CODE HERE ############# dropout_keep_probability = ######### YOUR CODE HERE ############# max_len = ######### YOUR CODE HERE ############# n_step = int(len(train_set) / batch_size) ###Output _____no_output_____ ###Markdown Finally, we are ready to run the training! A good indicator that everything works fine is decreasing loss during the training. You should account on the loss value equal to approximately 2.7 at the beginning of the training and near 1 after the 10th epoch. ###Code session = tf.Session() session.run(tf.global_variables_initializer()) invalid_number_prediction_counts = [] all_model_predictions = [] all_ground_truth = [] print('Start training... \n') for epoch in range(n_epochs): random.shuffle(train_set) random.shuffle(test_set) print('Train: epoch', epoch + 1) for n_iter, (X_batch, Y_batch) in enumerate(generate_batches(train_set, batch_size=batch_size)): ###################################### ######### YOUR CODE HERE ############# ###################################### # prepare the data (X_batch and Y_batch) for training # using function batch_to_ids predictions, loss = ######### YOUR CODE HERE ############# if n_iter % 200 == 0: print("Epoch: [%d/%d], step: [%d/%d], loss: %f" % (epoch + 1, n_epochs, n_iter + 1, n_step, loss)) X_sent, Y_sent = next(generate_batches(test_set, batch_size=batch_size)) ###################################### ######### YOUR CODE HERE ############# ###################################### # prepare test data (X_sent and Y_sent) for predicting # quality and computing value of the loss function # using function batch_to_ids predictions, loss = ######### YOUR CODE HERE ############# print('Test: epoch', epoch + 1, 'loss:', loss,) for x, y, p in list(zip(X, Y, predictions))[:3]: print('X:',''.join(ids_to_sentence(x, id2word))) print('Y:',''.join(ids_to_sentence(y, id2word))) print('O:',''.join(ids_to_sentence(p, id2word))) print('') model_predictions = [] ground_truth = [] invalid_number_prediction_count = 0 # For the whole test set calculate ground-truth values (as integer numbers) # and prediction values (also as integers) to calculate metrics. # If generated by model number is not correct (e.g. '1-1'), # increase invalid_number_prediction_count and don't append this and corresponding # ground-truth value to the arrays. for X_batch, Y_batch in generate_batches(test_set, batch_size=batch_size): ###################################### ######### YOUR CODE HERE ############# ###################################### all_model_predictions.append(model_predictions) all_ground_truth.append(ground_truth) invalid_number_prediction_counts.append(invalid_number_prediction_count) print('\n...training finished.') ###Output _____no_output_____ ###Markdown Evaluate resultsBecause our task is simple and the output is straight-forward, we will use [MAE](https://en.wikipedia.org/wiki/Mean_absolute_error) metric to evaluate the trained model during the epochs. Compute the value of the metric for the output from each epoch. ###Code from sklearn.metrics import mean_absolute_error for i, (gts, predictions, invalid_number_prediction_count) in enumerate(zip(all_ground_truth, all_model_predictions, invalid_number_prediction_counts), 1): mae = ######### YOUR CODE HERE ############# print("Epoch: %i, MAE: %f, Invalid numbers: %i" % (i, mae, invalid_number_prediction_count)) ###Output _____no_output_____
prescribing_exercises.ipynb
###Markdown Data Carpentry Inspired WorkshopThis workshop is inspired by the Data Carpentry python lesson for ecology: https://datacarpentry.org/python-ecology-lesson/. You use this lesson as a reference and come back to it after the workshop (it is open source and freely available). The main difference is that we are using UK antibiotics prescribing data for the exercises in this workshop. MotivationScreening two short videos from the "New Amsterdam" TV show. Video 106:50 This is when Dr. Max Goodwin fires the cardiologists."How can we help?" Video 212:55 This is when Dr. Floyd Reynolds is hired."Because there are other ways of helping people other than cutting them open." PlotShow the plot that we are looking at the end of the day. Data- Sample: https://www.dropbox.com/s/u75uezh2pbuk70d/antibiotics-sample.csv?dl=0- Full: https://www.dropbox.com/s/r9ain5cmuh6ztk2/antibiotics.csv?dl=0 AimsWe would like to answer the following questions at the end of the day:1. What is the most prescribed drug during November 2018?2. How the distribution of number of prescriptions vs the number of practices in November 2018 looks like?3. How has the number of antibiotics prescriptions changed between August and November 2018?4. Which practice has been treating patients for tuberculosis? What is Python?Python is a general-purpose programming language that supports rapid development of data analytics applications. The word “Python” is used to refer to both the programming language and the tool that executes the scripts written in Python language. Jupyter NotebookThe Jupyter Notebook is an open-source web application that allows you to create and share documents that contain cells with live code, equations, visualizations and narrative text. You can type Python code into a code cell and then execute the code by pressing `Shift`+`Return`. Output will be printed directly under the input cell. You can recognise a code cell by the `In[ ]:` at the beginning of the cell and output by `Out[ ]:`. Pressing the `+` button in the menu bar will add a new cell. All your commands as well as any output will be saved with the notebook. You can also easily share a notebook with your colleagues, along with the data that the notebook code is processing. Introduction to Python Arithmetic operations **Exercise**Do arithmetic operations using Python. ###Code 2 + 2 ###Output _____no_output_____ ###Markdown Variables **Exercise**Create a variable that stores an integer. ###Code number_of_chromosomes = 23 ###Output _____no_output_____ ###Markdown **Exercise**Create a variable that stores some text. ###Code university_name = "University of Manchester" ###Output _____no_output_____ ###Markdown Functions You can use the function `print` to show the value of variables. ###Code print(number_of_chromosomes) print(university_name) ###Output University of Manchester ###Markdown Getting HelpYou can use `help` to access the documentation of the functions. Try `help(print)`. **Exercise**How many characters are there in "University of Manchester"? ###Code len(university_name) ###Output _____no_output_____ ###Markdown Creating Your FunctionsYou can create your own functions in Python.```def fahr_to_celsius(temp): return ((temp - 32) * (5/9))``` **Exercise**Create a function that converts ounces to grams.Create a function that converts pounds to ounces.Create a function that converts pounds to grams using the previous two functions. ###Code def ounces_to_grams(ounces): return ounces * 28.350 def pounds_to_ounces(pounds): return 16 * ounces def pounds_to_grams(pounds): return ounces_to_grams(pounds_to_ounces(pounds)) ###Output _____no_output_____ ###Markdown Python built-in data types**Exercise**Create a list containing the individual words in the string "University of Manchester". ###Code university_name.split() ###Output _____no_output_____ ###Markdown Lists are a common data structure to hold an ordered sequence of elements. Each element can be accessed by an index. Note that Python indexes start with 0 instead of 1. ###Code university_name_parts = university_name.split() university_name_parts[0] ###Output _____no_output_____ ###Markdown LibrariesOne of the best options for working with tabular data in Python is to use the Python Data Analysis Library (a.k.a. Pandas). The Pandas library provides data structures, produces high quality plots with matplotlib and integrates nicely with other libraries that use NumPy (which is another Python library) arrays.Python doesn’t load all of the libraries available to it by default. We have to add an import statement to our code in order to use library functions. To import a library, we use the syntax `import libraryName`. If we want to give the library a nickname to shorten the command, we can add `as nickName`. An example of importing the pandas library using the common nickname `pd` is below. ###Code import pandas as pd pd.read_csv("data/antibiotics-sample.csv") ###Output _____no_output_____ ###Markdown Navigating files and directories ###Code import os os.getcwd() os.listdir() os.chdir("data") pd.read_csv("data/antibiotics-sample.csv") os.getcwd() pd.read_csv("antibiotics-sample.csv") ###Output _____no_output_____ ###Markdown Libraries can have pre-defined variables. These variables are different from functions witin libraries because we invoke them without parenthesis "()" at the end. ###Code os.curdir # This is '.' for Windows and POSIX. os.pardir # This is '..' for Windows and POSIX. os.sep # This is '/' for POSIX and '\\' for Windows. ###Output _____no_output_____ ###Markdown Usually, libraries' variables are immutable (i.e. they act as constants that cannot be changed). ###Code os.chdir("..") # This is a function call, not a variable! sample = pd.read_csv("data/antibiotics-sample.csv") ###Output _____no_output_____ ###Markdown Pandas' DataFrame data type ###Code sample sample.shape data = pd.read_csv("data/antibiotics.csv") data.shape data.dtypes ###Output _____no_output_____ ###Markdown All the values in a column have the same type. For example, months have type int64, which is a kind of integer. Cells in the month column cannot have fractional values, but the weight and hindfoot_length columns can, because they have type float64. The object type doesn’t have a very helpful name, but in this case it represents strings (such as ‘M’ and ‘F’ in the case of sex). ###Code data.columns ###Output _____no_output_____ ###Markdown Accessing Columns Accessing one column`frame[colname]` will return the Series corresponding to the column called `colname`.It is also possible to access the column of a DataFrame called `colname` using `frame.colname`. Accessing two or more columnsYou can pass a list of columns to [] to select columns in that order. For example, `frame[[colname1, colname2]]`. **Exercise**What values do we have in the column `PERIOD`? ###Code sample["PERIOD"] sample["PRACTICE"] sample["PERIOD"].unique() pd.crosstab(sample["BNF NAME"], sample["PERIOD"]) crosstab_prescription = pd.crosstab(sample["BNF NAME"], sample["PERIOD"]) crosstab_prescription crosstab_prescription.plot() %matplotlib inline crosstab_prescription.plot() crosstab_prescription.plot(kind="bar") ###Output _____no_output_____ ###Markdown **Exercise**Have a look at the documentation of `pd.crosstab`. What are the other arguments that it accept?Use extra arguments to answer (1) which antibiotic is responsible for most of the budget and (2) which antibiotic most dispensed. ###Code pd.crosstab( sample["BNF NAME"], sample["PERIOD"], values=sample["ACT COST"], aggfunc=sum ).plot(kind="bar") pd.crosstab( sample["BNF NAME"], sample["PERIOD"], values=sample["ITEMS"], aggfunc=sum ).plot(kind="bar") pd.crosstab( data["BNF NAME"], data["PERIOD"], values=data["ACT COST"], aggfunc=sum ).plot(kind="bar") ###Output _____no_output_____ ###Markdown Slicing data Accessing one row`frame.loc[row_index, :]` will return the one row with one column. Boolean indexingAnother common operation is the use of boolean operators to filter the data. The operators are: `|` for or, `&` for and, and `~` for not. These must be grouped using parentheses, since by default Python will evaluate an expression such as `df.A > 2 & df.B (2 & df.B) 2) & (df.B < 3)`. **Exercise**What are the values on the fifth row? **Note that the index of the first row is 0.** ###Code data.loc[4, :] data.loc[[4, 7], :] ###Output _____no_output_____ ###Markdown **Exercise**Which practices are on rows with index 0, 133 and 671. ###Code data.loc[[0, 133, 671], "PRACTICE"] data.loc[[0, 133, 671], ["PRACTICE"]] ###Output _____no_output_____ ###Markdown Note the difference of the result on the previous two examples. On the first one, the type is Series and on the second one is Frame. ###Code small_sample = sample.head(10) small_sample ###Output _____no_output_____ ###Markdown **Exercise**What are all the presciptions coming from practice Y04664 in `small_sample`? ###Code small_sample small_sample.loc[[ False, # 0 False, # 1 False, # 2 False, # 3 True, # 4 True, # 5 True, # 6 False, # 7 False, # 8 False, # 9 ], :] small_sample["PRACTICE"] == "Y04664" small_sample.loc[small_sample["PRACTICE"] == "Y04664", :] small_sample.loc[ (small_sample["PRACTICE"] == "Y04664") | (small_sample["PRACTICE"] == "N85638") , :] ###Output _____no_output_____ ###Markdown **Exercise**Which practice prescribe "Fluclox Sod_Cap 250mg"? ###Code data.loc[ data["BNF NAME"] == "Fluclox Sod_Cap 250mg", "PRACTICE" ].unique() data["BNF NAME"].unique() data.loc[ data["BNF NAME"] == "Fluclox Sod_Cap 250mg ", "PRACTICE" ].unique() data.loc[ data["BNF NAME"].str.contains("Fluclox Sod_Cap 250mg"), "PRACTICE" ].unique() ###Output _____no_output_____ ###Markdown **Exercise**What is the most commonly prescribed antibiotic?**Note**: You can write your own for-loop over `data.iterrows()`to answer this question but Pandas has some computations and descriptive statistics functions built-in.```most_common_count = 0for code in unique_bnf_codes: counts = len(data.loc[data['BNF CODE'] == code, 'BNF CODE']) if counts > most_common_count: most_common_count = counts most_common_code = codeprint('Most common BNF code:', most_common_code)print('Frequency of most common drug:', most_common_count)``` ###Code # DataFrame.max([axis, skipna, level, …]) Return the maximum of the values for the requested axis. data["QUANTITY"].max() # Top 5 most commonly prescribed antibiotics data.groupby(['BNF CODE', 'BNF NAME'])['BNF NAME'].count().sort_values(ascending=False).head(5) # DataFrame.min([axis, skipna, level, …]) Return the minimum of the values for the requested axis. data["QUANTITY"].min() # DataFrame.mean([axis, skipna, level, …]) Return the mean of the values for the requested axis. data["QUANTITY"].mean() # DataFrame.median([axis, skipna, level, …]) Return the median of the values for the requested axis. data["QUANTITY"].median() # DataFrame.describe([percentiles, include, …]) Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. data["QUANTITY"].describe() # DataFrame.count([axis, level, numeric_only]) Count non-NA cells for each column or row. data["QUANTITY"].count() sample.shape sample["PRACTICE"].count() # Return 12 data['BNF NAME'].value_counts().head(1) ###Output _____no_output_____ ###Markdown **Exercise**What is the least prescribed antibiotic? ###Code data['BNF NAME'].value_counts().tail(1) ###Output _____no_output_____ ###Markdown Be careful when you assume some conditions. ###Code data['BNF NAME'].value_counts().tail(2) bnf_name_counts = data['BNF NAME'].value_counts() bnf_name_counts[bnf_name_counts == 1] ###Output _____no_output_____ ###Markdown Extracting data from existing values and creating new columns**Exercise**Create a new column only containing the commonly used antibiotic name (and not the full BNF NAME) and a new column containing only the year it was prescribed (and not the PERIOD containing the month as well). ###Code sample sample["YEAR"] = pd.Series([ 2018, # 0 2018, # 1 2018, # 2 2018, # 3 2018, # 4 2018, # 5 2018, # 6 2018, # 7 2018, # 8 2018, # 9 2018, # 10 2018, # 11 2018, # 12 ]) sample sample['BNF NAME'].str.lower() ###Output _____no_output_____ ###Markdown We are going to write a little function of our own here, to help with extracting the antibiotic name from the BNF NAME. ###Code def extract_drug_name(bnf_name): """Extract drug name""" return bnf_name.lower().split()[0].split("_")[0] extract_drug_name("Phenoxymethylpenicillin_Soln 125mg/5ml") extract_drug_name("Fluclox Sod_Cap 250mg") extract_drug_name("Amoxicillin_Oral Susp 125mg/5ml") ###Output _____no_output_____ ###Markdown Pandas defines a useful function `apply` on DataFrames which enables us to apply a function on every row or column of a DataFrame. ###Code sample['BNF NAME'].apply(extract_drug_name) sample["DRUG NAME"] = sample['BNF NAME'].apply(extract_drug_name) sample ###Output _____no_output_____ ###Markdown Split-Apply-CombineWe are referring to a process involving one or more of the following steps:- Splitting the data into groups based on some criteria.- Applying a function to each group independently.- Combining the results into a data structure.Out of these, the split step is the most straightforward. In fact, in many situations we may wish to split the data set into groups and do something with those groups. In the apply step, we might wish to one of the following:- Aggregation: compute a summary statistic (or statistics) for each group.- Transformation: perform some group-specific computations and return a like-indexed object.- Filtration: discard some groups, according to a group-wise computation that evaluates True or False.**Aim**Which GP surgery has prescribed the most and least antibiotics? ###Code # Splitting grouped = data.groupby("PRACTICE") # Apply grouped.size() grouped.size().sort_values() # You can use ascending=False grouped.size().sort_values(ascending=False).head(1) ###Output _____no_output_____ ###Markdown PlottingThe plot method on a Series and DataFrame is just a simple wrapper around matplotlib.**Exercise**What does the distribution of antibiotics prescribed by GP practices look like? ###Code # How many prescriptions from each practice? prescriptions_per_practice = data["PRACTICE"].value_counts() prescriptions_per_practice.head() type(prescriptions_per_practice) prescriptions_per_practice.index prescriptions_per_practice.plot(kind='bar', legend=True, title ="Number of prescriptions per practice") grouped.size().value_counts() ###Output _____no_output_____ ###Markdown Note that the Series is sorted using the values. For the histogram we need sort it by the index. ###Code distribution_data = grouped.size().value_counts().sort_index() distribution_data distribution_data.plot() %matplotlib inline distribution_data.plot() import matplotlib.pyplot as plt # More at https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#functions plt.title("Histogram") plt.xlabel("Number of prescriptions") plt.ylabel("Number of practices prescribing") distribution_data.plot() ###Output _____no_output_____
ML-Base-MOOC/chapt-6 Polynomial-Regression/03-Overfit and underfit.ipynb
###Markdown 过拟合和欠拟合 ###Code import numpy as np import matplotlib.pyplot as plt x = np.random.uniform(-3, 3, size=100) X = x.reshape(-1, 1) y = 0.5 * x**2 + x + 2 + np.random.normal(0,1, size=100) plt.scatter(x, y) ###Output _____no_output_____ ###Markdown 1. 使用线性回归 ###Code from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) lin_reg.score(X, y) y_predict = lin_reg.predict(X) plt.scatter(x, y) plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown **使用均方误差来描述拟合程度** ###Code from sklearn.metrics import mean_squared_error y_predict = lin_reg.predict(X) mean_squared_error(y, y_predict) ###Output _____no_output_____ ###Markdown 2. 使用多项式回归 ###Code from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler def PolynomialRegression(degree): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lin_reg", LinearRegression()) ]) poly2_reg = PolynomialRegression(degree=2) poly2_reg.fit(X, y) y2_predict = poly2_reg.predict(X) mean_squared_error(y, y2_predict) ###Output _____no_output_____ ###Markdown - **显然比线性回归拟合程度更高** ###Code plt.scatter(x, y) plt.plot(np.sort(x), y2_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown - degree = 10 ###Code poly10_reg = PolynomialRegression(degree=10) poly10_reg.fit(X, y) y10_predict = poly10_reg.predict(X) mean_squared_error(y, y10_predict) plt.scatter(x, y) plt.plot(np.sort(x), y10_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown - degree = 100 ###Code poly100_reg = PolynomialRegression(degree=100) poly100_reg.fit(X, y) y100_predict = poly100_reg.predict(X) mean_squared_error(y, y100_predict) plt.scatter(x, y) plt.plot(np.sort(x), y100_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown - 可以看出,随着degree的值越大,拟合的程度就越高- 但是此时模型已经不能很好预测数据,称为过拟合 3. train-test-split的意义 ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=333) ###Output _____no_output_____ ###Markdown 线性回归 ###Code lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_predict = lin_reg.predict(X_test) mean_squared_error(y_test, y_predict) ###Output _____no_output_____ ###Markdown 多项式回归 ###Code poly2_reg = PolynomialRegression(degree=2) poly2_reg.fit(X_train, y_train) y2_predict = poly2_reg.predict(X_test) mean_squared_error(y_test, y2_predict) ###Output _____no_output_____ ###Markdown - 显然在degree=2时的模型的泛化能力强于线性回归 ###Code poly10_reg = PolynomialRegression(degree=10) poly10_reg.fit(X_train, y_train) y10_predict = poly10_reg.predict(X_test) mean_squared_error(y_test, y10_predict) poly100_reg = PolynomialRegression(degree=100) poly100_reg.fit(X_train, y_train) y100_predict = poly100_reg.predict(X_test) mean_squared_error(y_test, y100_predict) ###Output _____no_output_____ ###Markdown - 结合上面可以看出,degree越高,对训练数据拟合的越好,但是对测试数据集预测的能力越低- 即模型的泛化能力越差[![PR2.png](https://i.postimg.cc/SxJ8755v/PR2.png)](https://postimg.cc/nXfCndn4) 4. 学习曲线- 随着学习的数据越多,对训练数据与测试数据的拟合程度的变化曲线 ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) X_train.shape from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error train_score = [] test_score = [] for i in range(1, 76): lin_reg = LinearRegression() lin_reg.fit(X_train[:i], y_train[:i]) y_train_predict = lin_reg.predict(X_train[:i]) train_score.append(mean_squared_error(y_train[:i], y_train_predict)) y_test_predict = lin_reg.predict(X_test) test_score.append(mean_squared_error(y_test, y_test_predict)) plt.plot([i for i in range(1, 76)], np.sqrt(train_score), label="train") plt.plot([i for i in range(1, 76)], np.sqrt(test_score), label="test") plt.legend() # 封装函数 def plot_learning_curve(algorithm, X_train, X_test, y_train, y_test): train_score = [] test_score = [] for i in range(1, len(X_train)+1): algorithm.fit(X_train[:i], y_train[:i]) y_train_predict = algorithm.predict(X_train[:i]) train_score.append(mean_squared_error(y_train[:i], y_train_predict)) y_test_predict = algorithm.predict(X_test) test_score.append(mean_squared_error(y_test, y_test_predict)) plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(train_score), label="train") plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(test_score), label="test") plt.axis([0, len(X_train)+1, 0, 4]) plt.legend() plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test) # 多项式回归 from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler def PolynomialRegression(degree): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lin_reg", LinearRegression()) ]) poly2_reg = PolynomialRegression(degree=2) # 绘制学习曲线 plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test) poly2_reg = PolynomialRegression(degree=8) # 绘制学习曲线 plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test) ###Output _____no_output_____ ###Markdown 过拟合和欠拟合 ###Code import numpy as np import matplotlib.pyplot as plt x = np.random.uniform(-3, 3, size=100) X = x.reshape(-1, 1) y = 0.5 * x**2 + x + 2 + np.random.normal(0,1, size=100) plt.scatter(x, y) ###Output _____no_output_____ ###Markdown 1. 使用线性回归 ###Code from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) lin_reg.score(X, y) y_predict = lin_reg.predict(X) plt.scatter(x, y) plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown **使用均方误差来描述拟合程度** ###Code from sklearn.metrics import mean_squared_error y_predict = lin_reg.predict(X) mean_squared_error(y, y_predict) ###Output _____no_output_____ ###Markdown 2. 使用多项式回归 ###Code from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler def PolynomialRegression(degree): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lin_reg", LinearRegression()) ]) ###Output _____no_output_____ ###Markdown **当 degree 取 2 时** ###Code poly2_reg = PolynomialRegression(degree=2) poly2_reg.fit(X, y) y2_predict = poly2_reg.predict(X) mean_squared_error(y, y2_predict) ###Output _____no_output_____ ###Markdown **显然此时比线性回归拟合程度更高(均方差更小)** ###Code plt.scatter(x, y) plt.plot(np.sort(x), y2_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown **degree = 10 时** ###Code poly10_reg = PolynomialRegression(degree=10) poly10_reg.fit(X, y) y10_predict = poly10_reg.predict(X) mean_squared_error(y, y10_predict) plt.scatter(x, y) plt.plot(np.sort(x), y10_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown **degree = 100 时** ###Code poly100_reg = PolynomialRegression(degree=100) poly100_reg.fit(X, y) y100_predict = poly100_reg.predict(X) mean_squared_error(y, y100_predict) plt.scatter(x, y) plt.plot(np.sort(x), y100_predict[np.argsort(x)], color='r') ###Output _____no_output_____ ###Markdown - 可以看出,随着degree的值越大,拟合的程度**越来越高**- 但是此时模型已经不能很好预测数据,称为**过拟合** 3. train-test-split的意义 ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=333) ###Output _____no_output_____ ###Markdown 线性回归 ###Code lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_predict = lin_reg.predict(X_test) mean_squared = mean_squared_error(y_test, y_predict) score = lin_reg.score(X_test, y_test) print("mean_squared: ", mean_squared) print("score: ", score) ###Output mean_squared: 3.0138859332499557 score: 0.526634907968638 ###Markdown 多项式回归 ###Code poly2_reg = PolynomialRegression(degree=2) poly2_reg.fit(X_train, y_train) y2_predict = poly2_reg.predict(X_test) mean_squared = mean_squared_error(y_test, y2_predict) score = poly2_reg.score(X_test, y_test) print("mean_squared: ", mean_squared) ###Output mean_squared: 1.4330745991544904 ###Markdown 显然在degree=2时的模型的泛化能力强于线性回归**(对数据的预测效果更好)** **当 degree 取 10 时** ###Code poly10_reg = PolynomialRegression(degree=10) poly10_reg.fit(X_train, y_train) y10_predict = poly10_reg.predict(X_test) mean_squared = mean_squared_error(y_test, y10_predict) score = poly10_reg.score(X_test, y_test) print("mean_squared: ", mean_squared) poly100_reg = PolynomialRegression(degree=100) poly100_reg.fit(X_train, y_train) y100_predict = poly100_reg.predict(X_test) mean_squared = mean_squared_error(y_test, y100_predict) poly100_reg.score(X_test, y_test) print("mean_squared: ", mean_squared) ###Output mean_squared: 228258223189753.47 ###Markdown - 结合上面可以看出,degree越高,对训练数据拟合的越好,但是对测试数据集预测的能力越低(均方误差越来越高)- 即模型的泛化能力越差[![8lmR2j.md.png](https://s1.ax1x.com/2020/03/14/8lmR2j.md.png)](https://imgchr.com/i/8lmR2j) 4. 学习曲线- 随着学习的数据越多,对训练数据与测试数据的拟合程度的变化曲线 ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) X_train.shape from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error train_score = [] test_score = [] for i in range(1, 76): lin_reg = LinearRegression() lin_reg.fit(X_train[:i], y_train[:i]) y_train_predict = lin_reg.predict(X_train[:i]) train_score.append(mean_squared_error(y_train[:i], y_train_predict)) y_test_predict = lin_reg.predict(X_test) test_score.append(mean_squared_error(y_test, y_test_predict)) plt.plot([i for i in range(1, 76)], np.sqrt(train_score), label="train") plt.plot([i for i in range(1, 76)], np.sqrt(test_score), label="test") plt.legend() # 封装函数 def plot_learning_curve(algorithm, X_train, X_test, y_train, y_test): train_score = [] test_score = [] for i in range(1, len(X_train)+1): algorithm.fit(X_train[:i], y_train[:i]) y_train_predict = algorithm.predict(X_train[:i]) train_score.append(mean_squared_error(y_train[:i], y_train_predict)) y_test_predict = algorithm.predict(X_test) test_score.append(mean_squared_error(y_test, y_test_predict)) plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(train_score), label="train") plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(test_score), label="test") plt.axis([0, len(X_train)+1, 0, 4]) plt.legend() plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test) # 多项式回归 from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler def PolynomialRegression(degree): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lin_reg", LinearRegression()) ]) poly2_reg = PolynomialRegression(degree=2) # 绘制学习曲线 plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test) poly2_reg = PolynomialRegression(degree=8) # 绘制学习曲线 plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test) ###Output _____no_output_____
WHI/indicators/NASA_Artic_sea_ice.ipynb
###Markdown indicators - NASA Artic sea ice AVERAGE SEPTEMBER MINIMUM EXTENTData source: Satellite observations. Credit: NSIDC/NASA**What is Arctic sea ice extent?**Sea ice extent is a measure of the surface area of the ocean covered by sea ice. Increases in air and ocean temperatures decrease sea ice extent; in turn, the resulting darker ocean surface absorbs more solar radiation and increases Arctic warming.Date Range: 1979 - 2020. Get data from websitehttps://climate.nasa.gov/ => click on Artic Sea Ice ###Code import pandas df = pandas.read_csv("https://climate.nasa.gov/system/internal_resources/details/original/2264_N_09_extent_v3.0.csv") df.head(5)#read the first 5 lines ###Output _____no_output_____ ###Markdown Create simple graph ###Code import plotly.express as px fig = px.line(df, x="year", y=" extent") fig.show() ###Output _____no_output_____ ###Markdown World Health Indicator (WHI)Using a scale of 0 - 10(where 0 is the worst and 10 is the best) $$\begin{equation*}WHI = 10 \times (\frac{Current}{8})\end{equation*}$$The highest record value of the arctic see ice level was 7.67 million square km in 1980. This value has been decreasing since. That's why, our best case scenario is when the ice level is highest (8) and our worst is the lowest (0). ###Code current = df[" extent"].iloc[-1] WHI = (10*(current/8)) print(f"World Health Indicator (Raw values): {round(WHI, 2)}") WHI_data = pandas.DataFrame.from_dict({"DATE_PROCESSED": pandas.to_datetime("today").date(), "INDICATOR": "Arctic Sea Ice level (million square km)", "VALUE": [round(WHI, 2)]}) WHI_data import naas path = '../output/Arctic_Sea_Ice_whi.csv' WHI_data.to_csv(path) naas.asset.add(path) ###Output 👌 Well done! Your Assets has been sent to production. ###Markdown indicators - NASA Artic sea ice **Tags:** indicators opendata worldsituationroom AVERAGE SEPTEMBER MINIMUM EXTENTData source: Satellite observations. Credit: NSIDC/NASA**What is Arctic sea ice extent?**Sea ice extent is a measure of the surface area of the ocean covered by sea ice. Increases in air and ocean temperatures decrease sea ice extent; in turn, the resulting darker ocean surface absorbs more solar radiation and increases Arctic warming.Date Range: 1979 - 2020. Input Import libraries ###Code import pandas import plotly.express as px import naas ###Output _____no_output_____ ###Markdown Model Get data from websitehttps://climate.nasa.gov/ => click on Artic Sea Ice ###Code df = pandas.read_csv("https://climate.nasa.gov/system/internal_resources/details/original/2264_N_09_extent_v3.0.csv") df.head(5)#read the first 5 lines ###Output _____no_output_____ ###Markdown Create simple graph ###Code fig = px.line(df, x="year", y=" extent") fig.show() ###Output _____no_output_____ ###Markdown World Health Indicator (WHI)Using a scale of 0 - 10(where 0 is the worst and 10 is the best) $$\begin{equation*}WHI = 10 \times (\frac{Current}{8})\end{equation*}$$The highest record value of the arctic see ice level was 7.67 million square km in 1980. This value has been decreasing since. That's why, our best case scenario is when the ice level is highest (8) and our worst is the lowest (0). ###Code current = df[" extent"].iloc[-1] WHI = (10*(current/8)) print(f"World Health Indicator (Raw values): {round(WHI, 2)}") WHI_data = pandas.DataFrame.from_dict({"DATE_PROCESSED": pandas.to_datetime("today").date(), "INDICATOR": "Arctic Sea Ice level (million square km)", "VALUE": [round(WHI, 2)]}) WHI_data path = '../output/Arctic_Sea_Ice_whi.csv' WHI_data.to_csv(path) ###Output _____no_output_____ ###Markdown Output Add the asset ###Code naas.asset.add(path) ###Output _____no_output_____ ###Markdown indicators - NASA Artic sea ice **Tags:** indicators opendata worldsituationroom AVERAGE SEPTEMBER MINIMUM EXTENTData source: Satellite observations. Credit: NSIDC/NASA**What is Arctic sea ice extent?**Sea ice extent is a measure of the surface area of the ocean covered by sea ice. Increases in air and ocean temperatures decrease sea ice extent; in turn, the resulting darker ocean surface absorbs more solar radiation and increases Arctic warming.Date Range: 1979 - 2020. Input Import libraries ###Code import pandas import plotly.express as px import naas ###Output _____no_output_____ ###Markdown Model Get data from websitehttps://climate.nasa.gov/ => click on Artic Sea Ice ###Code df = pandas.read_csv("https://climate.nasa.gov/system/internal_resources/details/original/2264_N_09_extent_v3.0.csv") df.head(5)#read the first 5 lines ###Output _____no_output_____ ###Markdown Create simple graph ###Code fig = px.line(df, x="year", y=" extent") fig.show() ###Output _____no_output_____ ###Markdown World Health Indicator (WHI)Using a scale of 0 - 10(where 0 is the worst and 10 is the best) $$\begin{equation*}WHI = 10 \times (\frac{Current}{8})\end{equation*}$$The highest record value of the arctic see ice level was 7.67 million square km in 1980. This value has been decreasing since. That's why, our best case scenario is when the ice level is highest (8) and our worst is the lowest (0). ###Code current = df[" extent"].iloc[-1] WHI = (10*(current/8)) print(f"World Health Indicator (Raw values): {round(WHI, 2)}") WHI_data = pandas.DataFrame.from_dict({"DATE_PROCESSED": pandas.to_datetime("today").date(), "INDICATOR": "Arctic Sea Ice level (million square km)", "VALUE": [round(WHI, 2)]}) WHI_data path = '../output/Arctic_Sea_Ice_whi.csv' WHI_data.to_csv(path) ###Output _____no_output_____ ###Markdown Output Add the asset ###Code naas.asset.add(path) ###Output _____no_output_____ ###Markdown indicators - NASA Artic sea ice AVERAGE SEPTEMBER MINIMUM EXTENTData source: Satellite observations. Credit: NSIDC/NASA**What is Arctic sea ice extent?**Sea ice extent is a measure of the surface area of the ocean covered by sea ice. Increases in air and ocean temperatures decrease sea ice extent; in turn, the resulting darker ocean surface absorbs more solar radiation and increases Arctic warming.Date Range: 1979 - 2020. Get data from websitehttps://climate.nasa.gov/ => click on Artic Sea Ice ###Code import pandas df = pandas.read_csv("https://climate.nasa.gov/system/internal_resources/details/original/2264_N_09_extent_v3.0.csv") df.head(5)#read the first 5 lines ###Output _____no_output_____ ###Markdown Create simple graph ###Code import plotly.express as px fig = px.line(df, x="year", y=" extent") fig.show() ###Output _____no_output_____ ###Markdown World Health Indicator (WHI)Using a scale of 0 - 10(where 0 is the worst and 10 is the best) $$\begin{equation*}WHI = 10 \times (\frac{Current}{8})\end{equation*}$$The highest record value of the arctic see ice level was 7.67 million square km in 1980. This value has been decreasing since. That's why, our best case scenario is when the ice level is highest (8) and our worst is the lowest (0). ###Code current = df[" extent"].iloc[-1] WHI = (10*(current/8)) print(f"World Health Indicator (Raw values): {round(WHI, 2)}") WHI_data = pandas.DataFrame.from_dict({"DATE_PROCESSED": pandas.to_datetime("today").date(), "INDICATOR": "Arctic Sea Ice level (million square km)", "VALUE": [round(WHI, 2)]}) WHI_data import naas path = '../output/Arctic_Sea_Ice_whi.csv' WHI_data.to_csv(path) naas.asset.add(path) ###Output _____no_output_____
notebooks/Exploring Magic Functions.ipynb
###Markdown Author: Blesson John Replica of Abhishek's notebook from pluralsight course Magic Function: matplotlib ###Code %matplotlib inline import matplotlib.pyplot as plt plt.plot(range(100)) ###Output _____no_output_____ ###Markdown Time magic Function ###Code %time x = range(10000) %%timeit x = range(10000) max(x) %%writefile test.txt This is the content that is written into this file from Jupyter notebook notebok %ls %%html <i>image in juypter notebook</i> <img src="http://imgs.xkcd.com/comics/correlation.png"></img> ###Output _____no_output_____ ###Markdown Latex function ###Code %%latex \begin{align} Gradient: \nabla J = -2H^T (Y-HW) \end{align} ###Output _____no_output_____ ###Markdown load_ext ###Code !pip install ipython-sql %load_ext sql %sql sqlite:// %%sql create table forum(name,forum_name,profession); insert into forum values('Blesson','Data Science','CSA'); insert into forum values('Joshua','kids zone','student'); %sql select * from forum; ###Output * sqlite:// Done. ###Markdown magic function: lsmagic ###Code %lsmagic ###Output _____no_output_____
useful_code/Tests.ipynb
###Markdown Hop-pub test _24th August 2021_ Sebastian Lara-TorresMelih Kara **To do:** - Implement Heartbeat messages on a seperate continuously running script? - Should Alert messages be published this way?- Accept Datetime object and convert into str- Accept other input types?- We do not have different topics for different tiers, the content should be modified depending on the tier right? It might make sense to refactor according to this. ###Code import hop_pub_v02 as hop_pub # by default, it still publishes something # can be randomized publisher = hop_pub.Publish_Observation(welcome=True) ###Output ### Publish SNEWS Observation Messages ### Your Python version:3.8.5 (default, Jan 27 2021, 15:41:15) [GCC 9.3.0] Current hop-client version:0.4.0 snews version:0.0.1 Publishing to kafka.scimma.org Observation Topic: kafka://kafka.scimma.org/snews.alert-test Submitting messages to the following Tiers; Significance_Tier & Coincidence_Tier & Timing_Tier ###Markdown Publishing option can be changed. ###Code publisher.publish_to['Timing_Tier'] = False print(publisher.publish_to) # default dictionary publisher.msg_dict ###Output _____no_output_____ ###Markdown Message as a dictionary ###Code message = {'machine_time':'24/08/2021 15:49:55', 'status': 'ON'} # To Do: accept datetime ovject and convert into str publisher = hop_pub.Publish_Observation(msg=message) # Only the value that is changed is overwritten publisher.msg_dict publisher.publish_to_tiers() ###Output Publishing OBS message to Significance_Tier: detector_id :0 machine_time :24/08/2021 15:49:55 neutrino_time :01/01/01 01:01:01 status :ON p_value :0 Publishing OBS message to Coincidence_Tier: detector_id :0 machine_time :24/08/2021 15:49:55 neutrino_time :01/01/01 01:01:01 status :ON
Problem-1/Checkpoint-1.ipynb
###Markdown Checkpoint 1Checkpoint1: Use Pandas to view the dataset. a. Display first 10 records and last 10 records b. Compute the data distribution across each of these attributes and show them with a bar graph c. Report: Is the data distribution balanced or skewed? If skewed, where do you see the data imbalance? Can you use data augmentation to offset the imbalance if any? ###Code import pandas as pd from os.path import join import numpy as np import matplotlib.pyplot as plt %matplotlib inline data_path = join("..", "..", "Dataset-1", "selfie_dataset.txt") headers = [ "image_name", "score", "partial_faces" ,"is_female" ,"baby" ,"child" ,"teenager" ,"youth" ,"middle_age" ,"senior" ,"white" ,"black" ,"asian" ,"oval_face" ,"round_face" ,"heart_face" ,"smiling" ,"mouth_open" ,"frowning" ,"wearing_glasses" ,"wearing_sunglasses" ,"wearing_lipstick" ,"tongue_out" ,"duck_face" ,"black_hair" ,"blond_hair" ,"brown_hair" ,"red_hair" ,"curly_hair" ,"straight_hair" ,"braid_hair" ,"showing_cellphone" ,"using_earphone" ,"using_mirror", "braces" ,"wearing_hat" ,"harsh_lighting", "dim_lighting" ] len(headers) df_image_details = pd.read_csv(data_path, names=headers, delimiter=" ") print("Len of dataset :", len(df_image_details)) df_image_details.head(10) df_image_details.tail(10) for col in df_image_details.columns[3:]: plt.bar(sorted(df_image_details[col].unique()), df_image_details[col].value_counts().values) plt.title('Column : {}'.format(col)) plt.show() ###Output _____no_output_____
src/11_drl_sarsa/11_2_temp_diff_frozen_lake.ipynb
###Markdown Part 1: TD Control: Sarsa (update_Q_sarsa)In this section, you will write your own implementation of the Sarsa control algorithm.Your algorithm has four arguments:- `env`: This is an instance of an OpenAI Gym environment.- `num_episodes`: This is the number of episodes that are generated through agent-environment interaction.- `alpha`: This is the step-size parameter for the update step.- `gamma`: This is the discount rate. It must be a value between 0 and 1, inclusive (default value: `1`).The algorithm returns as output:- `Q`: This is a dictionary (of one-dimensional arrays) where `Q[s][a]` is the **estimated action value** corresponding to state `s` and action `a`.Please complete the function in the code cell below. ###Code def update_Q_sarsa(alpha, gamma, Q, state, action, reward, next_state=None, next_action=None, plot=None): """Returns updated Q-value for the most recent experience.""" current = Q[state][action] # estimate in Q-table (for current state, action pair) # get value of state, action pair at next time step Qsa_next = Q[next_state][next_action] if next_state is not None else 0 target = reward + (gamma * Qsa_next) # construct TD target, gamma=discount new_value = current + (alpha * (target - current)) # get updated value, alpha analog=lr if plot: print("current:", current, "Qsa_next:", Qsa_next, "target:", target, "new_value:", new_value) return new_value def epsilon_greedy(Q, state, nA, eps): """Selects epsilon-greedy action for supplied state. Params ====== Q (dictionary): action-value function state (int): current state nA (int): number actions in the environment eps (float): epsilon """ if random.random() > eps: # select greedy action with probability epsilon return np.argmax(Q[state]) else: # otherwise, select an action randomly return random.choice(np.arange(env.action_space.n)) def sarsa(env, num_episodes, alpha, gamma=1.0, plot_every=1000): nA = env.action_space.n # number of actions Q = defaultdict(lambda: np.zeros(nA)) # initialize empty dictionary of arrays eps_decay = .99999 eps = 1. eps_min = .05 # monitor performance tmp_scores = deque(maxlen=plot_every) # deque for keeping track of scores avg_scores = deque(maxlen=num_episodes) # average scores over every plot_every episodes for i_episode in range(1, num_episodes+1): # monitor progress plot = False if i_episode % 100 == 0: print("\rEpisode {}/{}".format(i_episode, num_episodes), end="") sys.stdout.flush() print() plot = True score = 0 # initialize score state = env.reset() # start episode # eps = 1.0 / i_episode eps = max(eps*eps_decay, eps_min) # set the value of epsilon action = epsilon_greedy(Q, state, nA, eps) # epsilon-greedy action selection while True: next_state, reward, done, info = env.step(action) # take action A, observe R, S' score += reward # add reward to agent's score if not done: next_action = epsilon_greedy(Q, next_state, nA, eps) # epsilon-greedy action Q[state][action] = update_Q_sarsa(alpha, gamma, Q, \ state, action, reward, next_state, next_action, plot) state = next_state # S <- S' action = next_action # A <- A' if done: Q[state][action] = update_Q_sarsa(alpha, gamma, Q, \ state, action, reward) tmp_scores.append(score) # append score break if (i_episode % plot_every == 0): avg_scores.append(np.mean(tmp_scores)) # plot performance plt.plot(np.linspace(0,num_episodes,len(avg_scores),endpoint=False), np.asarray(avg_scores)) plt.xlabel('Episode Number') plt.ylabel('Average Reward (Over Next %d Episodes)' % plot_every) plt.show() # print best 100-episode performance print(('Best Average Reward over %d Episodes: ' % plot_every), np.max(avg_scores)) return Q ###Output _____no_output_____ ###Markdown Use the next code cell to visualize the **_estimated_** optimal policy and the corresponding state-value function. If the code cell returns **PASSED**, then you have implemented the function correctly!- Feel free to change the `num_episodes` and `alpha` parameters that are supplied to the function.- However, if you'd like to ensure the accuracy of the unit test, please do not change the value of `gamma` from the default. ###Code # obtain the estimated optimal policy and corresponding action-value function Q_sarsa = sarsa(env, 5000, .01) helper.print_field_positions() print() helper.print_Q(Q_sarsa) print() # print the estimated optimal policy policy_sarsa = np.array([np.argmax(Q_sarsa[key]) if key in Q_sarsa else -1 for key in np.arange(16)]).reshape(4,4) #check_test.run_check('td_control_check', policy_sarsa) # -1 sind löcher oder Goal, da kommt man gar nicht hinein, daher gibt es keine state/action paar print("\nEstimated Optimal Policy (UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, N/A (Final state) = -1):") print(policy_sarsa) # plot the estimated optimal state-value function V_sarsa = ([np.max(Q_sarsa[key]) if key in Q_sarsa else 0 for key in np.arange(16)]) plot_values(V_sarsa) helper.print_actions() print() print("Policy:") policy_sarsa ###Output Actions: [0] Left [1] Down [2] Right [3] Up Policy: ###Markdown Part 2: TD Control: Q-learning (update_Q_sarsamax)In this section, you will write your own implementation of the Q-learning control algorithm.Your algorithm has four arguments:- `env`: This is an instance of an OpenAI Gym environment.- `num_episodes`: This is the number of episodes that are generated through agent-environment interaction.- `alpha`: This is the step-size parameter for the update step.- `gamma`: This is the discount rate. It must be a value between 0 and 1, inclusive (default value: `1`).The algorithm returns as output:- `Q`: This is a dictionary (of one-dimensional arrays) where `Q[s][a]` is the estimated action value corresponding to state `s` and action `a`.Please complete the function in the code cell below.(_Feel free to define additional functions to help you to organize your code._) ###Code def update_Q_sarsamax(alpha, gamma, Q, state, action, reward, next_state=None, plot=None): """Returns updated Q-value for the most recent experience.""" current = Q[state][action] # estimate in Q-table (for current state, action pair) Qsa_next = np.max(Q[next_state]) if next_state is not None else 0 # value of next state target = reward + (gamma * Qsa_next) # construct TD target new_value = current + (alpha * (target - current)) # get updated value if plot: print("current:", current, "Qsa_next:", Qsa_next, "target:", target, "new_value:", new_value) return new_value def q_learning(env, num_episodes, alpha, gamma=0.9999, plot_every=1000): """Q-Learning - TD Control Params ====== num_episodes (int): number of episodes to run the algorithm alpha (float): learning rate gamma (float): discount factor plot_every (int): number of episodes to use when calculating average score """ nA = env.action_space.n # number of actions Q = defaultdict(lambda: np.zeros(nA)) # initialize empty dictionary of arrays # monitor performance tmp_scores = deque(maxlen=plot_every) # deque for keeping track of scores avg_scores = deque(maxlen=num_episodes) # average scores over every plot_every episodes eps_decay = .99999 eps = 1. eps_min = .05 for i_episode in range(1, num_episodes+1): # monitor progress plot = False if i_episode % plot_every == 0: print("\rEpisode {}/{}".format(i_episode, num_episodes), end="") sys.stdout.flush() print() plot = True score = 0 # initialize score state = env.reset() # start episode # eps = 1.0 / i_episode # epsilon divergiert zu schnell hier! eps = max(eps*eps_decay, eps_min) # set the value of epsilon while True: action = epsilon_greedy(Q, state, nA, eps) # epsilon-greedy action selection next_state, reward, done, info = env.step(action) # take action A, observe R, S' score += reward # add reward to agent's score Q[state][action] = update_Q_sarsamax(alpha, gamma, Q, \ state, action, reward, next_state, plot=False) state = next_state # S <- S' if done: tmp_scores.append(score) # append score break if (i_episode % plot_every == 0): avg_scores.append(np.mean(tmp_scores)) # plot performance plt.plot(np.linspace(0,num_episodes,len(avg_scores),endpoint=False), np.asarray(avg_scores)) plt.xlabel('Episode Number') plt.ylabel('Average Reward (Over Next %d Episodes)' % plot_every) plt.show() # print best 100-episode performance print(('Best Average Reward over %d Episodes: ' % plot_every), np.max(avg_scores)) return Q ###Output _____no_output_____ ###Markdown Use the next code cell to visualize the **_estimated_** optimal policy and the corresponding state-value function. If the code cell returns **PASSED**, then you have implemented the function correctly! Feel free to change the `num_episodes` and `alpha` parameters that are supplied to the function. However, if you'd like to ensure the accuracy of the unit test, please do not change the value of `gamma` from the default. ###Code Q_sarsamax = q_learning(env, 50000, .01) # print the estimated optimal policy policy_sarsamax = np.array([np.argmax(Q_sarsamax[key]) if key in Q_sarsamax else -1 for key in np.arange(16)]).reshape((4,4)) # check_test.run_check('td_control_check', policy_sarsamax) print("\nEstimated Optimal Policy (UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, N/A (Final state) = -1):") print(policy_sarsamax) # plot the estimated optimal state-value function plot_values([np.max(Q_sarsamax[key]) if key in Q_sarsamax else 0 for key in np.arange(16)]) helper.print_actions() print() print("Policy:") policy_sarsamax ###Output Actions: [0] Left [1] Down [2] Right [3] Up Policy: ###Markdown Part 3: TD Control: Expected Sarsa (update_Q_expsarsa)In this section, you will write your own implementation of the Expected Sarsa control algorithm.Your algorithm has four arguments:- `env`: This is an instance of an OpenAI Gym environment.- `num_episodes`: This is the number of episodes that are generated through agent-environment interaction.- `alpha`: This is the step-size parameter for the update step.- `gamma`: This is the discount rate. It must be a value between 0 and 1, inclusive (default value: `1`).The algorithm returns as output:- `Q`: This is a dictionary (of one-dimensional arrays) where `Q[s][a]` is the estimated action value corresponding to state `s` and action `a`.Please complete the function in the code cell below.(_Feel free to define additional functions to help you to organize your code._) ###Code def update_Q_expsarsa(alpha, gamma, nA, eps, Q, state, action, reward, next_state=None): """Returns updated Q-value for the most recent experience.""" current = Q[state][action] # estimate in Q-table (for current state, action pair) policy_s = np.ones(nA) * eps / nA # current policy (for next state S') policy_s[np.argmax(Q[next_state])] = 1 - eps + (eps / nA) # greedy action Qsa_next = np.dot(Q[next_state], policy_s) # get value of state at next time step target = reward + (gamma * Qsa_next) # construct target new_value = current + (alpha * (target - current)) # get updated value return new_value def expected_sarsa(env, num_episodes, alpha, gamma=1.0, plot_every=100): """Expected SARSA - TD Control Params ====== num_episodes (int): number of episodes to run the algorithm alpha (float): step-size parameters for the update step gamma (float): discount factor plot_every (int): number of episodes to use when calculating average score """ nA = env.action_space.n # number of actions Q = defaultdict(lambda: np.zeros(nA)) # initialize empty dictionary of arrays # monitor performance tmp_scores = deque(maxlen=plot_every) # deque for keeping track of scores avg_scores = deque(maxlen=num_episodes) # average scores over every plot_every episodes eps_decay = .99999 eps = 1. eps_min = .05 for i_episode in range(1, num_episodes+1): # monitor progress if i_episode % 100 == 0: print("\rEpisode {}/{}".format(i_episode, num_episodes), end="") sys.stdout.flush() score = 0 # initialize score state = env.reset() # start episode eps = max(eps*eps_decay, eps_min) # set the value of epsilon while True: action = epsilon_greedy(Q, state, nA, eps) # epsilon-greedy action selection next_state, reward, done, info = env.step(action) # take action A, observe R, S' score += reward # add reward to agent's score # update Q Q[state][action] = update_Q_expsarsa(alpha, gamma, nA, eps, Q, \ state, action, reward, next_state) state = next_state # S <- S' if done: tmp_scores.append(score) # append score break if (i_episode % plot_every == 0): avg_scores.append(np.mean(tmp_scores)) # plot performance plt.plot(np.linspace(0,num_episodes,len(avg_scores),endpoint=False), np.asarray(avg_scores)) plt.xlabel('Episode Number') plt.ylabel('Average Reward (Over Next %d Episodes)' % plot_every) plt.show() # print best 100-episode performance print(('Best Average Reward over %d Episodes: ' % plot_every), np.max(avg_scores)) return Q ###Output _____no_output_____ ###Markdown Use the next code cell to visualize the **_estimated_** optimal policy and the corresponding state-value function. ###Code # obtain the estimated optimal policy and corresponding action-value function Q_expsarsa = expected_sarsa(env, 50000, 1) # print the estimated optimal policy policy_expsarsa = np.array([np.argmax(Q_expsarsa[key]) if key in Q_expsarsa else -1 for key in np.arange(16)]).reshape(4,4) # check_test.run_check('td_control_check', policy_expsarsa) print("\nEstimated Optimal Policy (UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, N/A (Terminal State)= -1):") print(policy_expsarsa) # plot the estimated optimal state-value function plot_values([np.max(Q_expsarsa[key]) if key in Q_expsarsa else 0 for key in np.arange(16)]) helper.print_actions() print() print("Policy:") policy_sarsamax ###Output Actions: [0] Left [1] Down [2] Right [3] Up Policy: ###Markdown Aufgabe 11 - Temporal-Difference Methods with Frozen Lake18.01.2022, Thomas ItenIn this notebook, you will write your own implementations of many Temporal-Difference (TD) methods.While we have provided some starter code, you are welcome to erase these hints and write your code from scratch.**Content**0. Explore Frozen Lake1. TD Control: Sarsa (update_Q_sarsa)2. TD Control: Q-learning (update_Q_sarsamax, dito Q-Learing)3. TD Control: Expected Sarsa (update_Q_expsarsa)**References**- https://colab.research.google.com/drive/1dloqQlR77yAIXEWgRGWSoSJXflMqCUuN?usp=sharing Part 0: Explore Frozen Lake Imports and Plot Helpers ###Code import sys import gym import numpy as np import random import math from collections import defaultdict, deque import matplotlib.pyplot as plt %matplotlib inline import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style("white") # from plot_utils import plot_values def plot_values(V): # reshape the state-value function V = np.reshape(V, (4,4)) # plot the state-value function fig = plt.figure(figsize=(15,5)) ax = fig.add_subplot(111) im = ax.imshow(V, cmap='cool') for (j,i),label in np.ndenumerate(V): ax.text(i, j, np.round(label,3), ha='center', va='center', fontsize=14) plt.tick_params(bottom='off', left='off', labelbottom='off', labelleft='off') plt.title('State-Value Function') plt.show() ###Output _____no_output_____ ###Markdown Frozen Lake Helper ###Code class FrozenLakeHelper(): """Some helper methods used throughout this notebook.""" def render(self, env, display_mode="brackets", print_result=True, legend=False): """ IntelliJ notebooks to not render the color of the current position correct. Details see: https://youtrack.jetbrains.com/issue/PY-32191 Therfore we use this customized render methode with two simple display modes. :param env: The current environment to render it's fields. :param display_mode: display current position with "brackets" or in "lowercase" :param print_result: print the last action and result :param legend: print the legend :return: lastaction as text and fields with marked current position """ # init data row, col = env.s // env.ncol, env.s % env.ncol desc = env.desc.tolist() desc = [[c.decode("utf-8") for c in line] for line in desc] actions = ["Left", "Down", "Right", "Up"] action = "Init" if env.lastaction is None else actions[env.lastaction] # format display mode indicator = None if display_mode == "brackets": desc[row][col] = "[{}]".format(desc[row][col]) desc = [[ (" {} ".format(c) if len(c) == 1 else c) for c in line ] for line in desc] indicator = "[]" elif display_mode == "lowercase": desc[row][col] = (desc[row][col]).lower() indicator = "lowercase" # print result if print_result: if legend: print("Last action:", action) else: print(action + ":") for line in desc: for pos in line: print(pos, end="") print("") if legend: print("Legend: S=Start, F=Frozen (safe), H=Hole, G=Goal, " + indicator + "=Current Position") print("") # return result return action, desc def print_field_positions(self): print("Field positons:") print("[ 0] [ 1] [ 2] [ 3]") print("[ 4] [ 5] [ 6] [ 7]") print("[ 8] [09] [10] [11]") print("[12] [13] [14] [15]") def print_actions(self): print("Actions:") print("[0] Left") print("[1] Down") print("[2] Right") print("[3] Up") def print_Q(self, Q): print("Field: Left Down Right Up") for field in Q: print(f"{field : >5}", end="") print(":", Q[field]) # Create helper instance helper = FrozenLakeHelper() ###Output _____no_output_____ ###Markdown Frozen Lake environment ###Code env = gym.make('FrozenLake-v1', is_slippery=False) print("Action space:") print(env.action_space) print("") helper.print_actions() print("") print("Observation space:") print(env.observation_space) print("") helper.print_field_positions() ###Output Action space: Discrete(4) Actions: [0] Left [1] Down [2] Right [3] Up Observation space: Discrete(16) Field positons: [ 0] [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [09] [10] [11] [12] [13] [14] [15] ###Markdown Reset and initial state ###Code env.reset() # reset the environment the set agent to start state helper.render(env, legend=True) print() ###Output Last action: Init [S] F F F F H F H F F F H H F F G Legend: S=Start, F=Frozen (safe), H=Hole, G=Goal, []=Current Position
Metdat-science/Pertemuan 6 - 23 Februari 2022/Tugas_672019321.ipynb
###Markdown **Elsha Yuandini Dewasasmita - 672019321** **Soal No 1.**Jawaban no 1 :Saya memilih Line Graph / Line Chart karena pada contoh kasus nomor 1 dijelaskan bahwa terdapat harga bitcoin dari tahun 2018 hingga 2019 yang dicatat setiap **MINGGU**, dari sini bisa dilihat bahwa terdapat banyak data pada soal nomor 1. Dari bentuk soal ini sudah bisa dilihat bahwa ada 2 kondisi yang berbeda, yaitu harga bitcoin tahun 2018 dan harga bitcoin tahun 2019. Kemudian pada pertanyaan soal no 1 ditanyakan mengenai **tahun berapa yang memberikan keuntungan yang lebih baik bagi pemegang bitcoin?**. Untuk kasus yang seperti ini lebih cocok menggunakan Line Graph dikarenakan 2 kondisi yang berbeda tadi, sehingga 1 dataset dengan nama **prices** dengan 104 data banyaknya saya pecah menjadi 2 dengan nama **prices** dan **prices_2019** yang masing masing berisi 52 data (karena 1 tahun = 52 minggu), yang kemudian saya eksekusi menggunakan 2 *syntax* yaitu **plt.plot(minggu, prices, marker='o')** untuk mengeksekusi harga bitcoin tahun 2018 dengan garis warna hijau dan ***plt.plot(minggu, prices_2019, linestyle='--', marker='o')*** dengan garis warna oranye untuk harga bitcoin tahun 2019. Sehingga kesimpulannya adalah, **pada tahun 2019 lah yang memberikan keuntungan yang lebih baik bagi pemegang bitcoin karena bisa dilihat di garis oranye lebih dominan datanya banyak yang naik, yang berarti harga bitcoin pada tahun 2019 dominan meningkat** ###Code import matplotlib.pyplot as plt import numpy as np prices = [14292.2, 12858.9, 11467.5, 9241.1, 8559.6, 11073.5, 9704.3, 11402.3, 8762.0, 7874.9, 8547.4, 6938.2, 6905.7, 8004.4, 8923.1, 9352.4, 9853.5, 8459.5, 8245.1, 7361.3, 7646.6, 7515.8, 6505.8, 6167.3, 6398.9, 6765.5, 6254.8, 7408.7, 8234.1, 7014.3, 6231.6, 6379.1, 6734.8, 7189.6, 6184.3, 6519.0, 6729.6, 6603.9, 6596.3, 6321.7, 6572.2, 6494.2, 6386.2, 6427.1, 5621.8, 3920.4, 4196.2, 3430.4, 3228.7, 3964.4, 3706.8, 3785.4] prices_2019 = [3597.2, 3677.8, 3570.9, 3502.5, 3661.4, 3616.8, 4120.4, 3823.1, 3944.3, 4006.4, 4002.5, 4111.8, 5046.2, 5051.8, 5290.2, 5265.9, 5830.9, 7190.3, 7262.6, 8027.4, 8545.7, 7901.4, 8812.5, 10721.7, 11906.5, 11268.0, 11364.9, 10826.7, 9492.1, 10815.7, 11314.5, 10218.1, 10131.0, 9594.4, 10461.1, 10337.3, 9993.0, 8208.5, 8127.3, 8304.4, 7957.3, 9230.6, 9300.6, 8804.5, 8497.3, 7324.1, 7546.6, 7510.9, 7080.8, 7156.2, 7321.5, 7376.8] minggu = list(np.arange(1,53)) #menampilkan list data nomor 1 - 52 (53-1) fig = plt.figure(figsize=(18,9)) ax= fig.add_subplot() plt.plot(minggu, prices, marker='o') plt.plot(minggu, prices_2019, linestyle='--', marker='o') plt.title ('Harga Bitcoin dari tahun 2018 dan 2019') plt.ylabel('Harga Bitcoin') plt.xlabel('Minggu') ax.plot(minggu,prices) plt.show ###Output _____no_output_____ ###Markdown **Soal No 2.**Jawaban no 2 : Saya memilih Pie Chart karena pada contoh kasus yang tertulis, ditanyakan bahwa berapa presentase peluang memilih permen dalam sekali coba jika kita mengambilnya acak dalam sekali pengambilan. Sehingga Pie Chart lebih cocok untuk memvisualisasikan contoh kasus ini karena hanya memuat data yang sedikit. **Dan banyaknya permen kopiko adalah 39 permen dari total keseluruhan 260 permen, sehingga peluang permen kopiko terambil adalah sebesar 15% atau dengan kata lain permen kopiko dapat terambil dalam sekali percobaan dengan peluang 3/20 (15/100) atau 0,15 (39/260)** ###Code import matplotlib.pyplot as plt nama_permen = ['Mentos', 'Kopiko', 'Golia', 'Yupie', 'Fisherman'] Jumlah_permen = [52, 39, 78, 13, 78] warna = ('#D2691E', '#FFB6C1', '#00FFFF', '#FFFF00', '#ADFF2F') highlight = (0,0.1,0,0,0) plt.title ('Peluang ambil permen dalam sekali coba') plt.pie(Jumlah_permen, labels = nama_permen, autopct = '%1.2f%%', colors = warna, explode = highlight, shadow = True ) #jika 2 angka dibelakang koma plt.show ###Output _____no_output_____ ###Markdown **Soal No 3.**Jawaban no 3: Saya menggunakan **Bar Chart** karena pada contoh kasus nomor 3 dijelaskan bahwa terdapat daftar menu *dessert* atau makanan penutup yang dicatat frekuensi terjualnya setiap seminggu sekali. Dan pada soal juga dijelaskan bahwa pihak Kafe Biru ingin *menghapus* 3 makanan yang tidak populer dari menu, sehingga Bar chart lebih cocok memvisualisasikan contoh kasus ini karena Bar Chart cocok untuk memvisualisasikan kasus yang memiliki data puluhan (10-20 data). **Sebutkan tiga makanan penutup yang harus disingkirkan.**Bisa dilihat pada diagram bar bahwa 3 makanan paling populer adalah **ice cream, kue coklat-keju, dan donat**, dengan kata lain para mahasiswa lebih suka membeli ketiga makanan tersebut. Dan 3 makanan penutup yang kurang populer adalah **puding vanila, pastel, kue wajik**, sehingga pemilik Kafe Biru harus menyingkirkan dan menghapus menu 3 makanan tersebut. ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd datapenjualan_makananpenutup = ('Donat', 'Pastel', 'Kue Coklat', 'Ice Cream', 'Puding Vanila', 'Brownies', 'Puding Strawberry', 'Puding Coklat','Ice Cream Nutela', 'Kue Coklat-Keju', 'Kue Wajik', 'Kue Sus', 'Mochi') terjual = (14, 5, 12, 19, 6, 8, 12, 9, 10, 17, 2, 9, 13 ) x_koordinat = np.arange(len(datapenjualan_makananpenutup)) df = pd.DataFrame({'Data' : datapenjualan_makananpenutup, 'Sold' : terjual}) df.sort_values(by='Sold', inplace = True, ascending = False) warna = ['#0000FF' for _ in range(len(df))] warna [10] = '#FF0000' warna [11] = '#FF0000' warna [12] = '#FF0000' plt.title ('Daftar makanan terpopuler Kafe Biru') plt.bar(x_koordinat, df['Sold'], tick_label=df['Data'], color=warna) plt.xticks(rotation=90) plt.ylabel('Terjual') plt.show() ###Output _____no_output_____ ###Markdown **Soal No 4.**Jawaban no 4 : Saya menggunakan **Heatmap** karena pada contoh kasus nomor 4 dijelaskan bahwa terdapat penggunaan rata-rata CPU per jam selama seminggu. Jika melihat secara fakta, CPU yang digunakan selama berjam jam tentu saja akan membuat suhu dari CPU itu sendiri semakin panas, oleh karena itulah penggunaan Heatmap cocok pada kasus ini, karena **Heatmap sendiri merupaka visualisasi data dengan representasi warna yang berbeda** sehingga pada kasus ini dapat memvisualisasikan suhu CPU selama seminggu. Biasanya semakin tinggi angka suatu data, maka warnanya akan semakin gelap. **Jam berapa pekerja biasanya makan siang?**Bisa dilihat pada diagram Heatmap bahwa CPU tidak digunakan atau bersuhu rendah (warna biru) ketika jam 13.00 siang. Dengan kata lain para pekerja makan siang dan beristirahat pada jam 13.00 siang. **Apakah pekerja tersebut bekerja pada akhir pekan?**Bisa dilihat pada diagram Heatmap terutama pada akhir pekan (sabtu dan minggu) tidak ada aktivitas penggunaan CPU yang signifikan. Sehingga bisa dikatakan para pekerja libur pada hari sabtu karena selama satu hari tersebut suhu CPU berwarna biru yang berarti tidak ada aktivitas pada hari sabtu. Namun pada hari minggu malam para pekerja mulai bekerja lagi karena ditandai dengan adnya aktivitas CPU yang digunakan pada jam 18.00 - 20.00. **Pada hari apa pekerja mulai bekerja pada komputer mereka pada malam hari?**Bisa dilihat pada hari minggu pada jam 18.00 - 20.00 terdapat aktivitas penggunaan CPU, sehingga bisa dikatakan pekerja mulai bekerja pada malam hari pada hari minggu ###Code import seaborn as sbr hari = ['Senin', 'Selasa', 'Rabu', 'Kamis', 'Jumat', 'Sabtu', 'Minggu'] jam = list(np.arange(0,24)) # data nomor 0 - 23 (24-1) datapenggunaan_cpu = [[2, 2, 4, 2, 4, 1, 1, 4, 4, 12, 22, 23, 45, 9, 33, 56, 23, 40, 21, 6, 6, 2, 2, 3], # Senin [1, 2, 3, 2, 3, 2, 3, 2, 7, 22, 45, 44, 33, 9, 23, 19, 33, 56, 12, 2, 3, 1, 2, 2], # Selasa [2, 3, 1, 2, 4, 4, 2, 2, 1, 2, 5, 31, 54, 7, 6, 34, 68, 34, 49, 6, 6, 2, 2, 3], # Rabu [1, 2, 3, 2, 4, 1, 2, 4, 1, 17, 24, 18, 41, 3, 44, 42, 12, 36, 41, 2, 2, 4, 2, 4], # Kamis [4, 1, 2, 2, 3, 2, 5, 1, 2, 12, 33, 27, 43, 8, 38, 53, 29, 45, 39, 3, 1, 1, 3, 4], # Jumat [2, 3, 1, 2, 2, 5, 2, 8, 4, 2, 3, 1, 5, 1, 2, 3, 2, 6, 1, 2, 2, 1, 4, 3], # Sabtu [1, 2, 3, 1, 1, 3, 4, 2, 3, 1, 2, 2, 5, 3, 2, 1, 4, 2, 45, 26, 33, 2, 2, 1], # Minggu ] sbr.heatmap(datapenggunaan_cpu, yticklabels=hari, xticklabels=jam, cmap ='coolwarm') ###Output _____no_output_____ ###Markdown **Soal no 5.**Jawaban no 5: saya memilih **Scatter Plot** karena pada contoh soal dijelaskan bahwa terdapat pertumbuhan jamur yang menyebar. Sehingga pemilihan Scatter Plot sangat cocok pada contoh kasus ini karena kita bisa menjadikan Scatter Plot sebagai perumpamaan tempat tumbuh jamur. **Kira-kira di manakah letak pusat pertumbuhan jamur/koordinat pusat (x,y)?**Pusat perumbuhan jamur bisa dilihat berdasarkan rumus modus di dalam statistik. Sehingga dengan menggunakan rumus statistik dapat diperoleh nilai modus x (7.82) dan nilai modus y (-3.41). Sehingga bisa sisimpulkan letak pusat pertumbuhan jamur berada di koordinat (7.82, -3.41) ###Code import matplotlib.pyplot as plt import statistics as sts x = [4.61, 5.08, 5.18, 7.82, 10.46, 7.66, 7.6, 9.32, 14.04, 9.95, 4.95, 7.23, 5.21, 8.64, 10.08, 8.32, 12.83, 7.51, 7.82, 6.29, 0.04, 6.62, 13.16, 6.34, 0.09, 10.04, 13.06, 9.54, 11.32, 7.12, -0.67, 10.5, 8.37, 7.24, 9.18, 10.12, 12.29, 8.53, 11.11, 9.65, 9.42, 8.61, -0.67, 5.94, 6.49, 7.57, 3.11, 8.7, 5.28, 8.28, 9.55, 8.33, 13.7, 6.65, 2.4, 3.54, 9.19, 7.51, -0.68, 8.47, 14.82, 5.31, 14.01, 8.75, -0.57, 5.35, 10.51, 3.11, -0.26 , 5.74, 8.33, 6.5, 13.85, 9.78, 4.91, 4.19, 14.8, 10.04, 13.47, 3.28] y = [-2.36, -3.41, 13.01, -2.91, -2.28, 12.83, 13.13, 11.94, 0.93, -2.76, 13.31, -3.57, -2.33, 12.43, -1.83, 12.32, -0.42, -3.08, -2.98, 12.46, 8.34, -3.19, -0.47, 12.78, 2.12, -2.72, 10.64, 11.98, 12.21, 12.52, 5.53, 11.72, 12.91, 12.56, -2.49, 12.08, -1.09, -2.89, -1.78, -2.47, 12.77, 12.41, 5.33, -3.23, 13.45, -3.41, 12.46, 12.1, -2.56, 12.51, -2.37, 12.76, 9.69, 12.59, -1.12, -2.8, 12.94, -3.55, 7.33, 12.59, 2.92, 12.7, 0.5, 12.57, 6.39, 12.84, -1.95, 11.76, 6.82, 12.44, 13.28, -3.46, 0.7, -2.55, -2.37, 12.48, 7.26, -2.45, 0.31, -2.51] plt.figure(figsize=(20,10)) plt.scatter(sts.mode(x), sts.mode(y), color ='#FF0000') plt.scatter(x,y) print("Pusat pertumbuhan jamur pada koordinat ", "{",sts.mode(x),"}", ",", "{", sts.mode(y),"}", "dengan titik warna merah") plt.show() ###Output Pusat pertumbuhan jamur pada koordinat { 7.82 } , { -3.41 } dengan titik warna merah
jupyter_notebooks/0018_filter_features.ipynb
###Markdown Filter features ###Code import pandas as pd from pandas_profiling import ProfileReport df = pd.read_pickle('features_20201124.pkl') del df['language'] del df['smog_score'] del df['ari_score'] del df['coleman_liau_score'] del df['new_dale_chall_score'] del df['flesch_score'] del df['flesch_kincaid_score'] del df['lix_score'] del df['asl_flesch'] del df['asw_flesch'] del df['asl_fog'] del df['new_dale_chall_class'] del df['pmw'] del df['acw'] del df['asw'] del df['words'] del df['characters'] del df['syllables'] del df['strain_score'] del df['acs'] del df['ass'] del df['ppw_fog'] ###Output _____no_output_____ ###Markdown Save to pickle file ###Code df.to_pickle('filtered_20201125.pkl') ###Output _____no_output_____ ###Markdown Pandas profiling report ###Code profile = ProfileReport(df, title='Pandas profiling report') profile.to_file('filter_20210106.html') ###Output _____no_output_____
superviselySDK/help/jupyterlab_scripts/src/tutorials/02_data_management/data_management.ipynb
###Markdown Supervisely Tutorial 2 Online API basics: organize and explore workspaces, projects and neural networks In this tutorial we will cover the basics of how to script your interactions with the Supervisely web instance using our online API.You will learn how to query the web instance for existing projects and datasets, get and update their metadata and download images and their labeling data locally for further processing with our Python SDK. You will also see how to add an existing neural network from our public repository, read off its metainformation and download the weights and inference confi locally.In the follow up tutorials (4 and 5) you will learn how to request neural net inference from the web instance and how to automate complex data processing pipelines using Supervisely workflows. Necessary imports ###Code import supervisely_lib as sly # PyPlot only for rendering images inside Jupyter. %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Initialize API access with your credentialsBefore starting to interact with a Supervisely web instance using our API, you need to supply your use credentials: your unique access token that you can find under your profile details: ###Code import os # Jupyter notebooks hosted on Supervisely can get their user's # credentials from the environment varibales. # If you are running the notebook outside of Supervisely, plug # the server address and your API token here. # You can find your API token in the account settings: # -> click your name in the top-right corner # -> select "account settings" # -> select "API token" tab on top. address = os.environ['SERVER_ADDRESS'] token = os.environ['API_TOKEN'] print("Server address: ", address) print("Your API token: ", token) # Initialize the API access object. api = sly.Api(address, token) ###Output Server address: http://192.168.1.69:5555 Your API token: OfaV5z24gEQ7ikv2DiVdYu1CXZhMavU7POtJw2iDtQtvGUux31DUyWTXW6mZ0wd3IRuXTNtMFS9pCggewQWRcqSTUi4EJXzly8kH7MJL1hm3uZeM2MCn5HaoEYwXejKT ###Markdown Workspace managementIn Supervisely, workspaces are the top level groups of your work items. Each workspace contains plugins, such as neural network implementations and projects with datasets.Let us start with listing all the existing workspaces: ###Code # In Supervisely, a user can belong to multiple teams. # Everyone has a default team with just their user in it. # We will work in the context of that default team. team = api.team.get_list()[0] # Query for all the workspaces in the selected team workspaces = api.workspace.get_list(team.id) print("Team {!r} contains {} workspaces:".format(team.name, len(workspaces))) for workspace in workspaces: print("{:<8}{:<15s}".format(workspace.id, workspace.name)) ###Output Team 'max' contains 22 workspaces: 9 my_super_workspace_002 10 region_pipeline 34 script1 35 dtl_bug 39 script2 40 train_test 41 ws7 44 dfgd 45 test_dtl_segmentation 55 my_super_workspace 56 test_workspace_001 57 test_workspace_002 58 test_api 60 test_api2 67 my_super_workspace_001 69 test_workspace 82 tutorial_04 83 tutorial_05_backup 84 tutorial_05 90 my_super_workspace_003 92 test_new 111 test_fast_agent ###Markdown We can quickly read off more details on the workspace, like the description, creation and last modification times: ###Code print(workspaces[0]) ###Output WorkspaceInfo(id=9, name='my_super_workspace_002', description='super workspace description', team_id=9, created_at='2019-01-20T13:25:19.142Z', updated_at='2019-01-20T13:25:19.142Z') ###Markdown For this tutorial, we will create a new workspace to avoid interfering with any existing work. ###Code workspace_name = 'tutorial_workspace' # Just in case there is already a workspace with this name, # we can ask the web instance for a new unique name to use. if api.workspace.exists(team.id, workspace_name): workspace_name = api.workspace.get_free_name(team.id, workspace_name) # Create the workspace and print out its metadata. workspace = api.workspace.create(team.id, workspace_name, 'tutorial workspace description') print(workspace) ###Output WorkspaceInfo(id=114, name='tutorial_workspace', description='tutorial workspace description', team_id=9, created_at='2019-04-07T15:59:02.645Z', updated_at='2019-04-07T15:59:02.645Z') ###Markdown We can query for workspace metadata both by workspace name and by numeric ID: ###Code workspace_by_name = api.workspace.get_info_by_name(team.id, workspace_name) print(workspace_by_name) print() workspace_by_id = api.workspace.get_info_by_id(workspace.id) print(workspace_by_id) ###Output WorkspaceInfo(id=114, name='tutorial_workspace', description='tutorial workspace description', team_id=9, created_at='2019-04-07T15:59:02.645Z', updated_at='2019-04-07T15:59:02.645Z') WorkspaceInfo(id=114, name='tutorial_workspace', description='tutorial workspace description', team_id=9, created_at='2019-04-07T15:59:02.645Z', updated_at='2019-04-07T15:59:02.645Z') ###Markdown Both workspace name and description can be changed later: ###Code # update workspace name, description, or both new_name = 'my_super_workspace' new_description = 'super workspace description' if api.workspace.exists(team.id, new_name): new_name = api.workspace.get_free_name(team.id, new_name) print("Before update: {}\n".format(workspace)) workspace = api.workspace.update(workspace.id, new_name, new_description) print("After update: {}".format(workspace)) ###Output Before update: WorkspaceInfo(id=114, name='tutorial_workspace', description='tutorial workspace description', team_id=9, created_at='2019-04-07T15:59:02.645Z', updated_at='2019-04-07T15:59:02.645Z') After update: WorkspaceInfo(id=114, name='my_super_workspace_004', description='super workspace description', team_id=9, created_at='2019-04-07T15:59:02.645Z', updated_at='2019-04-07T15:59:02.645Z') ###Markdown Project managementA project is a group of datasets with common labeling metadata (the set of available classes and tags). For example, one can have a project of labeled road scenes (so the taxonomy of the classes will relate to vehicles, pedestrians and road signs), and inside the project have a separate dataset for every day on which the data was collected. We will start populating our new workspace by cloning one of the publically available in Supervisely projects into it. ###Code # 'lemons_annotated' is one of our out of the box demo projects, so # we will make a copy with the appropriate name. project_name = 'lemons_annotated_clone' if api.project.exists(workspace.id, project_name): project_name = api.project.get_free_name(workspace.id, project_name) task_id = api.project.clone_from_explore('Supervisely/Demo/lemons_annotated', workspace.id, project_name) # The clone call returns immediately, so the code does not # have to block on waiting for the task to complete. # Since we do not have much to do in the meantime, just wait for the task. api.task.wait(task_id, api.task.Status.FINISHED) # Now that the task has finished we can query for the project metadata. project = api.project.get_info_by_name(workspace.id, project_name) print("Project {!r} has been sucessfully cloned from explore: ".format(project.name)) print(project) ###Output Project 'lemons_annotated_clone' has been sucessfully cloned from explore: ProjectInfo(id=1276, name='lemons_annotated_clone', description='', size='861069', readme='', workspace_id=114, created_at='2019-04-07T15:59:08.975Z', updated_at='2019-04-07T15:59:08.975Z') ###Markdown Now we have a project in the new workspace, let us make sure there is only one. Query and print out the projects in the workspace: ###Code projects = api.project.get_list(workspace.id) print("Workspace {!r} contains {} projects:".format(workspace.name, len(projects))) for project in projects: print("{:<5}{:<15s}".format(project.id, project.name)) ###Output Workspace 'my_super_workspace_004' contains 1 projects: 1276 lemons_annotated_clone ###Markdown We can query project metadata both by project name and by numeric id: ###Code # Get project info by name project = api.project.get_info_by_name(workspace.id, project_name) if project is None: print("Workspace {!r} not found".format(project_name)) else: print(project) print() # Get project info by id. project = api.project.get_info_by_id(project.id) if project is None: print("Project with id={!r} not found".format(some_project_id)) else: print(project) ###Output ProjectInfo(id=1276, name='lemons_annotated_clone', description='', size='861069', readme='', workspace_id=114, created_at='2019-04-07T15:59:08.975Z', updated_at='2019-04-07T15:59:08.975Z') ProjectInfo(id=1276, name='lemons_annotated_clone', description='', size='861069', readme='', workspace_id=114, created_at='2019-04-07T15:59:08.975Z', updated_at='2019-04-07T15:59:08.975Z') ###Markdown Separately we can query for the number of datasets in a project, and for the number of images in a dataset: ###Code # get number of datasets and images in project datasets_count = api.project.get_datasets_count(project.id) images_count = api.project.get_images_count(project.id) print("Project {!r} contains:\n {} datasets \n {} images\n".format(project.name, datasets_count, images_count)) ###Output Project 'lemons_annotated_clone' contains: 1 datasets 6 images ###Markdown Get the labeling meta information for the projects - the set of available object classes and tags. We get back a serialized project meta, which can be conveniently parsed into a `ProjectMeta` object from our Python SDK. See our tutorial 1 for a detailed guide on how to work with projects metadata using the SDK. ###Code meta_json = api.project.get_meta(project.id) meta = sly.ProjectMeta.from_json(meta_json) print(meta) ###Output ProjectMeta: Object Classes +-------+--------+----------------+ | Name | Shape | Color | +-------+--------+----------------+ | kiwi | Bitmap | [255, 0, 0] | | lemon | Bitmap | [81, 198, 170] | +-------+--------+----------------+ Image Tags +------+------------+-----------------+ | Name | Value type | Possible values | +------+------------+-----------------+ +------+------------+-----------------+ Object Tags +------+------------+-----------------+ | Name | Value type | Possible values | +------+------------+-----------------+ +------+------------+-----------------+ ###Markdown List the datasets from the given project: ###Code datasets = api.dataset.get_list(project.id) print("Project {!r} contains {} datasets:".format(project.name, len(datasets))) for dataset in datasets: print("Id: {:<5} Name: {:<15s} images count: {:<5}".format(dataset.id, dataset.name, dataset.images_count)) ###Output Project 'lemons_annotated_clone' contains 1 datasets: Id: 1717 Name: ds1 images count: 6 ###Markdown List all the images for a given dataset, their sizes, dimensions and the number of labeled objects: ###Code dataset = datasets[0] images = api.image.get_list(dataset.id) print("Dataset {!r} contains {} images:".format(dataset.name, len(images))) for image in images: print("Id: {:<5} Name: {:<15s} labels count: {:<5} size(bytes): {:<10} width: {:<5} height: {:<5}" .format(image.id, image.name, image.labels_count, image.size, image.width, image.height)) ###Output Dataset 'ds1' contains 6 images: Id: 146018 Name: IMG_0748.jpeg labels count: 3 size(bytes): 155790 width: 1067 height: 800 Id: 146019 Name: IMG_1836.jpeg labels count: 3 size(bytes): 140222 width: 1067 height: 800 Id: 146020 Name: IMG_3861.jpeg labels count: 4 size(bytes): 148388 width: 1067 height: 800 Id: 146021 Name: IMG_4451.jpeg labels count: 5 size(bytes): 135689 width: 1067 height: 800 Id: 146022 Name: IMG_2084.jpeg labels count: 7 size(bytes): 142097 width: 1067 height: 800 Id: 146023 Name: IMG_8144.jpeg labels count: 4 size(bytes): 138883 width: 1067 height: 800 ###Markdown Download an image along with its annotation (all the labeling information for that image): ###Code # Download and display the image. image = images[0] img = api.image.download_np(image.id) print("Image Shape: {}".format(img.shape)) imgplot = plt.imshow(img) # Download the serialized JSON annotation for the image. ann_info = api.annotation.download(image.id) # Parse the annotation using the Supervisely Python SDK # and instantiate convenience wrappers for the objects in the annotation. ann = sly.Annotation.from_json(ann_info.annotation, meta) # Render the object labels on top of the original image. img_with_ann = img.copy() ann.draw(img_with_ann) imgplot = plt.imshow(img_with_ann) ###Output _____no_output_____ ###Markdown Neural network managementHere we will only cover working with neural networks metadata. There is a separate tutorial (Supervisely Tutorial 4) on running neural network training and inference.First, we will clone one of the existing publically avaliable in Supervisely models into our workspace: ###Code # Set the destination model name within our workspace model_name = 'yolo_coco' # Grab a unique name in case the one we chose initially is busy. if api.model.exists(workspace.id, model_name): model_name = api.model.get_free_name(workspace.id, model_name) # Request the model to be copied from our public repository. # This kicks off an asynchronous task. task_id = api.model.clone_from_explore('Supervisely/Model Zoo/YOLO v3 (COCO)', workspace.id, model_name) # Wait for the copying to complete. api.task.wait(task_id, api.task.Status.FINISHED) # Query the metadata for the copied model. model = api.model.get_info_by_name(workspace.id, model_name) print("Model {!r} has been sucessfully cloned from explore: ".format(model.name)) print(model) ###Output Model 'yolo_coco' has been sucessfully cloned from explore: ModelInfo(id=360, name='yolo_coco', description='Trained on COCO. Can be used for both training and inference', config=None, hash='0/o/I7/TaFtVZ8Yk5JXHkBaI9HRTbfqQglvvC7rW8yDqRcFmictKTNsu5oGDxfkVgkVHZ34rFn4dZgVEEexjEjrRcR1pIl2voLTgzKTf5nDRCHEMJLAWleyzFZVJrUEMg3R.tar', only_train=False, plugin_id=6, plugin_version='latest', size='248027648', weights_location='uploaded', readme='', task_id=None, user_id=9, team_id=9, workspace_id=114, created_at='2019-04-07T15:59:28.334Z', updated_at='2019-04-07T15:59:28.334Z') ###Markdown We can also download locally the model weights and config (which describes the set of classes the model would predict) as a .tar file: ###Code api.model.download_to_tar(workspace.id, model.name, './model.tar') ###Output _____no_output_____